Science.gov

Sample records for accuracy sun sensor

  1. Autonomous navigation accuracy using simulated horizon sensor and sun sensor observations

    NASA Technical Reports Server (NTRS)

    Pease, G. E.; Hendrickson, H. T.

    1980-01-01

    A relatively simple autonomous system which would use horizon crossing indicators, a sun sensor, a quartz oscillator, and a microprogrammed computer is discussed. The sensor combination is required only to effectively measure the angle between the centers of the Earth and the Sun. Simulations for a particular orbit indicate that 2 km r.m.s. orbit determination uncertainties may be expected from a system with 0.06 deg measurement uncertainty. A key finding is that knowledge of the satellite orbit plane orientation can be maintained to this level because of the annual motion of the Sun and the predictable effects of Earth oblateness. The basic system described can be updated periodically by transits of the Moon through the IR horizon crossing indicator fields of view.

  2. Multiplexing image detector method for digital sun sensors with arc-second class accuracy and large FOV.

    PubMed

    Wei, Minsong; Xing, Fei; You, Zheng; Wang, Geng

    2014-09-22

    To improve the accuracy of digital sun sensors (DSS) to the level of arc-second while maintaining a large field of view (FOV), a multiplexing image detector method was proposed. Based on a single multiplexing detector, a dedicated mask with different groups of encoding apertures was utilized to divide the whole FOV into several sub-FOVs, every of which would cover the whole detector. In this paper, we present a novel method to analyze and optimize the diffraction effect and the parameters of the aperture patterns in the dedicated mask, including the aperture size, focal length, FOV, as well as the clearance between adjacent apertures. Based on the simulation, a dedicated mask with 13 × 13 various groups of apertures was designed and fabricated; furthermore a prototype of DSS with a single multiplexing detector and 13 × 13 sub-FOVs was built and test. The results indicated that the DSS prototype could reach the accuracy of 5 arc-second (3σ) within a 105° × 105° FOV. Using this method, the sun sensor still keeps the original features of low power consumption, small size and high dynamic range when it realizes both high accuracy and large FOV. PMID:25321780

  3. Micro Sun Sensor for Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Liebe, Carl; Bae, Youngsam; Schroeder, Jeffrey; Wrigley, Chris

    2004-01-01

    A report describes the development of a compact micro Sun sensor for use as a part of the attitude determination subsystem aboard future miniature spacecraft and planetary robotic vehicles. The prototype unit has a mass of only 9 g, a volume of only 4.2 cm(sup 3), a power consumption of only 30 mW, and a 120 degree field of view. The unit has demonstrated an accuracy of 1 arcminute. The unit consists of a multiple pinhole camera: A micromachined mask containing a rectangular array of microscopic pinholes, machined utilizing the microectromechanical systems (MEMS), is mounted in front of an active-pixel sensor (APS) image detector. The APS consists of a 512 x 512-pixel array, on-chip 10-bit analog to digital converter (ADC), on-chip bias generation, and on-chip timing control for self-sequencing and easy programmability. The digitized output of the APS is processed to compute the centroids of the pinhole Sun images on the APS. The Sun angle, relative to a coordinate system fixed to the sensor unit, is then computed from the positions of the centroids.

  4. Micro digital sun sensor with linear detector.

    PubMed

    Fan, Qiao-Yun; Peng, Jia-Wen; Gao, Xin-Yang

    2016-07-01

    In this paper, the design of a novel micro digital sun sensor is described. It relies on V-shaped slit and linear array CCD to measure sun-ray angle against two axes. A highly integrated microprogram control unit) is used to make a very simple and compact system. V-shaped slit can simplify algorithm and achieve a wider field of view. Error compensation and accurate calibration are employed to improve accuracy. Adaptive threshold and adjustable expose time further improve reliability. Experiments and flight validation show that the FOV (Field of View) of the sun sensor is ±65°  ×   ± 65° and the accuracy is 0.1° in the whole FOV. It can work reliably at an update rate of 25 Hz, while the consumption is only 200 mW. This sun sensor is proved to have a good prospect in micro/nanosatellites.

  5. Micro digital sun sensor with linear detector

    NASA Astrophysics Data System (ADS)

    Fan, Qiao-yun; Peng, Jia-wen; Gao, Xin-yang

    2016-07-01

    In this paper, the design of a novel micro digital sun sensor is described. It relies on V-shaped slit and linear array CCD to measure sun-ray angle against two axes. A highly integrated microprogram control unit) is used to make a very simple and compact system. V-shaped slit can simplify algorithm and achieve a wider field of view. Error compensation and accurate calibration are employed to improve accuracy. Adaptive threshold and adjustable expose time further improve reliability. Experiments and flight validation show that the FOV (Field of View) of the sun sensor is ±65° × ± 65° and the accuracy is 0.1° in the whole FOV. It can work reliably at an update rate of 25 Hz, while the consumption is only 200 mW. This sun sensor is proved to have a good prospect in micro/nanosatellites.

  6. Micro digital sun sensor with linear detector.

    PubMed

    Fan, Qiao-Yun; Peng, Jia-Wen; Gao, Xin-Yang

    2016-07-01

    In this paper, the design of a novel micro digital sun sensor is described. It relies on V-shaped slit and linear array CCD to measure sun-ray angle against two axes. A highly integrated microprogram control unit) is used to make a very simple and compact system. V-shaped slit can simplify algorithm and achieve a wider field of view. Error compensation and accurate calibration are employed to improve accuracy. Adaptive threshold and adjustable expose time further improve reliability. Experiments and flight validation show that the FOV (Field of View) of the sun sensor is ±65°  ×   ± 65° and the accuracy is 0.1° in the whole FOV. It can work reliably at an update rate of 25 Hz, while the consumption is only 200 mW. This sun sensor is proved to have a good prospect in micro/nanosatellites. PMID:27475588

  7. Sun-pointing programs and their accuracy

    SciTech Connect

    Zimmerman, J.C.

    1981-05-01

    Several sun-pointing programs and their accuracy are described. FORTRAN program listings are given. Program descriptions are given for both Hewlett-Packard (HP-67) and Texas Instruments (TI-59) hand-held calculators.

  8. Sensor Tracks the Sun From Any Angle

    NASA Technical Reports Server (NTRS)

    Birnbaum, M., M.; Bunker, R. L.

    1986-01-01

    Sensor system locates Sun from any angle and generates error signals to point object toward Sun and follow its motion. Sun-sensor system includes three photodetectors, each with separate field of view defined by set of apertures. As equipment rotates about axis, detectors put out time-varying signals processed by external electronics to determine rotation rate and direction to Sun.

  9. Fine Sun Sensor Field of View Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Hashmall, J.; Harman, Richard (Technical Monitor)

    2002-01-01

    The fine Sun sensor (FSS) used on many spacecraft consists of two independent single-axis sensors, nominally mounted perpendicularly, that detect Sun angle across a typical field of view of +/- 32 degrees. The nonlinear function that maps the measured counts into an observed angle is called the transfer function. The FSS transfer function provided by the manufacturer consists of nine parameters for each of the two sensitive axes. An improved transfer function has been previously reported that achieves a significant accuracy improvement across the entire field of view. This new function expands the parameter set to 12 coefficients per axis and includes cross terms combining counts from both axes. To make best use of the FSS for spacecraft attitude determination, it must be calibrated after launch. We are interested in simplifying the postlaunch calibration procedure for estimating improvements to the 24 parameters in the transfer function. This paper discusses how to recombine the terms of the transfer function to reduce their redundancy without decreasing its accuracy and then presents an attitude dependent procedure for estimating the parameters. The end result is a calibration algorithm that is easier to use and does not sacrifice accuracy. Results of calibration using on-orbit data are presented.

  10. Flight Qualified Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Mobasser, Sohrab; Wrigley, Chris; Schroeder, Jeffrey; Bae, Youngsam; Naegle, James; Katanyoutanant, Sunant; Jerebets, Sergei; Schatzel, Donald; Lee, Choonsup

    2007-01-01

    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted

  11. Micro sun sensor for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Liebe, Carl Christian

    2004-01-01

    A micro sun sensor is being developed for use on a Mars rover for the Mars Science Laboratory Mission. The micro sun sensor, which is basically a small pinhole camera, consists of a small mask with pinholes, placed on top of an image detector.

  12. CRUQS: A Miniature Fine Sun Sensor for Nanosatellites

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Snow, Carl; Santos, Luis

    2013-01-01

    A new miniature fine Sun sensor has been developed that uses a quadrant photodiode and housing to determine the Sun vector. Its size, mass, and power make it especially suited to small satellite applications, especially nanosatellites. Its accuracy is on the order of one arcminute, and it will enable new science in the area of nanosatellites. The motivation for this innovation was the need for high-performance Sun sensors in the nanosatellite category. The design idea comes out of the LISS (Lockheed Intermediate Sun Sensor) used by the sounding rocket program on their solar pointing ACS (Attitude Control System). This system uses photodiodes and a wall between them. The shadow cast by the Sun is used to determine the Sun angle. The new sensor takes this concept and miniaturizes it. A cruciform shaped housing and a surface-mount quadrant photodiode package allow for a two-axis fine Sun sensor to be packaged into a space approx.1.25xl x0.25 in. (approx.3.2x2.5x0.6 cm). The circuitry to read the photodiodes is a simple trans-impedance operational amplifier. This is much less complex than current small Sun sensors for nanosatellites that rely on photo-arrays and processing of images to determine the Sun center. The simplicity of the circuit allows for a low power draw as well. The sensor consists of housing with a cruciform machined in it. The cruciform walls are 0.5-mm thick and the center of the cruciform is situated over the center of the quadrant photodiode sensor. This allows for shadows to be cast on each of the four photodiodes based on the angle of the Sun. A simple operational amplifier circuit is used to read the output of the photodiodes as a voltage. The voltage output of each photodiode is summed based on rows and columns, and then the values of both rows or both columns are differenced and divided by the sum of the voltages for all four photodiodes. The value of both difference over sums for the rows and columns is compared to a table or a polynomial fit

  13. Autonomous Sun-Direction Estimation Using Partially Underdetermined Coarse Sun Sensor Configurations

    NASA Astrophysics Data System (ADS)

    O'Keefe, Stephen A.

    In recent years there has been a significant increase in interest in smaller satellites as lower cost alternatives to traditional satellites, particularly with the rise in popularity of the CubeSat. Due to stringent mass, size, and often budget constraints, these small satellites rely on making the most of inexpensive hardware components and sensors, such as coarse sun sensors (CSS) and magnetometers. More expensive high-accuracy sun sensors often combine multiple measurements, and use specialized electronics, to deterministically solve for the direction of the Sun. Alternatively, cosine-type CSS output a voltage relative to the input light and are attractive due to their very low cost, simplicity to manufacture, small size, and minimal power consumption. This research investigates using coarse sun sensors for performing robust attitude estimation in order to point a spacecraft at the Sun after deployment from a launch vehicle, or following a system fault. As an alternative to using a large number of sensors, this thesis explores sun-direction estimation techniques with low computational costs that function well with underdetermined sets of CSS. Single-point estimators are coupled with simultaneous nonlinear control to achieve sun-pointing within a small percentage of a single orbit despite the partially underdetermined nature of the sensor suite. Leveraging an extensive analysis of the sensor models involved, sequential filtering techniques are shown to be capable of estimating the sun-direction to within a few degrees, with no a priori attitude information and using only CSS, despite the significant noise and biases present in the system. Detailed numerical simulations are used to compare and contrast the performance of the five different estimation techniques, with and without rate gyro measurements, their sensitivity to rate gyro accuracy, and their computation time. One of the key concerns with reducing the number of CSS is sensor degradation and failure. In

  14. Lightweight Sun-Position Sensor Developed

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    An orbiting spacecraft needs to be able to accurately locate the position of the Sun so that the solar arrays can be pointed toward the Sun. This not only maximizes the production of power, but it also helps the arrays find their orientation in space so that they can accurately point antennae at ground stations. As part of the work on the (now postponed) Mars-2001 Surveyor Lander, NASA Glenn Research Center engineers developed a new Sun sensor that is far lighter and simpler than earlier designs. This sensor uses the technology of a linear photodiode array to find the position of the Sun in one axis. Two of these sensors, used together, can locate the x and y coordinates of the Sun relative to the spacecraft. These sensors have a mass of only 18 g each, nearly an order of magnitude lighter than earlier designs. (This mass does not include the electronic circuit to read the photodiode output, which is on the experiment microcontroller.) Near the center of the field of view, the Sun position can be found to 0.15

  15. Flight Qualified Micro Sun Sensor for Mars Applications

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Liebe, Carl Christian; Naegle, James; Lee, Choonsup

    2005-01-01

    A Right qualified micro sun sensor is being developed and flight qualified for future Man missions. The micro sun sensor, which Is basically a small pinhole camera, consists of a small mask with pinholes, placed on top of an image detector. Images of the sun are formed on the image detector when the sun illuminates the mask. Image processing is performed in the sun sensor that outputs sun centroids.

  16. Wide-angle sun sensors

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.

    1975-01-01

    Two sensors have been developed: one, single-axis device, is cylindrical; the other, two-axis device, is spherical. Multiple surface deposits of photosensitive material, such as cadmium sulfide, serve as redundancy, ensuring high reliability.

  17. An automated method for the evaluation of the pointing accuracy of sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz

    2016-04-01

    The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m‑2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.

  18. An automated method for the evaluation of the pointing accuracy of sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz

    2016-04-01

    The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.

  19. Sun position sensor for two axis tracking

    SciTech Connect

    Rotolo, G.E.

    1982-11-30

    A sun position sensor includes a plurality of solar sensors sensing solar energy arriving in a respective azimuth and elevational direction, and data encoding means for a series of respective solar azimuth and elevational positions, each position corresponding to a respective solar sensor. Said data encoding means are coupled to the solar sensors to derive a sensed solar position. A solar collector is effective for receiving solar energy in a discrete direction. Drive means positions the solar collector and provides position data corresponding to the position of the solar collector, and comparator means compares the collector position and the solar position and provides a drive signal until the two positions are equal. A geodesic dome portion includes several facets each of which contains a respective plurality of solar sensors to provide an electrical output signal representing the amount of solar incidence on a respective sensor/dome facet.

  20. ACCURACY OF CO2 SENSORS

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  1. Improved Fine Sun Sensor Field of View Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, J.; Hashmall, J.

    2003-01-01

    The fine Sun sensor used on many spacecraft consists of two independent single-axis sensor heads, nominally mounted perpendicularly. These detect the Sun angle over a field of view typically of +32 deg. (There is a trade-off between accuracy and size of the field of view that allows for much latitude in any numbers quoted.) The nonlinear "transfer" function that maps the telemetered counts into observed angles consists of 9 adjustable parameters for each axis (1 8 total). An augmented transfer function has previously been reported that achieves a significant accuracy improvement across the entire field of view. That function expands the parameter set to 12 coefficients per axis (24 total) and includes cross terms combining counts from both axes. To make the best use of the Sun sensor for attitude determination, it must be calibrated after launch. However, the large number of parameters and the nonlinearity of the problem make this a challenging task. The purpose of this paper is to examine ways to improve convergence of the parameter search algorithm. In particular, experience has shown that the problem should be broken down into several steps, solving for a selected subset of the parameters at each step. This approach has now been incorporated as an option in the calibration utility.

  2. a Pinhole Sun Sensor for Balloon-Borne Experiment Attitude Determination

    NASA Astrophysics Data System (ADS)

    Korotkov, A. L.; English, M.-P.; Tucker, G. S.; Pascale, E.; Gandilo, N.

    2013-09-01

    We report on the design, calibration and in-flight performance of a sun sensor, which is used to determine the attitude of a balloon-borne telescope. The device uses a position-sensitive detector (PSD) in a pinhole camera. By determining the position of the image of the Sun on the PSD, the orientation of the sun sensor and the boresight of the telescope relative to the Sun can be determined. The pinhole sun sensor (PSS) was first flown in the December 2010 flight of the Balloon-borne Large Aperture Submillimeter Telescope with Polarization (BLAST-Pol). In flight the PSS achieved an accuracy (combined azimuth and elevation) of about 0.18°. The accuracy could be improved by increasing the distance between the pinhole and the PSD, but the field-of-view of the PSS would be reduced.

  3. Electro-optical sun compass with a very high degree of accuracy.

    PubMed

    Bollanti, Sarah; De Meis, Domenico; Di Lazzaro, Paolo; Flora, Francesco; Gallerano, Gian Piero; Mezi, Luca; Murra, Daniele; Torre, Amalia; Vicca, Davide

    2015-08-01

    We present a novel electro-optical solar compass that is able to determine the true North direction with an accuracy better than 1/100 of degree, superior to that of any other magnetic or electronic compass that does not resort to differential GPS. The compass has an electronic sensor to determine the line of sight of the Sun and a simple but effective algorithm to calculate the position of the Sun. The excellent results obtained during the experimental tests demonstrate the advantages of this compass, which is also compact and not expensive. PMID:26258372

  4. Development of semi-sphere field-of-view sun sensor integrated with multiple linear CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Yao-kun; Li, Bin; Zhang, Fan

    2014-11-01

    Sun sensor is a key device in satellite's attitude determination system. It acquires satellite's attitude information by measuring sun light direction. Compared with area array CMOS sun sensor, the linear CMOS sun sensor has the advantages of low power consumption, light weight and relatively simple algorithm. Considering the pixel number, power consumption and efficiency of output, most sun sensors equipped with a single photosensitive unit usually have (+/-60)x(+/-60) field of view(FOV). Satellites usually use multiple sun sensors for semi-sphere field of view in total to meet the need of attitude measurement in all directions. Considering the need of large-scale FOV measurement and high integration level, this paper proposes a semi-sphere FOV sun sensor, of which coverage area can be (+/-90)x(+/-90) . A prototype has been made and the calibration of key component has been conducted. By integrating four photosensitive units, the semi-sphere FOV sun sensor is achieved, as a result, the demand of high integration can be realized for a micro-satellite device. The photosensitive unit consists of an N-shape slit mask and a linear CMOS image sensor. An N-shape slit model is established to acquire biaxial sun angles from analyzing the shift of 3 peak values from the image of the linear sensor. Embedded system has been designed and developed, in which the MCU control four photosensitive units. Calibration of one photosensitive unit, which is the key step in the process of the whole calibration of semi-sphere FOV sun sensor, has been conducted. As a result of the symmetry of N-shape slit, initial position of the linear image sensor can be fixed. Due to the installation error and machining deviation, centroid algorithm and data gridding technique is adopted to improve the accuracy. Experiments show that the single photosensitive unit can reach an angle accuracy of 0.1625°. Consequently, from the point of significant component in the sun sensor, initial calibration ensures

  5. Design of high-accuracy two-axis sun-tracking system based on optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Dan; Zhou, Wang; Li, Ye

    2011-08-01

    This paper mainly introduces the system of sun-tracking control in CPV (Concentrating Photovoltaic), includes new structure design, process circuit and software design. This system includes five photoelectric sensors, five optical fibers, one microcontroller, two-axis motion mechanism and motors etc. Here a center fiber is used to determine whether the sun appears and get a reference illuminance, and other four fibers are symmetrically distributed around the center fiber. The optical fibers lead sunlight energy into photoelectric sensors and their length can be adjusted according to actual case. So that system is flexible and has good anti-jamming. The difference value of optical energy gained by each pair of opposite optical fiber is important measure data processed by MCU. Through the calculate result by a MCU, the system can gain the direction of the sun in real time. In addition, this paper presents processing circuit, software about control process as well as error analyzes. The software also provides a scheme for suiting any weather. This new structure can protect the photoelectric sensor in any case of the weather and environment, because the sensors are deeply put inside the instrument and the light energy is passed by the fibers. More than that, through calculating the difference value of each opposite pair of fiber, controlling the motors and increasing the accuracy of sun-tracking can be realized.

  6. Development of Pyramidal Type 2-AXES Analog Sun Sensor

    NASA Astrophysics Data System (ADS)

    Rhee, Sung-Ho; Lee, Hyun-Woo; Nam, Myung-Ryong; Park, Dong-Jo

    2000-12-01

    PSS (Pyramidal type 2-axes Analog Sun Sensor) which will be used for KAISTSAT-4 is designed to be small, light, low in power consumption, and adequate for small satellite attitude sensor. The PSS for the KAISTSAT-4 consists of the pyramidal structure, solar cells and amplifier. The pyramidal structure is suitable for the 2-axes sensing, Solar cells are made up of a rectangular shape of crystal silicon. The PSS measures the angle of incident light and initial satellite attitude measurement, and provides an alarm for the sunlight-sensitive payloads. This paper explains the PSS structure and the characteristic test result about the PSS with 50o in FOV, less than 3o in accuracy.

  7. High accuracy optical rate sensor

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, J.

    1990-01-01

    Optical rate sensors, in particular CCD arrays, will be used on Space Station Freedom to track stars in order to provide inertial attitude reference. An algorithm to provide attitude rate information by directly manipulating the sensor pixel intensity output is presented. The star image produced by a sensor in the laboratory is modeled. Simulated, moving star images are generated, and the algorithm is applied to this data for a star moving at a constant rate. The algorithm produces accurate derived rate of the above data. A step rate change requires two frames for the output of the algorithm to accurately reflect the new rate. When zero mean Gaussian noise with a standard deviation of 5 is added to the simulated data of a star image moving at a constant rate, the algorithm derives the rate with an error of 1.9 percent at a rate of 1.28 pixels per frame.

  8. Sun sensor boresight alignment testing for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Moore, A. S.; Laney, V. S.; Mauldin, L. E., III

    1987-01-01

    The boresight alignment testing for the sun sensor assembly on the Halogen Occultation Experiment (HALOE) is described. The sun sensor assembly consists of three sensors that provide feedback signals for controlling dual axes gimbals. Two energy balancing silicon detectors are operated as wideband sensors in the azimuth and elevation axes. The third sensor is a silicon photodiode array operated as a narrow-band sensor in the elevation axis. These sensors are mounted on a common Invar structure which is mounted to the HALOE telescope. A blackbody was used as the stimulating source to perform the initial boresight alignment and this was checked with a heliostat solar look and a direct solar look. These tests are explained with a comparison between each source used.

  9. An Examination of Coarse Sun Sensor Contingencies in Attitude Determination and the Sun Vector Calculation

    NASA Technical Reports Server (NTRS)

    Coffey, Brenman; Welch, Ray; Burt, Brad

    2012-01-01

    Satellite pointing is vital to the success of a mission. One element of that entails describing the position of the sun relative to the frame of the satellite. Coarse Sun Sensors (CSS) are typically used to provide the information to calculate the sun's position in Safe Modes or contingency operations. In the OCO-2 configuration there are 13 CSS total, which provide redundant 4 celestial coverage. Failures of the individual CSS elements can introduce holes in the celestial coverage resulting in potential loss of sun knowledge. These failures must be analyzed to determine if the contingency plan is sufficient to assure mission success. First the static case was looked at and determined that at a maximum, 3 CSS failures can be sustained on the body and 1 on the array without causing coverage holes. Also array sensors are more important to mission success. The Sun Vector calculation has been transcribed to MATLAB code and failure scenarios are being examined to determine the maximum error given a set of failure scenarios. This activity indicated that if there is a loss of the sun, the sun-searching algorithm could be modified to use XZ rotation as that is guaranteed to find it whereas the design using the YZ rotation misses the sun if it is at the + or - Y orientation.

  10. Fuzzy image processing in sun sensor

    NASA Technical Reports Server (NTRS)

    Mobasser, S.; Liebe, C. C.; Howard, A.

    2003-01-01

    This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.

  11. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  12. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  13. Silicon Nanotips Antireflection Surface for Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish

    2006-01-01

    We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.

  14. ISEE-C attitude determination using fine sun sensor data only

    NASA Technical Reports Server (NTRS)

    Gunshol, L. P.

    1978-01-01

    Techniques developed to determine the spin axis attitude using Fine Sun Sensor (FSS) data only are described. At any given time, the Sun angle specifies the orientation of the spin axis relative to the sunline. The instantaneous time rate of change of the sun angle is directly proportional to the orientation of the spin axis relative to a reference plane that is normal to the ecliptic. Thus, the spin axis attitude can be determined when sufficient data has been collected to accurately measure the rate of change of the sun angle. The uncertainties can be computed directly from the uncertainties in the coefficients of the smoothed sun angle curve. The FSS-only technique is unique in that ephemeris vectors are required only to transform the attitude results to more conventional coordinate frames. The combination of the mission geometry and the FSS accuracy make ISEE-C an ideal mission for applying this method. However, the technique can be used on other missions, such as spin stabilized geosynchronous missions.

  15. Mars Rover Navigation Results Using Sun Sensor Heading Determination

    NASA Technical Reports Server (NTRS)

    Volpe, Richard

    1998-01-01

    Upcoming missions to the surface of Mars will use mobile robots to traverse long distances from the landing site. To prepare for these missions, the prototype rover, Rocky 7, has been tested in desert field trials conducted with a team of planetary scientists. While several new capabilities have been demonstrated, foremost among these was sun-sensor based traversal of natural terrain totaling a distance of one kilometer. This paper describes navigation results obtained in the field tests, where cross-track error was only 6% of distance traveled. Comparison with previous results of other planetary rover systems shows this to be a significant improvement.

  16. Wide angle sun sensor. [consisting of cylinder, insulation and pair of detectors

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L. (Inventor)

    1975-01-01

    A single-axis sun sensor consists of a cylinder of an insulating material on which at least one pair of detectors is deposited on a circumference of the cylinder, was disclosed. At any time only one-half of the cylinder is illuminated so that the total resistance of the two detectors is a constant. Due to the round surface on which the detectors are deposited, the sensor exhibits a linear wide angle of + or - 50 deg to within an accuracy of about 2%. By depositing several pairs of detectors on adjacent circumferences, sufficient redundancy is realized to provide high reliability. A two-axis sensor is provided by depositing detectors on the surface of a sphere along at least two orthogonal great circles.

  17. A sun acquisition sensor for spacecraft guidance and control

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Bunker, R. L.

    1983-01-01

    The combination of a strap-down analog sun acquisition sensor (AS) and an on-board digital programmable signal processor results in a versatile guidance and control system. The combination can orient the rotation axis of a spin-stabilized spacecraft to the sun no matter what the initial attitude of the spacecraft. During the sun orientation process, spacecraft spin rate can be sensed and supplied as an input to the control algorithm. If needed, the AS-signal processor combination can be used to perform a rhumb-line turn maneuver. In case of unexpected spacecraft operating conditions, or unplanned pointing directions, the signal processor program can be updated via earth-based transmission of another program to cover the new situation. Using only three radiation-hard cadmium-sulfide detectors, containing no moving parts, needing only a few microwatts of power, included in a volume of 550 cubic cm (a redundant pair), and weighing only 540 grams, the AS is a small, simple, sturdy sensing device.

  18. Surface accuracy measurement sensor for deployable reflector antennas

    NASA Technical Reports Server (NTRS)

    Spiers, R. B., Jr.

    1981-01-01

    The breadboard surface accuracy measurement sensor is an optical angle sensor which provides continuous line of sight position measurements of infrared source targets placed strategically about the antenna surface. Measurements of target coordinates define the surface figure relative to a reference frame on the antenna. Sensor operation, tests and test results to date are described.

  19. Attitude Determination by Using Horizon and Sun Sensors

    NASA Technical Reports Server (NTRS)

    Huang, Allen K. H.; French, Larry A.

    1993-01-01

    The Pointing and Alignment Workstation (PAWS) developed by Teledyne Brown Engineering (TBE) has successfully supported the first and second Atmospheric Laboratory for Applications and Science (ATLAS 1, 2) spacelab missions for NASA. The primary PAWS objective was to provide realtime pointing information to instruments whose line of-sight is dependent on Shuttle attitude and to study/quantify the causes and effects of Shuttle and payload pointing errors. In addition to Shuttle IMU attitude information, PAWS used atmospheric science sensors data to determine the spacecraft attitude. PAWS successfully achieved these goals by acquiring and processing data during the ATLAS 1, 2 mission. This paper presents the attitude determination algorithm real time processing, and results of post mission analysis. The findings of this study include the quality of the horizon sensor and IMU measurements as well as accuracy of attitude processor algorithm.

  20. An error compensation method for a linear array sun sensor with a V-shaped slit

    NASA Astrophysics Data System (ADS)

    Fan, Qiao-yun; Tan, Xiao-feng

    2015-11-01

    Existing methods of improving measurement accuracy, such as polynomial fitting and increasing pixel numbers, cannot guarantee high precision and good miniaturization specifications of a microsun sensor at the same time. Therefore, a novel integrated and accurate error compensation method is proposed. A mathematical error model is established according to the analysis results of all the contributing factors, and the model parameters are calculated through multi-sets simultaneous calibration. The numerical simulation results prove that the calibration method is unaffected by installation errors introduced by the calibration process, and is capable of separating the sensor’s intrinsic and extrinsic parameters precisely, and obtaining accurate and robust intrinsic parameters. In laboratorial calibration, the calibration data are generated by using a two-axis rotation table and a sun simulator. The experimental results show that owing to the proposed error compensation method, the sun sensor’s measurement accuracy is improved by 30 times throughout its field of view (±60°  ×  ±60°), with a RMS error of 0.1°.

  1. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  2. SHAPES - Spatial, high-accuracy, position-encoding sensor

    NASA Technical Reports Server (NTRS)

    Nerheim, Noble M.; Blue, Randel C.

    1992-01-01

    Future space systems will require control sensors capable of real-time measurements of position coordinates of many structural locations. Applications for such a sensor include figure and vibration control, rendezvous and docking, and structure assembly verification. The paper discusses an experimental study of SHAPES (spatial, high-accuracy, position-encoding sensor), a 3D position sensor that provides range and two angular positions of laser-illuminated retroreflector targets that mark the locations to be measured. Simultaneous range measurements to multiple targets by a time-of-flight corelation of short laser pulses are made with a CCD-equipped streak tube. Angular positions are measured with a CCD camera. Position measurements of 24 targets with sub-millimeter range accuracy at a 10 Hz update rate have been demonstrated.

  3. On evaluation of depth accuracy in consumer depth sensors

    NASA Astrophysics Data System (ADS)

    Abd Aziz, Azim Zaliha; Wei, Hong; Ferryman, James

    2015-12-01

    This paper presents an experimental study of different depth sensors. The aim is to answer the question, whether these sensors give accurate data for general depth image analysis. The study examines the depth accuracy between three popularly used depth sensors; ASUS Xtion Prolive, Kinect Xbox 360 and Kinect for Windows v2. The main attention is to study on the stability of pixels in the depth image captured at several different sensor-object distances by measuring the depth returned by the sensors within specified time intervals. The experimental results show that the fluctuation (mm) of the random selected pixels within the target area, increases with increasing distance to the sensor, especially on the Kinect for Xbox 360 and the Asus Xtion Prolive. Both of these sensors provide pixels fluctuation between 20mm and 30mm at a sensor-object distance beyond 1500mm. However, the pixel's stability of the Kinect for Windows v2 not affected much with the distance between the sensor and the object. The maximum fluctuation for all the selected pixels of Kinect for Windows v2 is approximately 5mm at sensor-object distance of between 800mm and 3000mm. Therefore, in the optimal distance, the best stability achieved.

  4. Accuracy of CO2 sensors in commercial buildings: a pilotstudy

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2006-10-01

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above code requirements, but to also to save energy by avoiding over ventilation relative to code requirements. However, there have been many anecdotal reports of poor CO{sub 2} sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO{sub 2} sensors located in nine commercial buildings to determine if CO{sub 2} sensor performance, in practice, is generally acceptable or problematic. CO{sub 2} measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO{sub 2} sensors used in commercial buildings is frequently less than is needed to measure peak indoor-outdoor CO{sub 2} concentration differences with less than a 20% error. Thus, we conclude that there is a need for more accurate CO{sub 2} sensors and/or better sensor maintenance or calibration procedures.

  5. Enhancement of detection accuracy of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Zeh, Thomas; Schweizer, Hans; Meixner, Andreas; Purde, Andreas; Koch, Alexander W.

    2004-06-01

    Over the course of the last few years, several readout techniques for fiber Bragg grating (FBG) sensors have been proposed. However, all of them suffer from specific restrictions concerning response speed, accuracy, sensor multiplexibility and cost. In the past, it was often assumed that diffraction grating spectrometers were suitable only for FBG applications with modest resolution. The achievable pixel resolution is nowadays in the range of several tens of pm. For FBG sensors with typical temperature coefficients of 5 pm/K and strain coefficients of 0.7 pm/μɛ this resolution is not sufficient for the majority of applications. We present a discussion on different methods for the subpixel registration of FBG spectra and we introduce a novel detection algorithm: the linear phase operator technique (LPO). Even under extreme noisy conditions LPO ensures a significant resolution enhancement by a factor of three compared to conventional algorithms and is shown to be very efficient in its implementation. The efficiencies of several conventional algorithms and LPO is compared by simulations and by means of a test bench. With slight efforts LPO is adaptable to further applications like spectrometer based Fabry-Perot sensors and other sensors with CCD detectors.

  6. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays

    NASA Astrophysics Data System (ADS)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Suria, Ateeq J.; Chapin, Caitlin A.; Senesky, Debbie G.

    2016-09-01

    A miniature sensor for detecting the orientation of incident ultraviolet light was microfabricated using gallium nitride (GaN)-on-sapphire substrates and semi-transparent interdigitated gold electrodes for sun sensing applications. The individual metal-semiconductor-metal photodetector elements were shown to have a stable and repeatable response with a high sensitivity (photocurrent-to-dark current ratio (PDCR) = 2.4 at -1 V bias) and a high responsivity (3200 A/W at -1 V bias) under ultraviolet (365 nm) illumination. The 3 × 3 GaN-on-sapphire ultraviolet photodetector array was integrated with a gold aperture to realize a miniature sun sensor (1.35 mm × 1.35 mm) capable of determining incident light angles with a ±45° field of view. Using a simple comparative figure of merit algorithm, measurement of incident light angles of 0° and 45° was quantitatively and qualitatively (visually) demonstrated by the sun sensor, supporting the use of GaN-based sun sensors for orientation, navigation, and tracking of the sun within the harsh environment of space.

  7. The Development of Sun-Tracking System Using Image Processing

    PubMed Central

    Lee, Cheng-Dar; Huang, Hong-Cheng; Yeh, Hong-Yih

    2013-01-01

    This article presents the development of an image-based sun position sensor and the algorithm for how to aim at the Sun precisely by using image processing. Four-quadrant light sensors and bar-shadow photo sensors were used to detect the Sun's position in the past years. Nevertheless, neither of them can maintain high accuracy under low irradiation conditions. Using the image-based Sun position sensor with image processing can address this drawback. To verify the performance of the Sun-tracking system including an image-based Sun position sensor and a tracking controller with embedded image processing algorithm, we established a Sun image tracking platform and did the performance testing in the laboratory; the results show that the proposed Sun tracking system had the capability to overcome the problem of unstable tracking in cloudy weather and achieve a tracking accuracy of 0.04°. PMID:23615582

  8. Accuracy of sun localization in the second step of sky-polarimetric Viking navigation for north determination: a planetarium experiment.

    PubMed

    Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Blahó, Miklós; Barta, András; Nehéz, Dóra; Bernáth, Balázs; Horváth, Gábor

    2014-07-01

    It is a widely discussed hypothesis that Viking seafarers might have been able to locate the position of the occluded sun by means of dichroic or birefringent crystals, the mysterious sunstones, with which they could analyze skylight polarization. Although the atmospheric optical prerequisites and certain aspects of the efficiency of this sky-polarimetric Viking navigation have been investigated, the accuracy of the main steps of this method has not been quantitatively examined. To fill in this gap, we present here the results of a planetarium experiment in which we measured the azimuth and elevation errors of localization of the invisible sun. In the planetarium sun localization was performed in two selected celestial points on the basis of the alignments of two small sections of two celestial great circles passing through the sun. In the second step of sky-polarimetric Viking navigation the navigator needed to determine the intersection of two such celestial circles. We found that the position of the sun (solar elevation θ(S), solar azimuth φ(S)) was estimated with an average error of +0.6°≤Δθ≤+8.8° and -3.9°≤Δφ≤+2.0°. We also calculated the compass direction error when the estimated sun position is used for orienting with a Viking sun-compass. The northern direction (ω(North)) was determined with an error of -3.34°≤Δω(North)≤+6.29°. The inaccuracy of the second step of this navigation method was high (Δω(North)=-16.3°) when the solar elevation was 5°≤θ(S)≤25°, and the two selected celestial points were far from the sun (at angular distances 95°≤γ(1), γ(2)≤115°) and each other (125°≤δ≤145°). Considering only this second step, the sky-polarimetric navigation could be more accurate in the mid-summer period (June and July), when in the daytime the sun is high above the horizon for long periods. In the spring (and autumn) equinoctial period, alternative methods (using a twilight board, for example) might be more

  9. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    NASA Technical Reports Server (NTRS)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  10. Nimbus limb radiometer, apollo fine sun sensor, and skylab multispectral scanner.

    PubMed

    Kollodge, J C; Thomas, J R; Weagant, R A

    1972-10-01

    Examples of three different types of electrooptical systems developed by the Honeywell Radiation Center for NASA are described. One is a multichannel infrared ( 15 micro) radiometer that will permit temperature and constituent inferences over the globe; it carries a one-year supply of cryogenics for the trimetal infrared detectors. The second is the Apollo telescope mount fine sun sensor, a tracking device making use of solar radiation and the transmission near critical angle of refraction, that will track within +/-2 sec of arc to a designated point on the sun. The final example is the Skylab S-192 multispectral (thirteen channels from 0.4 micro to 12 micro) mapper for a variety of earth resources applications.

  11. Geopositioning accuracy prediction results for registration of imaging and nonimaging sensors using moving objects

    NASA Astrophysics Data System (ADS)

    Taylor, Charles R.; Dolloff, John T.; Lofy, Brian A.; Luker, Steve A.

    2003-08-01

    BAE SYSTEMS is developing a "4D Registration" capability for DARPA's Dynamic Tactical Targeting program. This will further advance our automatic image registration capability to use moving objects for image registration, and extend our current capability to include the registration of non-imaging sensors. Moving objects produce signals that are identifiable across multiple sensors such as radar moving target indicators, unattended ground sensors, and imaging sensors. Correspondences of those signals across sensor types make it possible to improve the support data accuracy for each of the sensors involved in the correspondence. The amount of accuracy improvement possible, and the effects of the accuracy improvement on geopositioning with the sensors, is a complex problem. The main factors that contribute to the complexity are the sensor-to-target geometry, the a priori sensor support data accuracy, sensor measurement accuracy, the distribution of identified objects in ground space, and the motion and motion uncertainty of the identified objects. As part of the 4D Registration effort, BAE SYSTEMS is conducting a sensitivity study to investigate the complexities and benefits of multisensor registration with moving objects. The results of the study will be summarized.

  12. Application of the Langley plot for calibration of sun sensors for the Halogen Occultation Experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.

    1989-01-01

    The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.

  13. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.

    PubMed

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  14. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.

    PubMed

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L; Rodríguez-Lizana, Antonio

    2015-01-28

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate.

  15. Testing Accuracy of Long-Range Ultrasonic Sensors for Olive Tree Canopy Measurements

    PubMed Central

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L.; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  16. Scan patterns and accuracy of a Radar Wind Sensor (RAWS)

    NASA Technical Reports Server (NTRS)

    Song, Shuxian; Beh, Beng; Moore, Richard K.

    1995-01-01

    The Radar Wind Sensor (RAWS) was proposed as a complement to laser wind sensors, allowing coverage in cloudy regions excluded from laser coverage. Previous University of Kansas studies showed the feasibility of the wind measurement at various levels in the atmosphere and indicated that RAWS can also measure rain rates and ocean-surface winds. Here we discuss measurement of the wind vector in terms of the scan patterns for a conically scanned antenna. By using many measurements from cells about 66 km square and 132 km square, a least-squares algorithm gives results that are reasonable for insertion into global atmospheric models. For RAWS to be used successfully as a complement to a laser wind sensor, the design of the two sensors should be integrated and radial velocity measurements in a given atmospheric cell should be combined to get the most accurate results.

  17. Surface Accuracy Measurement Sensor for Deployable Reflector Antennas (SAMS DRA)

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1980-01-01

    Specifications, system configurations, and concept tests for surface measurement sensors for deployable reflector antennas are presented. Two approaches toward the optical measurement of remote target displacements are discussed: optical ranging, in which the basic measurement is target-to-sensor range; and in particular, optical angular sensing, in which the principle measurements are of target angular displacements lateral to the line of sight. Four representative space antennas are examined.

  18. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-01-01

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects. PMID:23549361

  19. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  20. MSTAR: an absolute metrology sensor with sub-micron accuracy for space-based applications

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan P.; Jeganathan, Muthu

    2004-01-01

    The MSTAR sensor is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with subnanometer accuracy.

  1. Surface accuracy measurement sensor test on a 50-meter antenna surface model

    NASA Technical Reports Server (NTRS)

    Spiers, R. B.; Burcher, E. E.; Stump, C. W.; Saunders, C. G.; Brooks, G. F.

    1984-01-01

    The Surface Accuracy Measurement Sensor (SAMS) is a telescope with a focal plane photo electric detector that senses the lateral position of light source targets in its field of view. After extensive laboratory testing the engineering breadboard sensor system was installed and tested on a 30 degree segment of a 50-meter diameter, mesh surface, antenna model. Test results correlated well with the laboratory tests and indicated accuracies of approximately 0.59 arc seconds at 21 meters range. Test results are presented and recommendations given for sensor improvements.

  2. Evaluation of radiation interference in the Voyager Sun Sensor's cadmium sulfide detector

    NASA Technical Reports Server (NTRS)

    Clarke, T. C.; Divita, E. L.

    1978-01-01

    The simulation of radiation interference effects and the results of a radiation interference test on two Voyager Sun Sensor prototype detector assemblies are reported. The derivation of test levels and requirements are discussed and show that cobalt 60 gamma radiation is an effective and practical simulator of the ionization dose rate effects induced by high-energy electron flux incident on the spacecraft at a rate of 3.7 x 10 to the 8th e/sq cm-sec (10 rad(Si)/s) during closest approach to Jupiter. The test results provide information that is used to confirm an analytic correlation, and to predict satisfactory performance of a spacecraft sun sensing device having stringent angular resolution requirements. The measured detector response shows that at dose rates incident on the detector elements of 2 rad(Si)/sec, which is four times that expected during Jupiter encounter, the radiation-induced angle error is almost an order of magnitude less than that allowed by the acceptance criteria.

  3. A fiber-optic cure monitoring technique with accuracy improvement of distorted embedded sensors

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Hyunjin; Kim, Dae-gil; Song, Minho

    2015-07-01

    A fiber-optic epoxy cure monitoring technique for efficient wind turbine blade manufacturing and monitoring is presented. To optimize manufacturing cycle, fiber-optic sensors are embedded in composite materials of wind turbine blades. The reflection spectra of the sensors indicate the onset of gelification and the completion of epoxy curing. After manufacturing process, the same sensors are utilized for in-field condition monitoring. Because of residual stresses and strain gradients from the curing process, the embedded sensors may experience distortions in reflection spectra, resulting in measurement errors. We applied a Gaussian curve-fitting algorithm to the distorted spectra, which substantially improved the measurement accuracy.

  4. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks.

    PubMed

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-10-09

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided.

  5. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    PubMed Central

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  6. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations

    PubMed Central

    Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon

    2016-01-01

    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364

  7. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations.

    PubMed

    Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon

    2016-05-26

    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices.

  8. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  9. A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS

    SciTech Connect

    Fisk, William; Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2007-09-01

    Carbon dioxide (CO2) sensors are often deployed in commercial buildings to obtain CO2 data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above design requirements and to save energy by avoiding ventilation rates exceeding design requirements. However, there have been many anecdotal reports of poor CO2 sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO2 sensors located in nine commercial buildings to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. CO2 measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO2 sensors, as they are applied and maintained in commercial buildings, is frequently less than needed to measure typical values of maximum one-hour-average indoor-outdoor CO2 concentration differences with less than a 20percent error. Thus, we conclude that there is a need for more accurate CO2 sensors and/or better sensor maintenance or calibration procedures.

  10. Maximum Measurement Range and Accuracy of SAW Reflective Delay Line Sensors

    PubMed Central

    Zheng, Zehua; Han, Tao; Qin, Peng

    2015-01-01

    In a surface acoustic wave (SAW) wireless sensor with a reflective delay line structure, three reflectors are often used to eliminate 2π ambiguity of phase measurement. The maximum range of the measured parameter and the maximum accuracy have recently been attracting much research attention. In this paper, an analytical formula for all the factors influencing the measurement range and accuracy of the delay line SAW sensor are deduced for the first time. The factors include: the sensor sensitivity, the topology of the delay line, the available wireless bandwidth and the allowed maximum phase measuring error of the reading system, which is easier to retrieve and more fully describes the possible noises than SNR. Additionally, many designers believe that increasing the reflector could improve accuracy continuously or realize multi-resolution measurement. However, they ignore some certain criteria that the reflector location must satisfy. The reachable maximum accuracy by every increase of a reflector is also presented. A SAW temperature sensor system using 128° YX-LiNbO3 is designed to verify the above theoretical analysis. PMID:26492251

  11. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  12. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux.

    PubMed

    Barnes, C; Tibbitts, T; Sager, J; Deitzer, G; Bubenheim, D; Koerner, G; Bugbee, B

    1993-12-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  13. Performance Prediction For Multi-Sensor Tracking Systems: Kinematic Accuracy And Data Association Performance

    NASA Astrophysics Data System (ADS)

    Broida, Ted J.

    1990-03-01

    object or feature) and data fusion (combining measurements from different times and/or different sensors) are required in one form or another in essentially all multiple sensor fusion applications: one function determines what information should be fused, the other function performs the fusion. This paper presents approaches for quantifying the performance of these functions in the surveillance and tracking application. First, analytical techniques are presented that bound or approximate the fused kinematic estimation performance of multiple sen-sor tracking systems, in the absence of association errors. These bounds and approximations are based on several extensions of standard Kalman filter covariance analysis procedures, and allow modeling of a wide range of sensor types and arbitrary, time-varying geometries, both sensor-to-sensor and sensor-to-object. Arbitrarily many sensors can be used with varying update intervals, measurement accuracies, and detection performance. In heavy clutter or false alarm backgrounds it is often impossible to determine which (if any) of the measurements near a target track actually arise from the target, which leads to a degradation of tracking accuracy. This degradation can be estimated (but not bounded) with an approximate covariance analysis of the Probabilistic Data Association Filter (PDAF). Next, data association performance is quantified in terms of error probability for the case of closely spaced objects (CSOs) with minimal clutter, and for the case of isolated objects in a heavy clutter or false alarm background. These probabilities can be applied to data acquired by any sensor, based on measurement and track accuracies described by error covariance matrices. For example, in many applications a track established by one sensor is used to cue another sensor - in the presence of CSOs and/or clutter backgrounds, this approach can be used to estimate the probability of successful acquisition of the desired target by the second sensor.

  14. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  15. A smart high accuracy silicon piezoresistive pressure sensor temperature compensation system.

    PubMed

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from -40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10(-5)/°C and 29.5 × 10(-5)/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10(-5)/°C and 2.1 × 10(-5)/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  16. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  17. Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    NASA Technical Reports Server (NTRS)

    Kanning, G.; Cicolani, L. S.; Schmidt, S. F.

    1983-01-01

    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.

  18. Accuracy improvement in peak positioning of spectrally distorted fiber Bragg grating sensors by Gaussian curve fitting

    SciTech Connect

    Lee, Hyun-Wook; Park, Hyoung-Jun; Lee, June-Ho; Song, Minho

    2007-04-20

    To improve measurement accuracy of spectrally distorted fiber Bragg grating temperature sensors, reflection profiles were curve fitted to Gaussian shapes, of which center positions were transformed into temperature information.By applying the Gaussian curve-fitting algorithm in a tunable bandpass filter demodulation scheme,{approx}0.3 deg. C temperature resolution was obtained with a severely distorted grating sensor, which was much better than that obtained using the highest peak search algorithm. A binary search was also used to retrieve the optimal fitting curves with the least amount of processing time.

  19. A sun-crown-sensor model and adapted C-correction logic for topographic correction of high resolution forest imagery

    NASA Astrophysics Data System (ADS)

    Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.

    2014-10-01

    Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model

  20. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  1. Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles

    2012-01-01

    Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.

  2. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  3. Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops.

    PubMed

    Andújar, Dionisio; Ribeiro, Ángela; Fernández-Quintanilla, César; Dorado, José

    2011-01-01

    The main objectives of this study were to assess the accuracy of a ground-based weed mapping system that included optoelectronic sensors for weed detection, and to determine the sampling resolution required for accurate weed maps in maize crops. The optoelectronic sensors were located in the inter-row area of maize to distinguish weeds against soil background. The system was evaluated in three maize fields in the early spring. System verification was performed with highly reliable data from digital images obtained in a regular 12 m × 12 m grid throughout the three fields. The comparison in all these sample points showed a good relationship (83% agreement on average) between the data of weed presence/absence obtained from the optoelectronic mapping system and the values derived from image processing software ("ground truth"). Regarding the optimization of sampling resolution, the comparison between the detailed maps (all crop rows with sensors separated 0.75 m) with maps obtained with various simulated distances between sensors (from 1.5 m to 6.0 m) indicated that a 4.5 m distance (equivalent to one in six crop rows) would be acceptable to construct accurate weed maps. This spatial resolution makes the system cheap and robust enough to generate maps of inter-row weeds.

  4. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-26

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  5. Accuracy and Feasibility of Optoelectronic Sensors for Weed Mapping in Wide Row Crops

    PubMed Central

    Andújar, Dionisio; Ribeiro, Ángela; Fernández-Quintanilla, César; Dorado, José

    2011-01-01

    The main objectives of this study were to assess the accuracy of a ground-based weed mapping system that included optoelectronic sensors for weed detection, and to determine the sampling resolution required for accurate weed maps in maize crops. The optoelectronic sensors were located in the inter-row area of maize to distinguish weeds against soil background. The system was evaluated in three maize fields in the early spring. System verification was performed with highly reliable data from digital images obtained in a regular 12 m × 12 m grid throughout the three fields. The comparison in all these sample points showed a good relationship (83% agreement on average) between the data of weed presence/absence obtained from the optoelectronic mapping system and the values derived from image processing software (“ground truth”). Regarding the optimization of sampling resolution, the comparison between the detailed maps (all crop rows with sensors separated 0.75 m) with maps obtained with various simulated distances between sensors (from 1.5 m to 6.0 m) indicated that a 4.5 m distance (equivalent to one in six crop rows) would be acceptable to construct accurate weed maps. This spatial resolution makes the system cheap and robust enough to generate maps of inter-row weeds. PMID:22163740

  6. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    PubMed Central

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-01

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029

  7. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-01

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029

  8. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  9. Geolocation and Pointing Accuracy Analysis for the WindSat Sensor

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.; Purdy, William E.; Gaiser, Peter W.; Poe, Gene; Uliana, Enzo A.

    2006-01-01

    Geolocation and pointing accuracy analyses of the WindSat flight data are presented. The two topics were intertwined in the flight data analysis and will be addressed together. WindSat has no unusual geolocation requirements relative to other sensors, but its beam pointing knowledge accuracy is especially critical to support accurate polarimetric radiometry. Pointing accuracy was improved and verified using geolocation analysis in conjunction with scan bias analysis. nvo methods were needed to properly identify and differentiate between data time tagging and pointing knowledge errors. Matchups comparing coastlines indicated in imagery data with their known geographic locations were used to identify geolocation errors. These coastline matchups showed possible pointing errors with ambiguities as to the true source of the errors. Scan bias analysis of U, the third Stokes parameter, and of vertical and horizontal polarizations provided measurement of pointing offsets resolving ambiguities in the coastline matchup analysis. Several geolocation and pointing bias sources were incfementally eliminated resulting in pointing knowledge and geolocation accuracy that met all design requirements.

  10. Sun Safe Mode Controller Design for LADEE

    NASA Technical Reports Server (NTRS)

    Fusco, Jesse C.; Swei, Sean S. M.; Nakamura, Robert H.

    2015-01-01

    This paper presents the development of sun safe controllers which are designed to keep the spacecraft power positive and thermally balanced in the event an anomaly is detected. Employed by NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), the controllers utilize the measured sun vector and the spacecraft body rates for feedback control. To improve the accuracy of sun vector estimation, the least square minimization approach is applied to process the sensor data, which is proven to be effective and accurate. To validate the controllers, the LADEE spacecraft model engaging the sun safe mode was first simulated and then compared with the actual LADEE orbital fight data. The results demonstrated the applicability of the proposed sun safe controllers.

  11. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques

    SciTech Connect

    Baker, J.E.

    1994-09-01

    Multi-Sensor Integration (MSI) is the combining of data and information from more than one source in order to generate a more reliable and consistent representation of the environment. The need for MSI derives largely from basic ambiguities inherent in our current sensor imaging technologies. These ambiguities exist as long as the mapping from reality to image is not 1-to-1. That is, if different {open_quotes}realities{close_quotes} lead to identical images, a single image cannot reveal the particular reality which was the truth. MSI techniques attempt to resolve some of these ambiguities by appropriately coupling complementary images to eliminate possible inverse mappings. What constitutes the best MSI technique is dependent on the given application domain, available sensors, and task requirements. MSI techniques can be divided into three categories based on the relative information content of the original images with that of the desired representation: (1) {open_quotes}detail enhancement,{close_quotes} wherein the relative information content of the original images is less rich than the desired representation; (2) {open_quotes}data enhancement,{close_quotes} wherein the MSI techniques are concerned with improving the accuracy of the data rather than either increasing or decreasing the level of detail; and (3) {open_quotes}conceptual enhancement,{close_quotes} wherein the image contains more detail than is desired, making it difficult to easily recognize objects of interest. In conceptual enhancement one must group pixels corresponding to the same conceptual object and thereby reduce the level of extraneous detail.

  12. Accuracy and concurrent validity of a sensor-based analysis of sit-to-stand movements in older adults.

    PubMed

    Regterschot, G Ruben H; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2016-03-01

    Body-fixed motion sensors have been applied for the assessment of sit-to-stand (STS) performance. However, the accuracy and concurrent validity of sensor-based estimations of the body's center of mass (CoM) motion during STS are unclear. Therefore, this study investigated the accuracy and concurrent validity of sensor-based measures of CoM motion during STS in older adults. Accuracy and concurrent validity were investigated by comparing the sensor-based method to a force plate method. Twenty-seven older adults (20 females, 7 males; age: 72-94 years) performed five STS movements while data were collected with force plates and motion sensors on the hip and chest. Hip maximal acceleration provided an accurate estimation of the center of mass (CoM) maximal acceleration (limits of agreement (LOA) smaller than 5% of the CoM maximal acceleration; estimated and real CoM maximal acceleration did not differ (p=0.823)). Other hip STS measures and the chest STS measures did not provide accurate estimations of CoM motion (LOA ranged from -155.6% to 333.3% of the CoM value; sensor-based measures overestimated CoM motion (range p: <0.001 to 0.01)). However, the hip sensor did not overestimate maximal jerk of the CoM (p=0.679). Moderate to very strong associations were observed between sensor-based estimations and actual CoM motion (range r=0.64-0.94, p<0.001). Hence, sensor-based estimations of CoM motion during STS are possible, but accuracy is limited. The sensor-based method cannot replace laboratory methods for a mechanical analysis of CoM motion during STS but it may be a practical alternative for the clinical assessment of STS performance in older persons.

  13. Optimization of the Coverage and Accuracy of an Indoor Positioning System with a Variable Number of Sensors.

    PubMed

    Domingo-Perez, Francisco; Lazaro-Galilea, Jose Luis; Bravo, Ignacio; Gardel, Alfredo; Rodriguez, David

    2016-06-22

    This paper focuses on optimal sensor deployment for indoor localization with a multi-objective evolutionary algorithm. Our goal is to obtain an algorithm to deploy sensors taking the number of sensors, accuracy and coverage into account. Contrary to most works in the literature, we consider the presence of obstacles in the region of interest (ROI) that can cause occlusions between the target and some sensors. In addition, we aim to obtain all of the Pareto optimal solutions regarding the number of sensors, coverage and accuracy. To deal with a variable number of sensors, we add speciation and structural mutations to the well-known non-dominated sorting genetic algorithm (NSGA-II). Speciation allows one to keep the evolution of sensor sets under control and to apply genetic operators to them so that they compete with other sets of the same size. We show some case studies of the sensor placement of an infrared range-difference indoor positioning system with a fairly complex model of the error of the measurements. The results obtained by our algorithm are compared to sensor placement patterns obtained with random deployment to highlight the relevance of using such a deployment algorithm.

  14. Optimization of the Coverage and Accuracy of an Indoor Positioning System with a Variable Number of Sensors

    PubMed Central

    Domingo-Perez, Francisco; Lazaro-Galilea, Jose Luis; Bravo, Ignacio; Gardel, Alfredo; Rodriguez, David

    2016-01-01

    This paper focuses on optimal sensor deployment for indoor localization with a multi-objective evolutionary algorithm. Our goal is to obtain an algorithm to deploy sensors taking the number of sensors, accuracy and coverage into account. Contrary to most works in the literature, we consider the presence of obstacles in the region of interest (ROI) that can cause occlusions between the target and some sensors. In addition, we aim to obtain all of the Pareto optimal solutions regarding the number of sensors, coverage and accuracy. To deal with a variable number of sensors, we add speciation and structural mutations to the well-known non-dominated sorting genetic algorithm (NSGA-II). Speciation allows one to keep the evolution of sensor sets under control and to apply genetic operators to them so that they compete with other sets of the same size. We show some case studies of the sensor placement of an infrared range-difference indoor positioning system with a fairly complex model of the error of the measurements. The results obtained by our algorithm are compared to sensor placement patterns obtained with random deployment to highlight the relevance of using such a deployment algorithm. PMID:27338414

  15. Improving the accuracy of a Shack-Hartmann wavefront sensor on extended scenes

    NASA Astrophysics Data System (ADS)

    Rais, M.; Morel, J.-M.; Thiebaut, C.; Delvit, J.-M.; Facciolo, G.

    2016-10-01

    In order to achieve higher resolutions, current earth-observation satellites use larger lightweight main mirrors which are usually deformed over time, impacting on image quality. In the context of active optics, we studied the problem of correcting this main mirror by performing wavefront estimation in a closed loop environment. To this end, a Shack-Hartman wavefront sensor (SHWFS) used on extended scenes could measure the incoming wavefront. The performance of the SHWFS on extended scenes depends entirely on the accuracy of the shift estimation algorithm employed, which should be fast enough to be executed on-board. In this paper we specifically deal with the problem of fast accurate shift estimation in this context. We propose a new algorithm, based on the global optical flow method, that estimates the shifts in linear time. In our experiments, our method proved to be more accurate and stable, as well as less sensitive to noise than all current state-of-the-art methods.

  16. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  17. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform.

    PubMed

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-01-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard "chilled-mirror" dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional "chilled-mirror" hygrometers. Moreover, this DPS outperforms conventional "chilled-mirror" hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints. PMID:27417734

  18. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform

    PubMed Central

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-01-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints. PMID:27417734

  19. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform.

    PubMed

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-01-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard "chilled-mirror" dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional "chilled-mirror" hygrometers. Moreover, this DPS outperforms conventional "chilled-mirror" hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.

  20. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform

    NASA Astrophysics Data System (ADS)

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-07-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.

  1. Accuracy of potentiometric oxygen sensors with Bi/Bi2O3 reference electrode for use in liquid LBE

    NASA Astrophysics Data System (ADS)

    Lim, J.; Mariën, A.; Rosseel, K.; Aerts, A.; Van den Bosch, J.

    2012-10-01

    Potentiometric oxygen sensors fabricated with yttria partially stabilized zirconia (YPSZ) and a Bi/Bi2O3 reference electrode were tested in oxygen saturated lead-bismuth eutectic (LBE) and oxygen saturated tin (Sn), respectively, in order to estimate the accuracy of the oxygen sensors prior to applying them to R&D work for MYRRHA. The accuracy of these sensors was estimated in the temperature range of 673-733 K by measuring the electromotive force (emf) of eight sensors. The standard deviation on the measured emf data was about 0.79 mV in the case of oxygen saturated LBE and was about 1.25 mV in the case of oxygen saturated Sn. These values result in a standard deviation of 4% on the oxygen concentration in LBE which is calculated from the measured emf.

  2. Accuracy analysis of direct georeferenced UAV images utilising low-cost navigation sensors

    NASA Astrophysics Data System (ADS)

    Briese, Christian; Wieser, Martin; Verhoeven, Geert; Glira, Philipp; Doneus, Michael; Pfeifer, Norbert

    2014-05-01

    Unmanned aerial vehicles (UAVs), also known as unmanned airborne systems (UAS) or remotely piloted airborne systems (RPAS), are an established platform for close range airborne photogrammetry. Compared to manned platforms, the acquisition of local remote sensing data by UAVs is a convenient and very flexible option. For the application in photogrammetry UAVs are typically equipped with an autopilot and a lightweight digital camera. The autopilot includes several navigation sensors, which might allow an automated waypoint flight and offer a systematic data acquisition of the object resp. scene of interest. Assuming a sufficient overlap between the captured images, the position (3 coordinates: x, y, z) and the orientation (3 angles: roll, pitch, yaw) of the images can be estimated within a bundle block adjustment. Subsequently, coordinates of observed points that appear in at least two images, can be determined by measuring their image coordinates or a dense surface model can be generated from all acquired images by automated image matching. For the bundle block adjustment approximate values of the position and the orientation of the images are needed. To gather this information, several methods exist. We introduce in this contribution one of them: the direct georeferencing of images by using the navigation sensors (mainly GNSS and INS) of a low-cost on-board autopilot. Beside automated flights, the autopilot offers the possibility to record the position and the orientation of the platform during the flight. These values don't correspond directly to those of the images. To compute the position and the orientation of the images two requirements must be fulfilled. First the misalignment angles and the positional differences between the camera and the autopilot must be determined (mounting calibration). Second the synchronization between the camera and the autopilot has to be established. Due to the limited accuracy of the navigation sensors, a small number of ground

  3. a Method to Achieve Large Volume, High Accuracy Photogrammetric Measurements Through the Use of AN Actively Deformable Sensor Mounting Platform

    NASA Astrophysics Data System (ADS)

    Sargeant, B.; Robson, S.; Szigeti, E.; Richardson, P.; El-Nounu, A.; Rafla, M.

    2016-06-01

    When using any optical measurement system one important factor to consider is the placement of the sensors in relation to the workpiece being measured. When making decisions on sensor placement compromises are necessary in selecting the best placement based on the shape and size of the object of interest and the desired resolution and accuracy. One such compromise is in the distance the sensors are placed from the measurement surface, where a smaller distance gives a higher spatial resolution and local accuracy and a greater distance reduces the number of measurements necessary to cover a large area reducing the build-up of errors between measurements and increasing global accuracy. This paper proposes a photogrammetric approach whereby a number of sensors on a continuously flexible mobile platform are used to obtain local measurements while the position of the sensors is determined by a 6DoF tracking solution and the results combined to give a single set of measurement data within a continuous global coordinate system. The ability of this approach to achieve both high accuracy measurement and give results over a large volume is then tested and areas of weakness to be improved upon are identified.

  4. A Review of the Accuracy and Utility of Motion Sensors to Measure Physical Activity of Frail, Older Hospitalized Patients.

    PubMed

    McCullagh, Ruth; Brady, Noeleen M; Dillon, Christina; Horgan, N Frances; Timmons, Suzanne

    2016-07-01

    The purpose of this review was to examine the utility and accuracy of commercially available motion sensors to measure step-count and time spent upright in frail older hospitalized patients. A database search (CINAHL and PubMed, 2004-2014) and a further hand search of papers' references yielded 24 validation studies meeting the inclusion criteria. Fifteen motion sensors (eight pedometers, six accelerometers, and one sensor systems) have been tested in older adults. Only three have been tested in hospital patients, two of which detected postures and postural changes accurately, but none estimated step-count accurately. Only one motion sensor remained accurate at speeds typical of frail older hospitalized patients, but it has yet to be tested in this cohort. Time spent upright can be accurately measured in the hospital, but further validation studies are required to determine which, if any, motion sensor can accurately measure step-count. PMID:26583827

  5. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques

    SciTech Connect

    Baker, J.E.

    1993-05-01

    Multi-Sensor Integration (MSI) is the combining of data and information from more than one source in order to generate a more reliable and consistent representation of the environment. The need for MSI derives largely from basic ambiguities inherent in our current sensor imaging technologies. These ambiguities exist as long as the mapping from reality to image is not 1-to-1. That is, if different 44 realities'' lead to identical images, a single image cannot reveal the particular reality which was the truth. MSI techniques can be divided into three categories based on the relative information content of the original images with that of the desired representation: (1) detail enhancement,'' wherein the relative information content of the original images is less rich than the desired representation; (2) data enhancement,'' wherein the MSI techniques axe concerned with improving the accuracy of the data rather than either increasing or decreasing the level of detail; and (3) conceptual enhancement,'' wherein the image contains more detail than is desired, making it difficult to easily recognize objects of interest. In conceptual enhancement one must group pixels corresponding to the same conceptual object and thereby reduce the level of extraneous detail. This research focuses on data and conceptual enhancement algorithms. To be useful in many real-world applications, e.g., autonomous or teleoperated robotics, real-time feedback is critical. But, many MSI/image processing algorithms require significant processing time. This is especially true of feature extraction, object isolation, and object recognition algorithms due to their typical reliance on global or large neighborhood information. This research attempts to exploit the speed currently available in state-of-the-art digitizers and highly parallel processing systems by developing MSI algorithms based on pixel rather than global-level features.

  6. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques

    SciTech Connect

    Baker, J.E.

    1993-05-01

    Multi-Sensor Integration (MSI) is the combining of data and information from more than one source in order to generate a more reliable and consistent representation of the environment. The need for MSI derives largely from basic ambiguities inherent in our current sensor imaging technologies. These ambiguities exist as long as the mapping from reality to image is not 1-to-1. That is, if different 44 realities`` lead to identical images, a single image cannot reveal the particular reality which was the truth. MSI techniques can be divided into three categories based on the relative information content of the original images with that of the desired representation: (1) ``detail enhancement,`` wherein the relative information content of the original images is less rich than the desired representation; (2) ``data enhancement,`` wherein the MSI techniques axe concerned with improving the accuracy of the data rather than either increasing or decreasing the level of detail; and (3) ``conceptual enhancement,`` wherein the image contains more detail than is desired, making it difficult to easily recognize objects of interest. In conceptual enhancement one must group pixels corresponding to the same conceptual object and thereby reduce the level of extraneous detail. This research focuses on data and conceptual enhancement algorithms. To be useful in many real-world applications, e.g., autonomous or teleoperated robotics, real-time feedback is critical. But, many MSI/image processing algorithms require significant processing time. This is especially true of feature extraction, object isolation, and object recognition algorithms due to their typical reliance on global or large neighborhood information. This research attempts to exploit the speed currently available in state-of-the-art digitizers and highly parallel processing systems by developing MSI algorithms based on pixel rather than global-level features.

  7. Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

    NASA Astrophysics Data System (ADS)

    Calderón, Pedro A.; Glisic, Branko

    2012-06-01

    In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical materials, such as concrete and soil, can be affected by local defects, e.g. cracks, air pockets and inclusions. To monitor these materials at a structural level it is necessary to use long-gauge sensors. As the sensor has to be embedded in the host material, its presence causes perturbation of the strain field and influences the accuracy of the strain measurement. The aim of this research was to identify the critical parameters that influence the accuracy of the strain measurement, to study how these parameters affect the accuracy, and to give recommendations for sensor users. The study was based on finite element analysis and all involved materials were assumed to have the Möhr-Coulomb elastic, perfectly plastic behavior. A suitability of the numerical model for the analysis was verified using the experimental results of two cases reported in the literature and one on-site application. The study revealed that the most important parameters that influence the accuracy of the strain measurement are the goodness of interaction (strain transfer) between the host material and the anchor pieces of the sensor, the ratio between equivalent Young's modulus of the sensor and the Young's modulus of the host material, the radius of the anchor piece and the gauge length. The numerical model and parametric study are presented in detail along with practical recommendations.

  8. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  9. Developing a portable gait cycle detection system using an inertial sensor and evaluating the accuracy of the gait cycle detection.

    PubMed

    Park, Min-Hwa; Kwak, Ki-Young; Kim, Dong-Wook

    2015-01-01

    Although researches had analyzed gait using small sensors, they analyzed only normal gaits. Thus, a research that can overcome the spatial limitations of the existing motion analyses and diagnose abnormal gaits for medical treatment is needed. Accordingly, this research developed the portable gait detection system that can detect gait using a gyroscope, and evaluated the accuracy of the system. The results showed an average recognition error rate of 1.7% for the normal and abnormal gaits, and confirmed that the gait cycle was detected with a high degree of accuracy. Using these characteristics, we could distinguish or diagnose, and treat, an abnormal gait.

  10. Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C

    NASA Astrophysics Data System (ADS)

    Barrera, D.; Hervás, J.; Gasulla, I.; Sales, S.

    2016-05-01

    The use of multicore optical fibres (MCF) in optical sensing applications has gained increasing interest over the past years due to the benefits directly brought from their inherent spatial diversity. This property allows measuring either multiple physical magnitudes at the same time or the same magnitude with slight differences in order to compensate the cross-sensitivities. We have inscribed Regenerated Fibre Bragg Gratings (RFBGs) in MCFs with the aim of implementing temperature sensors with an enhanced accuracy and for a very wide temperature range (up to 1000°C). The sensors have been made in 4-core and 7-core commercially available homogeneous MCFs. The fabrication process has been designed to create different temperature sensitivities among the identical cores of the MCF. We have obtained significant wavelength-shift differences up to 1.2 nm at 765°C, what has been used to at least double the temperature accuracy.

  11. Adaptive switching frequency buck DC—DC converter with high-accuracy on-chip current sensor

    NASA Astrophysics Data System (ADS)

    Jinguang, Jiang; Fei, Huang; Zhihui, Xiong

    2015-05-01

    A current-mode PWM buck DC—DC converter is proposed. With the high-accuracy on-chip current sensor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC—DC converter is fabricated with the 0.5 μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained. Project supported by the National Natural Science Foundation of China (No. 41274047), the Natural Science Foundation of Jiangsu Province (No. BK2012639), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No. BC2012121), and the Changzhou Science and Technology Support (Industrial) Project (No. CE20120074).

  12. Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions.

    PubMed

    Ma, Liheng; Zhan, Dejun; Jiang, Guangwen; Fu, Sihua; Jia, Hui; Wang, Xingshu; Huang, Zongsheng; Zheng, Jiaxing; Hu, Feng; Wu, Wei; Qin, Shiqiao

    2015-09-01

    The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.

  13. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    PubMed Central

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  14. A method for improving the pose accuracy of a robot manipulator based on multi-sensor combined measurement and data fusion.

    PubMed

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%~78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 x 0.8 x 1 ~ 2 x 0.8 x 1 m in the field of view (FOV) is indicated by the experimental results.

  15. Improvement in topology measurement accuracy of atomic force microscope using additional sensor

    NASA Astrophysics Data System (ADS)

    Yoon, Yeomin; Jeong, Jiseong; Kim, Junsup; Park, Kyihwan

    2015-07-01

    The topology image of an atomic force microscope is obtained by picking up a controlled output of a force-feedback loop that is proportional to the height of a sample under the assumption that no dynamics in a z-axis actuator exist. However, the dynamic effects such as hysteresis and creep in a PZT driving z-axis actuator cannot be ignored. To solve this problem, a strain-gage sensor is used as an additional sensor, which enables measurement of the absolute displacement of a z-axis PZT nano scanner. The advantage of using an additional sensor is experimentally provided and validated in topology images.

  16. Sun protection

    MedlinePlus

    ... your skin from the sun. This includes using sunscreen and other protective measures. Avoid sun exposure, particularly ... the sun. This is in addition to applying sunscreen. Suggestions for clothing include: Long-sleeve shirts and ...

  17. Drift Removal for Improving the Accuracy of Gait Parameters Using Wearable Sensor Systems

    PubMed Central

    Takeda, Ryo; Lisco, Giulia; Fujisawa, Tadashi; Gastaldi, Laura; Tohyama, Harukazu; Tadano, Shigeru

    2014-01-01

    Accumulated signal noise will cause the integrated values to drift from the true value when measuring orientation angles of wearable sensors. This work proposes a novel method to reduce the effect of this drift to accurately measure human gait using wearable sensors. Firstly, an infinite impulse response (IIR) digital 4th order Butterworth filter was implemented to remove the noise from the raw gyro sensor data. Secondly, the mode value of the static state gyro sensor data was subtracted from the measured data to remove offset values. Thirdly, a robust double derivative and integration method was introduced to remove any remaining drift error from the data. Lastly, sensor attachment errors were minimized by establishing the gravitational acceleration vector from the acceleration data at standing upright and sitting posture. These improvements proposed allowed for removing the drift effect, and showed an average of 2.1°, 33.3°, 15.6° difference for the hip knee and ankle joint flexion/extension angle, when compared to without implementation. Kinematic and spatio-temporal gait parameters were also calculated from the heel-contact and toe-off timing of the foot. The data provided in this work showed potential of using wearable sensors in clinical evaluation of patients with gait-related diseases. PMID:25490587

  18. Drift removal for improving the accuracy of gait parameters using wearable sensor systems.

    PubMed

    Takeda, Ryo; Lisco, Giulia; Fujisawa, Tadashi; Gastaldi, Laura; Tohyama, Harukazu; Tadano, Shigeru

    2014-12-05

    Accumulated signal noise will cause the integrated values to drift from the true value when measuring orientation angles of wearable sensors. This work proposes a novel method to reduce the effect of this drift to accurately measure human gait using wearable sensors. Firstly, an infinite impulse response (IIR) digital 4th order Butterworth filter was implemented to remove the noise from the raw gyro sensor data. Secondly, the mode value of the static state gyro sensor data was subtracted from the measured data to remove offset values. Thirdly, a robust double derivative and integration method was introduced to remove any remaining drift error from the data. Lastly, sensor attachment errors were minimized by establishing the gravitational acceleration vector from the acceleration data at standing upright and sitting posture. These improvements proposed allowed for removing the drift effect, and showed an average of 2.1°, 33.3°, 15.6° difference for the hip knee and ankle joint flexion/extension angle, when compared to without implementation. Kinematic and spatio-temporal gait parameters were also calculated from the heel-contact and toe-off timing of the foot. The data provided in this work showed potential of using wearable sensors in clinical evaluation of patients with gait-related diseases.

  19. Evaluating Landsat 8 Satellite Sensor Data for Improved Vegetation Mapping Accuracy of the New Hampshire Coastal Watershed Area

    NASA Astrophysics Data System (ADS)

    Ledoux, Lindsay

    the previous Landsat sensor (Landsat 7). Once classification had been performed, traditional and area-based accuracy assessments were implemented. Comparison measures were also calculated (i.e. Kappa, Z test statistic). The results from this study indicate that, while using Landsat 8 imagery is useful, the additional spectral bands provided in the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) do not provide an improvement in vegetation classification accuracy in this study.

  20. Determination of the precision and accuracy of morphological measurements using the Kinect™ sensor: comparison with standard stereophotogrammetry.

    PubMed

    Bonnechère, B; Jansen, B; Salvia, P; Bouzahouene, H; Sholukha, V; Cornelis, J; Rooze, M; Van Sint Jan, S

    2014-01-01

    The recent availability of the Kinect™ sensor, a low-cost Markerless Motion Capture (MMC) system, could give new and interesting insights into ergonomics (e.g. the creation of a morphological database). Extensive validation of this system is still missing. The aim of the study was to determine if the Kinect™ sensor can be used as an easy, cheap and fast tool to conduct morphology estimation. A total of 48 subjects were analysed using MMC. Results were compared with measurements obtained from a high-resolution stereophotogrammetric system, a marker-based system (MBS). Differences between MMC and MBS were found; however, these differences were systematically correlated and enabled regression equations to be obtained to correct MMC results. After correction, final results were in agreement with MBS data (p = 0.99). Results show that measurements were reproducible and precise after applying regression equations. Kinect™ sensors-based systems therefore seem to be suitable for use as fast and reliable tools to estimate morphology. Practitioner Summary: The Kinect™ sensor could eventually be used for fast morphology estimation as a body scanner. This paper presents an extensive validation of this device for anthropometric measurements in comparison to manual measurements and stereophotogrammetric devices. The accuracy is dependent on the segment studied but the reproducibility is excellent. PMID:24646374

  1. Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface.

    PubMed

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2016-01-01

    Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor.

  2. Sensitivity and uncertainty of input sensor accuracy for grass-based reference evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of evapotranspiration (ET) in agricultural environments is becoming of increasing importance throughout the world, thus understanding input variability of relevant sensors is of paramount importance as well. The Colorado Agricultural and Meteorological Network (CoAgMet) and the Florid...

  3. Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface.

    PubMed

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2016-01-01

    Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor. PMID:26840321

  4. Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface

    PubMed Central

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2016-01-01

    Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor. PMID:26840321

  5. A high-precision CdS photodetector for sun sensor applications. [for Mariner Jupiter-Saturn flyby

    NASA Technical Reports Server (NTRS)

    Chamberlain, F. R.

    1975-01-01

    A sun detector developed for the Mariner Jupiter/Saturn mission is described. Redundant photopotentiometers for both pitch and yaw axes, positioned below slit apertures, provide spacecraft stabilization and biased operation over plus or minus 20-deg fields of view. The biased (off-sun) operation is required for pointing the 366-cm-diameter (spacecraft-fixed) radio antenna toward earth. Configuration and fabrication processes are presented, along with a summary of development history. Particular attention is given to the properties of cadmium sulfide as these affect adaptation to this application.

  6. Method and computer product to increase accuracy of time-based software verification for sensor networks

    DOEpatents

    Foo Kune, Denis; Mahadevan, Karthikeyan

    2011-01-25

    A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.

  7. Acute Response in vivo of a Fiber-Optic Sensor for Continuous Glucose Monitoring from Canine Studies on Point Accuracy

    PubMed Central

    Liao, Kuo-Chih; Chang, Shih-Chieh; Chiu, Cheng-Yang; Chou, Yu-Hsiang

    2010-01-01

    The objective of this study was to evaluate the acute response of Sencil™, a fiber-optic sensor, in point accuracy for glucose monitoring in vivo on healthy dogs under anesthesia. A total of four dogs with clinically normal glycemia were implanted with one sensor each in the chest region to measure the interstitial glucose concentration during the ovariohysterectomy procedure. The data was acquired every 10 seconds after initiation, and was compared to the concentration of venous plasma glucose sampled during the surgery procedures for accuracy of agreement analysis. In the four trials with a range of 71–297 mg/dL plasma glucose, the collected 21 pairs of ISF readings from the Sencil™ and the plasma reference showed superior dispersion of residue values than the conventional system, and a linear correlation (the Pearson correlation coefficient is 0.9288 and the y-intercept is 14.22 mg/dL). The MAD (17.6 mg/dL) and RMAD (16.16%) of Sencil™ measurements were in the comparable range of the conventional system. The Clarke error grid analysis indicated that 100% of the paired points were in the clinically acceptable zone A (61.9%) and B (38.1%). PMID:22163627

  8. Acute response in vivo of a fiber-optic sensor for continuous glucose monitoring from canine studies on point accuracy.

    PubMed

    Liao, Kuo-Chih; Chang, Shih-Chieh; Chiu, Cheng-Yang; Chou, Yu-Hsiang

    2010-01-01

    The objective of this study was to evaluate the acute response of Sencil(™), a fiber-optic sensor, in point accuracy for glucose monitoring in vivo on healthy dogs under anesthesia. A total of four dogs with clinically normal glycemia were implanted with one sensor each in the chest region to measure the interstitial glucose concentration during the ovariohysterectomy procedure. The data was acquired every 10 seconds after initiation, and was compared to the concentration of venous plasma glucose sampled during the surgery procedures for accuracy of agreement analysis. In the four trials with a range of 71-297 mg/dL plasma glucose, the collected 21 pairs of ISF readings from the Sencil™ and the plasma reference showed superior dispersion of residue values than the conventional system, and a linear correlation (the Pearson correlation coefficient is 0.9288 and the y-intercept is 14.22 mg/dL). The MAD (17.6 mg/dL) and RMAD (16.16%) of Sencil™ measurements were in the comparable range of the conventional system. The Clarke error grid analysis indicated that 100% of the paired points were in the clinically acceptable zone A (61.9%) and B (38.1%). PMID:22163627

  9. SIMBIOS Normalized Water-Leaving Radiance Calibration and Validation: Sensor Response, Atmospheric Corrections, Stray Light and Sun Glint. Chapter 14

    NASA Technical Reports Server (NTRS)

    Mueller, James L.

    2001-01-01

    This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract supports acquisition of match up radiometric and bio-optical data for validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and other ocean color satellites, and evaluation of uncertainty budgets and protocols for in situ measurements of normalized water leaving radiances.

  10. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    PubMed Central

    Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo

    2016-01-01

    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910

  11. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors.

    PubMed

    Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo

    2016-01-01

    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910

  12. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors.

    PubMed

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-01-01

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands. PMID:26184214

  13. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-01-01

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands. PMID:26184214

  14. Measure of the accuracy of navigational sensors for autonomous path tracking

    NASA Astrophysics Data System (ADS)

    Motazed, Ben

    1994-02-01

    Outdoor mobile robot path tracking for an extended period of time and distance is a formidable task. The difficulty lies in the ability of robot navigation systems to reliably and accurately report on the position and orientation of the vehicle. This paper addresses the accurate navigation of mobile robots in the context of non-line of sight autonomous convoying. Dead-reckoning, GPS and vision based autonomous road following navigational schemes are integrated through a Kalman filter formulation to derive mobile robot position and orientation. The accuracy of these navigational schemes and their sufficiency to achieve autonomous path tracking for long duration are examined.

  15. Line-focus sun trackers

    SciTech Connect

    Gee, R.

    1980-05-01

    Sun trackers have been a troublesome component for line-focus concentrating collector systems. The problems have included poor accuracy, component failures, false locks on clouds, and restricted tracker operating ranges. In response to these tracking difficulties, a variety of improved sun trackers have been developed. A testing program is underway at SERI to determine the tracking accuracy of this new generation of sun trackers. The three major types of trackers are defined, some recent sun tracker developments are described, and the testing that is underway is outlined.

  16. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System

    PubMed Central

    Wang, Jing-Min; Lu, Chia-Liang

    2013-01-01

    The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications. PMID:23467030

  17. A simple test to assess the static and dynamic accuracy of an inertial sensors system for human movement analysis.

    PubMed

    Cutti, Andrea Giovanni; Giovanardi, Andrea; Rocchi, Laura; Davalli, Angelo

    2006-01-01

    In the present study we introduced a simple test to assess the orientation error of an inertial sensors system for human movement analysis, both in static and dynamic conditions. In particular, the test was intended to quantify the sensitivity of the orientation error to direction and velocity of rotation. The test procedure was performed on a 5 MT9B sensors Xsens acquisition system, and revealed that the system orientation error, expressed by Euler angles decomposition, was sensitive both to direction and to velocity, being higher for fast movements: for mean rotation velocities of 180 degrees/s and 360 degrees/s, the worst case orientation error was 5.4 degrees and 11.6 degrees, respectively. The test can be suggested therefore as a useful tool to verify the user specific system accuracy without requiring any special equipment. In addition, the test provides further error information concerning direction and velocity of the movement which are not supplied by the producer, since they depend on the specific field of application. PMID:17946728

  18. Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer.

    PubMed

    Rambikur, Evan H; Chávez, José L

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  19. Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    PubMed Central

    Rambikur, Evan H.; Chávez, José L.

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies. PMID:24473285

  20. Accuracy of PARTwear Inertial Sensor and Optojump Optical Measurement System for Measuring Ground Contact Time During Running.

    PubMed

    Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2016-07-01

    Ammann, R, Taube, W, and Wyss, T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res 30(7): 2057-2063, 2016-The aim of this study was to validate the detection of ground contact time (GCT) during running in 2 differently working systems: a small inertial measurement sensor, PARTwear (PW), worn on the shoe laces, and the optical measurement system, Optojump (OJ), placed on the track. Twelve well-trained subjects performed 12 runs each on an indoor track at speeds ranging from 3.0 to 9.0 m·s. GCT of one step per run (total 144) was simultaneously obtained by the PW, the OJ, and a high-speed video camera (HSC), whereby the latter served as reference system. The sampling rate was 1,000 Hz for all methods. Compared with the HSC, the PW and the OJ systems underestimated GCT by -1.3 ± 6.1% and -16.5 ± 6.7% (p-values ≤ 0.05), respectively. The intraclass correlation coefficients between PW and HSC and between OJ and HSC were 0.984 and 0.853 (p-values < 0.001), respectively. Despite the constant systematic underestimation of GCT, analyses indicated that PW successfully recorded GCT over a wide range of speeds. However, results showed only moderate validity for the OJ system, with increasing errors when speed decreased. In conclusion, the PW proved to be a highly useful and valid application, and its use can be recommended not only for laboratory settings but also for field applications. In contrast, data on GCT obtained by OJ during running must be treated with caution, specifically when running speed changes or when comparisons are made with GCT data collected by other measurement systems.

  1. Improving optical fiber current sensor accuracy using artificial neural networks to compensate temperature and minor non-ideal effects

    NASA Astrophysics Data System (ADS)

    Zimmermann, Antonio C.; Besen, Marcio; Encinas, Leonardo S.; Nicolodi, Rosane

    2011-05-01

    This article presents a practical signal processing methodology, based on Artificial Neural Networks - ANN, to process the measurement signals of typical Fiber Optic Current Sensors - FOCS, achieving higher accuracy from temperature and non-linearity compensation. The proposed idea resolve FOCS primary problems, mainly when it is difficult to determine all errors sources present in the physical phenomenon or the measurement equation becomes too nonlinear to be applied in a wide measurement range. The great benefit of ANN is to get a transfer function for the measurement system taking in account all unknowns, even those from unwanted and unknowing effects, providing a compensated output after the ANN training session. Then, the ANN training is treated like a black box, based on experimental data, where the transfer function of the measurement system, its unknowns and non-idealities are processed and compensated at once, given a fast and robust alternative to the FOCS theoretical method. A real FOCS system was built and the signals acquired from the photo-detectors are processed by the Faraday's Laws formulas and the ANN method, giving measurement results for both signal processing strategies. The coil temperature measurements are also included in the ANN signal processing. To compare these results, a current measuring instrument standard is used together with a metrological calibration procedure. Preliminary results from a variable temperature experiment shows the higher accuracy, better them 0.2% of maximum error, of the ANN methodology, resulting in a quick and robust method to hands with FOCS difficulties on of non-idealities compensation.

  2. Aztec Suns

    ERIC Educational Resources Information Center

    Petersen, Hugh

    2010-01-01

    The Aztec Sun Stone is a revered Mexican artifact. It is said to be perhaps the most famous symbol of Mexico, besides its flag. It primarily depicts the four great disasters that led to the migration of the Mexica people to modern-day Mexico City. The Aztec Sun Stone also contains pictographs depicting the way the Mexica measured time, and was…

  3. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    PubMed Central

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  4. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    PubMed

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  5. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    PubMed

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  6. Sun meter

    DOEpatents

    Younskevicius, Robert E.

    1978-01-01

    A simple, inexpensive device for measuring the radiation energy of the sun impinging on the device. The measurement of the energy over an extended period of time is accomplished without moving parts or tracking mechanisms.

  7. Sun Exposure

    MedlinePlus

    ... pass through your skin and damage your skin cells. Sunburns are a sign of skin damage. Suntans ... after the sun's rays have already killed some cells and damaged others. UV rays can cause skin ...

  8. Sun Damage

    MedlinePlus

    ... exposure are common. The most noticeable sun-induced pigment change is brown spots (solar lentigos). Light-skinned ... are caused by collections of the color-producing (pigment-producing) cells of the skin (melanocytes) in which ...

  9. The effect of window size and lead time on pre-impact fall detection accuracy using support vector machine analysis of waist mounted inertial sensor data.

    PubMed

    Aziz, Omar; Russell, Colin M; Park, Edward J; Robinovitch, Stephen N

    2014-01-01

    Falls are a major cause of death and morbidity in older adults. In recent years many researchers have examined the role of wearable inertial sensors (accelerometers and/or gyroscopes) to automatically detect falls. The primary goal of such fall monitors is to alert care providers of the fall event, who can then commence earlier treatment. Although such fall detection systems may reduce time until the arrival of medical assistance, they cannot help to prevent or reduce the severity of traumatic injury caused by the fall. In the current study, we extend the application of wearable inertial sensors beyond post-impact fall detection, by developing and evaluating the accuracy of a sensor system for detecting falls prior to the fall impact. We used support vector machine (SVM) analysis to classify 7 fall and 8 non-fall events. In particular, we focused on the effect of data window size and lead time on the accuracy of our pre-impact fall detection system using signals from a single waist sensor. We found that our system was able to detect fall events at between 0.0625-0.1875 s prior to the impact with at least 95% sensitivity and at least 90% specificity for window sizes between 0.125-1 s.

  10. Use of Fuzzycones for Sun-Only Attitude Determination: THEMIS Becomes ARTEMIS

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Felikson, Denis; Sedlak, Joseph E.

    2009-01-01

    In order for two THEMIS probes to successfully transition to ARTEMIS it will be necessary to determine attitudes with moderate accuracy using Sun sensor data only. To accomplish this requirement, an implementation of the Fuzzycones maximum likelihood algorithm was developed. The effect of different measurement uncertainty models on Fuzzycones attitude accuracy was investigated and a bin-transition technique was introduced to improve attitude accuracy using data with uniform error distributions. The algorithm was tested with THEMIS data and in simulations. The analysis results show that the attitude requirements can be met using Fuzzycones and data containing two bin-transitions.

  11. Dynamic Sun

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.; Parker, Foreword by E. N.

    2007-07-01

    Foreword E. N. Parker; 1. Dynamic Sun: an introduction B. N. Dwivedi; 2. Solar models: structure, neutrinos and helioseismological properties J. N. Bahcall, S. Basu and M. H. Pinsonneault; 3. Seismic Sun S. M. Chitre and H. M. Antia; 4. Rotation of the solar interior J. Christensen-Dalsgaard and M. J. Thompson; 5. Helioseismic tomography A. G. Kosovichev; 6. The solar dynamo as a model of the solar cycle A. R. Choudhuri; 7. Spectro-polarimetry J. O. Stenflo; 8. Solar photosphere and convection Å. Nordlund; 9. The dynamics of the quiet solar chromosphere W. Kalkofen, S. S. Hasan and P. Ulmschneider; 10. Heating of the solar chromosphere P. Ulmschneider and W. Kalkofen; 11. The solar transition region O. Kjeldseth-Moe; 12. Solar magnetohydrodynamics E. R. Priest; 13. Solar activity Z. Švestka; 14. Particle acceleration A. G. Emslie and J. A. Miller; 15. Radio observations of explosive energy releases on the Sun M. R. Kundu and S. M. White; 16. Coronal oscillations V. M. Nakariakov; 17. Probing the Sun's hot corona K. J. H. Phillips and B. N. Dwivedi; 18. Vacuum-ultraviolet emission line diagnostics for solar plasmas B. N. Dwivedi, A. Mohan and K. Wilhelm; 19. Solar wind E. Marsch, W. I. Axford and J. F. McKenzie; 20. Solar observing facilities B. Fleck and C. U. Keller; Index.

  12. Sun Tracking Systems: A Review

    PubMed Central

    Lee, Chia-Yen; Chou, Po-Cheng; Chiang, Che-Ming; Lin, Chiu-Feng

    2009-01-01

    The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems. PMID:22412341

  13. Improving the Forecast Accuracy of an Ocean Observation and Prediction System by Adaptive Control of the Sensor Network

    NASA Astrophysics Data System (ADS)

    Talukder, A.; Panangadan, A. V.; Blumberg, A. F.; Herrington, T.; Georgas, N.

    2008-12-01

    The New York Harbor Observation and Prediction System (NYHOPS) is a real-time, estuarine and coastal ocean observing and modeling system for the New York Harbor and surrounding waters. Real-time measurements from in-situ mobile and stationary sensors in the NYHOPS networks are assimilated into marine forecasts in order to reduce the discrepancy with ground truth. The forecasts are obtained from the ECOMSED hydrodynamic model, a shallow water derivative of the Princeton Ocean Model. Currently, all sensors in the NYHOPS system are operated in a fixed mode with uniform sampling rates. This technology infusion effort demonstrates the use of Model Predictive Control (MPC) to autonomously adapt the operation of both mobile and stationary sensors in response to changing events that are -automatically detected from the ECOMSED forecasts. The controller focuses sensing resources on those regions that are expected to be impacted by the detected events. The MPC approach involves formulating the problem of calculating the optimal sensor parameters as a constrained multi-objective optimization problem. We have developed an objective function that takes into account the spatiotemporal relationship of the in-situ sensor locations and the locations of events detected by the model. Experiments in simulation were carried out using data collected during a freshwater flooding event. The location of the resulting freshwater plume was calculated from the corresponding model forecasts and was used by the MPC controller to derive control parameters for the sensing assets. The operational parameters that are controlled include the sampling rates of stationary sensors, paths of unmanned underwater vehicles (UUVs), and data transfer routes between sensors and the central modeling computer. The simulation experiments show that MPC-based sensor control reduces the RMS error in the forecast by a factor of 380% as compared to uniform sampling. The paths of multiple UUVs were simultaneously

  14. Location Accuracy Improvements in the Japanese Lightning Detection Network by Eliminating the Data Obtained from Distant Sensors from Lightning Stroke Positions

    NASA Astrophysics Data System (ADS)

    Matsui, M.; Michishita, K.

    2015-12-01

    Authors have observed the current waveform of lightning flashes by the Rogowski coils installed at the wind turbines located in southern Kyushu, Japan. We succeeded in observing three sets of lightning current waveforms of negative downward flashes hit to the wind turbine and estimated the location error by comparing the actual position with the positions located by the Japanese Lightning Detection Network (JLDN) in two summer seasons between 2013 and 2014. The JLDN is a Lightning Locating System consisting of 30 LF sensors installed for observing lightning in the whole area of Japan. According to our estimation, the mean location error of the first strokes was 557m and that of subsequent ones was 316 m in the JLDN, respectively. This means the location accuracy of the JLDN was slightly less than that of the NALDN and the EUCLID. We found out location errors were less than 400 m when only information from sensors within 700 km from lightning strokes was used for locating stroke positions. Therefore, we recalculated locations of those lightning strokes without information from sensors at more than 700 km from them. In the results of the recalculation, the mean location error of the first strokes was improved by 219 m and that of subsequent ones was improved by 48 m, respectively. This indicates eliminating large deviation data from distant sensors for lightning location reduced the standard deviation of the time differences between actually measured time at sensors and calculated time and thus improved location error of the JLDN. We found out that there were strong positive relations between the location errors and the standard deviation of the time differences. The standard deviations of the time difference were less than 1.5 micro-seconds when location errors were within 400 m. Therefore, locating lightning strokes without information from distant sensors is a useful method for reducing the standard deviation and improving location error.

  15. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Near-Coincident in Situ and Satellite Sensors during INTEX/ITCT 2004

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Redemann, J.; Russell, P. B.; Ramirez, S. A.; Eilers, J.; Gore, W.; Howard, S.; Pommier, J.; Fetzer, E. J.; Seeman, S. W.; Borbas, E.; Wolfe, D. E.; Thompson, A. M.

    2007-01-01

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sun photometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004 in support of the Intercontinental Chemical Transport Experiment (INTEX)/Intercontinental Transport and Chemical Transformation (ITCT) experiments. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes and with water vapor profiles retrieved from AIRS measurements during eight Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during five Aqua and five Terra overpasses. For 35 J31 vertical profiles, mean (bias) and RMS AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1 percent and 8.8 percent, respectively. For 22 aircraft profiles within 1 hour and 130 km of radiosonde soundings, AATS-minus-sonde bias and RMS LWV differences are -5.4 percent and 10.7 percent, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3 percent and 8.4 percent, respectively. AIRS LWV retrievals within 80 lan of J31 profiles yield lower bias and RMS differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8 percent to 5.8 percent, and the RMS difference decreases from 2 1.5 percent to 16.4 percent. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2 percent to +6 percent and RMS differences of -20 percent below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5 km at nadir) are biased wet by 10.4 percent compared to AATS over-ocean near-surface retrievals. The MODIS-Aqua subset (79 grid cells

  16. A method for calibrating cryogenic void fraction RF-sensors having a round cross-section and estimating their accuracy

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. P.; Kakorin, I. D.

    2016-10-01

    The calibration principle of the cryogenic void fraction RF-sensors of a round cross-section for a wide temperature range is proposed and described in detail. It is shown that the simplest and reliable method of the calibration procedure requires finding a dependence of the resonant frequency, f, of the empty sensor on its temperature and only two f-values when it is filled with saturated liquid and vapor at the given temperature T0. The calibration test-bench is described. The errors of the calibration are estimated, and the experimental data for helium, hydrogen and nitrogen are presented.

  17. Accuracy of a Custom Physical Activity and Knee Angle Measurement Sensor System for Patients with Neuromuscular Disorders and Gait Abnormalities

    PubMed Central

    Feldhege, Frank; Mau-Moeller, Anett; Lindner, Tobias; Hein, Albert; Markschies, Andreas; Zettl, Uwe Klaus; Bader, Rainer

    2015-01-01

    Long-term assessment of ambulatory behavior and joint motion are valuable tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and gait abnormalities. Even though there are several tools available to quantify ambulatory behavior in a home environment, reliable measurement of joint motion is still limited to laboratory tests. The aim of this study was to develop and evaluate a novel inertial sensor system for ambulatory behavior and joint motion measurement in the everyday environment. An algorithm for behavior classification, step detection, and knee angle calculation was developed. The validation protocol consisted of simulated daily activities in a laboratory environment. The tests were performed with ten healthy subjects and eleven patients with multiple sclerosis. Activity classification showed comparable performance to commercially available activPAL sensors. Step detection with our sensor system was more accurate. The calculated flexion-extension angle of the knee joint showed a root mean square error of less than 5° compared with results obtained using an electro-mechanical goniometer. This new system combines ambulatory behavior assessment and knee angle measurement for long-term measurement periods in a home environment. The wearable sensor system demonstrated high validity for behavior classification and knee joint angle measurement in a laboratory setting. PMID:25954954

  18. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.

    PubMed

    Feldhege, Frank; Mau-Moeller, Anett; Lindner, Tobias; Hein, Albert; Markschies, Andreas; Zettl, Uwe Klaus; Bader, Rainer

    2015-05-06

    Long-term assessment of ambulatory behavior and joint motion are valuable tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and gait abnormalities. Even though there are several tools available to quantify ambulatory behavior in a home environment, reliable measurement of joint motion is still limited to laboratory tests. The aim of this study was to develop and evaluate a novel inertial sensor system for ambulatory behavior and joint motion measurement in the everyday environment. An algorithm for behavior classification, step detection, and knee angle calculation was developed. The validation protocol consisted of simulated daily activities in a laboratory environment. The tests were performed with ten healthy subjects and eleven patients with multiple sclerosis. Activity classification showed comparable performance to commercially available activPAL sensors. Step detection with our sensor system was more accurate. The calculated flexion-extension angle of the knee joint showed a root mean square error of less than 5° compared with results obtained using an electro-mechanical goniometer. This new system combines ambulatory behavior assessment and knee angle measurement for long-term measurement periods in a home environment. The wearable sensor system demonstrated high validity for behavior classification and knee joint angle measurement in a laboratory setting.

  19. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.

    PubMed

    Liang, Xin M; Sekar, Praveen K; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-20

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  20. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    NASA Astrophysics Data System (ADS)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  1. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.

    PubMed

    Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Lee, SuKyoung; Kim, Yoon Hyuk

    2015-06-01

    To analyze human motion such as daily activities or sports outside of the laboratory, wearable motion analysis systems have been recently developed. In this study, the joint forces and moments in whole-body joints during gait were evaluated using a wearable motion analysis system consisting of an inertial motion measurement system and an in-shoe pressure sensor system. The magnitudes of the joint forces and the moments in nine joints (cervical, thoracic, lumbar, right shoulder, right elbow, right wrist, right hip, right knee, and right ankle) during gait were calculated using the wearable system and the conventional system, respectively, based on a standard inverse dynamics analysis. The averaged magnitudes of the joint forces and moments of five subjects were compared between the wearable and conventional systems in terms of the Pearson's correlation coefficient and the normalized root mean squared error to the maximum value from the conventional system. The results indicated that both the joint forces and joint moments in human whole body joints using wearable inertial motion sensors and in-shoe pressure sensors were feasible for normal motions with a low speed such as walking, although the lower extremity joints showed the strongest correlation and overall the joint moments were associated with relatively smaller correlation coefficients and larger normalized root mean squared errors in comparison with the joint forces. The portability and mobility of this wearable system can provide wide applicability in both clinical and sports motion analyses. PMID:25957652

  2. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.

    PubMed

    Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Lee, SuKyoung; Kim, Yoon Hyuk

    2015-06-01

    To analyze human motion such as daily activities or sports outside of the laboratory, wearable motion analysis systems have been recently developed. In this study, the joint forces and moments in whole-body joints during gait were evaluated using a wearable motion analysis system consisting of an inertial motion measurement system and an in-shoe pressure sensor system. The magnitudes of the joint forces and the moments in nine joints (cervical, thoracic, lumbar, right shoulder, right elbow, right wrist, right hip, right knee, and right ankle) during gait were calculated using the wearable system and the conventional system, respectively, based on a standard inverse dynamics analysis. The averaged magnitudes of the joint forces and moments of five subjects were compared between the wearable and conventional systems in terms of the Pearson's correlation coefficient and the normalized root mean squared error to the maximum value from the conventional system. The results indicated that both the joint forces and joint moments in human whole body joints using wearable inertial motion sensors and in-shoe pressure sensors were feasible for normal motions with a low speed such as walking, although the lower extremity joints showed the strongest correlation and overall the joint moments were associated with relatively smaller correlation coefficients and larger normalized root mean squared errors in comparison with the joint forces. The portability and mobility of this wearable system can provide wide applicability in both clinical and sports motion analyses.

  3. Further improvements in deconvolution of pass-through paleomagnetic measurement data: Accuracy of positioning and sensor response

    NASA Astrophysics Data System (ADS)

    Oda, H.; Xuan, C.; Yamamoto, Y.

    2015-12-01

    Pass-through superconducting rock magnetometer (SRM) is one of the most important tools for modern paleomagnetism research. It offers rapid and continuous measurements of weak remanent magnetization preserved in various geological archives. However, pass-through SRM measurements are inevitably smoothed and even distorted due to the convolution effect of the SRM sensor response, and deconvolution is necessary to restore high-resolution signal from pass-through measurements. Reliable deconvolution relies on accurate estimate of the SRM sensor response and our understanding of errors associated with sample measurements. In this presentation, we introduce new practical tool and procedure to facilitate rapid and accurate measurements of SRM sensor response with demonstration using an SRM at the Kochi Core Center, Japan. We also report accurate measurements of SRM tray positions measured using laser interferometry. The measured positions with an actual u-channel sample on the tray show vibrations with peak amplitudes of ~50μm following each stop of the tray. The vibrations diminish towards background level in ~0.4 sec. Comparison with the positions expected from the stepping motor counts show random discrepancies with standard deviations of 0.1~0.2 mm. Measurements with u-channel show higher standard deviations including significant stepwise changes of up to ~0.5mm.

  4. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    PubMed

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-01-01

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm. PMID:23486218

  5. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    PubMed Central

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-01-01

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm. PMID:23486218

  6. Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor.

    PubMed

    White, James D; Scholten, Robert E

    2012-11-01

    We describe a compact laser wavelength measuring instrument based on a small diffraction grating and a consumer-grade webcam. With just 1 pW of optical power, the instrument achieves absolute accuracy of 0.7 pm, sufficient to resolve individual hyperfine transitions of the rubidium absorption spectrum. Unlike interferometric wavemeters, the instrument clearly reveals multimode laser operation, making it particularly suitable for use with external cavity diode lasers and atom cooling and trapping experiments. PMID:23206048

  7. Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor

    NASA Astrophysics Data System (ADS)

    White, James D.; Scholten, Robert E.

    2012-11-01

    We describe a compact laser wavelength measuring instrument based on a small diffraction grating and a consumer-grade webcam. With just 1 pW of optical power, the instrument achieves absolute accuracy of 0.7 pm, sufficient to resolve individual hyperfine transitions of the rubidium absorption spectrum. Unlike interferometric wavemeters, the instrument clearly reveals multimode laser operation, making it particularly suitable for use with external cavity diode lasers and atom cooling and trapping experiments.

  8. Performance Evaluation of Localization Accuracy for a Log-Normal Shadow Fading Wireless Sensor Network under Physical Barrier Attacks.

    PubMed

    Hussein, Ahmed Abdulqader; Rahman, Tharek A; Leow, Chee Yen

    2015-01-01

    Localization is an apparent aspect of a wireless sensor network, which is the focus of much interesting research. One of the severe conditions that needs to be taken into consideration is localizing a mobile target through a dispersed sensor network in the presence of physical barrier attacks. These attacks confuse the localization process and cause location estimation errors. Range-based methods, like the received signal strength indication (RSSI), face the major influence of this kind of attack. This paper proposes a solution based on a combination of multi-frequency multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization (SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect the signal hole map in the network, which refers to the attack-prone regions, in order to carry out corrective actions. The simulation results show the enhancement and robustness of RSS localization performance in the face of log normal shadow fading effects, besides the presence of physical barrier attacks, through detecting, filtering and eliminating the effect of these attacks. PMID:26690159

  9. Performance Evaluation of Localization Accuracy for a Log-Normal Shadow Fading Wireless Sensor Network under Physical Barrier Attacks

    PubMed Central

    Abdulqader Hussein, Ahmed; Rahman, Tharek A.; Leow, Chee Yen

    2015-01-01

    Localization is an apparent aspect of a wireless sensor network, which is the focus of much interesting research. One of the severe conditions that needs to be taken into consideration is localizing a mobile target through a dispersed sensor network in the presence of physical barrier attacks. These attacks confuse the localization process and cause location estimation errors. Range-based methods, like the received signal strength indication (RSSI), face the major influence of this kind of attack. This paper proposes a solution based on a combination of multi-frequency multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization (SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect the signal hole map in the network, which refers to the attack-prone regions, in order to carry out corrective actions. The simulation results show the enhancement and robustness of RSS localization performance in the face of log normal shadow fading effects, besides the presence of physical barrier attacks, through detecting, filtering and eliminating the effect of these attacks. PMID:26690159

  10. Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data.

    PubMed

    Ziegler, Dominik; Meyer, Travis R; Farnham, Rodrigo; Brune, Christoph; Bertozzi, Andrea L; Ashby, Paul D

    2013-08-23

    Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth.

  11. Get SunWise

    ERIC Educational Resources Information Center

    Hagen, Patricia; Ingram, Dabney

    2004-01-01

    Providing sun-safe environments, schedules, and activities; teaching and modeling sun-safe behaviors; and implementing a sun-safe school policy are ways that schools can help protect children from sun overexposure and lay the foundation for a healthy lifestyle at an early age. This article presents the SunWise program and examples of classroom…

  12. Our Star, the Sun.

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay

    2000-01-01

    Presents activities for elementary and middle school students on the sun and the Earth-sun relationship. Studies the structure of the sun with activities that include Shadow Play, Reflective Solar Cooker, Equatorial Sundial, and Tracing Images. (YDS)

  13. A Clinical Trial of the Accuracy and Treatment Experience of the Dexcom G4 Sensor (Dexcom G4 System) and Enlite Sensor (Guardian REAL-Time System) Tested Simultaneously in Ambulatory Patients with Type 1 Diabetes

    PubMed Central

    Matuleviciene, Viktorija; Joseph, Jeffrey I.; Andelin, Mervi; Hirsch, Irl B.; Attvall, Stig; Pivodic, Aldina; Dahlqvist, Sofia; Klonoff, David; Haraldsson, Börje

    2014-01-01

    Abstract Background: Continuous glucose monitoring (CGM) is a tool widely used in the treatment of patients with type 1 diabetes. The purpose of the current study was to evaluate whether accuracy and patient treatment satisfaction differ between the Enlite™ (Medtronic MiniMed, Inc., Northridge, CA) and Dexcom® (San Diego, CA) G4 PLATINUM CGM sensors. Subjects and Methods: Thirty-eight ambulatory patients with type 1 diabetes used the Dexcom G4 and Enlite sensors simultaneously for a minimum of 4 and maximum of 6 days. Patients measured capillary glucose levels with a HemoCue® (Ängelholm, Sweden) system six to 10 times a day. In addition, two inpatient studies were performed between Days 1–3 and 4–6. Results: The mean absolute relative difference (MARD) in blood glucose for the Dexcom G4 was significantly lower (13.9%) than for the Enlite sensor (17.8%) (P<0.0001). The corresponding MARDs for Days 1–3 were 15.0% versus 19.4% (P=0.0027) and 13.6% versus 15.9% (P=0.026) for Days 4–6. For glucose levels in the hypoglycemic range (<4.0 mmol/L), the MARD for the Dexcom G4 was 20.0% compared with 34.7% for the Enlite (P=0.0041). On a visual analog scale (VAS) (0–100), patients rated the Dexcom G4 more favorably than the Enlite in 12 out of the 13 user experience questions. For example, more patients rated their experience with the Dexcom G4 as positive (VAS, 79.7 vs. 46.6; P<0.0001) and preferred to use it in their daily lives (VAS, 79.1 vs. 42.1; P<0.0001). Conclusions: The Dexcom G4 sensor was associated with greater overall accuracy than the Enlite sensor during initial (Days 1–3) and later (Days 4–6) use and for glucose levels in the hypoglycemic range. Patients reported a significantly more positive experience using the Dexcom G4 than the Enlite. PMID:25233297

  14. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 3: ERBE scanner measurement accuracy analysis due to reduced housekeeping data

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chrisman, Dan A., Jr.; Halyo, Nesim

    1987-01-01

    The accuracy of scanner measurements was evaluated when the sampling frequency of sensor housekeeping (HK) data was reduced from once every scan to once every eight scans. The resulting increase in uncertainty was greatest for sources with rapid or extreme temperature changes. This analysis focused on the mirror attenuator mosaic (MAM) baffle and plate and scanner radiometer baffle due to their relatively high temperature changes during solar calibrations. Since only solar simulator data were available, the solar temperatures were approximated on these components and the radiative and thermal gradients in the MAM baffle due to reflected sunlight. Of the two cases considered for the MAM plate and baffle temperatures, one uses temperatures obtained from the ground calibration. The other attempt uses temperatures computed from the MAM baffle model. This analysis shows that the heat input variations due largely to the solar radiance and irradiance during a scan cycle are small. It also demonstrates that reasonable intervals longer than the current HK data acquisition interval should not significantly affect the estimation of a radiation field in the sensor field-of-view.

  15. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  16. Accuracy and Precision of Equine Gait Event Detection during Walking with Limb and Trunk Mounted Inertial Sensors

    PubMed Central

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of −7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with −0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of −4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely. PMID:22969392

  17. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  18. Satellite Attitude Determination with Low-Cost Sensors

    NASA Astrophysics Data System (ADS)

    Springmann, John C.

    This dissertation contributes design and data processing techniques to maximize the accuracy of low-cost attitude determination systems while removing pre-flight calibration requirements. This enables rapid development of small spacecraft to perform increasingly complex missions. The focus of this work is magnetometers and sun sensors, which are the two most common types of attitude sensors. Magnetometer measurements are degraded by the magnetic fields of nearby electronics, which traditionally limit their utility on satellites unless a boom is used to provide physical separation between the magnetometer and the satellite. This dissertation presents an on-orbit, attitude-independent method for magnetometer calibration that mitigates the effect of nearby electronics. With this method, magnetometers can be placed anywhere within the spacecraft, and as demonstrated through application to flight data, the accuracy of the integrated magnetometer is reduced to nearly that of the stand-alone magnetometer. Photodiodes are light sensors that can be used for sun sensing. An individual photodiode provides a measurement of a single sun vector component, and since orthogonal photodiodes do not provide sufficient coverage due to photodiode field-of-view limitations, there is a tradeoff between photodiode orientation and sun sensing angular accuracy. This dissertation presents a design method to optimize the photodiode configuration for sun sensing, which is also generally applicable to directional sensors. Additionally, an on-orbit calibration method is developed to estimate the photodiode scale factors and orientation, which are critical for accurate sun sensing. Combined, these methods allow a magnetometer to be placed anywhere within a spacecraft and provide an optimal design technique for photodiode placement. On-orbit calibration methods are formulated for both types of sensors that correct the sensor errors on-orbit without requiring pre-flight calibration. The calibration

  19. THE INFRARED COLORS OF THE SUN

    SciTech Connect

    Casagrande, L.; Asplund, M.; Ramirez, I.; Melendez, J.

    2012-12-10

    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

  20. Sun and Sun Worship in Different Cultures

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.; Mickaelian, A. M.

    2014-10-01

    The Sun symbol is found in many cultures throughout history, it has played an important role in shaping our life on Earth since the dawn of time. Since the beginning of human existence, civilisations have established religious beliefs that involved the Sun's significance to some extent. As new civilisations and religions developed, many spiritual beliefs were based on those from the past so that there has been an evolution of the Sun's significance throughout cultural development. For comparing and finding the origin of the Sun we made a table of 66 languages and compared the roots of the words. For finding out from where these roots came from, we also made a table of 21 Sun Gods and Goddesses and proved the direct crossing of language and mythology.

  1. Panoramic attitude sensor

    NASA Technical Reports Server (NTRS)

    Meek, I. C.

    1976-01-01

    Each subassembly, design analysis, and final calibration data on all assemblies for the Panormic Attitude Sensor (PAS) are described. The PAS is used for course attitude determination on the International Ultraviolet Explorer Spacecraft (IUE). The PAS contains a sun sensor which is sensitive only to the sun's radiation and a mechanically scanned sensor which is sensitive to the earth, moon, and the sun. The signals from these two sensors are encoded and sent back in the telemetry data stream to determine the spacecraft attitude.

  2. Here Comes the Sun.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes Sun Microsystems' Open Net Environment--Sun ONE--an open system for creating, assembling, and deploying Web services. Along with other software products, it can help various departments' computers and databases "talk" to each other. (EV)

  3. The Sun in Time

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.

    1998-01-01

    The presentation will include slides and documentation concerning archaeological sites where observations of the Sun may have taken place, as well as a discussion of the role the Sun played in the lives of the ancients. We will complete our discussion by contrasting ancient ideas of the Sun with those of the current era.

  4. Fireworks on the Sun

    NASA Video Gallery

    This movie shows fireworks on the sun as 10 significant flares erupted on the sun from Oct. 19-28, 2014. The graph shows X-ray output from the sun as measured by NOAA’s GOES spacecraft. The X-rays ...

  5. Seasons by the Sun

    ERIC Educational Resources Information Center

    Stark, Meri-Lyn

    2005-01-01

    Understanding the Sun has challenged people since ancient times. Mythology from the Greek, Inuit, and Inca cultures attempted to explain the daily appearance and nightly disappearance of the Sun by relating it to a chariot being chased across the sky. While people no longer believe the Sun is a chariot racing across the sky, teachers are still…

  6. Personal, Seasonal Suns

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    This article presents an art project designed for upper-elementary students to (1) imagine visual differences in the sun's appearance during the four seasons; (2) develop ideas for visually translating their personal experiences regarding the seasons to their sun drawings; (3) create four distinctive seasonal suns using colors and imagery to…

  7. California Sun Glint

    Atmospheric Science Data Center

    2014-05-15

    article title:  Sun Glint from Solar Electric Generating Stations   ... View Larger Image Depending upon the position of the Sun, the solar power stations in California's Mohave Desert can reflect solar ... discernible in this set of natural-color images as the Sun's rays are reflected differently from the solar power fields at different ...

  8. Comparison of Water Vapor Measurements by Airborne Sun photometer and Near-Coincident In Situ and Satellite Sensors during INTEX-ITCT 2004

    SciTech Connect

    Livingston, J.; Schmid, Beat; Redemann, Jens; Russell, P. B.; Ramirez, Samuel; Eilers, J.; Gore, W.; Howard, Samuel; Pommier, J.; Fetzer, E. J.; Seemann, S. W.; Borbas, E.; Wolfe, Daniel; Thompson, Anne M.

    2007-06-06

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes, and with water vapor profiles retrieved from AIRS measurements during 8 Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during 5 Aqua and 5 Terra overpasses. For 35 J31 vertical profiles mean (bias) and rms AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1% and 8.8%, respectively. For 22 aircraft profiles within 1 h and 130 km of radiosonde soundings, AATS-minus-sonde bias and rms LWV differences are -5.4% and 8.8%, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3% and 8.4%, respectively. AIRS LWV retrievals within 80 km of J31 profiles yield lower bias and rms differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8% to 5.8%, and the rms difference decreases from 21.5% to 16.4%. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2% to +6% and rms differences of ~20% below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5-km at nadir) are biased wet by 10.4% compared to AATS over-ocean near surface retrievals. The MODIS Aqua subset (79 grid cells) exhibits a wet bias of 5.1%, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2%.

  9. Sun compass error model

    NASA Technical Reports Server (NTRS)

    Blucker, T. J.; Ferry, W. W.

    1971-01-01

    An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.

  10. ORNL SunTracker

    SciTech Connect

    Wysor, Robert Wesley

    2005-09-14

    The ORNL Sun Tracker software is the user interface that operates on a Personal Computer and serially communicates with the controller board. This software allows the user to manually operate the Hybrid Solar Lighting (HSL) unit. It displays the current location of the HSL unit, its parameters and it provides real-time monitoring. The ORNL Sun Tracker software is also the main component used in setting up and calibrating the tracker. It contains a setup screen that requires latitude, longitude, and a few other key values to accurately locate the sun's position. The software also will provide the user access to calibrate the tracking location in relation to the sun's actual position.

  11. Sun protection in childhood.

    PubMed

    Truhan, A P

    1991-12-01

    There is compelling evidence that childhood is a particularly vulnerable time for the photocarcinogenic effects of sun exposure on the skin. Studies indicate that excessive sun exposure during the first 10-20 years of life greatly increases the risk of skin cancer. Nonmelanoma skin cancer (basal cell and squamous cell carcinoma) has been associated with cumulative sun exposure, whereas melanoma has been associated with short, intense sun exposure or blistering sunburn. Under normal circumstances, children receive three times the annual sun exposure of adults; most of one's lifetime sun exposure occurs in childhood. Depletion of the earth's protective ozone layer adds to the photodamage problem. It is clear that sun protection is most vital in the early years. Those with fair skin are at highest risk. Photoprotective measures including sunscreen, clothing, and sun avoidance in childhood may significantly reduce the occurrence of melanoma and other skin cancer in later life. Regular use of sunscreen with a sun protection factor of 15 during the first 18 years of life could reduce the lifetime incidence of nonmelanoma skin cancer by 78%. Pediatricians can play a major role in educating parents and children.

  12. Observing Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.; White, Russel J.

    2016-05-01

    The Sun represents only one realization of the many possibilities for stellar dynamos. In order to fully understand the physics of solar and stellar magnetism we need to study in full detail the magnetic cycles of stars that are very much like the Sun . To do this we need a telescope that can resolve the disks of nearby solar type stars. Georgia State's University Center for High Resolution Astronomy (CHARA) array is a diffraction limited interferometer with a baseline of over 300 m, located on Mount Wilson. It is the highest resolution telescope in the visible and infrared currently in operation. CHARA has resolved the disks of larger stars and observed starspots. We will describe an ongoing observing program for nearby Sun-like stars to determine with great accuracy the basic parameters of these stars and the presence of starspots on their surfaces. Combined with the decades long observations of Mount Wilson and Lowell Observatories of stellar cycles the data obtained will act as a powerful constraint on solar and stellar dynamo models and simulations.

  13. Attitude measurement: Principles and sensors

    NASA Technical Reports Server (NTRS)

    Duchon, P.; Vermande, M. P.

    1981-01-01

    Tools used in the measurement of satellite attitude are described. Attention is given to the elements that characterize an attitude sensor, the references employed (stars, moon, Sun, Earth, magnetic fields, etc.), and the detectors (optical, magnetic, and inertial). Several examples of attitude sensors are described, including sun sensors, star sensors, earth sensors, triaxial magnetometers, and gyrometers. Finally, sensor combinations that make it possible to determine a complete attitude are considered; the SPOT attitude measurement system and a combined CCD star sensor-gyrometer system are discussed.

  14. Balloon-Borne System Would Aim Instrument Toward Sun

    NASA Technical Reports Server (NTRS)

    Polites, M. E.

    1992-01-01

    Proposed system including digital control computer, control sensors, and control actuators aims telescope or other balloon-borne instrument toward Sun. Pointing system and instrument flown on gondola, suspended from balloon. System includes reaction wheel, which applies azimuthal control torques to gondola, and torque motor to apply low-frequency azimuthal torques between gondola and cable. Three single-axis rate gyroscopes measure yaw, pitch, and roll. Inclinometer measures roll angle. Two-axis Sun sensor measures deviation, in yaw and pitch, of attitude of instrument from line to apparent center of Sun. System provides initial coarse pointing, then maintains fine pointing.

  15. SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large flexible structures

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M

    1987-01-01

    An electro-optical position sensor for precise simultaneous measurement of the 3-D positions of multiple points on large space structures is described. The sensor data rate is sufficient for most control purposes. Range is determined by time-of-flight correlation of short laser pulses returned from retroreflector targets using a streak tube/CCD detector. Angular position is determined from target image locations on a second CCD. Experimental verification of dynamic ranging to multiple targets is discussed.

  16. The magnetic Sun.

    PubMed

    Harrison, Richard A

    2008-05-28

    The nature of our star, the Sun, is dominated by its complex and variable magnetic fields. It is the purpose of this paper to review the fundamental nature of our magnetic Sun by outlining the most basic principles behind the way the Sun works and how its fields are generated, and to examine not only the historical observations of our magnetic star, but, in particular, to study the wonderful observations of the Sun being made from space today. However, lying behind all of this are the most basic equations derived by James Clerk Maxwell, describing how the magnetic fields and plasmas of our Sun's atmosphere, and indeed of all stellar atmospheres, work and how they influence the Earth.

  17. Sun and Skin: The Dark Side of Sun Exposure

    MedlinePlus

    ... our exit disclaimer . Subscribe Sun and Skin The Dark Side of Sun Exposure People enjoy the sun. ... says. Several factors—like cloudy days or having dark-colored skin—can reduce the amount of vitamin ...

  18. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  19. Orientation in birds. The sun compass.

    PubMed

    Schmidt-Koenig, K; Ganzhorn, J U; Ranvaud, R

    1991-01-01

    The sun compass was discovered by G. Kramer in caged birds showing migratory restlessness. Subsequent experiments with caged birds employing directional training and clock shifts, carried out by Hoffman and Schmidt-Koenig, showed that the sun azimuth is used, and the sun altitude ignored. In the laboratory, McDonald found the accuracy to be +/- 3 degrees(-)+/- 5 degrees. According to Hoffmann and Schmidt-Koenig, caged birds trained at medium northern latitudes were able to allow for the sun's apparent movement north of the arctic circle, but not in equatorial and trans-equatorial latitudes. In homing experiments, and employing clock shifts, Schmidt-Koenig demonstrated that the sun compass is used by homing pigeons during initial orientation. This finding is the principal evidence for the existence of a map-and-compass navigational system. Pigeons living in equatorial latitudes utilize the sun compass even under the extreme solar conditions of equinox, achieving angular resolution of about 3 degrees in homing experiments. According to preliminary analyses, the homing pigeons' ephemerides are retarded by several weeks (Ranvaud, Schmidt-Koenig, Ganzhorn et al.).

  20. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  1. Accuracy assessment of GPS satellite orbits

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Tapley, B. D.; Abusali, P. A. M.; Ho, C. S.

    1991-01-01

    GPS orbit accuracy is examined using several evaluation procedures. The existence is shown of unmodeled effects which correlate with the eclipsing of the sun. The ability to obtain geodetic results that show an accuracy of 1-2 parts in 10 to the 8th or better has not diminished.

  2. STEREO Sun360 Teaser

    NASA Video Gallery

    For the past 4 years, the two STEREO spacecraft have been moving away from Earth and gaining a more complete picture of the sun. On Feb. 6, 2011, NASA will reveal the first ever images of the entir...

  3. The Turbulent Sun

    ERIC Educational Resources Information Center

    Lindsay, Sally, Ed.

    1976-01-01

    Six articles review current understanding and research in solar physics. Included are topics on sunspots, the corona, solar flares, solar waves, and solar-energy generation. Also included is a resume of physical data relating to the sun. (SL)

  4. Sun protection (image)

    MedlinePlus

    ... in combination with wide-brimmed hats, sunglasses, and sunscreen, are all helpful in preventing damage to the ... Any one of these by itself, even the sunscreen, may not be enough to prevent sun damage.

  5. The Sun Gets Loopy

    NASA Video Gallery

    SDO watched as an active region in the Sun’s southern hemisphere produced a whole series of looping arcs of plasma in profile (Sept. 11-13, 2010). The arcs are actually charged particles spirali...

  6. Van Gogh Sun

    NASA Video Gallery

    Nicholeen Viall, a solar scientist at NASA's Goddard Space Flight Center creates images of the sun reminiscent of Van Gogh, but it's science, not art. The color of each pixel contains a wealth of i...

  7. ORNL SunTracker

    2005-09-14

    The ORNL Sun Tracker software is the user interface that operates on a Personal Computer and serially communicates with the controller board. This software allows the user to manually operate the Hybrid Solar Lighting (HSL) unit. It displays the current location of the HSL unit, its parameters and it provides real-time monitoring. The ORNL Sun Tracker software is also the main component used in setting up and calibrating the tracker. It contains a setup screenmore » that requires latitude, longitude, and a few other key values to accurately locate the sun's position. The software also will provide the user access to calibrate the tracking location in relation to the sun's actual position.« less

  8. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  9. A generic sun-tracking algorithm for on-axis solar collector in mobile platforms

    NASA Astrophysics Data System (ADS)

    Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han; Ho, Ming-Cheng; Yap, See-Hao; Heng, Chun-Kit; Lee, Jer-Vui; King, Yeong-Jin

    2015-04-01

    This paper proposes a novel dynamic sun-tracking algorithm which allows accurate tracking of the sun for both non-concentrated and concentrated photovoltaic systems located on mobile platforms to maximize solar energy extraction. The proposed algorithm takes not only the date, time, and geographical information, but also the dynamic changes of coordinates of the mobile platforms into account to calculate the sun position angle relative to ideal azimuth-elevation axes in real time using general sun-tracking formulas derived by Chong and Wong. The algorithm acquires data from open-loop sensors, i.e. global position system (GPS) and digital compass, which are readily available in many off-the-shelf portable gadgets, such as smart phone, to instantly capture the dynamic changes of coordinates of mobile platforms. Our experiments found that a highly accurate GPS is not necessary as the coordinate changes of practical mobile platforms are not fast enough to produce significant differences in the calculation of the incident angle. On the contrary, it is critical to accurately identify the quadrant and angle where the mobile platforms are moving toward in real time, which can be resolved by using digital compass. In our implementation, a noise filtering mechanism is found necessary to remove unexpected spikes in the readings of the digital compass to ensure stability in motor actuations and effectiveness in continuous tracking. Filtering mechanisms being studied include simple moving average and linear regression; the results showed that a compound function of simple moving average and linear regression produces a better outcome. Meanwhile, we found that a sampling interval is useful to avoid excessive motor actuations and power consumption while not sacrificing the accuracy of sun-tracking.

  10. Accuracy of the ERBS definitive attitude determination system in the presence of propagation noise

    NASA Technical Reports Server (NTRS)

    Chu, D.; Harvie, E.

    1990-01-01

    Definitive attitude solutions are supposed to be the most accurate possible. For the Earth Radiation Budget Satellite (ERBS), this has been accomplished by using gyro rates to transform many nonsimultaneous observations to a common time point and then averaging to reduce the effects of observation noise. Rate quality is critical to realizing improved accuracy with this method. Gyro deterioration, which shows up as large observation residuals and discontinuities between contiguous batch solutions, now discourages using the batch approach for ERBS. To address this problem, a simple Kalman filter is tried in place of the batch estimator. The filter works well as long as the attitude is completely observable. During periods without Sun coverage, however, the extrapolated yaw may diverge and then change abruptly when the Sun returns to the sensor field of view. Causes of this behavior are discussed, and some solutions are tried that address the observability aspect of the problem.

  11. Intelligent Sun Tracking for a CPV Power Plant

    NASA Astrophysics Data System (ADS)

    Maqsood, Ishtiaq; Emziane, Mahieddine

    2010-10-01

    The output of a solar panel is strongly dependent on the amount of perpendicular light flux falling on its surface, and a tracking system tries to parallel the vector area of the solar panel surface to the incident solar flux. We present a tracking technique based on a two-axis sun sensor which can be used to increase the power output from a number of CPV arrays connected together in a solar power plant. The outdoor testing procedure of the developed two-axis sun sensor is discussed. The detail of the algorithm used together with the related sun tracking equipment is also presented and discussed for the new two axes sun tracking system.

  12. The Sun in STEREO

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Parallax gives depth to life. Simultaneous viewing from slightly different vantage points makes binocular humans superior to monocular cyclopes, and fixes us in the third dimension of the Universe. We've been stunned by 3-d images of Venus and Mars (along with more familiar views of earth). Now astronomers plan to give us the best view of all, 3-d images of the dynamic Sun. That's one of the prime goals of NASA's Solar Terrestrial Relations Observatories, also known as STEREO. STEREO is a pair of spacecraft observatories, one placed in orbit in front of earth, and one to be placed in an earth-trailing orbit. Simultaneous observations of the Sun with the two STEREO spacecraft will provide extraordinary 3-d views of all types of solar activity, especially the dramatic events called coronal mass ejections which send high energy particles from the outer solar atmosphere hurtling towards earth. The image above the first image of the sun by the two STEREO spacecraft, an extreme ultraviolet shot of the Sun's million-degree corona, taken by the Extreme Ultraviolet Imager on the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument package. STEREO's first 3-d solar images should be available in April if all goes well. Put on your red and blue glasses!

  13. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    PubMed

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.

  14. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    PubMed

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  15. Toward robust deconvolution of pass-through paleomagnetic measurements: new tool to estimate magnetometer sensor response and laser interferometry of sample positioning accuracy

    NASA Astrophysics Data System (ADS)

    Oda, Hirokuni; Xuan, Chuang; Yamamoto, Yuhji

    2016-07-01

    Pass-through superconducting rock magnetometers (SRM) offer rapid and high-precision remanence measurements for continuous samples that are essential for modern paleomagnetism studies. However, continuous SRM measurements are inevitably smoothed and distorted due to the convolution effect of SRM sensor response. Deconvolution is necessary to restore accurate magnetization from pass-through SRM data, and robust deconvolution requires reliable estimate of SRM sensor response as well as understanding of uncertainties associated with the SRM measurement system. In this paper, we use the SRM at Kochi Core Center (KCC), Japan, as an example to introduce new tool and procedure for accurate and efficient estimate of SRM sensor response. To quantify uncertainties associated with the SRM measurement due to track positioning errors and test their effects on deconvolution, we employed laser interferometry for precise monitoring of track positions both with and without placing a u-channel sample on the SRM tray. The acquired KCC SRM sensor response shows significant cross-term of Z-axis magnetization on the X-axis pick-up coil and full widths of ~46-54 mm at half-maximum response for the three pick-up coils, which are significantly narrower than those (~73-80 mm) for the liquid He-free SRM at Oregon State University. Laser interferometry measurements on the KCC SRM tracking system indicate positioning uncertainties of ~0.1-0.2 and ~0.5 mm for tracking with and without u-channel sample on the tray, respectively. Positioning errors appear to have reproducible components of up to ~0.5 mm possibly due to patterns or damages on tray surface or rope used for the tracking system. Deconvolution of 50,000 simulated measurement data with realistic error introduced based on the position uncertainties indicates that although the SRM tracking system has recognizable positioning uncertainties, they do not significantly debilitate the use of deconvolution to accurately restore high

  16. A sun gate for Galileo spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Weisenberg, David

    1990-01-01

    The combination of a sun sensor called a sun gate (SG) and a digital programmable signal processor on the Galileo spacecraft attitude and articulation control subsystem (AACS) will orient the rotation axis of the spacecraft toward the sun to satisfy a new requirement imposed by the new spacecraft trajectory. The combination will continuously monitor the pointing direction of the rotation axis, and any off-sun excursions of more than a preset threshold will be detected, triggering appropriate actions by the flight software to prevent off-sun cone angles of more than 14 deg. The design of the SG is described in detail, its principle of operation is given, and the flight software processing of the SG output is discussed.

  17. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    PubMed Central

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  18. Our Explosive Sun

    ERIC Educational Resources Information Center

    Brown, D. S.

    2009-01-01

    The Sun's atmosphere is a highly structured but dynamic place, dominated by the solar magnetic field. Hot charged gas (plasma) is trapped on lines of magnetic force that can snap like an elastic band, propelling giant clouds of material out into space. A range of ground-based and space-based solar telescopes observe these eruptions, particularly…

  19. Sun Packs Double Punch

    NASA Video Gallery

    On August 3, the sun packed a double punch, emitting a M6.0-class flare at 9:43 am EDT. This video is of the second, slightly stronger M9.3-class flare at 11:41 pm EDT. Both flares had significant ...

  20. Licensing the Sun

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2013-01-01

    The University of San Diego (USD) and Point Loma Nazarene University (PLNU) are licensing the sun. Both California schools are generating solar power on campus without having to sink large amounts of capital into equipment and installation. By negotiating power purchasing agreements (PPAs) with Amsolar and Perpetual Energy Systems, respectively,…

  1. Go Sun Smart

    ERIC Educational Resources Information Center

    Scott, Michael D.; Buller, David B.; Walkosz, Barbara J.; Andersen, Peter A.; Cutter, Gary R.; Dignan, Mark B.

    2008-01-01

    This is the story of Go Sun Smart, a worksite wellness program endorsed by the North American Ski Area Association and funded by the National Cancer Institute. Between 2000 and 2002 we designed and implemented a large-scale worksite intervention at over 300 ski resorts in North America with the objective of reducing ski area employees and guests…

  2. Sun-Earth Day

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Michael Sandras, a member of the Pontchartrain Astronomical Society, explains his solar telescope to students of Second Street in Bay St. Louis, Hancock County and Nicholson elementary schools in StenniSphere's Millennium Hall on April 10. The students participated in several hands-on activities at Stennis Space Center's Sun-Earth Day celebration.

  3. The Sun in Time

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Bero, Elizabeth; Sever, Thomas L.

    1999-01-01

    Leveraging funds from NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, we combined the expertise of an archaeoastronomer, a solar scientist, and a teacher to trace humankind's view of the Sun and how that has changed, from the time of Stonehenge in about 1800 B.C.E., to the time of the Maya in 700 C.E., up to the modem era. Our program was aimed at middle-school students in an attempt to explain not only how science is done today, but how science has evolved from the observations of ancient societies. From these varied cultures, we touched on methods of observing the Sun, ideas of the composition of the Sun, and the relationship of the Sun to everyday life. Further, using the von Braun Astronomical Society's Planetarium in Huntsville, Alabama as a test-bed for the program, we illustrated concepts such as solstices, equinoxes, and local noon with approximately 800 eighth grade students from the local area. Our presentation to SEPA will include a description of NASA's IDEAS program and how to go about partnering with a NASA astronomer, some slides from our planetarium program and web-site, and some hands-on activities.

  4. The Sun on Trial

    NASA Astrophysics Data System (ADS)

    Robitaille, Pierre-Marie

    2014-03-01

    For 150 years, the Sun has been seen as a gaseous object devoid of a surface, as required by the Standard Solar Model (SSM). Yet, not one line of observational evidence supports a gaseous Sun. In contrast, overwhelming evidence exists that the Sun is comprised of condensed matter. Recently, 40 proofs have been compiled in conjunction with the Liquid Metallic Hydrogen Solar Model (LMHSM). This model advances that the Sun has a true surface. Photospheric structures, such as sunspots, granules, and faculae, are not optical illusions, as in the SSM, but real objects with a condensed nature. The LMHSM accounts for the thermal spectrum by invoking true inter-atomic structure on the photosphere in the form of the graphite-like layered hexagonal metallic hydrogen lattice first proposed by Wigner and Huntington. Within the convection zone, layered metallic hydrogen, insulated by intercalate atoms, enables the generation of the solar dynamo. Electrons located in conduction bands provide a proper means of generating magnetic fields. Metallic hydrogen ejected from the photosphere also thinly populates the corona, as reflected by the continuous K-coronal spectrum. This coronal matter harvests electrons, resulting in the production of highly ionized atoms. Electron affinity, not temperature, governs the ion profile. The chromosphere is a site of hydrogen and proton capture. Line emission in this region, strongly supports the idea that exothermic condensation reactions are occurring in the chromosphere. In the LMHSM, solar activity and solar winds are regulated by exfoliation reactions occurring in the Sun itself, as the metallic hydrogen lattice excludes non-hydrogen elements from the solar body.

  5. Lunar Reconnaissance Orbiter (LRO) Sun Safe Mode

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph; Roger, J.

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), a spacecraft designed and built at the National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, was launched on June 18, 2009 from Cape Canaveral. It is currently in orbit about the Moon taking detailed science measurements and providing a highly accurate mapping of the suface in preparation for the future return of astronauts to a permanent moon base. Onboard the spacecraft is a complex set of algorithms designed by the attitude control engineers at GSFC to control the pointig for all operational events, including anomalies that require the spacecraft to be put into a well known attitude configuration for a sufficiently long duration to allow for the investigation and correction of the anomaly. GSFC level requirements state that each spacecraft s control system design must include a configuration for this pointing and lso be able to maintain a thermally safe and power positive attitude. This stable control algorithm for anomalous events is commonly referred to as the safe mode and consists of control logic thatwill put the spacecraft in this safe configuration defined by the spacecraft s hardware, power and environment capabilities and limitations. The LRO Sun Safe mode consists of a coarse sun-pointing set of algorithms that puts the spacecraft into this thermally safe and power positive attitude and can be achieved wihin a required amount of time from any initial attitude, provided that the system momentum is within the momentum capability of the reaction wheels. On LRO the Sun Safe mode makes use of coarse sun sensors (CSS), an inertial reference unit (IRU) and reaction wheels (RW) to slew the spacecraft to a solar inertial pointing. The CSS and reaction wheels have some level of redundancy because of their numbers. However, the IRU is a single-point-failure piece of hardware. Without the rate information provided by the IRU, the Sun Safe control algorithms could not

  6. Seismology of the sun

    NASA Technical Reports Server (NTRS)

    Christensen-Dalsgaard, J.; Gough, D.; Toomre, J.

    1985-01-01

    The use of the sun's oscillations, caused by the constructive interference between internally reflected waves, to study the interior of the sun is examined. Pressure and buoyancy have the strongest influence on oscillations; pressure fluctuations at high frequency produce acoustic waves and at low frequency buoyancy produces internal gravity waves. The theory of acoustic wave frequency, which is used to determine measurements of sound speed and rate of rotation of the solar interior as well as the thickness of the convection zone, is presented. The classification of solar oscillations is described. The models for acoustic modes of low degree and intermediate degree are discussed. The effect of internal speed, gravity modes, and solar rotation on solar models is determined. The oscillation frequencies yield an He abundance that is consistent with cosmology, but they reinforce the severity of the neutrino problem.

  7. [Sports under the sun].

    PubMed

    Martalo, O; Guiot-Thys, M; Piérard-Franchimont, C; Piérard, G E

    2001-04-01

    The outdoor sports during summer and winter are often performed under uncontrolled exposure to ultraviolet irradiation from sunlight. Dangers are not small for the skin, the eyes and the immune system. Adequate sun protection is recommended. Caution is important in young children. The daily UV index represents a standardized assessment having a regional predictive value for the intensity of the ultraviolet irradiation reaching the biosphere.

  8. Sun, Moon and Earthquakes

    NASA Astrophysics Data System (ADS)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  9. Skylab and the Sun

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Articles pertaining to the solar studies and the Skylab program are presented, with emphasis on the usefulness of the Apollo Telescope Mount (ATM) program. A description of Skylab objectives and key mission events is included along with articles about the sun. Skylab solar studies which are reported include these topics: ATM solar observatory, scientific instruments, crew operations and crew training, and the joint observing program. The Skylab associated solar programs are also reported.

  10. The sun compass revisited.

    PubMed

    Guilford, Tim; Taylor, Graham K

    2014-11-01

    Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation.

  11. The sun compass revisited

    PubMed Central

    Guilford, Tim; Taylor, Graham K.

    2014-01-01

    Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation. PMID:25389374

  12. The sun, our star

    NASA Astrophysics Data System (ADS)

    Noyes, R. W.

    Observational data, analytical models, and instrumentation used to study the sun and its evolution are detailed, and attention is given to techniques for converting solar energy to useful power on earth. The star ignited when the mutual gravitational attractions of dust and vapor in a primordial cloud in the Galaxy caused an in-rush of accelerating particles which eventually became dense enough to ignite. The heat grew until inward rushing matter was balanced by outward moving radiative forces. The planets formed from similar debris, and solar radiation is suggested to have triggered the chemical reactions giving rise to life on earth. Visual, spectroscopic, coronagraphic, and UV observations of the sun from the ground and from spacecraft, particularly Skylab, are described, together with features of the solar surface, magnetic field, sunspots, and coronal loops. Models for the processes that occur in the solar interior are explored, as are the causes of solar flares. Attention is given to solar cells, heliostat arrays, wind turbines, and water turbines as means to convert, either directly or indirectly, the earth-bound solar energy to electrical and thermal power. Finally, the life cycle of the sun, about 9 billion yr in duration, is summarized, noting the current status of midlife.

  13. Activity Monitors Help Users Get Optimum Sun Exposure

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  14. Evaluation and comparison of the IRS-P6 and the landsat sensors

    USGS Publications Warehouse

    Chander, G.; Coan, M.J.; Scaramuzza, P.L.

    2008-01-01

    The Indian Remote Sensing Satellite (IRS-P6), also called ResourceSat-1, was launched in a polar sun-synchronous orbit on October 17, 2003. It carries three sensors: the highresolution Linear Imaging Self-Scanner (LISS-IV), the mediumresolution Linear Imaging Self-Scanner (LISS-III), and the Advanced Wide-Field Sensor (AWiFS). These three sensors provide images of different resolutions and coverage. To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to images from the Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced TM Plus (ETM+) sensors. The approach involves calibration of surface observations based on image statistics from areas observed nearly simultaneously by the two sensors. This paper also evaluated the viability of data from these nextgeneration imagers for use in creating three National Land Cover Dataset (NLCD) products: land cover, percent tree canopy, and percent impervious surface. Individual products were consistent with previous studies but had slightly lower overall accuracies as compared to data from the Landsat sensors.

  15. Online Resource for Earth-Observing Satellite Sensor Calibration

    NASA Technical Reports Server (NTRS)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  16. Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors

    NASA Technical Reports Server (NTRS)

    Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.

    1994-01-01

    The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.

  17. Retractable Sun Shade

    NASA Technical Reports Server (NTRS)

    Frank, A.; Derespinis, S. F.; Mockovciak, John, Jr.

    1986-01-01

    Window-shade type spring roller contains blanket, taken up by rotating cylindrical frame and held by frame over area to be shaded. Blanket made of tough, opaque polyimide material. Readily unfurled by mechanism to protect space it encloses from Sun. Blanket forms arched canopy over space and allows full access to it from below. When shading not needed, retracted mechanism stores blanket compactly. Developed for protecting sensitive Space Shuttle payloads from direct sunlight while cargo-bay doors open. Adapted to shading of greenhouses, swimming pools, and boats.

  18. LUNA and the Sun

    SciTech Connect

    Broggini, Carlo; Collaboration: LUNA Collaboration

    2014-05-09

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonu-clear reactions responsible for the stellar luminosity and for the synthesis of the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained in the past 20 years are reviewed and their influence on our understanding of the properties of the neutrino and the Sun is discussed.

  19. Sun synchronous solar refrigeration

    NASA Astrophysics Data System (ADS)

    The primary goal of this project was to prototype a complete Sun Synchronous Solar Powered Refrigerator. The key element to the technology is the development of the hermetic motor compressor assembly. The prototype was to be developed to either the stage where Polar Products could receive additional venture capital or to the point whereby Polar could use their own capital to manufacture the systems. Our goal was to construct a prototype which would be the next step to a proven and market ready product. To demonstrate the technology under laboratory conditions was a very minimal goal.

  20. Seismology of the sun.

    PubMed

    Christensen-Dalsgaard, J; Gough, D; Toomre, J

    1985-09-01

    Oscillations of the sun make it possible to probe the inside of a star. The frequencies of the oscillations have already provided measures of the sound speed and the rate of rotation throughout much of the solar interior. These quantities are important for understanding the dynamics of the magnetic cycle and have a bearing on testing general relativity by planetary precession. The oscillation frequencies yield a helium abundance that is consistent with cosmology, but they reinforce the severity of the neutrino problem. They should soon provide an important standard by which to calibrate the theory of stellar evolution.

  1. Sun protection with hats.

    PubMed

    Diffey, B L; Cheeseman, J

    1992-07-01

    The degree of sun protection provided by various styles of hat at different anatomical sites on the head was measured using model headforms and ultraviolet-sensitive film badges. It was found that hats with a small brim, such as the flat cap favoured by elderly male photosensitive patients, provided negligible protection at all sites apart from the vertex and forehead. Peaked baseball-style caps offer good protection to the nose but are relatively ineffective at other sites on the face. Hats with a wide (greater than 7.5 cm) brim are necessary in order to provide reasonable protection factors (greater than 3) around the nose and cheeks.

  2. The Sun: A Star Close Up.

    ERIC Educational Resources Information Center

    Pasachoff, Jay M.

    1991-01-01

    Both the "quiet" sun and the "active" sun are described. The quiet sun includes the solar phenomena that occur everyday and the active sun includes solar phenomena that appear nonuniformly on the sun and vary over time. A general description of the sun, sunspots, flares, plages, filaments, prominences, solar-terrestrial relations, solar wind, and…

  3. Enhancement of sun-tracking with optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wu, Jiunn-Chi

    2015-09-01

    Sun-tracking is one of the most challenging tasks in implementing CPV. In order to justify the additional complexity of sun-tracking, careful assessment of performance of CPV by monitoring the performance of sun-tracking is vital. Measurement of accuracy of sun-tracking is one of the important tasks in an outdoor test. This study examines techniques with three optoelectronic devices (i.e. position sensitive device (PSD), CCD and webcam). Outdoor measurements indicated that during sunny days (global horizontal insolation (GHI) > 700 W/m2), three devices recorded comparable tracking accuracy of 0.16˜0.3°. The method using a PSD has fastest sampling rate and is able to detect the sun's position without additional image processing. Yet, it cannot identify the sunlight effectively during low insolation. The techniques with a CCD and a webcam enhance the accuracy of centroid of sunlight via the optical lens and image processing. The image quality acquired using a webcam and a CCD is comparable but the webcam is more affordable than that of CCD because it can be assembled with consumer-graded products.

  4. [Enjoying the sun well protected].

    PubMed

    Andrey, M

    1999-06-01

    According to the annual figures, skin cancer is the fastest growing type of cancer: one child in every hundred is currently at risk of developing a melanoma, the most malignant form of skin cancer. Surveys show that people are changing their behaviour when it comes to dealing with the sun. But only in small steps. That's why the Cancer League launches a sun protection campaign every year. Simple rules for protection from the sun: Between 11.00 a.m. and 3.00 p.m. (summer time), people should remain in the shade. A head covering and light, loose clothing should be worn in the sun. Tightly-woven, strong-coloured fabric offers better UV protection than coarsely-woven natural fibres. Sunglasses protect the eyes. The choice of sun screen depends on the skin type, the desired level of protection and the intended activity in the sun. The sun cream should be applied liberally half an hour before exposure to the sun. Depending on the particular preparation, it may need to be reapplied after bathing or showering to ensure that sun protection is maintained. Where reflective surfaces are present, e.g. sand, snow, cement and water, it is advisable to use sun protection creams even in the shade. Babies up to one year of age should be kept in the shade and sun protection agents should not be used on them. Like other chemical products, these may irritate the sensitive skin of babies and trigger allergies. Sunscreens used in older children should be waterproof, contain no alcohol and possess a high sun protection factor (at least SPF 15). Baby oil should not be used since it makes the child's skin even more sensitive to light. Parents should set an example to children in the way they protect themselves from the sun. Artificial UV light from sunbeds should be avoided, particularly by children and persons with an increased risk of developing a melanoma. PMID:10420807

  5. Ring Around the Sun

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Our 'constant' sun is really more like a spherical sea of incredibly hot plasma, changing all the time. Astronomers like to keep a good eye on it, so no dramatic change goes by unnoticed. One amazing occurrence happened on Dec 7, 2007 and was seen by one of the two STEREO satellites. STEREO, as you recall, consists of a pair of satellites which observe the sun from different angles and allow astronomers to get a ŗ-D' view of the solar atmosphere and solar outflows. On December 7 one of the STEREO satellites captured a view (in the extreme ultraviolet part of the electromagnetic spectrum) of a Coronal Mass Ejection that released a huge amount of energy into the solar atmosphere, and a huge amount of matter into interplanetary space. A sort of atmospheric 'sunquake'. One result of this 'sunquake' was the production of a giant wave rippling through almost the entire solar atmosphere. The image above shows a snapshot of this unbelievable wave, slightly enhanced for viewability. Don't miss the movie. What damps the wave?

  6. The Sun in Time

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Sever, Thomas L.; Bero, Elizabeth

    1998-01-01

    Using a grant from NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, we have developed an inter-disciplinary curriculum for middle-school students which targets both history and astronomy. Our curriculum explores the attitudes and techniques of ancient spiritual leaders, specifically those of the Maya and Inca cultures, who observed and tried to control the Sun. We wish students to understand the probable importance of astronomical observations to these ancient peoples. In addition, using the experience of an archaeologist, we show how modern techniques of viewing the Earth through satellite imagery, has allowed the re-discovery of ancient sites where solar observations and attempted manipulation of the universe took place. To contrast ancient observations of the Sun with modern ones, we use the experience of a solar astronomer and bring to the classroom up-to-date information about solar astronomy and the impact of solar activity on the Earth's environment. In this presentation, we will present fragments of our curriculum as well as results from pre- and post-tests given to participating groups of students. Finally, we will discuss comments from local middle-school teachers who were asked to evaluate our curriculum.

  7. Eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  8. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-01-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  9. The Sun in Eclipse

    NASA Astrophysics Data System (ADS)

    Maunder, Michael, Moore, Patrick

    A total eclipse of the Sun is due in August 1999. It will attract alot of interest because - unusually - it will be visible in much of Europe and the UK. A total Solar Eclipse is always fascinating. This book is for everyone that wants to know 1. What a Solar Eclipse is 2. The phenomena one can expect to see 3. How to photograph an eclipse using a variety of methods 4. How to plan for an eclipse expedition. The book not only covers the 1999 eclipse but also past and future eclipses which we can look forward to. This book is also interesting to "armchair astronomers" as it contains alot of historical and anecdotal information. There's even a final chapter on "Eclipse Mishaps and Oddities" including the American eclipse expedition of 1780 that missed the total eclipse because they went to the wrong location!

  10. Sun light European Project

    NASA Astrophysics Data System (ADS)

    Soubielle, Marie-Laure

    2015-04-01

    2015 has been declared the year of light. Sunlight plays a major role in the world. From the sunbeams that heat our planet and feed our plants to the optical analysis of the sun or the modern use of sun particles in technologies, sunlight is everywhere and it is vital. This project aims to understand better the light of the Sun in a variety of fields. The experiments are carried out by students aged 15 to 20 in order to share their discoveries with Italian students from primary and secondary schools. The experiments will also be presented to a group of Danish students visiting our school in January. All experiments are carried out in English and involve teams of teachers. This project is 3 folds: part 1: Biological project = what are the mechanisms of photosynthesis? part 2: Optical project= what are the components of sunlight and how to use it? part 3: Technical project= how to use the energy of sunlight for modern devices? Photosynthesis project Biology and English Context:Photosynthesis is a process used by plants and other organisms to convert light energy, normally from the Sun, into chemical energy that can later fuel the organisms' activities. This chemical energy is stored in molecules which are synthesized from carbon dioxide and water. In most cases, oxygen is released as a waste product. Most plants perform photosynthesis. Photosynthesis maintains atmospheric oxygen levels and supplies all of the organic compounds and most of the energy necessary for life on Earth. Outcome: Our project consists in understanding the various steps of photosynthesis. Students will shoot a DVD of the experiments presenting the equipments required, the steps of the experiments and the results they have obtained for a better understanding of photosynthesis Digital pen project Electricity, Optics and English Context: Sunlight is a complex source of light based on white light that can be decomposed to explain light radiations or colours. This light is a precious source to create

  11. The Rapidly Rotating Sun

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l < 60. The observationally constrained kinetic energy is approximately a thousandth of the theoretical prediction, suggesting the prevalence of an intrinsically different paradigm of turbulence. A fundamental question arises: what mechanism of turbulence transports the heat ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.

  12. Sun exposure at school.

    PubMed

    Moise, A F; Büttner, P G; Harrison, S L

    1999-08-01

    There is strong evidence that sun exposure during childhood and adolescence plays an important role in the etiology of skin cancer, in particular cutaneous melanoma. Between the age of 6 and 18, most children and adolescents will spend around 200 days per year at school and may receive a substantial fraction of their daily total solar ultraviolet radiation (UVR) exposure while at school. This study estimated the average daily erythemally effective dose of 70 grade 8 students from a high school in Townsville during 5 school days in July 1998. Through UV measurements of shade locations at the school and a combination of frequency counts and a questionnaire of grade 8 students, it was possible to determine the fraction of solar UVR reaching under the shade structures during lunch breaks and routine outdoor activities. Also, a routinely operating UV-Biometer provided the annual variation of the daily dose that was used to calculate exposure levels for the 70 students. Our results suggest that up to 47% of the daily total dose fell within the time periods where students were outdoors during school hours. For students not seeking shade structures during the breaks (which usually was the case when involved in sport activities such as basketball or soccer), the average daily dose could have been as high as 14 SED (standard erythemal dose). Using results from the questionnaire of 70 grade 8 students, their average annual dose while at school was 414 SED or 2 SED per school day. However, the distribution of average daily erythemal effective dose per grade 8 student over the whole year showed that on 31% of all school days in 1998, this dose was exceeded. Because most previous attempts to change arguably poor sun-protective behavior of young Australian children and adolescents at school showed little success, one way of decreasing the amount of harmful UVR reaching unprotected skin is the more careful design of shade structures at schools.

  13. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  14. Smart, passive sun facing surfaces

    DOEpatents

    Hively, Lee M.

    1996-01-01

    An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position.

  15. Smart, passive sun facing surfaces

    DOEpatents

    Hively, L.M.

    1996-04-30

    An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position. 17 figs.

  16. Remote Sensing of Atmospheric Optical Depth Using a Smartphone Sun Photometer

    PubMed Central

    Cao, Tingting; Thompson, Jonathan E.

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12–0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  17. The Sun: the Earth light source

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  18. Reconnection on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  19. Reconnection on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  20. Sun protection initiatives in Cornwall.

    PubMed

    Morris, J M; Gould, D; Bennett, S; Bastin, J; Salter, L; Watt, A

    2005-07-01

    Recent evidence indicates that there are significant numbers of cases of malignant melanoma in the UK. In order to assess the current position with regard to sun awareness in Cornwall, a questionnaire survey of all state primary school heads (n = 123) and a survey of a random sample of GP practices (n = 9) was carried out. The data obtained were supported by visits to libraries and Tourist Information Centres at urban and rural centres--this enabled the identification of sun awareness literature. Key health professionals who worked within the field of health promotion were also contacted. The findings showed that in Cornwall public campaigns organized around the issue of sun protection took place only sporadically, although GP surgeries usually organize a display at the appropriate time of the year. None of the public places (e.g. Tourist Information Centres, libraries) surveyed had sun protection messages on display. It is concluded that insufficient sun awareness initiatives were being undertaken in Cornwall. Although most primary schools included sun awareness education in their curriculum in a form based on the Sun Awareness Guidelines produced by the Department of Health in 1995, few schools considered further measures to protect pupils on hot and sunny days. In particular the provision of shade, the scheduling of outdoor activities and the use of sunscreen and protective clothing were not standard.

  1. Watching the Sun from space

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    2016-07-01

    Space-based solar observatories have made fundamental discoveries about the lifecycle of the solar magnetic field and how that field affects the solar system. Observing the Sun from space provides access to all wavelengths of light and eliminates the smearing of atmospheric seeing. Being in space means the emissions from the highly-ionized material that are the natural emissions of the corona can be measured. Continuous observations of the Sun can be made from a single satellite in certain orbits. This leads to unexpected discoveries, such as orbiting coronagraphs showing that sun grazing comets are the most common class of observed comets. Or when the coronal holes discovered with the solar X-ray telescopes on Skylab explained long-noticed correlations in particle fluxes from the Sun with solar longitudes. Space-based coronagraphs and heliospheric imagers are able to track coronal mass ejections from when they leave the Sun until they hit the Earth or another planet. In a more practical point, as humans have become more entwined in the use of technology, the magnetic field of the Sun has become more intrusive. Energetic particles and high-energy photons from solar fares can compromise humans and electronics in space. As a coronal mass ejection passes by and interacts with the Earth's magnetosphere, it generates large currents at the Earth's surface that can disrupt power distribution systems. The measurements of Sun made possible by being in space will be described, along with some highlights of the observatories that make them.

  2. Deimos Crosses Face of Sun

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the passing, or transit, of the martian moon Deimos over the Sun. This event is similar solar eclipse seen on Earth in which our Moon crosses in front of the Sun. The animation is made up of images taken by the Mars Exploration Rover Opportunity on sol 39 of its mission. Deimos passed slightly closer to the center of the Sun than expected, and arrived about 30 seconds early. This observation will help refine our knowledge of the orbit and position of Deimos.

  3. Sun-Earth Day, 2001

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  4. SunShot Identity Video

    ScienceCinema

    Le, Minh; Resch, Rhone

    2016-07-12

    Highlights of the SunShot program, the national targets for the program, and the "all of the above" approach to achieving those goals through research, tech transfer, permitting, tax incentives, and a comprehensive approach to installation.

  5. SunShot Identity Video

    SciTech Connect

    Le, Minh; Resch, Rhone

    2014-05-19

    Highlights of the SunShot program, the national targets for the program, and the "all of the above" approach to achieving those goals through research, tech transfer, permitting, tax incentives, and a comprehensive approach to installation.

  6. Seven Months of the Sun

    NASA Video Gallery

    This multi-wavelength movie of the Sun covers seven months of activity (April 25 - Nov. 30, 2011), the majority of the SDO mission to date. The frames combine images taken at the same time in three...

  7. Spurting Plasma on the Sun

    NASA Video Gallery

    This video from NASA's Solar Dynamics Observatory spacecraft, orbiting more than 20,000 miles above Earth, shows a stream of plasma burst out from the sun on May 27,2014. Since the stream lacked en...

  8. Hinode Observes an Active Sun

    NASA Video Gallery

    The X-ray Telescope on the Japanese/NASA mission Hinode has been observing the full sun, nearly continuously, for an extended period. In this movie significant small-scale dynamic events can be obs...

  9. [Is the sun our friend?].

    PubMed

    Barták, P

    1996-07-26

    Since the beginning of the 19th century the scientific knowledge concerning the effect of the sun rays upon the human organism, mainly on the skin, has been studied and the components of the sun spectrum were specified. During the last years the ozone layer was seriously damaged due to the so called civilization and the very harmful UVC component of the spectrum has entered the earth atmosphere. The accumulation of the unhealthy human habits and the new sun aggression threaten the human skin. The result is the growing number of the skin cancer, incl. melanoma of young people. The whole world dermatologists common opinion is that only the proper knowledge of this sun danger and the daily behaviour change combined with adequate dress and reliable sunscreen are able to prevent the serious damage in not very distant future.

  10. Across the board: Licheng Sun.

    PubMed

    Sun, Licheng

    2015-01-01

    In this series of articles the board members of ChemSusChem discuss recent research articles that they consider of exceptional quality and importance for sustainability. In this entry, Prof. Licheng Sun discusses how solar fuel production (such as water splitting) can be made more efficient and economic on an industrial scale. Recommended is the work by Prof. Xuping Sun, who use non-noble metal-phosphorus-based nanostructures as efficient electrocatalysts for hydrogen generation from water.

  11. Across the board: Licheng Sun.

    PubMed

    Sun, Licheng

    2015-01-01

    In this series of articles the board members of ChemSusChem discuss recent research articles that they consider of exceptional quality and importance for sustainability. In this entry, Prof. Licheng Sun discusses how solar fuel production (such as water splitting) can be made more efficient and economic on an industrial scale. Recommended is the work by Prof. Xuping Sun, who use non-noble metal-phosphorus-based nanostructures as efficient electrocatalysts for hydrogen generation from water. PMID:25521094

  12. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  13. Motion analysis of sun salutation using magnetometer and accelerometer

    PubMed Central

    Omkar, SN; Mour, Meenakshi; Das, Debarun

    2009-01-01

    Background: Sun salutation is a part of yoga. It consists of a sequence of postures done with synchronized breathing. The practice of few cycles of sun salutation is known to help in maintaining good health and vigor. The practice of sun salutation does not need any extra gadgets. Also it is very much aerobic and invigorates the body and the mind. sun salutation, which comprises 10 postures, involves most of the joints of the body. Understanding the transition phase during motion is a challenging task, and thus, new convenient methods need to be employed. Aims: The purpose of this study was to get an insight into the motion analysis of sun salutation during the transition from each of the 10 postures. Materials and Methods: A device MicroStrain sensor 3DM-GX1, which is a combination of magnetometers, accelerometers, and gyroscopes was used to measure the inclination and the acceleration of the body along the three axes. The acceleration obtained was then separated into gravitational and kinematic components. Results and Conclusions: The value of the gravitational component helps us to understand the position of the body and the kinematic component helps us to analyze the grace of the motion. PMID:20842266

  14. Digital Sensor Technology

    SciTech Connect

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  15. NEW SUNS IN THE COSMOS?

    SciTech Connect

    De Freitas, D. B.; Leao, I. C.; Lopes, C. E. Ferreira; Paz-Chinchon, F.; Canto Martins, B. L.; Alves, S.; De Medeiros, J. R.; Catelan, M.

    2013-08-20

    The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission's Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period-T{sub eff} diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with a similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these ''New Sun'' candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of 14 CoRoT stars with sub- and super-solar rotational periods, and for the Sun itself in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties as far as the latter's imprints on light curve behavior are concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.

  16. Multisensor Arrays for Greater Reliability and Accuracy

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Eckhoff, Anthony; Lane, John; Perotti, Jose; Randazzo, John; Blalock, Norman; Ree, Jeff

    2004-01-01

    Arrays of multiple, nominally identical sensors with sensor-output-processing electronic hardware and software are being developed in order to obtain accuracy, reliability, and lifetime greater than those of single sensors. The conceptual basis of this development lies in the statistical behavior of multiple sensors and a multisensor-array (MSA) algorithm that exploits that behavior. In addition, advances in microelectromechanical systems (MEMS) and integrated circuits are exploited. A typical sensor unit according to this concept includes multiple MEMS sensors and sensor-readout circuitry fabricated together on a single chip and packaged compactly with a microprocessor that performs several functions, including execution of the MSA algorithm. In the MSA algorithm, the readings from all the sensors in an array at a given instant of time are compared and the reliability of each sensor is quantified. This comparison of readings and quantification of reliabilities involves the calculation of the ratio between every sensor reading and every other sensor reading, plus calculation of the sum of all such ratios. Then one output reading for the given instant of time is computed as a weighted average of the readings of all the sensors. In this computation, the weight for each sensor is the aforementioned value used to quantify its reliability. In an optional variant of the MSA algorithm that can be implemented easily, a running sum of the reliability value for each sensor at previous time steps as well as at the present time step is used as the weight of the sensor in calculating the weighted average at the present time step. In this variant, the weight of a sensor that continually fails gradually decreases, so that eventually, its influence over the output reading becomes minimal: In effect, the sensor system "learns" which sensors to trust and which not to trust. The MSA algorithm incorporates a criterion for deciding whether there remain enough sensor readings that

  17. SunShot Initiative Portfolio Book 2014

    SciTech Connect

    Solar Energy Technologies Office

    2014-05-01

    The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.

  18. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  19. If the Sun Were a Light Bulb.

    ERIC Educational Resources Information Center

    Adney, Kenneth J.

    1991-01-01

    An activity in which students compare the sun's brightness with that of a light bulb of known luminosity (in watts) to determine the luminosity of the sun is presented. As an extension, the luminosity value that the student obtains for the sun can also be used to estimate the sun's surface temperature. (KR)

  20. Connecting Sun City with Sun-Earth connections

    NASA Astrophysics Data System (ADS)

    Lopez, R.; Turner, N.; Mammei, J.; Dominguez, O.; Schulte, H.

    Connecting Sun-City with Sun Earth Connections is a space science and education effort at the University of Texas at El Paso, funded by NASA. The goal is to use space science as a motivational tool for science education both in high school and at the un- dergraduate level. Activities include workshops for area teachers, visits by high school students to the university, visits by university faculty to area school, undergraduate re- search in space sciecne-related activities, and undergraduate curriculum development using space science themes. In this paper we will present an overview of the program and lesson learned to date.

  1. Evaluation of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  2. Astrophysical processes on the Sun

    PubMed Central

    Parnell, Clare E.

    2012-01-01

    Over the past two decades, there have been a series of major solar space missions, namely Yohkoh, SOHO, TRACE, and in the past 5 years, STEREO, Hinode and SDO, studying various aspects of the Sun and providing images and spectroscopic data with amazing temporal, spatial and spectral resolution. Over the same period, the type and nature of numerical models in solar physics have been completely revolutionized as a result of widespread accessibility to parallel computers. These unprecedented advances on both observational and theoretical fronts have led to significant improvements in our understanding of many aspects of the Sun's behaviour and furthered our knowledge of plasma physics processes that govern solar and other astrophysical phenomena. In this Theme Issue, the current perspectives on the main astrophysical processes that shape our Sun are reviewed. In this Introduction, they are discussed briefly to help set the scene. PMID:22665891

  3. The Sun: Our Nearest Star

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We have in our celestial backyard, a prime example of a variable star. The Sun, long thought to be "perfect" and unvarying, began to reveal its cycles in the early 1600s as Galileo Galilei and Christoph Scheiner used a telescope to study sunspots. For the past four hundred years, scientists have accumulated data, showing a magnetic cycle that repeats, on average, every eleven (or twenty-two) years. In addition, modern satellites have shown that the energy output at radio and x-ray wavelengths also varies with this cycle. This talk will showcase the Sun as a star and discuss how solar studies may be used to understand other stars.

  4. Slow shocks around the sun

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1982-01-01

    It is inferred from this study that magnetohydrodynamic slow shocks can exist in the vicinity of the sun. The study uses a two-hole corona model, the sub-Alfvenic streams originating from the edge of the polar open-field regions are forced to turn towards equator in coronal space following the curved boundary of the closed field region. When the streamlines from the opposite poles merge at a neutral point, their directions become parallel to the neutral sheet. An oblique slow shock can develop near or at the neutral point, the shock extends polewards to form a surface of discontinuity around the sun.

  5. Mars and the early Sun

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Doyle, L. R.; Reynolds, R. T.; Whitman, P. G.

    1993-01-01

    Global mean temperatures near 273 K on early Mars are difficult to explain in the context of standards solar evolution models. Even assuming maximum CO2 greenhouse warming, the required flux is approximately 15 percent too low. Here we consider two astrophysical models that could increase the flux by this amount. The first model is a nonstandard solar model in which the early Sun had a mass somewhat greater than today's mass (1.02-1.06 solar mass). The second model is based on a standard evolutionary solar model, but the ecliptic flux is increased due to focusing by an (expected) heavily spotted early Sun.

  6. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Kasper, Justin; Alibay, Farah; Belov, Konstantin

    2016-04-01

    Coronal mass ejections (CMEs) are able to accelerate particles at their shock fronts, as evidenced by the radio emissions that they generate. However, many aspects of this particle acceleration remain poorly constrained, including the location or locations of the sites of particle acceleration and the evolution of the particle acceleration as the CME moves out into the heliosphere. Ground-based radio telescopes are able to image CMEs and locate the particle acceleration sites during the early stages of a CME, but they are limited to tracking CMEs to only a few solar radii before the frequencies of radio emission drop below the Earth's ionospheric cutoff. Triangulation between the STEREO/SWAVES and Wind/WAVES instruments have provided some initial constraints on particle acceleration sites at larger distances (lower frequencies), but the uncertainties remain considerable. We describe the Sun Radio Imaging Space Experiment (SunRISE) mission concept. A constellation of small spacecraft, with each spacecraft carrying a radio receiving system for observations below 30 MHz, SunRISE will produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. SunBlock '99: Young Scientists Investigate the Sun

    NASA Astrophysics Data System (ADS)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  8. The sun-tracking control of solar collectors using high-performance step motors

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1977-01-01

    Sun-tracking solar energy-focusing devices involving a central receiver, thermionic conversion, or a distributed solar thermal collector system are described. The Perkins solar collector uses a fixed focal point about which an 18 m-diameter parabolic dish moves on tracks. The elevation axis also moves on a circular track. A microprocessor manipulates sun sensor information and sun ephemeris data to ensure correct placement. Stepper motors are digital devices which provide direct interface with digital electronics and a wide dynamic range, and could easily be associated with the microprocessors. Design philosophy, performance criteria, wind load analysis, and control system requirements are also discussed.

  9. Sun-view angle effects on reflectance factors of corn canopies

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  10. Multimission unattended ground sensor

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Succi, George P.; Fitzgerald, James; Clapp, Daniel; Gampert, Robert; Martel, Philip O.

    2002-08-01

    Technological advances in a number of fields have allowed SenTech to develop a highly capable Unattended Ground Sensor (UGS) able to perform a number of critical missions such as ground and air vehicle surveillance, personnel detection and tracking and sniper localization. These sensors have also been combined with electro-optic sensors to provide target images and improved tracking accuracy. Processing is done in a highly integrated processing module developed under DARPA's IUGS program. Acoustic sensors have been engineered to achieve a three-pound unit with a 15 day field life and long range VHF communications. These sensors will be delivered in early 2002 for testing during field exercises. Extensive testing of the algorithms and software has been conducted over the last few years at a variety of government-sponsored tests and demonstrations. A Gateway unit has been developed which can manage the operation of an eight-sensor field and perform two-dimensional sensor fusion.

  11. Project SUN (Students Understanding Nature)

    NASA Technical Reports Server (NTRS)

    Curley, T.; Yanow, G.

    1995-01-01

    Project SUN is part of NASA's 'Mission to Planet Earth' education outreach effort. It is based on development of low cost, scientifi- cally accurate instrumentation and computer interfacing, coupled with Apple II computers as dedicated data loggers. The project is com- prised of: instruments, interfacing, software, curriculum, a detailed operating manual, and a system of training at the school sites.

  12. Creating SunSmart Schools

    ERIC Educational Resources Information Center

    Giles-Corti, B.; English, D. R.; Costa, C.; Milne, E.; Cross, D.; Johnston, R.

    2004-01-01

    Kidskin was a sun-protection intervention study involving 1776 children attending 33 primary schools in Perth, Western Australia. There were three study groups: a control group, a moderate intervention group and a high intervention group. In addition to receiving a specially designed curricular intervention (1995-1998), the moderate and high…

  13. Particle acceleration by the sun

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1986-01-01

    A review is given of the analysis of new observations of energetic particles and energetic secondary emissions obtained over the solar maxium (approx. 1980) by the Solar Maximum mission, Hinotori, the international Sun-Earth Explorer, Helios, Explorer satellites, and Voyager spacecraft. Solar energetic particle events observed in space, He(3)- rich events, solar gamma rays and neutrons, and solar neutrinos are discussed.

  14. The sun and water sports.

    PubMed

    Gentile, D A; Auerbach, P S

    1987-07-01

    Participation in aquatic sports such as sailing, fishing, SCUBA diving, and windsurfing often entails the unavoidable hazard of exposure to high levels of solar radiation. This review discusses what is known about the health hazards of ultraviolet radiation and presents information that allows a rational approach to sun protection.

  15. Tracking Planets around the Sun

    ERIC Educational Resources Information Center

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  16. How Bright Is the Sun?

    ERIC Educational Resources Information Center

    Berr, Stephen

    1991-01-01

    Presents a sequence of activities designed to allow eighth grade students to deal with one of the fundamental relationships that govern energy distribution. Activities guide students to measure light bulb brightness, discover the inverse square law, compare light bulb light to candle light, and measure sun brightness. (two references) (MCO)

  17. Explosive events on the Sun.

    PubMed

    Harra, Louise K

    2002-12-15

    I describe two of the most dynamic and highly energetic phenomena in the Solar System--the explosive flares that can occur when plasma is confined by magnetic fields and the large-scale ejections of material known as 'coronal mass ejections'. These explosive events are poorly understood and yet occur in a variety of contexts in the Universe, ranging from planetary magnetospheres to active galactic nuclei. Understanding why flares and coronal mass ejections occur is a major goal across a wide range of space physics and astrophysics. Although explosive events from the Sun have dramatic effects on Earth, flares in other stars, for example, can be vastly more energetic and have an even more profound effect on their environment. We are now in the unprecedented position of having access to a number of space observatories dedicated to the Sun: the Yohkoh spacecraft, the Solar and Heliospheric Observatory, the Transition Region and Coronal Explorer and the Ramaty High Energy Solar Spectroscopic Imager. These cover a wide wavelength range from white light to gamma rays with both spectroscopy and imaging, and allow huge progress to be made in understanding the processes involved in such large explosions. The high-resolution data show dramatic and complex explosions of material on all spatial scales on the Sun. They have revealed that the Sun is constantly changing everywhere on its surface--something that was never imagined before. One of the mechanisms that has been proposed to account for the large energy release is magnetic reconnection. Recent observations from space increasingly support this view. This article will discuss those observations that support this model and also those that suggest different processes. The current space missions have given us an excellent insight into the actual explosive processes in the Sun. However, they have provided us with only a tantalizing glimpse of what causes the elusive trigger. Future missions such as Solar-B (the follow-on to

  18. Scattered light corrections to Sun photometry: analytical results for single and multiple scattering regimes.

    PubMed

    Kokhanovsky, Alexander A

    2007-04-01

    Analytical equations for the diffused scattered light correction factor of Sun photometers are derived and analyzed. It is shown that corrections are weakly dependent on the atmospheric optical thickness. They are influenced mostly by the size of aerosol particles encountered by sunlight on its way to a Sun photometer. In addition, the accuracy of the small-angle approximation used in the work is studied with numerical calculations based on the exact radiative transfer equation.

  19. Mass eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Green, Lucie

    2015-08-01

    This review talk will address the recent developments and current understanding of the physical mechanisms that underlie the ejection of matter and magnetic field from the atmosphere of the Sun, known as coronal mass ejections. These eruptions are intitiated within and between active regions throughout an active region's entire lifetime; from the emergence phase, when strong and concentrated magnetic fields are present, through the long decay phase during which time the active region magnetic field fragments and disperses over a larger and larger area, eventually fading into the background quiet sun magnetic field. All coronal mass ejection models invoke the presence of a twisted magnetic field configuration known as a magnetic flux rope either before or after eruption. The observational identification of these structures using remote sensing data of the lower solar atmosphere will be discussed. Do such magnetic field configurations exist in the solar atmosphere prior to the eruption? And if so what can they tell us about the physical mechanisms that trigger and drive coronal mass ejections and the timescales over which an eruptive magnetic field configuration forms? However, not all coronal mass ejections are easily identifiable at the Sun. For example, in situ observations of coronal mass ejections in interplanetary space reveal small magnetic flux rope coronal mass ejections which are not detected leaving the Sun using the remote sensing data. And so-called stealth coronal mass ejections which also have no lower atmosphere signatures. Are there different populations of flux ropes that have different origins? And what might this say about the physical mechanisms behind coronal mass ejections and the consequences for the Sun's evolving global magnetic field?

  20. A Digital Solar Aspect Sensor

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1961-01-01

    The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.

  1. The sun and the sun-earth connection

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.

    1988-01-01

    A discussion is presented of the elements comprising the field of solar-system space physics: the sun; the interplanetary medium; and the magnetosphere, ionosphere, and upper atmosphere of the earth and, to a leser extent, the planets. The principal entities in the interaction chain beginning at the center of the sun and extending through the interplanetary medium to earth's magnetosphere, ionosphere, and upper atmosphere are described with particular emphasis on solar variability and its manifestation in dynamical changes of the earth's environment. Solar variations range in time scales from less than 1 sec to over a century and can affect specific regions at earth within 8 min (solar X-ray bursts) and up to several decades (climatic variations).

  2. Automatic biaxial sun tracking mechanism for sun ray utilization devices

    SciTech Connect

    Hansen, P.A.

    1981-08-25

    The instant invention is an automatic biaxial sun tracking mechanism for use with sun ray utilization devices. Said devices are mounted on said invention, said devices forming no specific part of said invention. The invention is comprised of four principal parts: (1) a mount structure for positioning and supporting said sun ray utilization devices, (2) a polar shaft, (3) a declination crankshaft, and (4) suitable connecting members. Operation of the invention is as follows: the daily axis of said polar shaft is oriented parallel to the earth's polar axis. Said connecting members hold in a mutually perpendicular arrangement the daily axis of said polar shaft, the seasonal axis of a pivot pin for said mount structure, and the main journal axis of said declination crankshaft. Said connecting members with attached parts have suitable means to rotate about said daily axis one revolution per day. Said crankshaft has suitable means to rotate about said main journal axis one revolution per year. A suitable linkage, which simultaneously engages said crankshaft and said mount structure, serves to translate the rotary motion of said crankshaft into alternating pivotal motion of said mount structure. Modifications to the basic direct tracking form of the invention may be made for indirect tracking, heavy duty crankshaft and associated parts, and corrective compensation for a variety of rotational means.

  3. Reputation-based secure sensor localization in wireless sensor networks.

    PubMed

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  4. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  5. The Sun Sets on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    On Sol 20 of its journey, Mars Exploration Rover Opportunity woke up around 5:30 in the martian afternoon to watch the sunset. A series of five sets of three-color images from the rover's panoramic camera was acquired looking toward the southwest. Each set used an infrared, green and violet filter, rather than the human red-green-blue, so that the maximum panoramic camera wavelength range could be covered by the observations, enhancing the scientific value of the measurements.

    A color image was made from the first post-sunset sequence of calibrated color images, with the color balance set to approximate what the sunset color would have looked like to the human eye. The color seen in this first post-sunset image was then used to colorize each image in the sequence. Approximately one-minute gaps between consecutive color images meant the Sun's position changed within each color set, so the images had to be manually shifted to compensate for this motion. In this fashion, the position and brightness of the Sun are taken from each individual image, but the color is taken from a single set of images. The images were then combined into a movie where one color set fades gracefully into the next. Analysis of the five color sets shows that there were only small color variations during the sunset, so most of the real variations are captured in the movie.

    The rapid dimming of the Sun near the horizon is due to the dust in the sky. There is nearly twice as much dust as there was when the Mars Pathfinder spacecraft, which landed on Mars in 1997, imaged the sunset. This causes the Sun to be many times fainter. The sky above the Sun has the same blue tint observed by Pathfinder and also by Viking, which landed on Mars in 1976. This is because dust in the martian atmosphere scatters blue light forward toward the observer much more efficiently than it scatters red light forward. Therefore, a 'halo' of blueish sky color is always observed close to the Sun. We're only seeing

  6. SDO Watches Giant Filament on the Sun

    NASA Video Gallery

    A snaking, extended filament of solar material currently lies on the front of the sun-- some 1 million miles across from end to end. Filaments are clouds of solar material suspended above the sun b...

  7. Our World: The Sun, A Real Star

    NASA Video Gallery

    Learn about the important relationship between Earth and the sun. Find out about the layers of the sun and how Earth's magnetosphere acts like a giant handkerchief to protect us from all kinds of s...

  8. Our prodigal sun. [solar energy technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  9. GOES Weather Satellite Watches The Sun

    NASA Video Gallery

    NASA satellites such as STEREO, SOHO, and SDO are dedicated to studying the sun. GOES is a weather satellite but also watches the sun constantly. Watch this video and learn why space weather data i...

  10. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  11. Integration of an on-axis general sun-tracking formula in the algorithm of an open-loop sun-tracking system.

    PubMed

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m(2) prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad.

  12. Relative Accuracy Evaluation

    PubMed Central

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  13. Caddo Sun Accounts across Time and Place

    ERIC Educational Resources Information Center

    Gerona, Carla

    2012-01-01

    Billy Day, a Tunica/Biloxi, recently described the significance of the sun for Caddoan people. Day quoted an "old Caddo relative" of his who said: "I used to go outside and hold my hands up and bless myself with the sun--'a'hat.' Well, I can't do that anymore because they say we are sun worshipers. We didn't worship the sun. We worshiped what was…

  14. Bayesian seismology of the Sun

    NASA Astrophysics Data System (ADS)

    Gruberbauer, M.; Guenther, D. B.

    2013-06-01

    We perform a Bayesian grid-based analysis of the solar l = 0, 1, 2 and 3 p modes obtained via BiSON in order to deliver the first Bayesian asteroseismic analysis of the solar composition problem. We do not find decisive evidence to prefer either of the contending chemical compositions, although the revised solar abundances (AGSS09) are more probable in general. We do find indications for systematic problems in standard stellar evolution models, unrelated to the consequences of inadequate modelling of the outer layers on the higher order modes. The seismic observables are best fitted by solar models that are several hundred million years older than the meteoritic age of the Sun. Similarly, meteoritic age calibrated models do not adequately reproduce the observed seismic observables. Our results suggest that these problems will affect any asteroseismic inference that relies on a calibration to the Sun.

  15. Sun Tracker Operates a Year Between Calibrations

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  16. Encouraging Sun Safety for Children and Adolescents

    ERIC Educational Resources Information Center

    Boe, Kathy; Tillotson, Elizabeth A.

    2006-01-01

    The rise in the number of cases of skin cancers, both melanomas and nonmelanomas, has prompted increased awareness and educational efforts to limit sun exposure. Because 80% of lifetime sun exposure occurs before the age of 18, educating parents and adolescents to incorporate sun-protective behaviors into daily routines is particularly important.…

  17. SunWise[R] Meteorologist Tool Kit

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2007

    2007-01-01

    The SunWise Program is designed to help meteorologists raise sun safety awareness by addressing the science of the sun, the risk of overexposure to its ultraviolet (UV) radiation, and what students and their families can do to protect themselves from overexposure. This Tool Kit has been designed for use all over the United States and its…

  18. Total eclipses of the sun.

    PubMed

    Zirker, J B

    1980-12-19

    Total eclipses of the sun offer research opportunities in a variety of sciences. Some of the advances in solar physics resulting from eclipse observations are discussed. Experiments at the total eclipse of 16 February 1980 in India are also described. These included a test of general relativity, studies in coronal physics, investigations of solar prominences, diameter measurements, a search for interplanetary dust, a study of the gravity waves in the earth's atmosphere, and experiments on the biological effects on animals and humans.

  19. The faint young Sun problem

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2012-05-01

    For more than four decades, scientists have been trying to find an answer to one of the most fundamental questions in paleoclimatology, the “faint young Sun problem.” For the early Earth, models of stellar evolution predict a solar energy input to the climate system that is about 25% lower than today. This would result in a completely frozen world over the first 2 billion years in the history of our planet if all other parameters controlling Earth's climate had been the same. Yet there is ample evidence for the presence of liquid surface water and even life in the Archean (3.8 to 2.5 billion years before present), so some effect (or effects) must have been compensating for the faint young Sun. A wide range of possible solutions have been suggested and explored during the last four decades, with most studies focusing on higher concentrations of atmospheric greenhouse gases like carbon dioxide, methane, or ammonia. All of these solutions present considerable difficulties, however, so the faint young Sun problem cannot be regarded as solved. Here I review research on the subject, including the latest suggestions for solutions of the faint young Sun problem and recent geochemical constraints on the composition of Earth's early atmosphere. Furthermore, I will outline the most promising directions for future research. In particular I would argue that both improved geochemical constraints on the state of the Archean climate system and numerical experiments with state-of-the-art climate models are required to finally assess what kept the oceans on the Archean Earth from freezing over completely.

  20. Songs of the Sun Dance.

    ERIC Educational Resources Information Center

    Gurnoe, Katherine

    This paper is an explanation of the music of nine ceremonies of the Sioux Indians that are recorded on tape in the Library of Congress. The purpose and description of the ceremonies are given here, as well as an explanation of who is singing the songs, and when they were recorded. Some of the songs included are for the Sun Dance, Braves Dance,…

  1. Exoplanets Clue to Sun's Curious Chemistry

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A ground-breaking census of 500 stars, 70 of which are known to host planets, has successfully linked the long-standing "lithium mystery" observed in the Sun to the presence of planetary systems. Using ESO's successful HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than "planet-free" stars. This finding does not only shed light on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems. "For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins," says Garik Israelian, lead author of a paper appearing this week in the journal Nature. "We have now found that the amount of lithium in Sun-like stars depends on whether or not they have planets." Low levels of this chemical element have been noticed for decades in the Sun, as compared to other solar-like stars, and astronomers have been unable to explain the anomaly. The discovery of a trend among planet-bearing stars provides a natural explanation to this long-standing mystery. "The explanation of this 60 year-long puzzle is for us rather simple," adds Israelian. "The Sun lacks lithium because it has planets." This conclusion is based on the analysis of 500 stars, including 70 planet-hosting stars. Most of these stars were monitored for several years with ESO's High Accuracy Radial Velocity Planet Searcher. This spectrograph, better known as HARPS, is attached to ESO's 3.6-metre telescope and is the world's foremost exoplanet hunter. "This is the best possible sample available to date to understand what makes planet-bearing stars unique," says co-author Michel Mayor. The astronomers looked in particular at Sun-like stars, almost a quarter of the whole sample. They found that the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars

  2. Liquid level sensor

    SciTech Connect

    Kulkarni, Atul; Karekar, R.N.; Aiyer, R.C.

    2005-10-15

    The article reports an idea of using a simple, cantilever-type load cell with a rod as a level sensor for continuous liquid level measurements. The sensor is based on the principle of the Archimedes buoyancy principle. The density and geometry of the rod govern the choice of the load cell. The length of the rod is governed by the height of the tank. A series of cyclic tests have demonstrated a highly repeatable response of the sensor. The accuracy of this low-cost sensor is field tested and found to be {+-}0.5% of the full range, for a 10 m level of water in a tank, and is working reliably for the period of 18 months. The sensor range can be easily extended to lower and higher tank heights. The sensor is crowned by its easy installation and calibration.

  3. Magnetic current sensor

    NASA Technical Reports Server (NTRS)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  4. Sun Savvy Students: Free Teaching Resources from EPA's SunWise Program

    ERIC Educational Resources Information Center

    Hall-Jordan, Luke

    2008-01-01

    With summer in full swing and the sun is naturally on our minds, what better time to take advantage of a host of free materials provided by the U.S. Environmental Protection Agency's Sun Wise program. Sun Wise aims to teach students and teachers about the stratospheric ozone layer, ultraviolet (UV) radiation, and how to be safe while in the Sun.…

  5. Attitude determination of a powered launch vehicle stage with conventional satellite sensors

    NASA Astrophysics Data System (ADS)

    Harendra Nath, K.; Ganeshan, A. S.; Achary, K. K.; Rathanakara, S. C.

    A review is presented of techniques proposed to determine the attitude of the final stage of the Indian ASLV launch vehicle after separation of the inertial measurement unit (at the end of the long coast during the planned launch of the Stretched Rohini satellite to a 400-km orbit). Consideration is given to the choice of the mathematical model for the vehicle-dynamics and attitude-determination software package; the equations of motion; and the satellite instruments (two horizon sensors, sun sensor, and magnetometer) providing the input data. Flow charts of the procedure and graphs showing simulation results are provided, and the accuracy of the determination of spin-axis orientation is estimated as 1.5 deg.

  6. Increasing Sun Protection in Winter Outdoor Recreation

    PubMed Central

    Walkosz, Barbara J.; Buller, David B.; Andersen, Peter A.; Scott, Michael D.; Dignan, Mark B.; Cutter, Gary R.; Maloy, Julie A.

    2009-01-01

    Background Unprotected and excessive exposure to ultraviolet radiation (UVR) is the primary risk factor for skin cancer. Design A pair-matched, group-randomized, pre-test/post-test, quasi-experimental design, with ski resorts as the unit of randomization, tested the effectiveness of Go Sun Smart, a multi-channel skin cancer prevention program. Independent samples of guests were taken at baseline (2001) and follow-up (2002); data were analyzed in 2006. Setting and Participants A total of 6516 adult guests at 26 ski resorts in the western U.S. and Canada were recruited, consented, and interviewed on chairlifts. This study was nested within an occupational intervention for ski resort workers. Intervention Ski resorts were pair-matched and randomized to receive Go Sun Smart, which consisted of print, electronic, visual, and interpersonal skin cancer prevention messages. Main Outcome Measures Sun-protection behaviors, sunburning, recall of sun-protection messages, and the association of message exposure to sun protection. Results The difference in recall of all sun-protection messages, messages on signs and posters, and the Go Sun Smart logo was significant between the intervention and control resorts. Reported use of sun-protection practices was higher by guests at intervention ski areas using more (a higher dose of) Go Sun Smart materials. Intervention-group guests who recalled a sun-safety message were more likely to practice sun safety than intervention-group guests who did not recall a message and control-group guests. Conclusions While the mere implementation of Go Sun Smart did not produce sun-safety improvements, Go Sun Smart appeared to be effective for guests who encountered and remembered it. Many factors can work against message exposure. Signage seemed to produce the greatest increase in exposure to sun-safety messages. PMID:18471586

  7. Project SunSHINE: A Student Based Solar Research Program

    NASA Astrophysics Data System (ADS)

    Donahue, R.

    2000-12-01

    Eastchester Middle School (NY) is currently conducting an ongoing, interdisciplinary solar research program entitled Project SunSHINE, for Students Help Investigate Nature in Eastchester. Students are to determine how ultraviolet and visible light levels vary throughout the year at the school's geographic location, and to ascertain if any measured variations correlate to daily weather conditions or sunspot activity. The educational goal is to provide students the opportunity to conduct original and meaningful scientific research, while learning to work collaboratively with peers and teachers in accordance with national mathematics, science and technology standards. Project SunSHINE requires the student researchers to employ a number of technologies to collect and analyze data, including light sensors, astronomical imaging software, an onsite AirWatch Weather Station, Internet access to retrieve daily solar images from the National Solar Observatory's Kitt Peak Vacuum Telescope, and two wide field telescopes for live sunspot observations. The program has been integrated into the science, mathematics, health and computer technology classes. Solar and weather datasets are emailed weekly to physicist Dr. Gil Yanow of the Jet Propulsion Laboratory for inclusion in his global study of light levels. Dr. Yanow credited the Project SunSHINE student researchers last year for the discovery of an inverse relationship between relative humidity and ultraviolet light levels. The Journal News Golden Apple Awards named Project SunSHINE the 1999 New York Wired Applied Technology Award winner. This honor recognizes the year's outstanding educational technology program at both the elementary and secondary level, and included a grant of \\$20,000 to the research program. Teacher training and image processing software for Project SunSHINE has been supplied by The Use of Astronomy in Research Based Science Education (RBSE), a Teacher Enhancement Program funded by the National Science

  8. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery.

    PubMed

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-01-01

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542

  9. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery

    PubMed Central

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-01-01

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542

  10. On the Feynman path into the sun

    NASA Astrophysics Data System (ADS)

    Liang, Yung-Ching

    2013-03-01

    This study deals with solar-physics applications of a recent equation-of-state formalism based on the formulation of the so-called "Feynman-Kac (FK) representation''. This formalism leads to an exact virial expansion of the thermodynamic functions in powers of the particle densities of a Coulomb plasma ("exact'' here refers to the accuracy of the low-order virial coefficients of the expansion). By taking advantage of the exact and analytic form of this virial expansion, we can probe the thermodynamic properties of the solar interior, both in detail and to an accuracy that has so far not been achieved with currently available equation-of-state formalisms. For reacting plasmas, virial-expansion equation of state have an intrinsic problem when the plasma is less than fully ionized. Fortunately, in most parts of the Sun's interior, the plasma is almost completely ionized. Therefore, the FK virial equation of state can be applicable, but only in the deeper (and hotter) solar interior. The precise boundary of the domain of validity of the virial expansion depends on the elements included in the formalism. Since the computational effort increases tremendously with an increasing number of chemical elements, here, we choose to represent the heavier elements by a single one, oxygen. This approximation is reasonable for the following reason. In the Sun, the major heavy elements (that is, the elements other than H and He which together comprise more than 98% of the mass fraction) are C, N and O. They all have a similar effect in the equation of state. Then, the other elements, such as Fe and Ne, are so little abundant that they have altogether a very small effect in the equation of state (although they are very important in spectroscopy). Assuming the relevant constituents of the Sun to be H, He, and O, we have examined the effects on thermodynamic quantities from each of these components. With the aid of the FK formalism, we have studied the influences of the contributions to

  11. Characterizing the Stars Closest to the Sun

    NASA Astrophysics Data System (ADS)

    Dabrowski, Elizabeth; Lomax, Jamie R.; Rich, Evan; Wisniewski, John P.

    2016-01-01

    Next generation direct exoplanet imaging campaigns will likely focus in part on imaging the planetary population surround stars located within 30 pc of the Sun. Despite this focus, surprisingly, the fundamental properties of many stars located within 30 pc remain unknown or are poorly characterized. We present an analysis of the fundamental atmospheric parameters of 26 nearby, bright, solar-type stars, using spectra obtained with the ARCES spectrograph on the Apache Point Observatory 3.5m telescope. We determined each star's effective temperature and iron abundance by measuring the equivalent widths of approximately 250 Fe I and Fe II lines with an automated line fitting program (ROBOSPECT), and solving for the fundamental atmospheric parameters using TGVIT. In addition, we compare a subset of our results to those already in the literature to assess the accuracy of our method. LD acknowledges support from the NSF-REU program at the University of Oklahoma. This work is also supported by NSF-AST-100934.

  12. Total eclipses of the sun.

    PubMed

    Zirker, J B

    1980-12-19

    Total eclipses of the sun offer research opportunities in a variety of sciences. Some of the advances in solar physics resulting from eclipse observations are discussed. Experiments at the total eclipse of 16 February 1980 in India are also described. These included a test of general relativity, studies in coronal physics, investigations of solar prominences, diameter measurements, a search for interplanetary dust, a study of the gravity waves in the earth's atmosphere, and experiments on the biological effects on animals and humans. PMID:17817829

  13. Newts: sun-compass orientation.

    PubMed

    Landreth, H F; Ferguson, D E

    1967-12-15

    Rough-skinned newts, captured from breeding ponds, oriented on courses that would have intersected the familiar shorelines at right angles, when released in a circular arena on land under the sun or moon. Pondward migrants oriented similarly. Reorientation failed under complete cloud cover and after 7 days of darkness in an environmental chamber, but persisted in newts whose eyes were excised and in those displaced more than 27 kilometers in darkness. Both normal and blind animals compensated for displacement in sunshine. Preliminary evidence suggests that alternative light receptors in blinded animals may be associated with the optic tectum. No evidence of olfactory guidance was observed. PMID:6058684

  14. Sensors feel digital pressure

    SciTech Connect

    Ham, J.

    1996-05-01

    Anyone who has connected a field instrument to an analog input card for a DCS, PLC or PC-based data acquisition or control system has faced the issue of analog-to-digital (A/D) conversion. Signal conversion always involves compromises in accuracy and speed. Digital communication with fieldbus eliminates the problem, right? Not exactly; fieldbus may simply move the A/D interface from the control room to the field. The vast majority of measuring instruments have analog sensors with signals that must be converted to strings of bits somewhere, somehow. Instrument manufacturers must embrace digital technology in sensor design, not just in transmitter design. One way to address the issue is to use microsystems technology, such as microelectro-mechanical systems (MEMS). Research at Delft University of Technology in the Netherlands, for example, is aimed at fabricating devices in silicon with all the components of a data-acquisition unit integrated on one chip. These smart sensors would host the sensor itself along with signal conditioning and A/D conversion circuits, and circuits for digital interfacing with a data processor. A/D conversion is still there, but encapsulated within and characterized as part of the sensor. Single-chip integration allows more signal processing within a manageable-sized package. Also, eliminating transmission of the analog signal, even within an instrument, reduces the chance for noise pickup. Less noise means instrument accuracy closer to actual sensor accuracy. 2 figs.

  15. Observations of the sun, an ultraviolet variable star

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1972-01-01

    The uncertainty as to whether or not the sun is a variable star in that region of the ultraviolet which is absorbed in the mesosphere and stratosphere led to an experiment with acronym MUSE, Monitor of Ultraviolet Solar Energy. The experiment was first flown on an Aerobee rocket in August 1966 and subsequently on Nimbus 3 and 4 in April 1969 and April 1970 respectively. The basic philosophy behind the design of the experiment was to provide an instrument which would not require a solar pointing mechanism and at the same time would be capable of high radiometric accuracy for long periods in space.

  16. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  17. A Study of TRMM Static Earth Sensor Performance Using On-Orbit Sensor Data

    NASA Technical Reports Server (NTRS)

    Natanson, Gregory; Glickman, Jonathan

    2000-01-01

    This paper presents the results of a study of the Barnes static Earth sensor assembly (ESA) using on-orbit data collected from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. It is shown that there exist strong correlations between the large penetration angle residuals and the voltages produced by the Offset Radiation Source (ORS). It is conjectured that at certain times in the TRMM orbit the ORS is operating out of its calibrated range, and consequently corrupts the penetration angle information observed and processed by the ESA. The observed yaw drift between Digital Sun Sensor (DSS) observations is shown to be consistent with predictions by a simple roll-yaw coupling computation. This would explain the large drifts seen on TRMM, where the propagation of the yaw angle between DSS updates does not take into account the possibility of a non-zero roll angle error. Finally, the accuracy of the onboard algorithm used when only three of the four quadrants supply valid penetration angles is assessed. In terms of procedures used to perform this study, the analysis of ESA penetration angle residuals is discovered to be a very useful and insightful tool for assessing, the health and functionality of the ESA.

  18. Now To Harness The Sun!

    NASA Astrophysics Data System (ADS)

    Solar Energy Research Institute, E. L.

    1980-09-01

    Recognition of the necessity to fully develop alternative energy resources has resulted in renewed interest in capturing energy from the sun. The daily average amount of energy delivered to the earth by this essentially eternal source is a staggering 14,170 quads (1 quad = 101b Btu), compared to an annual world energy consumption of approximately 225 quads. The United States alone accounts for 35 percent, i.e., 79 quads, of the world's annual energy consumption. The incentives to harness the sun's energy are clear solar energy is free, clean, and abundant. However, the task of harvesting the energy and directing or controlling the manner in which it is used is an arduous one that encompasses diverse technologies, including direct and indirect conversion mechanisms. The solar technologies are photovoltaics, biomass conversion, solar thermal (including passive design), wind, ocean systems, and hydropower. Near-and mid-term energy contributions from solar passive design and active heating and cooling systems, wind energy conversion systems, and elements of biomass conversion such as alcohol production are expected. Later year contributions from photovoltaics, ocean systems, large solar thermal installations, and other biomass conversion processes are very promising. The impact of government policies, energy conservation, and the availability of other energy resources on the development of the solar options is significant and may influence the energy contribution that is achieved.

  19. Irradiance Variability of the Sun

    NASA Technical Reports Server (NTRS)

    Froehlich, Claus

    1990-01-01

    Direct measurements of the solar constant--the total irradiance at mean Sun-Earth distance--during the last ten years from satellites show variations over time scales from minutes to years and decades. At high frequencies the spectral power is determined by granulation, super- and mesogranulation. In the 5-minute range, moreover, it is dominated by power from the solar p-mode oscillations. Their power and frequencies change with time, yielding information about changes in the convection zone. During periods of several hours, the power is steadily increasing and may be partly due to solar gravity modes. The most important variance is in the range from days to several months and is related to the photospheric features of solar activity, decrease of the irradiance during the appearance of sunspots, and increasing by faculae and the magnetic network. Long-term modulation by the 11-year activity cycle are observed conclusively with the irradiance being higher during solar maximum. All these variations can be explained--at least qualitatively--by their manifestation on the photosphere. For the long-term changes, the simultaneous changes of the frequencies of solar p-mode oscillations suggest a more global origin of the variations. Indeed, it seems that the observed irradiance modulation is a true luminosity change with the magnetic cycle of the Sun.

  20. Solar flare leaves sun quaking

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  1. Ka-Band Radar Terminal Descent Sensor

    NASA Technical Reports Server (NTRS)

    Pollard, Brian; Berkun, Andrew; Tope, Michael; Andricos, Constantine; Okonek, Joseph; Lou, Yunling

    2007-01-01

    The terminal descent sensor (TDS) is a radar altimeter/velocimeter that improves the accuracy of velocity sensing by more than an order of magnitude when compared to existing sensors. The TDS is designed for the safe planetary landing of payloads, and may be used in helicopters and fixed-wing aircraft requiring high-accuracy velocity sensing

  2. Sun exposure and sunburn among Swedish toddlers.

    PubMed

    Bränström, Richard; Kristjansson, Sveinbjörn; Dal, Henrik; Rodvall, Ylva

    2006-07-01

    Skin cancer is an emerging public health problem in Sweden. Even though the most important preventable risk factor for the development of skin cancer--sun exposure--is known, the incidence of skin cancer is still increasing. Studies have showed an association between increased risk of skin cancer and sunburn early in life. The aim of the present paper was to examine the frequency of sun exposure, sunburn and use of sun protective measures among an urban sample of Swedish toddlers. In March 2003, the parents of 4000 randomly selected children born between September 2001 and August 2002 were contacted by mail, and asked to fill out an enclosed questionnaire. The questionnaire concerned their own and their one-year-old child's sun exposure and sunburn history, and a few questions about knowledge, attitudes and protective activities were also included. One fifth of the children had been severely sunburnt at least once. Thirty-six percent of all children had been abroad on vacation to a sunny resort. More knowledge among parents increased the likelihood that the child was properly protected when in the sun, and parents own time in the sun was positively related to child's time in the sun. Being of the opinion that children look healthier when tanned was also positively associated with child sunburn. Thirty-five percent of all parents spent two hours or more in the sun during peak hours (11a.m. - 3p.m.) on a typical work-free day in the summer, and almost 10% of all parents had their children exposed to the sun for two hours or more during peak hours. We conclude that children in Sweden seem to get exposed to extensive sun exposure very early in life. Information and increased knowledge among parents to young children seems to be a potential way of increasing sun protection behaviour and decrease sun exposure among very young children.

  3. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  4. Classification accuracy improvement

    NASA Technical Reports Server (NTRS)

    Kistler, R.; Kriegler, F. J.

    1977-01-01

    Improvements made in processing system designed for MIDAS (prototype multivariate interactive digital analysis system) effects higher accuracy in classification of pixels, resulting in significantly-reduced processing time. Improved system realizes cost reduction factor of 20 or more.

  5. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  6. Goldhelox: a project to view the x-ray sun

    NASA Astrophysics Data System (ADS)

    Fair, Melody

    1991-10-01

    The `Goldhelox' project (`GOLD' for the color of the sun and `HELOX' for heliocentric observations in x rays) includes a student run research team, involving more than 30 volunteer students and five advising professors, to design and build a project to obtain observations of the sun in x rays by using the Space Shuttle as a platform while situated in a NASA Get-Away Special (GAS) canister. The GAS program allows universities, companies, and others to send small self-contained experiments into space in canisters that are placed in the Shuttle's cargo bay. The main scientific objective is to construct a high-resolution soft x-ray telescope to take rapid succession, full disk pictures of the sun, hopefully during Solar Max. These images will help in the understanding of such solar features as the corona, flares, and chromosphere. The project is organized into four major groups. The Flight Readiness Team is in charge of testing, quality control, all safety aspects, and NASA documentation. The optics system is being designed and built by the Optics Team, and this includes the telescope that has curved- substrate, multilayer mirrors, an x-ray filter, a microchannel plate (MCP) detector, a phosphor screen, a fiberoptic plate, and a customized camera that uses ordinary film. The motors for driving the telescope in two axes, worm drives, sealed container for the electronics and batteries, and the overall structure are part of the Mechanical Team. The Electrical Team's responsibilities include the photodiode sun sensor, a small heater for environmental control, lead-acid gel batteries, the main data collecting computer, telescope controller, supporting electronics, and electrical feedthroughs. This project should increase knowledge in the area of x-ray optics and spaced-based physics.

  7. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  8. Scintillation observations near the sun

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Rickett, B. J.; Scott, S. L.

    1978-01-01

    Results on the electron density spectrum, the random velocity and the mean velocity of the solar wind in the region from 5 to 100 solar radii are presented. Results are based on intensity scintillations of incoherent radio sources at different locations and different radio frequencies. The shape of the electron density irregularity spectrum is shown to be well modeled by a power law in wavenumber with a slope that abruptly steepens at higher wavenumbers. This two slope power law model is shown to have a break (defined as the wavenumber of the change of slope) that increases with decreasing distance from the Sun. The fractional random velocity is shown to be insignificant at distances of greater than 40 solar radii, but shows a steady increase with decreasing solar distance inside of 40 solar radii.

  9. The Sun's Impact on Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert

    2002-01-01

    We provide an overview of the impact of the Sun on the Earth atmosphere and climate system, focused on heating of Earth's atmosphere and oceans. We emphasize the importance of the spectral measurements of SIM and SOLSTICE- that we must know how solar variations are distributed over ultraviolet, visible, and infrared wavelengths, since these have separate characteristic influences on Earth's ozone layer, clouds, and upper layers of the oceans. Emphasis is also given to understanding both direct and indirect influences of the Sun on the Earth, which involve feedbacks between Earth's stratosphere, troposphere, and oceans, each with unique time scales, dynamics, chemistry, and biology, interacting non-linearly. Especially crucial is the role of all three phases of water on Earth, water vapor being the primary greenhouse gas in the atmosphere, the importance of trace gases such as CO2 arising from their absorption in the "water vapor window" at 800 - 1250/cm (12.5 to 8 microns). Melting of polar ice is one major response to the post-industrial global warming, enhanced due to "ice-albedo" feedback. Finally, water in liquid form has a major influence due to cloud albedo feedback, and also due to the oceans' absorption of solar radiation, particularly at visible wavelengths, through the visible "liquid water window" that allows penetration of visible light deep into the mixed layer, while nearby ultraviolet and infrared wavelengths do not penetrate past the upper centimeter ocean surface skin layer. A large fraction of solar energy absorbed by the oceans goes into the latent heat of evaporation. Thus the solar heating of the atmosphere-ocean system is strongly coupled through the water cycle of evaporation, cloud formation, precipitation, surface runoff and ice formation, to Earth's energy budget and climate, each different climate component responding to variations in different solar spectral bands, at ultraviolet, visible and infrared wavelengths.

  10. HALLIBURTON SPERRY-SUN DOE HIGH TEMPERATURE LWD PROJECT

    SciTech Connect

    Ronald L. Spross

    2005-03-15

    The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

  11. Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) calibration of the Upper Atmosphere Research Satellite (UARS) sensors

    NASA Technical Reports Server (NTRS)

    Hashmall, J.; Garrick, J.

    1993-01-01

    Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.

  12. Effects of a Preschool Staff Intervention on Children's Sun Protection: Outcomes of Sun Protection Is Fun!

    ERIC Educational Resources Information Center

    Gritz, Ellen R.; Tripp, Mary K.; James, Aimee S.; Harrist, Ronald B.; Mueller, Nancy H.; Chamberlain, Robert M.; Parcel, Guy S.

    2007-01-01

    The preschool is an important yet understudied setting for sun-protection interventions. This study evaluates the effects of Sun Protection is Fun! (SPF) on preschool staff behavioral and psychosocial outcomes related to protecting children from sun exposure. Twenty preschools participated in a 2-year, group-randomized trial to evaluate SPF, a…

  13. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  14. The Dark Side of the Sun.

    ERIC Educational Resources Information Center

    Fry, Tom

    2002-01-01

    Describes easy-to-implement strategies parents can use to ensure their children's safety in the sun and avoid skin cancer, which is the most prevalent form of cancer in United States. Suggestions include: limit the amount of time spent in the sun, wear protective clothing, use sunscreening agents, and have knowledge of skin cancer and its…

  15. Sun protection in children: realities and challenges.

    PubMed

    Gilaberte, Y; Carrascosa, J M

    2014-04-01

    One of the main goals of all skin cancer prevention campaigns is to protect children from ultraviolet radiation. However, little is known about how sun exposure risks differ between adults and children or about how these risks are best managed. Children's skin is more susceptible to sun damage for a number of reasons, including certain anatomical and functional aspects in children under 2 years of age and habits that predispose to greater sun exposure during the first 2 decades of life. Oil-based emulsions containing inorganic filters appear to be safest sunscreens for children, although the addition of certain organic filters is necessary to achieve a sun protection factor of 50. Oxybenzone, and probably also octocrylene, should be avoided in sunscreens for children. Sunscreen use should be part of an overall sun protection strategy that includes avoidance of exposure to midday sun and the use of protective clothing and hats. The above considerations justify the implementation of primary prevention campaigns focused on sun protection education for children and the continuation of basic and epidemiological research into specific sun protection strategies and sunscreens for each age group.

  16. Sun protection in children: realities and challenges.

    PubMed

    Gilaberte, Y; Carrascosa, J M

    2014-04-01

    One of the main goals of all skin cancer prevention campaigns is to protect children from ultraviolet radiation. However, little is known about how sun exposure risks differ between adults and children or about how these risks are best managed. Children's skin is more susceptible to sun damage for a number of reasons, including certain anatomical and functional aspects in children under 2 years of age and habits that predispose to greater sun exposure during the first 2 decades of life. Oil-based emulsions containing inorganic filters appear to be safest sunscreens for children, although the addition of certain organic filters is necessary to achieve a sun protection factor of 50. Oxybenzone, and probably also octocrylene, should be avoided in sunscreens for children. Sunscreen use should be part of an overall sun protection strategy that includes avoidance of exposure to midday sun and the use of protective clothing and hats. The above considerations justify the implementation of primary prevention campaigns focused on sun protection education for children and the continuation of basic and epidemiological research into specific sun protection strategies and sunscreens for each age group. PMID:24661953

  17. Harvesting the Sun's Energy with Antennas

    ScienceCinema

    INL

    2016-07-12

    Researchers at Idaho National Laboratory, along with partners at Microcontinuum Inc. (Cambridge, MA) and Patrick Pinhero of the University of Missouri, are developing a novel way to collect energy from the sun with a technology that could potentially cost pennies a yard, be imprinted on flexible materials and still draw energy after the sun has set.

  18. Harvesting the Sun's Energy with Antennas

    SciTech Connect

    INL

    2008-05-28

    Researchers at Idaho National Laboratory, along with partners at Microcontinuum Inc. (Cambridge, MA) and Patrick Pinhero of the University of Missouri, are developing a novel way to collect energy from the sun with a technology that could potentially cost pennies a yard, be imprinted on flexible materials and still draw energy after the sun has set.

  19. Sun Exposure - Multiple Languages: MedlinePlus

    MedlinePlus

    ... W XYZ List of All Topics All Sun Exposure - Multiple Languages To use the sharing features on this page, please ... - Simplified (简体中文) Sun Safety Tips 防晒安全提示 - 简体中文 ( ...

  20. Insourcing the Outsourced Library: The Sun Story.

    ERIC Educational Resources Information Center

    Hill, Cynthia

    1998-01-01

    After operating an outsourced library onsite for six years, the computer company Sun Microsystems converted the eight outsourced workers into full-time, regular staff. The Sun library manager demonstrates the advantages of outsourcing: core competencies, cost savings, and value added. (AEF)

  1. Space Science in Action: Sun [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording shows students what the sun is all about--how big it is, what it is made of, how old it is, and how long it is believed it will continue to burn. Students examine the individual layers of the sun and learn about solar activities, including sunspots, solar flares, and prominences. A hands-on activity guides students in…

  2. Cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM with the ResourceSat-1 (IRS-P6) AWiFS and LISS-III sensors

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Scaramuzza, Pat L.

    2006-12-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. The Landsat suite of satellites has collected the longest continuous archive of multispectral data. The ResourceSat-1 Satellite (also called as IRS-P6) was launched into the polar sun-synchronous orbit on Oct 17, 2003. It carries three remote sensing sensors: the High Resolution Linear Imaging Self-Scanner (LISS-IV), Medium Resolution Linear Imaging Self-Scanner (LISS-III), and the Advanced Wide Field Sensor (AWiFS). These three sensors are used together to provide images with different resolution and coverage. To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to the Landsat-5 TM and Landsat-7 ETM+ sensors. The approach involved the calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors.

  3. Non-melanoma skin cancer, sun exposure and sun protection.

    PubMed

    Calzavara-Pinton, P; Ortel, B; Venturini, M

    2015-08-01

    The incidence of skin tumors including squamous cell carcinoma (SCC), and its biological precursor, the actinic keratosis, and basal cell carcinoma (BCC) often named together non-melanoma skin cancer (NMSC) is growing all over the world in people of Caucasian ancestry. A plenty of clinical and epidemiological studies have demonstrated the causal relationship with high cumulative solar dosages and number of sunburns, although the hazard may be different for different tumors according to the modalities of ultraviolet (UV) exposure. BCC is much more strongly related to measures of intermittent ultraviolet exposure (particularly those of childhood or adolescence) than to measures of cumulative exposure. In contrast, SCC is more strongly related to constant or cumulative sun exposure. Photobiological studies have clarified that sunlight and UVB radiation are complete carcinogens for AK and SCC although the relationship with UVA exposure is much less known. Also the likelihood of BCC has been related to either sunburns and high lifetime solar, UVA and UVB cumulative doses but the pathogenetic pathways of both UVB and UVA radiation for BCC development need to be clarified so far. The lack of a complete knowledge of the photocarcinogenic pathways of keratinocytes has contributed to the limited results of solar photoprotection strategies, beside the limitations of the available sunscreens and present EU regulations.

  4. The Seismic Structure of the Sun

    PubMed

    Gough; Kosovichev; Toomre; Anderson; Antia; Basu; Chaboyer; Chitre; Christensen-Dalsgaard; Dziembowski; Eff-Darwich; Elliott; Giles; Goode; Guzik; Harvey; Hill; Leibacher; Monteiro; Richard; Sekii; Shibahashi; Takata; Thompson; Vauclair; Vorontsov

    1996-05-31

    Global Oscillation Network Group data reveal that the internal structure of the sun can be well represented by a calibrated standard model. However, immediately beneath the convection zone and at the edge of the energy-generating core, the sound-speed variation is somewhat smoother in the sun than it is in the model. This could be a consequence of chemical inhomogeneity that is too severe in the model, perhaps owing to inaccurate modeling of gravitational settling or to neglected macroscopic motion that may be present in the sun. Accurate knowledge of the sun's structure enables inferences to be made about the physics that controls the sun; for example, through the opacity, the equation of state, or wave motion. Those inferences can then be used elsewhere in astrophysics.

  5. Vibration Based Sun Gear Damage Detection

    NASA Technical Reports Server (NTRS)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  6. Sun-induced frowning fosters aggressive feelings.

    PubMed

    Marzoli, Daniele; Custodero, Mariagrazia; Pagliara, Alessandra; Tommasi, Luca

    2013-01-01

    We tested whether aggressiveness can be triggered by the involuntary frowning that occurs when people face the sun, due to the fact that sun-induced frowning involves the same pattern of facial muscle activation as in the expression of anger (interestingly, Charles Darwin remarked on the sunshade-like nature of frowning). In line with data showing that experimentally and unobtrusively induced facial and body displays facilitate congruent feelings, we found that participants walking against the sun without sunglasses scored higher in a self-report measure of anger and aggression compared to those walking with the sun behind and/or wearing sunglasses. We also suggest that frowning at the sun affects mood very quickly, because we did not find any effect of walking time on self-reported aggressiveness. Our results provide the first evidence of the ecological validity of the facial feedback hypothesis.

  7. Signature extension for sun angle, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, J. A. (Principal Investigator); Berry, J. K.; Heimes, F.

    1975-01-01

    The author has identified the following significant results. Within a restricted zenith sun angle range of 35 - 50 degrees, it was empirically observed that canopy reflectance is mainly Lambertian. Reflectance changes with crop stage were simple shifts in scale in the sun angle range. It was noted that sun angle variations depend on canopy characteristics. Effects of the vegetative canopy were most pronounced at the larger solar zenith angles (20 %). The linear sun angle correction coefficients demonstrate a dependency on both crop stage (15-20 %) and crop type (10-20 %). The use of canopy reflectance modeling allowed for the generation of a simulated data set over an extremely broad envelope of sun angles.

  8. Determination of angular accuracy of the Maket Ani surface array

    NASA Astrophysics Data System (ADS)

    Gharagyozyan, G. V.; Chilingarian, A. A.; Hovsepyan, G. G.; Martirosyan, H. S.; Ter-Antonyan, S. V.

    The methods of EAS incident angles estimation along with the angular resolution determination are described. Based on a data sample collected by the MAKET-ANI array, the angular resolution and its dependence on the showers arrival direction is studied. We use classical methods of Moon and Sun shadow detection as well as new software methods for experimental determination of MAKET ANI angular resolution. It is shown that zenith and azimuthal angles' accuracy is approximately 1.5o and 5o respectively.

  9. Smart and Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    a health assessment to inform the data acquisition client when sensor performance is suspect. 3.Distributed sample synchronization. Networks of sensors require new ways for synchronizing samples. Standards that address the distributed timing problem (for example, IEEE STD 1588) provide the means to aggregate samples from many distributed smart sensors with sub-microsecond accuracy. 4. Reduction in interconnect. Alternative means are needed to reduce the frequent problems associated with cabling and connectors. Wireless technologies offer the promise of reducing interconnects and simultaneously making it easy to quickly add a sensor to a system.

  10. Meridional Circulation in the Sun

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2008-01-01

    Measuring the depth variation of the meridional flows is important for understanding the solar cycle, at least according to a number of dynamo models. While attempting to extend the early observations of Giles (1999; Ph. D. thesis, Stanford Univ.) of time-distance measurements of flow, we have stumbled upon some systematic errors that can affect these measurements: 1) the additional distance traveled by radiation coming from points away from disk center causes an apparent 'shrinking' Sun, that is an apparent flow towards the disk center, 2) in measurements away from the central longitude, the rotation signal can leak into meridional flow signals, and 3) in measurements of the north-south mean travel times along the equator, a spurious error of 6 sec travel time is seen. That the signal is spurious is confirmed by observing half the time with the image rotated 180 degrees. Although this is an effect with mean travel times and not differences, it still seems useful to understand it. Attempts to understand and overcome these systematic problems will be presented. Forward modeling has been done using ray theory to test the sensitivity of travel times to various models.

  11. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  12. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  13. Sun protection behaviors among African Americans.

    PubMed

    Hall, H I; Rogers, J D

    1999-01-01

    The anatomic distribution of some skin cancers suggests that sun exposure may be an etiologic factor for skin cancer among African Americans. Yet little is known about sun protection behaviors among African Americans. We analyzed data from the 1992 National Health Interview Survey (N = 1,583) to determine the prevalence of sun protection behaviors and sun sensitivity. About 6% of African Americans reported being extremely sensitive to the sun and severe sunburning, and 9% reported mild burns. Overall, 53% of respondents (47% of men and 57% of women) reported that they were very likely to wear protective clothing, seek shade, or use sunscreen lotion. Women were more likely than men to report seeking shade and using sunscreen. Sun protection behaviors were more frequently reported by those who sunburn more easily and were positively associated with age. Use of sunscreen was positively associated with income and education. Education about sun protection and early detection may help reduce the morbidity and mortality of skin cancer among African Americans.

  14. Sun signs Valdez Principles; rejoining CMA

    SciTech Connect

    Kirschner, E.

    1993-02-17

    Four year after an investors' group developed the Valdez Principles in response to the Exxon oil spill, Sun Co. (Philadelphia) has become the first major corporation to sign on to the environmental commitment. Sun also says it plans to rejoin the Chemical Manufacturers Association (CMA) in light of new emphasis on its chemical business and to recommit to the Responsible Care program. Sun negotiated the commitment's working with the Coalition for Economically Responsible Economies (CERES; New York), which devised the code of conduct, now called the CERES Principles. It requries goals of reducing environmental impact, as well as annual environmental auditing and public reporting of results. Annual environmental reporting is coming,' says Sun chairman and CEO Robert H. Campbell. CERES' report provides credibility and accountability, he says. Sun's signing is the onset of a stampede,' says New York City Comptroller Elizabeth Holtzman, who advises on investment of the city's $47-billion pension funds. CERES says that between tens of' Fortune 500 companies have shown interest in a negotiated code. The 50 other signers are smaller companies. Du Pont says it is waiting to see Sun's agreement. Campbell says the commitment complements Sun's five-year-old program, which incorporates the American Petroleum Institute program and CMA's Responsible Care initiative. I don't think anything will change that the customer will notice,' he adds.

  15. Brightness Changes in Sun-like Stars

    NASA Technical Reports Server (NTRS)

    Henry, Stephen M.; Henry, Gregory W.

    1998-01-01

    Does the Sun's energy output vary with time? Are observable climatic changes on the earth caused by changes in the Sun? Can we gain greater insight into this relation-ship by studying other stars with properties similar to the Sun's? In recent years, satellite observations have shown that the solar irradiance varies in phase with the 1 l-year sunspot cycle. The Sun is brighter by about O.l% at the peak of the sunspot cycle when solar magnetic activity is at its maximum. Over longer intervals, changes in the cart h's climate and solar magnetic activity seem to be correlated. We are using automatic photoelectric telescopes to measure brightness changes in a sample of 150 Sun-like stars. Lowell Observatory astronomers have also observed about 30 of these same stars with a manual telescope in a program that began 10 years before ours. Since these two data sets were acquired with different instruments and so have significant systematic differences, we developed software to combine them accurately and, therefore, extend our observational time coverage. We show sample results of brightness variations over 14 years in several Sun-like stars with different ages. Longitudinal studies like these, combined with cross-sectional studies of the larger sample of stars, may eventually allow us to infer with confidence the Sun's long-term brightness history and its impact on the earth's climate.

  16. SunPy—Python for solar physics

    NASA Astrophysics Data System (ADS)

    SunPy Community; Mumford, Stuart J.; Christe, Steven; Pérez-Suárez, David; Ireland, Jack; Shih, Albert Y.; Inglis, Andrew R.; Liedtke, Simon; Hewett, Russell J.; Mayer, Florian; Hughitt, Keith; Freij, Nabil; Meszaros, Tomas; Bennett, Samuel M.; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J.; Robitaille, Thomas P.; Mampaey, Benjamin; Campos-Rozo, Jose Iván; Kirk, Michael S.

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy.

  17. Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2008-01-01

    We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EW) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from E W Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.

  18. Measured Sun Noise Temperatures at 32 Gigahertz

    NASA Astrophysics Data System (ADS)

    Otoshi, T. Y.

    2001-01-01

    Sun experiments were performed to develop methods for accurately mapping the Sun noise temperatures over the entire solar disk at 32 GHz (Ka-band). High-resolution mapping of the Sun's noise temperatures was obtained through the use of the 34-m beam-waveguide (BWG) antenna and the Ka-band monopulse receiving system at DSS 13. Detailed mapping of the solar disk was possible because at 32 GHz the BWG antenna has a full 3-dB beamwidth that is only 17 mdeg compared to the angular Sun diameter of about 0.5 deg. Due to the expected high noise temperature of the Sun (> 10,000 K), methods had to be developed so that the incoming Sun noise-temperature power would not saturate the antenna receiving system. Of several methods investigated, only the absorber and waveguide attenuator methods were considered (1) to be easy and inexpensive to implement into any existing BWG receiving system and (2) to have the potential of giving accurate results. Both of these methods were used to measure the Sun noise temperatures presented in this article. Due to the high solar activity during the experiments, it was not possible to obtain repeatable results on different days and even on the same day. However, useful information has been obtained about the Sun's noise-temperature characteristics during the period of maximum solar activity that occurred in the year 2000. To this author's knowledge, this is the first time that a large (34-m) antenna was used to map the Sun's noise-temperature profile over its entire surface at 32 GHz.

  19. Cool Stars, Stellar Systems and the Sun.

    NASA Astrophysics Data System (ADS)

    Stempels, Eric

    2009-02-01

    The series of 'Cool Star' meetings concentrates on the astrophysics of low-mass stars (with masses similar to that of the Sun and lower), including the Sun. The meeting in St. Andrews, Scotland, was the 15th in this series, and focused in particular on the origin of low-mass stars and their planets, as well as the properties of their atmospheres. This volume provides a comprehensive overview of the science presented by the 350 participants of this meeting. The book is suitable for researchers and graduate students interested in the astrophysics of cool stars and the Sun.

  20. The Jovian period in the Sun?

    NASA Astrophysics Data System (ADS)

    Kotov, V. A.

    2015-09-01

    The 41-year measurements of the Doppler effect of the photosphere performed at the Crimean Astrophysical Observatory, discovered two periods of global oscillations of the Sun: 9600.606(12) s and 9597.929(15) s. Their beat period, 398.4(2.9) d, well agrees with a synodic orbital period of Jupiter, PJ = 398.9 d, raising a new problem for solar physics, cosmogony and cosmology. A hypothesis is advanced that the PJ beating of the Sun is induced by gravitation of Jupiter, revolving in a privileged reference system "the Sun - the Earth".

  1. The Sun's dusty interstellar environment

    NASA Astrophysics Data System (ADS)

    Sterken, Veerle

    2016-07-01

    The Sun's dusty interstellar environment Interstellar dust from our immediate interstellar neighborhood travels through the solar system at speeds of ca. 26 km/s: the relative speed of the solar system with respect to the local interstellar cloud. On its way, its trajectories are altered by several forces like the solar radiation pressure force and Lorentz force. The latter is due to the charged dust particles that fly through the interplanetary magnetic field. These trajectories differ per particle type and size and lead to varying fluxes and directions of the flow inside of the solar system that depend on location but also on phase in the solar cycle. Hence, these fluxes and directions depend strongly on the configuration of the inner regions and outer regions of the heliosphere. Several missions have measured this dust in the solar system directly. The Ulysses dust detector data encompasses 16 years of intestellar dust fluxes and approximate directions, Stardust captured returned to Earth a few of these particles sucessfully, and finally the Cassini dust detector allowed for compositional information to be obtained from the impacts on the instrument. In this talk, we give an overview of the current status of interstellar dust research through the measurements made inside of the solar system, and we put them in perspective to the knowledge obtained from more classical astronomical means. In special, we focus on the interaction of the dust with the interplanetary magnetic field, and on what we learn about the dust (and the fields) by comparing the available dust data to computer simulations of dust trajectories. Finally, we synthesize the different methods of observation, their results, and give a preview on new research opportunities in the coming year(s).

  2. Vitamin D Beliefs and Associations with Sunburns, Sun Exposure, and Sun Protection

    PubMed Central

    Kim, Bang Hyun; Glanz, Karen; Nehl, Eric J.

    2012-01-01

    The main objective of this study was to examine certain beliefs about vitamin D and associations with sun exposure, sun protection behaviors, and sunburns. A total of 3,922 lifeguards, pool managers, and parents completed a survey in 2006 about beliefs regarding vitamin D and sun-related behaviors. Multivariate ordinal regression analyses and linear regression analysis were used to examine associations of beliefs and other variables. Results revealed that Non-Caucasian lifeguards and pool managers were less likely to agree that they needed to go out in the sun to get enough vitamin D. Lifeguards and parents who were non-Caucasian were less likely to report that sunlight helped the body to produce vitamin D. A stronger belief about the need to go out in the sun to get enough vitamin D predicted more sun exposure for lifeguards. For parents, a stronger belief that they can get enough vitamin D from foods predicted greater sun protection and a stronger belief that sunlight helps the body produce vitamin D predicted lower sun exposure. This study provides information regarding vitamin D beliefs and their association with certain sun related behaviors across different demographic groups that can inform education efforts about vitamin D and sun protection. PMID:22851950

  3. Vitamin D beliefs and associations with sunburns, sun exposure, and sun protection.

    PubMed

    Kim, Bang Hyun; Glanz, Karen; Nehl, Eric J

    2012-07-01

    The main objective of this study was to examine certain beliefs about vitamin D and associations with sun exposure, sun protection behaviors, and sunburns. A total of 3,922 lifeguards, pool managers, and parents completed a survey in 2006 about beliefs regarding vitamin D and sun-related behaviors. Multivariate ordinal regression analyses and linear regression analysis were used to examine associations of beliefs and other variables. Results revealed that Non-Caucasian lifeguards and pool managers were less likely to agree that they needed to go out in the sun to get enough vitamin D. Lifeguards and parents who were non-Caucasian were less likely to report that sunlight helped the body to produce vitamin D. A stronger belief about the need to go out in the sun to get enough vitamin D predicted more sun exposure for lifeguards. For parents, a stronger belief that they can get enough vitamin D from foods predicted greater sun protection and a stronger belief that sunlight helps the body produce vitamin D predicted lower sun exposure. This study provides information regarding vitamin D beliefs and their association with certain sun related behaviors across different demographic groups that can inform education efforts about vitamin D and sun protection.

  4. Sun Protection Practices and Sun Exposure among Children with a Parental History of Melanoma

    PubMed Central

    Glenn, Beth A.; Lin, Tiffany; Chang, L. Cindy; Okada, Ashley; Wong, Weng Kee; Glanz, Karen; Bastani, Roshan

    2014-01-01

    Background First-degree relatives of melanoma survivors have a substantially higher lifetime risk for melanoma than individuals with no family history. Exposure to ultraviolet radiation is the primary modifiable risk factor for the disease. Reducing UV exposure through sun protection may be particularly important for children with a parental history of melanoma. Nonetheless, limited prior research has investigated sun protection practices and sun exposure among these children. Methods The California Cancer Registry was used to identify melanoma survivors eligible to participate in a survey to assess their children's sun protection practices and sun exposure. The survey was administered by mail, telephone, or web to Latino and non-Latino white melanoma survivors with at least one child (0–17 years; N = 324). Results Sun exposure was high and the rate of sunburn was equivalent to or higher than estimates from average risk populations. Use of sun protection was suboptimal. Latino children were less likely to wear sunscreen and hats and more likely to wear sunglasses, although these differences disappeared in adjusted analyses. Increasing age of the child was associated with lower sun protection and higher risk for sunburn whereas higher objective risk for melanoma predicted improved sun protection and a higher risk for sunburns. Perception of high barriers to sun protection was the strongest modifiable correlate of sun protection. Conclusions Interventions to improve sun protection and reduce sun exposure and sunburns in high risk children are needed. Impact Intervening in high risk populations may help reduce the burden of melanoma in the U.S. PMID:25587110

  5. Tolerating failures of continuous-valued sensors

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith

    1990-01-01

    One aspect of fault tolerance in process control programs is the ability to tolerate sensor failure. A methodology for transforming a process control program that cannot tolerate sensor failures onto one that can is presented. Issues addressed include modifying specifications in order to accommodate uncertainty in sensor values and averaging sensor values in a fault tolerant manner. In addition, a hierarchy of sensor failure models is identified, and both the attainable accuracy and the run-time complexity of sensor averaging with respect to this hierarchy is discussed.

  6. SDO Catches Comet Streaking by Sun

    NASA Video Gallery

    The Solar Dynamics Observatory's AIA instrument captured the first ever image of a comet passing directly in front of the sun in the early morning of July 6, 2011 in 171 angstrom. The comet comes i...

  7. Essential Outdoor Sun Safety Tips for Winter

    MedlinePlus

    ... Strengthen a Relationship Christopher Knight: From Brady Bunch Star to Skin Cancer Survivor A Haircut Could Save ... Sun Blunders with Landon Donovan Team USA Soccer Star Landon Donovan and his Father, a Skin Cancer ...

  8. SDO Catches Surfer Waves on the Sun

    NASA Video Gallery

    Scientists have spotted the iconic surfer's wave rolling through the atmosphere of the sun. The waves hold clues as to how energy moves through that atmosphere, known as the corona, and may help ex...

  9. A Hole in the Sun's Corona

    NASA Video Gallery

    This timelapse video shows a coronal hole, as captured in ultraviolet light by NASA's Solar Dynamics Observatory on Jan. 10, 2011. Coronal holes are areas of the sun's surface that are the source o...

  10. Nilaja Sun's "No Child...": Reflections on Success

    ERIC Educational Resources Information Center

    Sun, Nilaja; Alexander, Phillip; Huldeen, Branden; Russell, Ron; Friedman, Melissa

    2007-01-01

    This article describes Nilaja Sun's groundbreaking one-woman show about a TA, her students, and her school, and includes interviews with the author/performer, an excerpt of the work, and a discussion of the organization behind it.

  11. Huge Filament Rises From Sun's Northern Hemisphere

    NASA Video Gallery

    On August 1, 2010 following a C3-class solar flare from sunspot 1092, an enormous magnetic filament stretching across the sun's northern hemisphere erupted. This 304 angstrom video shows that filam...

  12. RBSP: Studying the Sun's Influence on Earth

    NASA Video Gallery

    Two wide rings of high-intensity particles encircle our planet's equator. Known as the Van Allen Radiation Belts, their behavior in response to the sun directly impacts life on Earth and in orbit. ...

  13. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  14. SDO and Hinode Views of the Sun

    NASA Video Gallery

    IRIS will advance our understanding of how the enigmatic interface region on the sun powers its dynamic million-degree atmosphere called the corona. IRIS will join the Solar Dynamics Observatory (S...

  15. The shadow sensor: an electronic activity pattern sensor

    SciTech Connect

    Moschandreas, D.J.; Relwani, S. )

    1991-07-01

    In their endeavor to measure time that individuals spend indoors, outdoors, and in transit, human activity pattern experts would be greatly assisted by a personal electronic sensor. This article reports on the design and pilot testing of an electronic device that measures activity patterns. The electronic sensor is small, unobstrusive, weighs about one pound, and records for 24 hr. The sensor identifies the microenvironment and the time spent in that microenvironment. Four types of experiments were performed during the pilot testing of the prototype: (1) quality control experiments; (2) other-directed experiments; (3) sensor vs. diary experiments; and (4) sensor vs. recall experiments. The prototype testing involved a total of 40 subjects. Quality control experiments were designed to test the accuracy of the sensor. Other-directed experiments were designed to test the veracity of test subjects. The subjects were told that the sensor was a pollutant-measuring device and were asked to record their activity patterns on a diary attached to the sensor. In the sensor vs. diary experiments the subjects were told the purpose of the sensor and were given a diary to record their activity patterns. In the sensor vs. recall experiments the subjects knew the objective of the electronic sensor, but they were not forewarned that they would be required to recall their activity patterns. The daily activity pattern difference across all microenvironments was the parameter used to quantify the discrepancy of information obtained from sensor and diary data. This activity pattern difference was more than three hours for the other-directed experiments, approximately two hr for both the sensor vs. diary and the sensor vs. recall experiments, and 18 min for the quality control experiments.

  16. Safety Ellipse Motion with Coarse Sun Angle Optimization

    NASA Technical Reports Server (NTRS)

    Naasz, Bo

    2005-01-01

    The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.

  17. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  18. Integrated rate isolation sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye (Inventor); Henderson, Timothy (Inventor); Phillips, Richard (Inventor); Zimpfer, Doug (Inventor); Crain, Tim (Inventor)

    2012-01-01

    In one embodiment, a system for providing fault-tolerant inertial measurement data includes a sensor for measuring an inertial parameter and a processor. The sensor has less accuracy than a typical inertial measurement unit (IMU). The processor detects whether a difference exists between a first data stream received from a first inertial measurement unit and a second data stream received from a second inertial measurement unit. Upon detecting a difference, the processor determines whether at least one of the first or second inertial measurement units has failed by comparing each of the first and second data streams to the inertial parameter.

  19. Robust optimal sun-pointing control of a large solar power satellite

    NASA Astrophysics Data System (ADS)

    Wu, Shunan; Zhang, Kaiming; Peng, Haijun; Wu, Zhigang; Radice, Gianmarco

    2016-10-01

    The robust optimal sun-pointing control strategy for a large geostationary solar power satellite (SPS) is addressed in this paper. The SPS is considered as a huge rigid body, and the sun-pointing dynamics are firstly proposed in the state space representation. The perturbation effects caused by gravity gradient, solar radiation pressure and microwave reaction are investigated. To perform sun-pointing maneuvers, a periodically time-varying robust optimal LQR controller is designed to assess the pointing accuracy and the control inputs. It should be noted that, to reduce the pointing errors, the disturbance rejection technique is combined into the proposed LQR controller. A recursive algorithm is then proposed to solve the optimal LQR control gain. Simulation results are finally provided to illustrate the performance of the proposed closed-loop system.

  20. SunPy: Solar Physics in Python

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Christe, Steven; Mumford, Stuart; Perez Suarez, David; Ireland, Jack; Shih, Albert Y.; Inglis, Andrew; Liedtke, Simon; Hewett, Russel

    2015-04-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community as well as further afield. This has resulted in a wide array of software packages useful for scientific computing, from numerical computation (NumPy, SciPy, etc.), to machine learning (scifitlearn), to visualization and plotting (matplotlib). SunPy aims to provide required specialised software for analysing solar and heliospheric datasets in Python. The current version is 0.5 with 0.6 expected to be released later this year. SunPy provides solar data access through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It supports common data types from major solar missions such as images (SDO/AIA, STEREO, PROBA2/SWAP etc.), time series (GOES/XRS, SDO/EVE, PROBA2/LYRA), and radio spectra (e-Callisto, STEREO/WAVES). SunPy’s code base is publicly available through github.com and can be contributed to by anyone. In this poster we demonstrate SunPy’s functionality and future goals of the project. We also encourage interested users to become involved in further developing SunPy.

  1. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  2. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  3. Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Bernhard, Germar; Morrow, John H.; Booth, Charles R.; Comer, Thomas; Lind, Randall N.; Quang, Vi

    2012-01-01

    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report.

  4. FTC - THE FAULT-TREE COMPILER (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS

  5. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  6. A Tornado on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    On 7 November, 2012 at 08:00 UT, an enormous tornado of plasma rose from the surface of the Sun. It twisted around and around, climbing over the span of 10 hours to a height of 50 megameters roughly four times the diameter of the Earth! Eventually, this monster tornado became unstable and erupted violently as a coronal mass ejection (CME).Now, a team of researchers has analyzed this event in an effort to better understand the evolution of giant solar tornadoes like this one.Oscillating AxisIn this study, led by Irakli Mghebrishvili and Teimuraz Zaqarashvili of Ilia State University (Georgia), images taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly were used to track the tornados motion as it grew, along with a prominence, on the solar surface.The team found that as the tornado evolved, there were several intervals during which it moved back and forth quasi-periodically. The authors think these oscillations were due to one of two effects when the tornado was at a steady height: either twisted threads of the tornado were rotating around each other, or a magnetic effect known as kink waves caused the tornado to sway back and forth.Determining which effect was at work is an important subject of future research, because the structure and magnetic configuration of the tornado has implications for the next stage of this tornados evolution: eruption.Eruption from InstabilitySDO/AIA 3-channel composite image of the tornado an hour before it erupted in a CME. A coronal cavity has opened above the tornado; the top of the cavity is indicated by an arrow. [NASA/SDO/AIA; Mghebrishvili et al. 2015]Thirty hours after its formation, the tornado (and the solar prominence associated with it) erupted as a CME, releasing enormous amounts of energy. In the images from shortly before that moment, the authors observed a cavity open in the solar corona above the tornado. This cavity gradually expanded and rose above the solar limb until the tornado and prominence

  7. The Sol project: the sun in time

    NASA Astrophysics Data System (ADS)

    Pinho, L. G. F.; Porto de Mello, G. F.; de Medeiros, J. R.; Do Nascimento, J. D., Jr.; da Silva, L.

    2003-08-01

    The solar place in the set of stellar properties of the neighborhood, such as chemical composition, magnetic activity, lithium depletion, and others, suggests that the Sun may not exactly be a representative star. A few of the solar putative peculiarities seem to involve details of its evolutionary history, and that some light might be shed onto this question by a new approach based on the analysis of a time line in the HR diagram, searching for stars that might represent past, present and future solar evolutionary loci. The SOL Project (Solar Origin and Life) aims towards the identification, among the nearby stars, of those that share in detail the solar evolutionary track, in order to put the Sun as a star in proper perspective. We aim at obtaining, spectroscopically, atmospheric parameters, Fe and Li abundances, space velocities, state of evolution, degree of chromospheric activity and rotational velocities of a stellar sample, selected from precise astrometry and photometry of the Hipparcos catalogue, as to represent the Sun in various evolutionary stages along the solar mass, solar metallicity theoretical track: the early Sun, the present Sun, the subgiant Sun and the giant Sun. Here we present a progress report of the survey: the sample selection, OPD spectroscopic observations and preliminary results of the atmospheric parameters and evolutionary status analysis. As a by-product, we also present a new effective temperature calibration, based on published Infrared Flux Method data, and calibrated explicitly for precise spectroscopic stellar metallicities, for the (B-V), (BT-VT), (R-I), (V-I), (V-R) and (V-K) color indices, and valid for cool, normal and moderately metal-poor giant stars.

  8. 7 CFR 3201.97 - Sun care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Sun care products. 3201.97 Section 3201.97... Designated Items § 3201.97 Sun care products. (a) Definition. Products including sunscreens, sun blocks, and suntan lotions that are topical products that absorb or reflect the sun's ultraviolet radiation...

  9. 7 CFR 3430.1008 - Sun Grant Information Analysis Center.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Sun Grant Information Analysis Center. 3430.1008...-GENERAL AWARD ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1008 Sun Grant Information Analysis Center. The Centers and Subcenter shall maintain, at the North-Central Center, a Sun Grant...

  10. 7 CFR 3430.1008 - Sun Grant Information Analysis Center.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Sun Grant Information Analysis Center. 3430.1008...-GENERAL AWARD ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1008 Sun Grant Information Analysis Center. The Centers and Subcenter shall maintain, at the North-Central Center, a Sun Grant...

  11. 7 CFR 3430.1008 - Sun Grant Information Analysis Center.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Sun Grant Information Analysis Center. 3430.1008...-GENERAL AWARD ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1008 Sun Grant Information Analysis Center. The Centers and Subcenter shall maintain, at the North-Central Center, a Sun Grant...

  12. 7 CFR 3430.1008 - Sun Grant Information Analysis Center.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Sun Grant Information Analysis Center. 3430.1008...-GENERAL AWARD ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1008 Sun Grant Information Analysis Center. The Centers and Subcenter shall maintain, at the North-Central Center, a Sun Grant...

  13. 7 CFR 3201.97 - Sun care products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Sun care products. 3201.97 Section 3201.97... Designated Items § 3201.97 Sun care products. (a) Definition. Products including sunscreens, sun blocks, and suntan lotions that are topical products that absorb or reflect the sun's ultraviolet radiation...

  14. Concurrent Psychosocial Predictors of Sun Safety among Middle School Youth

    ERIC Educational Resources Information Center

    Andreeva, Valentina A.; Reynolds, Kim D.; Buller, David B.; Chou, Chih-Ping; Yaroch, Amy L.

    2008-01-01

    Background: Sun-induced skin damage, which increases skin cancer risk, is initiated in early life and promoted through later sun exposure patterns. If sun safety determinants are well understood and addressed during the school years, skin cancer incidence might be reduced. This study tested psychosocial influences on youth's sun safety and…

  15. GHAPS: A new Green House And Pollutant Sensor

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Marshall, B.

    2013-12-01

    Advances in detector arrays, communication technology, global positioning and gas correlation sensors are combined to produce a small, simple, accurate, autonomous gas column sensor with unlimited lifetime. We describe a solar powered, miniature gas correlation sensor that can be placed anywhere that provides unobscured observation of the sun. The sensor will provide column measurements of CH4, CO2 and CO throughout the day, along with estimates of moisture and overcast. This flashlight size device could supply a low cost solution to monitoring the atmospheric abundance of key greenhouse and pollutant gases, including fluxes of gas emanating from areas surrounded by these sensors. The design, implementation strategy and performance estimates are described.

  16. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli.

    PubMed

    Matsumoto, Ayaka; Sakamoto, Chiyomi; Matsumori, Haruka; Katahira, Jun; Yasuda, Yoko; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Goldberg, Ilya G; Matsuura, Nariaki; Nakao, Mitsuyoshi; Saitoh, Noriko; Hieda, Miki

    2016-01-01

    A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells. PMID:26962703

  17. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    PubMed

    Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible. PMID:24085076

  18. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    PubMed

    Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible.

  19. The Sun Sense Study: An Intervention to Improve Sun Protection in Children

    ERIC Educational Resources Information Center

    Glasser, Alice; Shaheen, Magda; Glenn, Beth A.; Bastani, Roshan

    2010-01-01

    Objectives: To assess the effect of a multicomponent intervention on parental knowledge, sun avoidance behaviors, and sun protection practices in children 3-10 years. Methods: A randomized trial at a pediatric clinic recruited 197 caregiver-child pairs (90% parents). Intervention included a brief presentation and brochure for the parent and…

  20. After the Bell: Developing Sun Sense--Learning about Protection from the Sun's Rays

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Ness, Daniel

    2008-01-01

    The American Academy of Dermatology (2008) reports that our students will experience 80% of their lifetime exposure to the Sun by the time they are 18. Further, research has demonstrated that continued exposure to the Sun's ultraviolet rays can lead to skin aging, sunburn, immune suppression, ocular melanoma, cataracts, corneal burns, and even…

  1. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  2. Lightning mapping sensor study

    NASA Technical Reports Server (NTRS)

    Norwood, V.

    1983-01-01

    A technology assessment to determine how a world-wide, continuous measurement of lightning could be achieved from a geostationary platform is provided. Various approaches to the detector sensors are presented. It was first determined that any existing detector chips would require some degree of modification in order to meet the lightning mapper sensor requirements. The elements of the system were then analyzed, categorized, and graded for study emphasis. The recommended approach for the lightning mapper sensor is to develop a monolithic array in which each detector cell has circuitry that implements a two-step photon-collecting method for a very high dynamic range with good measurement accuracy. The efficiency of the array is compatible with the use of a conventional refractive optics design having an aperture in the neighborhood of 7 to 10 cm.

  3. 77 FR 34122 - Application of Sun Air Express, LLC, d/b/a Sun Air International for Commuter Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Sun Air Express, LLC, d/b/a Sun Air International for Commuter... to show cause why it should not issue an order finding Sun Air Express, LLC d/b/a Sun...

  4. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  5. Relationship factors and couples' engagement in sun protection.

    PubMed

    Manne, S L; Coups, E J; Kashy, D A

    2016-08-01

    Individuals may be more motivated to adopt health practices if they consider the benefits of these behaviors for their close relationships. The goal of this study was to examine couple concordance with sun protection and use the interdependence and communal coping theory to evaluate the role of relationship factors in sun protection. One hundred and eighty-four married couples aged 50 years and older completed measures of objective skin cancer risk, perceived risk, sun protection benefits, relationship-centered motivations for sun protection, discussions about sun protection, and sun protection. A mediational model was evaluated. Results indicated a high level of couple concordance. Partners who adopted a relationship-centered motivation for sun protection were more likely to discuss sun protection with one another, and partners who discussed sun protection together were more likely to engage in sun protection. One partner's attitude about personal risk and sun protection benefits was associated with the other partner's sun protection. Wives had higher relationship-centered motivation and discussed sun protection more with their husbands. Behavioral interventions may benefit from encouraging couples to discuss sun protection and encouraging married individuals to consider the benefits of sun protection for their relationship and for their spouse's health.

  6. [Sun and skin and eye protection].

    PubMed

    Darie, H; Crepy, P

    1997-01-01

    Overexposure to sunlight during travel can have harmful short- and long-term effects on the eyes and skin. Cutaneous effects include premature aging, actinic keratosis, and cancer. The eye is highly sensitive to invisible radiation, especially ultraviolet rays which can damage the crystalline lens and cornea. Retinal lesions usually involve the macula on which rays of the visible spectrum come to focus. Various natural and artificial methods can be used for sun protection. Limiting sun exposure is advisable for all. Sunscreens should be used to attenuate the effects of sun and not to prolong exposure. Fair-skinned subjects, especially those with numerous nevi, must use total sunscreen preparations starting from birth. Eye protection is necessary for everyone but especially young children, aphakic subjects, and patients presenting congenital or acquired retinal lesions. Dark lenses with a category 2 protection rating according to European Economic Community standards are recommended in tropical areas.

  7. Using Sun Spikes to Measure Mesospheric Conductivity

    NASA Astrophysics Data System (ADS)

    Shimogawa, M. R.; Holzworth, R. H.

    2005-12-01

    Our payload was designed to study the electrodynamics of noctilucent clouds (NLCs) using double Langmuir probes. Sun spikes in the probe voltage, which occur naturally when a probe is shadowed by the rocket body, were two to three times larger when the rocket was above the NLC than when below it, on both the upleg and downleg portions of the flight. In the low conductivity found below the NLC, the sun spikes did not saturate, so a rough conductivity measurement could be made using these sun spike data. We found the conductivity to be about 8×10-10>S/m at 80 km altitude, which is in agreement with measurements made of the positive ion conductivity during the flight. This is effectively the same as the relaxation method for measuring conductivity in the lower atmosphere, shown here to work in the mesosphere.

  8. The spectrum of darkonium in the Sun

    NASA Astrophysics Data System (ADS)

    Kouvaris, Chris; Langæble, Kasper; Grønlund Nielsen, Niklas

    2016-10-01

    Dark matter that gets captured in the Sun may form positronium-like bound states if it self-interacts via light dark photons. In this case, dark matter can either annihilate to dark photons or recombine in bound states which subsequently also decay to dark photons. The fraction of the dark photons that leave the Sun without decaying to Standard Model particles have a characteristic energy spectrum which is a mixture of the direct annihilation process, the decays of ortho- and para- bound states and the recombination process. The ultimate decay of these dark photons to positron-electron pairs (via kinetic mixing) outside the Sun creates a distinct signal that can either identify or set strict constraints on dark photon models.

  9. Seismology of Convection in the Sun

    NASA Astrophysics Data System (ADS)

    Hanasoge, Shravan

    2015-08-01

    Solar convection lies in extraordinary regime of dynamical parameters. Convective processes in the Sun drive global fluid circulations and magnetic fields, which in turn affect its visible outer layers (solar activity) and, more broadly, the heliosphere (space weather). The precise determination of the depth of solar convection zone, departures from adiabaticity of the temperature gradient, and the internal rotation rate as a function of latitude and depth are among the seminal contributions of helioseismology towards understanding convection in the Sun. Contemporary helioseismology, which is focused on inferring the properties of three-dimensional convective features, suggests that transport velocities are substantially smaller than theoretical predictions. Furthermore, helioseismology provides important constraints on the anisotropic Reynolds stresses that control the global dynamics of the solar convection zone. In this review, I will discuss the state of our understanding of convection in the Sun, with a focus on helioseismic diagnostics.

  10. The sun since the Bronze Age

    NASA Technical Reports Server (NTRS)

    Eddy, J. A.

    1976-01-01

    An investigation is conducted concerning the behavior of the sun during the last 7000 years. The C-14 content in carbonaceous fossil material can be used as an indicator regarding the level of solar activity at the time when the carbon was assimilated in the process of photosynthesis. Living trees, such as the bristlecone pine, provide a solar activity record to about 3000 B.C. The record can be extended with the aid of well-preserved dead wood to beyond 5000 B.C. The results of an analysis of solar activity levels as a function of time on the basis of C-14 contents are presented in a graph. Attention is given to the Maunder Minimum, a history of the sun in the last 5000 years, an interpretation of the major C-14 excursions, and the sun and climate history.

  11. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  12. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  13. High accuracy wall thickness loss monitoring

    NASA Astrophysics Data System (ADS)

    Gajdacsi, Attila; Cegla, Frederic

    2014-02-01

    Ultrasonic inspection of wall thickness in pipes is a standard technique applied widely in the petrochemical industry. The potential precision of repeat measurements with permanently installed ultrasonic sensors however significantly surpasses that of handheld sensors as uncertainties associated with coupling fluids and positional offsets are eliminated. With permanently installed sensors the precise evaluation of very small wall loss rates becomes feasible in a matter of hours. The improved accuracy and speed of wall loss rate measurements can be used to evaluate and develop more effective mitigation strategies. This paper presents an overview of factors causing variability in the ultrasonic measurements which are then systematically addressed and an experimental setup with the best achievable stability based on these considerations is presented. In the experimental setup galvanic corrosion is used to induce predictable and very small wall thickness loss. Furthermore, it is shown that the experimental measurements can be used to assess the effect of reduced wall loss that is produced by the injection of corrosion inhibitor. The measurements show an estimated standard deviation of about 20nm, which in turn allows us to evaluate the effect and behaviour of corrosion inhibitors within less than an hour.

  14. Sun-as-a-star spectrum variability

    NASA Technical Reports Server (NTRS)

    Livingston, William; Donnelly, Richard F.; Grigor'ev, Viktor; Demidov, M. L.; Lean, Judith; Steffen, Matthias; White, Oran R.; Willson, Richard L.

    1991-01-01

    The sun is observed as a start in order to determine luminosity change, detect minute variability in average granulation and focular signals, and to use as a standard against which other stars might be compared. In this regard, topics discussed include: total irradiance variability as measured from space by the Activity Cavity Radiometer Irradiance Monitor and Earth Radiation Budget radiometers; Fraunhofer line heights of formation and examples of their variability in visible wavelenghts; ultraviolet and extreme ultraviolet irradiance variability as observed from space; the magnetic origin of irradiance change; and the observed mean magnetic field of the sun.

  15. Shining Light through the Sun by Axions

    SciTech Connect

    Rashba, Timur

    2007-11-27

    I show that the Sun can become partially transparent to high energy photons in the presence of a pseudo-scalar. I discuss the possibilities of observing this effect. Present data are limited to the observation of the solar occultation of 3C 279 by EGRET in 1991; 98% C.L. detection of a non-zero flux of gamma rays passing through the Sun is not yet conclusive. Since the same occultation happens every October, future experiments, e.g. GLAST, are expected to have better sensitivity to the discussed effect.

  16. Doppler Measurements of the Suns Meridional Flow

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1996-01-01

    Doppler velocity data obtained with the Global Oscillation Network Group (GONG) instruments in Tucson from 1992 August through 1995 April were analyzed to determine the structure and evolution of the Sun's meridional flow. Individual measurements of the flow were derived from line-of-sight velocity images averaged over 17 minutes to remove the p-mode oscillation signal. Typical flow velocities are poleward at approximately 20 m/s, but the results suggest that episodes may occur with much stronger flows. Such variations may help to explain some of the many disparate reports on the strength and structure of the Sun's meridional flow.

  17. SunShot Initiative Fact Sheet

    SciTech Connect

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  18. Martian Moon Eclipses Sun, in Stages

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panel illustrates the transit of the martian moon Phobos across the Sun. It is made up of images taken by the Mars Exploration Rover Opportunity on the morning of the 45th martian day, or sol, of its mission. This observation will help refine our knowledge of the orbit and position of Phobos. Other spacecraft may be able to take better images of Phobos using this new information. This event is similar to solar eclipses seen on Earth in which our Moon passes in front of the Sun. The images were taken by the rover's panoramic camera.

  19. Ra: The Sun for Science and Humanity

    NASA Technical Reports Server (NTRS)

    1996-01-01

    To guide the development of the Ra Strategic Framework, we defined scientific and applications objectives. For our primary areas of scientific interest, we choose the corona, the solar wind, the Sun's effect on the Earth, and solar theory and model development. For secondary areas of scientific interest, we selected sunspots, the solar constant, the Sun's gravitational field, helioseismology and the galactic cosmic rays. We stress the importance of stereoscopic imaging, observations at high spatial, spectral, and temporal resolutions, as well as of long duration measurements. Further exploration of the Sun's polar regions is also important, as shown already by the Ulysses mission. From an applications perspective, we adopted three broad objectives that would derive complementary inputs for the Strategic Framework. These were to identify and investigate: possible application spin-offs from science missions, possible solar-terrestrial missions dedicated to a particular application, and possible future applications that require technology development. The Sun can be viewed as both a source of resources and of threats. Our principal applications focus was that of threat mitigation, by examining ways to improve solar threat monitoring and early warning systems. We compared these objectives to the mission objectives of past, current, and planned international solar missions. Past missions (1962-1980) seem to have been focused on improvement of scientific knowledge, using multiple instrument spacecraft. A ten year gap followed this period, during which the results from previous missions were analyzed and solar study programmes were prepared in international organizations. Current missions (1990-1996) focus on particular topics such as the corona, solar flares, and coronal mass ejections. In planned missions, Sun/Earth interactions and environmental effects of solar activity are becoming more important. The corona is the centre of interest of almost all planned missions

  20. Reticence, Accuracy and Efficacy

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2015-12-01

    James Hansen has cautioned the scientific community against "reticence," by which he means a reluctance to speak in public about the threat of climate change. This may contribute to social inaction, with the result that society fails to respond appropriately to threats that are well understood scientifically. Against this, others have warned against the dangers of "crying wolf," suggesting that reticence protects scientific credibility. We argue that both these positions are missing an important point: that reticence is not only a matter of style but also of substance. In previous work, Bysse et al. (2013) showed that scientific projections of key indicators of climate change have been skewed towards the low end of actual events, suggesting a bias in scientific work. More recently, we have shown that scientific efforts to be responsive to contrarian challenges have led scientists to adopt the terminology of a "pause" or "hiatus" in climate warming, despite the lack of evidence to support such a conclusion (Lewandowsky et al., 2015a. 2015b). In the former case, scientific conservatism has led to under-estimation of climate related changes. In the latter case, the use of misleading terminology has perpetuated scientific misunderstanding and hindered effective communication. Scientific communication should embody two equally important goals: 1) accuracy in communicating scientific information and 2) efficacy in expressing what that information means. Scientists should strive to be neither conservative nor adventurous but to be accurate, and to communicate that accurate information effectively.

  1. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  2. Advancing Profiling Sensors with a Wireless Approach

    PubMed Central

    Galvis, Alex; Russomanno, David J.

    2012-01-01

    The notion of a profiling sensor was first realized by a Near-Infrared (N-IR) retro-reflective prototype consisting of a vertical column of wired sparse detectors. This paper extends that prior work and presents a wireless version of a profiling sensor as a collection of sensor nodes. The sensor incorporates wireless sensing elements, a distributed data collection and aggregation scheme, and an enhanced classification technique. In this novel approach, a base station pre-processes the data collected from the sensor nodes and performs data re-alignment. A back-propagation neural network was also developed for the wireless version of the N-IR profiling sensor that classifies objects into the broad categories of human, animal or vehicle with an accuracy of approximately 94%. These enhancements improve deployment options as compared with the first generation of wired profiling sensors, possibly increasing the application scenarios for such sensors, including intelligent fence applications. PMID:23443371

  3. Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course.

    PubMed

    Dyer, F C; Dickinson, J A

    1994-05-10

    Honeybees and some other insects, in learning the sun's course, behave as if they can estimate the sun's position at times of day when they have never seen it, but there are competing ideas about the computational mechanisms underlying this ability. In an approach to this problem, we provided incubator-reared bees with opportunities to fly and see the sun only during the late afternoon. Then, on a cloudy day, we allowed bees to fly for the first time during the morning and early afternoon, and we observed how they oriented their waggle dances to indicate their direction of flight relative to the sun's position. The clouds denied the bees a direct view of celestial orientation cues and thus forced them to estimate the sun's position on the basis of their experience on previous evenings. During the test days, experience-restricted bees behaved during the entire morning as if they expected the sun to be in an approximately stationary position about 180 degrees from the average solar azimuth that they had experienced on previous evenings; then from about local noon onward they used the evening azimuth. This pattern suggests that honeybees are innately informed of the general pattern of solar movement, such that they can generate an internal representation that incorporates spatial and temporal features of the sun's course that they have never directly seen.

  4. Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications

    PubMed Central

    Khoshelham, Kourosh; Elberink, Sander Oude

    2012-01-01

    Consumer-grade range cameras such as the Kinect sensor have the potential to be used in mapping applications where accuracy requirements are less strict. To realize this potential insight into the geometric quality of the data acquired by the sensor is essential. In this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the accuracy and resolution of its depth data. Based on a mathematical model of depth measurement from disparity a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimeters up to about 4 cm at the maximum range of the sensor. The quality of the data is also found to be influenced by the low resolution of the depth measurements. PMID:22438718

  5. A Bayesian Approach to Sensor Characterization

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.

    2003-01-01

    The physical model of a generic electro-optic sensor is derived and incorporated into a Bayesian framework for the estimation of key instrument parameters from calibration data. The sensor characterization thus achieved enables optimal subsequent removal of instrument effects from field data, leading to the highest possible accuracy in the retrieved physical quantities.

  6. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect

    Kotovksy, J; Tooker, A; Horsley, D

    2010-05-28

    This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid interface loads over tens of thousands of load cycles. The contact-stress sensor is extremely thin (150 {mu}m) and has a linear output with an accuracy of {+-} 1.5% FSO.

  7. Piezoresistive position microsensors with ppm-accuracy

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Shulev, Assen; Stavreva, Galina; Todorov, Vencislav

    2015-05-01

    In this article, the relation between position accuracy and the number of simultaneously measured values, such as coordinates, has been analyzed. Based on this, a conceptual layout of MEMS devices (microsensors) for multidimensional position monitoring comprising a single anchored and a single actuated part has been developed. Both parts are connected with a plurality of micromechanical flexures, and each flexure includes position detecting cantilevers. Microsensors having detecting cantilevers oriented in X and Y direction have been designed and prototyped. Experimentally measured results at characterization of 1D, 2D and 3D position microsensors are reported as well. Exploiting different flexure layouts, a travel range between 50μm and 1.8mm and sensors' sensitivity in the range between 30μV/μm and 5mV/μm@ 1V DC supply voltage have been demonstrated. A method for accurate calculation of all three Cartesian coordinates, based on measurement of at least three microsensors' signals has also been described. The analyses of experimental results prove the capability of position monitoring with ppm-(part per million) accuracy. The technology for fabrication of MEMS devices with sidewall embedded piezoresistors removes restrictions in strong improvement of their usability for position sensing with a high accuracy. The present study is, also a part of a common strategy for developing a novel MEMS-based platform for simultaneous accurate measurement of various physical values when they are transduced to a change of position.

  8. Directionally Sensitive Silicon Radiation Sensor (VCELL)

    NASA Technical Reports Server (NTRS)

    Cook, Koy B.

    2002-01-01

    Sensors are a mission critical element in many NASA programs and require some very unique properties such as small size, low power, high reliability, low weight. Low cost sensors offer the possibility of technology transfer to the public domain for commercial applications. One sensor application that is important to many NASA programs is the ability to point at a radiation source, such as the sun. Such sensors may be an integral part of the guidance and control systems in space platforms and in remote exploratory vehicles. Sun/solar pointing is also important for ground-based systems such as solar arrays. These systems are not required to be small and lightweight. However, if a sensor with a sun pointing capability was developed that is very small, rugged, lightweight and at the same time low cost, it certainly could be used in existing and perhaps many new ground based applications, The objective of the VCELL (Directionally Sensitive Silicon Radiation Sensor) research is to develop a new and very unique silicon based directionally sensitive radiation sensor which can be fabricated using conventional monolithic IC technologies and which will meet the above requirements. The proposed sensor is a novel silicon chip that is directionally sensitive to incident radiation, providing azimuth and elevation information on the incident radiation. The resulting sensor chip will be appropriate for integration into a silicon IC or useful in a hybrid structure to be interfaced with a standard IEEE 1451 bus interface IC to create an Intelligent Sensor. It is presently estimated that it will require about three man-years of effort to complete the VCELL research and development. This includes the optical, electrical, mechanical and silicon fabrication and testing as well as computer simulations and theoretical analysis and modeling including testing in simulated space environments, This report summarizes the sensor research completed this summer as part of the Summer Faculty

  9. Haze and sun angle effects on automatic classification of satellite data-simulation and correction

    NASA Technical Reports Server (NTRS)

    Potter, J. F.

    1975-01-01

    Variations in sun angle and haze level change the spectral signatures collected by multispectral scanners (MSS). This paper describes methods and computer programs that have been developed to simulate the effect of such variations and to correct for them. A basic program, Prediction of the Response of Earth Pointed Sensors (PREPS), is used to calculate the response of the sensor as a function of solar angle, atmospheric haze level, and target reflectance. It is then simply a matter of interpolating these results to simulate changes in haze level or solar angle. In principle, this can be done for any sensor, although at the present time it has been completed for only one - the ERTS-1 MSS.

  10. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    NASA Astrophysics Data System (ADS)

    Rieder, M. J.; Kirchengast, G.

    2001-01-01

    An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50 100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50 100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and

  11. Construction alignment sensor feasibility demonstrations (laser measurement)

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.

    1980-01-01

    The design theory and trade-offs involved in the selection of laser heterodyne sensors for use in active control of spacecraft structures are discussed. These sensors include a HeNe distance measuring system for structures requiring accuracies to .1 mm, a CO2 distance measuring system for measuring unambiuously down to .01 microns, and vibration sensors based on both HeNe and CO2 lasers.

  12. Electrochromic sun control coverings for windows

    SciTech Connect

    Benson, D K; Tracy, C E

    1990-04-01

    The 2 billion square meters (m{sup 2}) of building windows in the United States cause a national energy drain almost as large as the energy supply of the Alaskan oil pipeline. Unlike the pipeline, the drain of energy through windows will continue well into the 21st century. A part of this energy drain is due to unwanted sun gain through windows. This is a problem throughout the country in commercial buildings because they generally require air conditioning even in cold climates. New commercial windows create an additional 1600 MW demand for peak electric power in the United States each year. Sun control films, widely used in new windows and as retrofits to old windows, help to mitigate this problem. However, conventional, static solar control films also block sunlight when it is wanted for warmth and daylighting. New electrochromic, switchable, sun-gain-control films now under development will provide more nearly optimal and automatic sun control for added comfort, decreased building operating expense, and greater energy saving. Switchable, electrochromic films can be deposited on polymers at high speeds by plasma enhanced chemical vapor deposition (PECVD) in a process that may be suitable for roll coating. This paper describes the electrochromic coatings and the PECVD processes, and speculates about their adaptability to high-speed roll coating. 8 refs., 3 figs.

  13. Sun and Shade Leaves: Some Field Investigations.

    ERIC Educational Resources Information Center

    Tomley, David

    1983-01-01

    Several simple experiments illustrating how the light regime affects the final form of dog's mercury (Mercurialis perennis) are provided. These experiments, which can also be done with other plants, focus on differences in the anatomy, morphology, and physiology of sun and shade leaves. (JN)

  14. Learning about the dynamic Sun through sounds

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Quinn, M.; MacCallum, J.; Luhmann, J.

    2007-12-01

    Can we hear the Sun or its solar wind? Not in the sense that they make sound. But we can take the particle, magnetic field, electric field, and image data and turn it into sound to demonstrate what the data tells us. We will present work on turning data from the two-satellite NASA mission called STEREO (Solar TErrestrial RElations Observatory) into sounds and music (sonification). STEREO has two satellites orbiting the Sun near Earth's orbit to study the dynamic eruptions of mass from the outermost atmosphere of the Sun, the Corona. These eruptions are called coronal mass ejections (CMEs). One sonification project aims to inspire musicians, museum patrons, and the public to learn more about CMEs by downloading STEREO data and using it in the software to make music. We will demonstrate the software and discuss the way in which it was developed. A second project aims to produce a museum exhibit using STEREO imagery and sounds from STEREO data. We will discuss a "walk across the Sun" created for this exhibit so people can hear the features on solar images. For example, we will show how pixel intensity translates into pitches from selectable scales with selectable musical scale size and octave locations. We will also share our successes and lessons learned. These two projects stem from the STEREO-IMPACT (In-situ Measurements of Particles and CME Transients) E/PO program and a grant from the IDEAS (The Initiative to Develop Education through Astronomy and Space Science (IDEAS) Grant Program.

  15. A New NASA Book: Touch the Sun

    NASA Astrophysics Data System (ADS)

    Grice, N. A.

    2005-05-01

    People who are blind or visually impaired rely partly on their sense of touch to help paint pictures of objects and places in their mind's eye; however, astronomy and space science are, by nature, generally inaccessible to the touch. The universe, as seen by the Hubble Space Telescope, was made hands-on in 2002 with the publication of Touch the Universe: A NASA Braille Book of Astronomy. This year, the Sun becomes an accessible object in a new universally designed publication called Touch the Sun. Touch the Sun contains text pages with both print and Braille. It features colorful embossed images from the Solar and Heliospheric Observatory (SOHO) and the Transition Region and Coronal Explorer (TRACE) spacecraft. There is also a close-up picture of a sunspot from the National Solar Observatory at Sacramento Peak. Textures of swirling gas currents, dark sunspots, curving magnetic fields and explosive eruptions emphasize the dynamic nature of the Sun. The prototype images were tested with students from the Colorado School for the Deaf and Blind; the images were revised, based upon their evaluations. Drs. Joe Gurman and Steele Hill from the Goddard Space Flight Center served as scientific consultants. Learn more about this special resource and try out some of the tactile images yourself!

  16. Nanoflare Heating of the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2015-12-01

    How the solar corona is heated to temperatures of over 1 MK, while the photosphere below is only ~ 6000 K remains one of the outstanding problems in all of space science. Solving this problem is crucial for understanding Sun-Earth connections, and will provide new insight into universal processes such as magnetic reconnection and wave-particle interactions. We use a systematic technique to analyze the properties of coronal heating throughout the solar corona using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique computes cooling times of the coronal plasma on a pixel-by-pixel basis and has the advantage that it analyzes all of the coronal emission, including the diffuse emission surrounding distinguishable coronal features. We have already applied this technique to 15 different active regions, and find clear evidence for dynamic heating and cooling cycles that are consistent with the 'impulsive nanoflare' scenario. What about the rest of the Solar corona? Whether the quiet Sun is heated in a similar or distinct manner from active regions is a matter of great debate. Here we apply our coronal heating analysis technique to quiet Sun locations. We find areas of quiet Sun locations that also undergo dynamic heating and cooling cycles, consistent with impulsive nanoflares. However, there are important characteristics that are distinct from those of active regions.

  17. Faces of the Recovery Act: Sun Catalytix

    SciTech Connect

    Nocera, Dave

    2010-01-01

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  18. The Helios program and the sun

    NASA Technical Reports Server (NTRS)

    Ousley, G. W.; Kutzer, A.; Panitz, H. J.

    1976-01-01

    Helios A and B are the first two missions inside the orbit of the Mercury towards the sun. They were launched from Cape Kennedy December 10, 1974 and January 15, 1976 respectively. The interplanetary cruise in the ecliptic plane carried the Helios Solar Probes in an ecliptical orbit around the sun to perihelions as close as 0.31 (Helios A) and 0.29 (Helios B) Astronomical Units to the sun. In this technical paper the scientific mission and German and American plans and design versus accomplished mission are presented by the German and United States Project Managers and the Mission Operations Manager. A brief outline of the scope of the project, spacecraft and experiments development, integration and test programs is given. Engineering and system performance results from the Helios A and B flights, which succeeded in passing closer to the sun than any previous spacecraft, are presented. Some of the preliminary scientific findings of the ten active and two passive experiments of this ambitious German/United States cooperative project are outlined.

  19. The Return of the Sun Dragon.

    ERIC Educational Resources Information Center

    Victor, Robert C.

    1984-01-01

    Discusses types of solar eclipses and the frequency of their occurrence. Emphasis is placed on the May 30, 1984 solar eclipse. Ideas for building a pinhole camera to view the eclipse, to determine if the sun is changing size, and to report scientific findings are provided. (BC)

  20. A sun holiday is a sunburn holiday.

    PubMed

    Petersen, Bibi; Thieden, Elisabeth; Philipsen, Peter Alshede; Heydenreich, Jakob; Young, Antony Richard; Wulf, Hans Christian

    2013-08-01

    Many people take holidays in sunny locations with the express aim of sunbathing. This may result in sunburn, which is a risk factor for skin cancer. We investigated 25 Danish sun seekers during a week's holiday in the Canary Islands. The percentage of body surface area with sunburn was determined by daily skin examinations by the same observer. Erythemally effective ultraviolet radiation (UVR) exposure was assessed with time-stamped personal dosimeters worn on the wrist. Volunteers reported their clothing cover and sunscreen use in diaries, and this information was used to determine body site-specific UVR doses after adjustment for sun protection factor. Remarkably, we found that all volunteers sunburned at some point. The risk of sunburn correlated significantly with the adjusted body site-specific UVR dose. Furthermore, there was also a significant relationship between the daily UVR dose and percentage of body surface area with sunburn. Our study shows that holiday UVR exposure results in a high risk of sunburn, which potentially increases the risk of skin cancer. Possible protection by melanogenesis is insufficient to protect against sunburn during a 1-week sun holiday. Finally, our data clearly support a substantial skin cancer risk from sun holidays.

  1. Apollo Telescope Mount Sun End Canister

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM flight unit sun end canister in MSFC's building 4755.

  2. Isotopes Tell Sun's Origin and Operation

    NASA Astrophysics Data System (ADS)

    Manuel, O.; Kamat, Sumeet A.; Mozina, Michael

    2006-03-01

    Modern versions of Aston's mass spectrometer enable measurements of two quantities - isotope abundances and masses - that tell the Sun's origin and operation. Isotope analyses of meteorites, the Earth, Moon, Mars, Jupiter, the solar wind, and solar flares over the past 45 years indicate that fresh, poorly-mixed, supernova debris formed the solar system. The iron-rich Sun formed on the collapsed supernova core and now itself acts as a magnetic plasma diffuser, as did the precursor star, separating ions by mass. This process covers the solar surface with lightweight elements and with the lighter isotopes of each element. Running difference imaging provides supporting evidence of a rigid, iron-rich structure below the Sun's fluid outer layer of lightweight elements. Mass measurements of all 2,850 known nuclides expose repulsive interactions between neutrons that trigger neutron-emission at the solar core, followed by neutron-decay and a series of reactions that collectively generate solar luminosity, solar neutrinos, the carrier gas for solar mass separation, and an outpouring of solar-wind hydrogen from the solar surface. Neutron-emission and neutron-decay generate ~ 65% of solar luminosity; H-fusion ~ 35%, and ~ 1% of the neutron-decay product survives to depart as solar-wind hydrogen. The energy source for the Sun and other ordinary stars seems to be neutron-emission and neutron-decay, with partial fusion of the decay product, rather than simple fusion of hydrogen into helium or heavier elements.

  3. Measuring Pinhole Images of the Sun.

    ERIC Educational Resources Information Center

    Kriss, Victor

    1996-01-01

    Describes a measurement lab that introduces measurement and presents a simple example of how to use error analysis with an obvious illustration of its value. The experiment measures the diameters of pinhole images of the sun and uses them to calculate the heights of the leafy canopy that created the images. (JRH)

  4. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema

    Nocera, Dave

    2016-07-12

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  5. Sun photometer aerosol retrievals during SALTRACE

    NASA Astrophysics Data System (ADS)

    Toledano, Carlos; Torres, Benjamin; Althausen, Dietrich; Groß, Silke; Freudenthaler, Volker; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; Wiegner, Matthias; González, Ramiro; Cachorro, Victoria

    2015-04-01

    The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE), aims at investigating the long-range transport of Saharan dust across the Atlantic Ocean. A large set of ground-based and airborne aerosol and meteorological instrumentation was used for this purpose during a 5-week campaign that took place during June-July 2013. Several Sun photometers were deployed at Barbados Island during this campaign. Two Cimels included in AERONET and the Sun and Sky Automatic Radiometer (SSARA) were co-located with the ground-based lidars BERTHA and POLIS. A set of optical and microphysical aerosol properties derived from Sun and Sky spectral observations (principal plane and almucantar configurations) in the range 340-1640nm are analyzed, including aerosol optical depth (AOD), volume size distribution, complex refractive index, sphericity and single scattering albedo. The Sun photometers include polarization capabilities, therefore apart from the inversion of sky radiances as it is routinely done in AERONET, polarized radiances are also inverted. Several dust events are clearly identified in the measurement period, with moderated AOD (500nm) in the range 0.3 to 0.6. The clean marine background was also observed during short periods. The retrieved aerosol properties are compared with the lidar and in-situ observations carried out within SALTRACE, as well as with data collected during the SAMUM campaigns in Morocco and Cape Verde, in order to investigate possible changes in the dust plume during the transport.

  6. Monster Prominence Erupts from the Sun

    NASA Video Gallery

    When a rather large M 3.6 class flare occurred near the edge of the Sun on Feb. 24, 2011, it blew out a gorgeous, waving mass of erupting plasma that swirled and twisted for 90 minutes. NASA’s So...

  7. The Impact of the Sun on Passive Remote Sensing at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji

    2005-01-01

    The sun is a strong source of radiation at L-band behaving roughly like a thermal source with a temperature ranging between 10(exp 5) - 10(exp 7) K, depending on solar activity. This is an important consideration at 1.4 GHz (the window set aside for passive use only) where future satellite sensors will operate to monitor soil moisture and sea surface salinity (e.g. SMOS, Aquarius, and Hydros). Straight forward calculations show that such a source of radiation can be a significant issue for these remote sensing applications, especially in the case of remote sensing of sea surface salinity. Radiation from the sun impacts passive remote sensing systems in several ways. First, is the solar radiation that comes directly from the sun (line-of-sight from sun to spacecraft that enters the radiometer through antenna side lobes). This is a particular problem for sensors in sunsynchronous orbits near the terminator (e.g. orbits with equatorial crossing times near 6am/6pm) because the spacecraft is in the sun most of the time. Second, is solar radiation that is reflected (specularly) from the mean surface to the radiometer. This contribution can be nearly as large as the direct ray, especially when the reflection is from the ocean surface which has a high reflection coefficient. Finally, there is "incoherent" signal reflected from the surface structure (roughness) to the radiometer antenna. Examples illustrating the significance of these terms is presented for the case of a pushbroom radiometer such as Aquarius and a conically scanning radiometer such as proposed for Hydros. Calculations are made using a set of theoretical patterns for these beams together with data on solar radiation obtained from by a worldwide network of observing stations known as Radio Solar Telescope Network (RSTN). Near solar minimum, solar contamination is not a problem unless the sun enters near the main beam. But near solar maximum, account must be made for radiation from the sun even when the signal

  8. Sun exposure and melanoma prognostic factors

    PubMed Central

    GANDINI, SARA; MONTELLA, MAURIZIO; AYALA, FABRIZIO; BENEDETTO, LUCIA; ROSSI, CARLO RICCARDO; VECCHIATO, ANTONELLA; CORRADIN, MARIA TERESA; DE GIORGI, VINCENZO; QUEIROLO, PAOLA; ZANNETTI, GUIDO; GIUDICE, GIUSEPPE; BORRONI, GIOVANNI; FORCIGNANÒ, ROSACHIARA; PERIS, KETTY; TOSTI, GIULIO; TESTORI, ALESSANDRO; TREVISAN, GIUSTO; SPAGNOLO, FRANCESCO; ASCIERTO, PAOLO A.

    2016-01-01

    Previous studies have reported an association between sun exposure and the increased survival of patients with cutaneous melanoma (CM). The present study analyzed the association between ultraviolet (UV) light exposure and various prognostic factors in the Italian Clinical National Melanoma Registry. Clinical and sociodemographic features were collected, as well as information concerning sunbed exposure and holidays with sun exposure. Analyses were performed to investigate the association between exposure to UV and melanoma prognostic factors. Between December 2010 and December 2013, information was obtained on 2,738 melanoma patients from 38 geographically representative Italian sites. A total of 49% of the patients were >55 years old, 51% were men, 50% lived in the north of Italy and 57% possessed a high level of education (at least high school). A total of 8 patients had a family history of melanoma and 56% had a fair phenotype (Fitzpatrick skin type I or II). Of the total patients, 29% had been diagnosed with melanoma by a dermatologist; 29% of patients presented with a very thick melanoma (Breslow thickness, >2 mm) and 25% with an ulcerated melanoma. In total, 1% of patients had distant metastases and 13% exhibited lymph node involvement. Holidays with sun exposure 5 years prior to CM diagnosis were significantly associated with positive prognostic factors, including lower Breslow thickness (P<0.001) and absence of ulceration (P=0.009), following multiple adjustments for factors such as sociodemographic status, speciality of doctor performing the diagnosis and season of diagnosis. Sunbed exposure and sun exposure during peak hours of sunlight were not significantly associated with Breslow thickness and ulceration. Holidays with sun exposure were associated with favorable CM prognostic factors, whereas no association was identified between sunbed use and sun exposure during peak hours of sunlight with favorable CM prognostic factors. However, the results of the

  9. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  10. Empowering smartphone users with sensor node for air quality measurement

    NASA Astrophysics Data System (ADS)

    Oletic, Dinko; Bilas, Vedran

    2013-06-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  11. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  12. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  13. Variables associated with sun protection behaviour of preschoolers.

    PubMed

    Muñoz Negro, José Eduardo; Buendía-Eisman, Agustín; Cabrera León, Andrés; Serrano Ortega, Salvio

    2011-01-01

    Little research has been published on the variables associated with sun protection behaviour in preschoolers. We aimed to define variables associated with sun protection behaviour of a sample of Spanish preschoolers. A cross-sectional observational study was conducted in two stages: 1) the design and validation of the measurement instrument, and 2) its application in a final sample of 100 (60 valid questionnaires) children for bivariate and multivariate binary logistic regression analyses of the data. The sun protection behaviour of the children was most strongly associated with: parental sun protection behaviour, absence or low frequency of sunburn in parents and children, and lower parental perception of obstacles to sun protection. Other significant factors were lower phototype, younger age, shorter sun exposure times and awareness of the sun as a risk factor. The role of social communication programmes, dermatologists and other agents providing information or sun protection advice was contradictory and associated with lower sun protection in some cases. Parental sun protection, absence or lower frequency of sunburns in parents and children, lower phototype of children, knowledge about sun exposure as a risk factor, younger age and lower parental perception of obstacles to their children's sun protection were significantly associated with the sun protection of the children.

  14. A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun. I. Atmospheric parameters and color similarity to the Sun

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; da Silva, R.; da Silva, L.; de Nader, R. V.

    2014-03-01

    Context. Solar twins and analogs are fundamental in the characterization of the Sun's place in the context of stellar measurements, as they are in understanding how typical the solar properties are in its neighborhood. They are also important for representing sunlight observable in the night sky for diverse photometric and spectroscopic tasks, besides being natural candidates for harboring planetary systems similar to ours and possibly even life-bearing environments. Aims: We report a photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun. Hipparcos absolute magnitudes and (B - V)Tycho colors were used to define a 2σ box around the solar values, where 133 stars were considered. Additional stars resembling the solar UBV colors in a broad sense, plus stars present in the lists of Hardorp, were also selected. All objects were ranked by a color-similarity index with respect to the Sun, defined by uvby and BV photometry. Methods: Moderately high-resolution, high signal-to-noise ratio spectra were used for a subsample of equatorial-southern stars to derive Teff, log g (both ionization and evolutionary), and spectroscopic [Fe/H] with average internal errors better than 50 K, 0.20 dex, and 0.08 dex, respectively. Ages and masses were estimated from theoretical HR diagrams. Results: The color-similarity index proved very successful, since none of the best solar-analog and twin candidates that were photometrically and spectroscopically found to be good solar matches differed from the Sun by more than 3σ in their colors. We identify and quantitatively rank many new excellent solar analogs, which are fit to represent the Sun in the night sky to varying degrees of accuracy and in a wide range of contexts. Some of them are faint enough (VTycho ~ 8.5) to be of interest for moderately large telescopes. We also identify two stars with near-UV spectra indistinguishable from the Sun's, although only HD 140690 also has atmospheric parameters matching

  15. School Sun-Protection Policies--Does Being SunSmart Make a Difference?

    ERIC Educational Resources Information Center

    Turner, Denise; Harrison, Simone L.; Buettner, Petra; Nowak, Madeleine

    2014-01-01

    Evaluate the comprehensiveness of primary school sun-protection policies in tropical North Queensland, Australia. Pre-determined criteria were used to assess publicly available sun-protection policies from primary schools in Townsville (latitude 19.3°S; n = 43), Cairns (16.9°S; n = 46) and the Atherton Tablelands (17.3°S; n = 23) during 2009-2012.…

  16. Accuracy verification of the Lynx Mobile Mapper system

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-02-01

    LiDAR technology is one of the most effective and reliable means of data collection. Given the increasing use of LiDAR data for close range metrology applications such as deformation monitoring and infrastructure inspection, it becomes necessary to test the relative accuracy, boresight calibration of both LiDAR sensors and performance of navigation solution (or absolute accuracy) of any mobile laser scanning system employed for this purpose. Therefore, the paper's primary contribution is a set of tests for the characterization and evaluation of any mobile laser scanning system based on two LiDAR sensors. We present experimental results of the Lynx Mobile Mapper system from Optech Inc. Employing a low-cost calibration standard, we demonstrated sub-cm accuracy of targets at distances up to 10 m. Also, we introduce boresighting results derived from the Lynx system. Moreover, the global system's accuracy is tested with a series of rigorous experiments operated at a maximum scan frequency of 200 Hz, pulse repetition frequency of 500 kHz per sensor and a 360° scanning field of view. Assuring good GPS conditions, we proved a good global performance of the system, which makes it suitable for very accurate applications.

  17. HD 129333: The Sun in its infancy

    NASA Technical Reports Server (NTRS)

    Dorren, J. David; Guinan, Edward F.

    1994-01-01

    HD 129333 is a remarkable young, nearby solar-type G star which offers a unique opportunity of studying the properties of the Sun at a time very shortly after in arrived on the main sequence. Its space motion suggest that it is a member of the Pleiades moving group, with an age of approximately 70 Myr; its lithium abundance is consistent with this. HD 129333 has the highest level of Ca II emission of any G star which is not a member of a close binary. Our observations in 1983 showed it to have low-amplitude (5%) light variations implying a rotation period of about 2.7 days, or about 10 times faster than the Sun. Modeling of the photometric variations on the assumption that they are due to starspots yields a spot temperature about 500 K cooler than the photosphere, and a coverage of about 6% of the stellar surface area. ROSAT observations in 1990 revealed the star to be an X-ray source, with an X-ray luminosity in the 0.2 to 2.4 keV range about 300 times that of the Sun. We have used International Ultraviolet Explorer (IUE) observations in conjuction with ground-based photometry to examine the magnetic activity of this star. The IUE emission-line fluxes reveal a level of chromospheric activity 3 to 20 times greater than the Sun's. The transition-region activity is 20 to 100 times that of the Sun. The activity level of HD 129333 is consistent with the Skumanich law relating activity to age, and with the rotation-activity relation, although it may be near saturation level. This star can yield valuable information about the magnetic dynamo of the young Sun, as well as about stellar dynamos in general. The 1988 IUE observations covered four phases of its rotational cycle. A phase dependence of the Mg II h and k emission flux suggests a close association of chromospheric plages with starspot regions at that time. Systematic variations in the mean brightness of HD 129333 between 1983 and 1993, and in the UV emission fluxes, indicate the presence of an activity cycle of an

  18. Observing the Sun with NuSTAR

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in

  19. Landsat classification accuracy assessment procedures

    USGS Publications Warehouse

    Mead, R. R.; Szajgin, John

    1982-01-01

    A working conference was held in Sioux Falls, South Dakota, 12-14 November, 1980 dealing with Landsat classification Accuracy Assessment Procedures. Thirteen formal presentations were made on three general topics: (1) sampling procedures, (2) statistical analysis techniques, and (3) examples of projects which included accuracy assessment and the associated costs, logistical problems, and value of the accuracy data to the remote sensing specialist and the resource manager. Nearly twenty conference attendees participated in two discussion sessions addressing various issues associated with accuracy assessment. This paper presents an account of the accomplishments of the conference.

  20. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the

  1. Lower Cost CPV 3-Sun Mirror Modules

    SciTech Connect

    Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,; Gehl, Anthony C; Maxey, L Curt

    2007-01-01

    In a series of patent applications filed between 2002 and 2005, JX Crystals Inc described a evolutionary lower-cost low-concentration planar solar photovoltaic module that uses multiple linear rows of silicon cells and standard one-sun circuit laminations incorporating glass and EVA weather proofing encapsulations. The three novel features that we described are interdependent and integrated together to yield lower cost PV modules. These 3 novel features are: (1) The use of rows of linear mirrors or linear Fresnel lenses aligned with the cell rows and concentrating the sunlight onto the cell rows. (2) The addition of a thin aluminum sheet heat spreader on the back of the circuit lamination to spread the heat away from the cell rows so that the cell operating temperature remains acceptably low. (3) The incorporation of slots in the back of the aluminum sheet heat spreader to accommodate the differences in thermal expansion between the silicon cells, the glass, and the aluminum so that the circuit interconnectivity is maintained over time. Various embodiments of this planar linear concentrator panel are shown in figures 1 to 5. Figures 1 and 2 show the original planar linear concentrator module concept from July of 2002 with either mirrors (figure 1) or linear Fresnel lenses (figure 2). The idea was expanded in 2003 with the idea of an aluminum sheet heat spreader added to the back of a standard PV circuit lamination as shown in figure 3. In 2003, we also transitioned from half cells to third cells using SunPower cells as shown in figure 4. JX Crystals Inc then received funding for the 3-sun PV mirror module concept from the Shanghai Science and Technology Commission in 2003 and from the Shanghai Flower Port and the Shanghai Import and Export Trading Company in 2005. This funding led to a 800 panel pilot production run of our JX Crystals designed 3-sun module in 2006. 672 of these panels were installed in a 100 kW demonstration and an additional 24 panels were

  2. A Tracking Sun Photometer Without Moving Parts

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.

    2012-01-01

    This innovation is small, lightweight, and consumes very little electricity as it measures the solar energy attenuated by gases and aerosol particles in the atmosphere. A Sun photometer is commonly used on the Earth's surface, as well as on aircraft, to determine the solar energy attenuated by aerosol particles in the atmosphere and their distribution of sizes. This information is used to determine the spatial and temporal distribution of gases and aerosols in the atmosphere, as well as their distribution sizes. The design for this Sun photometer uses a combination of unique optics and a charge coupled device (CCD) array to eliminate moving parts and make the instrument more reliable. It could be selfcalibrating throughout the year. Data products would be down-welling flux, the direct-diffuse flux ratio, column abundance of gas phase constituents, aerosol optical depth at multiple-wavelengths, phase functions, cloud statistics, and an estimate of the representative size of atmospheric particles. These measurements can be used to obtain an estimate of aerosol size distribution, refractive index, and particle shape. Incident light is received at a light-reflecting (inner) surface, which is a truncated paraboloid. Light arriving from a hemispheric field of view (solid angle 2 steradians) enters the reflecting optic at an entrance aperture at, or adjacent to, the focus of the paraboloid, and is captured by the optic. Most of this light is reflected from an inner surface. The light proceeds substantially parallel to the paraboloid axis, and is detected by an array detector located near an exit aperture. Each of the entrance and exit apertures is formed by the intersection of the paraboloid with a plane substantially perpendicular to the paraboloid axis. Incident (non-reflected) light from a source of limited extent (the Sun) illuminates a limited area on the detector array. Both direct and diffuse illumination may be reflected, or not reflected, before being received on

  3. Laminopathies: too much SUN is a bad thing.

    PubMed

    Starr, Daniel A

    2012-09-11

    SUN proteins accelerate the pathological progression of laminopathies. Although the mechanisms remain to be elucidated, an intriguing possibility is that high levels of SUN proteins lead to a hyperactive DNA damage response.

  4. Sun Blasts 6 CMEs in 24 Hour Period

    NASA Video Gallery

    This movie from the chronograph on board the SOlar and Heliospheric Observatory (SOHO), shows the sun's atmosphere – the corona – from September 17 to September 20. The sun let loose with at ...

  5. NOx Sensor Development

    SciTech Connect

    Woo, L Y; Glass, R S

    2010-11-01

    . Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel

  6. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  7. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  8. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation.

    PubMed

    Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged

  9. Teaching About the Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    This talk will be about the Sun: how it changes with time, its magnetic cycle, flares, and the solar wind. The solar wind and what space is like between the Sun and Earth will be presented. Also, the Earth, its magnetic field, how the solar wind interacts with the Earth, Aurora, and how these affect human systems will be discussed. These interactions dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). Some simple classroom activities will be presented that can be done using new data from space that is available daily on the internet, and how you can use the internet to get space questions answered within about 1 day. Finally, some career opportunities for jobs related to space for the future will be discussed.

  10. How plants LINC the SUN to KASH

    PubMed Central

    Zhou, Xiao; Meier, Iris

    2013-01-01

    Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes formed by SUN and KASH proteins are conserved eukaryotic protein complexes that bridge the nuclear envelope (NE) via protein-protein interactions in the NE lumen. Revealed by opisthokont studies, LINC complexes are key players in multiple cellular processes, such as nuclear and chromosomal positioning and nuclear shape determination, which in turn influence the generation of gametes and several aspects of development. Although comparable processes have long been known in plants, the first plant nuclear envelope bridging complexes were only recently identified. WPP domain-interacting proteins at the outer NE have little homology to known opisthokont KASH proteins, but form complexes with SUN proteins at the inner NE that have plant-specific properties and functions. In this review, we will address the importance of LINC complex-regulated processes, describe the plant NE bridging complexes and compare them to opisthokont LINC complexes. PMID:23680964

  11. PROPERTIES OF NEAR-SUN ASTEROIDS

    SciTech Connect

    Jewitt, David

    2013-05-15

    Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. We conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.

  12. Sun lotion chemicals as endocrine disruptors.

    PubMed

    Maipas, Sotirios; Nicolopoulou-Stamati, Polyxeni

    2015-01-01

    Ultraviolet solar radiation is a well-known environmental health risk factor and the use of sun lotions is encouraged to achieve protection mainly from skin cancer. Sun lotions are cosmetic commercial products that combine active and inactive ingredients and many of these are associated with health problems, including allergic reactions and endocrine disorders. This review focuses on their ability to cause endocrine and reproductive impairments, with emphasis laid on the active ingredients (common and less common UV filters). In vitro and in vivo studies have demonstrated their ability to show oestrogenic/anti-oestrogenic and androgenic/anti-androgenic activity. Many ingredients affect the oestrous cycle, spermatogenesis, sexual behaviour, fertility and other reproductive parameters in experimental animals. Their presence in aquatic environments may reveal a new emerging environmental hazard. PMID:25885102

  13. Sentinels of the Sun: Forecasting Space Weather

    NASA Astrophysics Data System (ADS)

    Poland, Arthur I.

    2006-08-01

    The story of humanity's interest in space weather may go back to prehistoric times when people at high latitudes noticed the northern lights. Interest became more acute after the development of electrical technologies such as the telegraph, and certainly during World War II when shortwave radio communication came into practical use. Solar observing actually began to be supported by the military, with the observatory at Climax, Colorado being established to monitor the Sun during the war. With the advent of satellites and manned space travel to the Moon, space weather became a seriously funded endeavor both for basic research and forecasting. In the book, Sentinels of the Sun: Forecasting Space Weather, Barbara Poppe does an excellent job of telling this story for the nonprofessional. Moreover, as a professional who has studied space weather since before humans landed on the Moon, I found the book to be a very enjoyable read.

  14. Overexposed: The Skin and the Sun

    PubMed Central

    Arlette, John P.

    1987-01-01

    Sunlight produces many changes on our skin. Some of these we appreciate as cosmetically important, and some we see as medically destructive. Changes such as the appearance of wrinkling and skin cancer can come from the long-term direct effects of solar radiation. The sun has indirect effects on the skin which are mediated by disease processes, medications, immune reactants, and biochemical abnormalities. Understanding the nature of sun, how it produces its changes, and the wide variety of these manifestations is an important part of medical practice. By understanding the nature of sunlight, we are able to protect ourselves from its effects and to treat our patients. ImagesFigure 2Figure 3Figure 4Figure 5 PMID:21263953

  15. Sun lotion chemicals as endocrine disruptors.

    PubMed

    Maipas, Sotirios; Nicolopoulou-Stamati, Polyxeni

    2015-01-01

    Ultraviolet solar radiation is a well-known environmental health risk factor and the use of sun lotions is encouraged to achieve protection mainly from skin cancer. Sun lotions are cosmetic commercial products that combine active and inactive ingredients and many of these are associated with health problems, including allergic reactions and endocrine disorders. This review focuses on their ability to cause endocrine and reproductive impairments, with emphasis laid on the active ingredients (common and less common UV filters). In vitro and in vivo studies have demonstrated their ability to show oestrogenic/anti-oestrogenic and androgenic/anti-androgenic activity. Many ingredients affect the oestrous cycle, spermatogenesis, sexual behaviour, fertility and other reproductive parameters in experimental animals. Their presence in aquatic environments may reveal a new emerging environmental hazard.

  16. HIGHEST RESOLUTION OBSERVATIONS OF THE QUIETEST SUN

    SciTech Connect

    Goode, Philip R.; Yurchyshyn, Vasyl; Cao, Wenda; Abramenko, Valentyna; Andic, Aleksandra; Ahn, Kwangsu; Chae, Jongchul

    2010-05-01

    Highest resolution observations made with the new 1.6 m aperture solar telescope in Big Bear Solar Observatory during this time of historic inactivity on the Sun reveal new insights into the small-scale dynamics of the Sun's photosphere. The telescope's unprecedented resolution enabled us to observe that the smallest scale photospheric magnetic field seems to come in isolated points in the dark intergranular lanes, rather than the predicted continuous sheets confined to the lanes, and the unexpected longevity of the bright points implies a deeper anchoring than predicted. Further, we demonstrated for the first time that the photospheric plasma motion and magnetic fields are in equipartition over a wide dynamic range, and both cascade energy to ever-smaller scales according to classical Kolmogorov turbulence theory. Finally, we discovered tiny jet-like features originating in the dark lanes that surround the ubiquitous granules that characterize the solar surface.

  17. Under the Lens: Investigating the Sun's Mysteries

    NASA Astrophysics Data System (ADS)

    Harwood, William; Klotz, Irene

    2008-11-01

    Sometime around 2012, the waxing 11-year solar cycle once again will reach its peak. Between now and then, magnetically turbulent sunspots, spawned by some still mysterious process, will form near the poles in increasing numbers and migrate toward the Sun's faster-rotating equator in pairs of opposite polarity. Titanic magnetic storms will rage as immense flux tubes rise to the surface in active regions around sunspots and spread out in a boiling sea of electric charge. Magnetic field lines across an enormous range of scales will arc and undulate, rip apart and reconnect, heating the Sun's upper atmosphere and occasionally triggering brilliant flares and multibillion-megaton coronal mass ejections (CMEs) that travel through the solar wind and slam into Earth.

  18. We reside in the sun's atmosphere.

    PubMed

    Kamide, Y

    2005-10-01

    The Sun is the origin of all activities of the Earth, including its solid, liquid and gas states, as well as life on the Earth surface. Life was created on this planet and was further evolved after long physical/chemical processes, so that life here matches with what this planet requires. This paper contends that the Earth is located within the solar atmosphere, but we do not feel it in a daily life because of the blocking effects of the Earth's magnetic field and atmosphere, preventing the entry of the solar atmosphere directly into the Earth's domain. This paper emphasizes that we should not attempt to change the quality of the natural environment that delicate interactions between the Sun and the Earth have established for us by taking a long time. PMID:16275476

  19. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  20. Exploring Young People's Beliefs and Images about Sun Safety

    ERIC Educational Resources Information Center

    White, K. M.; Robinson, N. G.; Young, R. McD.; Anderson, P. J.; Hyde, M. K.; Greenbank, S.; Keane, J.; Rolfe, T.; Vardon, P.; Baskerville, D.

    2008-01-01

    To understand young people's low levels of sun protection behaviour, 145 young people (aged 12 to 20 years) were recruited from Queensland, to participate in a one-hour focus group where they discussed issues related to sun protection and images of tanned and non-tanned people. Responses were content analysed to identify common sun protection…