Sample records for accurate analytic description

  1. High precision analytical description of the allowed β spectrum shape

    NASA Astrophysics Data System (ADS)

    Hayen, Leendert; Severijns, Nathal; Bodek, Kazimierz; Rozpedzik, Dagmara; Mougeot, Xavier

    2018-01-01

    A fully analytical description of the allowed β spectrum shape is given in view of ongoing and planned measurements. Its study forms an invaluable tool in the search for physics beyond the standard electroweak model and the weak magnetism recoil term. Contributions stemming from finite size corrections, mass effects, and radiative corrections are reviewed. Particular focus is placed on atomic and chemical effects, where the existing description is extended and analytically provided. The effects of QCD-induced recoil terms are discussed, and cross-checks were performed for different theoretical formalisms. Special attention was given to a comparison of the treatment of nuclear structure effects in different formalisms. Corrections were derived for both Fermi and Gamow-Teller transitions, and methods of analytical evaluation thoroughly discussed. In its integrated form, calculated f values were in agreement with the most precise numerical results within the aimed for precision. The need for an accurate evaluation of weak magnetism contributions was stressed, and the possible significance of the oft-neglected induced pseudoscalar interaction was noted. Together with improved atomic corrections, an analytical description was presented of the allowed β spectrum shape accurate to a few parts in 10-4 down to 1 keV for low to medium Z nuclei, thereby extending the work by previous authors by nearly an order of magnitude.

  2. FAST COGNITIVE AND TASK ORIENTED, ITERATIVE DATA DISPLAY (FACTOID)

    DTIC Science & Technology

    2017-06-01

    approaches. As a result, the following assumptions guided our efforts in developing modeling and descriptive metrics for evaluation purposes...Application Evaluation . Our analytic workflow for evaluation is to first provide descriptive statistics about applications across metrics (performance...distributions for evaluation purposes because the goal of evaluation is accurate description , not inference (e.g., prediction). Outliers depicted

  3. Accurate Estimate of Some Propagation Characteristics for the First Higher Order Mode in Graded Index Fiber with Simple Analytic Chebyshev Method

    NASA Astrophysics Data System (ADS)

    Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas

    2013-03-01

    Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.

  4. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  5. An analytical treatment for three neutrino oscillations in the Earth

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; D'Olivo, J. C.; Supanitsky, A. D.

    2012-08-01

    A simple, and at the same time accurate, description of the Earth matter effects on the oscillations between three neutrino flavors is given in terms of the Magnus expansion for the evolution operator.

  6. Propellant Chemistry for CFD Applications

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.

    1996-01-01

    Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.

  7. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  8. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    NASA Astrophysics Data System (ADS)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  9. Analytical description of changes in the magnetic states of chromium-nickel steel under uniaxial elastic deformation

    NASA Astrophysics Data System (ADS)

    Gorkunov, E. S.; Yakushenko, E. I.; Zadvorkin, S. M.; Mushnikov, A. N.

    2017-12-01

    Dependences of magnetization and magnetic permeability of the 15KhN4D structural steel on the value of uniaxial stresses and magnetic field strength are obtained. A polynomial approximation fairly accurately describing the observed changes is proposed on the basis of experimental data.

  10. The net fractional depth dose: a basis for a unified analytical description of FDD, TAR, TMR, and TPR.

    PubMed

    van de Geijn, J; Fraass, B A

    1984-01-01

    The net fractional depth dose (NFD) is defined as the fractional depth dose (FDD) corrected for inverse square law. Analysis of its behavior as a function of depth, field size, and source-surface distance has led to an analytical description with only seven model parameters related to straightforward physical properties. The determination of the characteristic parameter values requires only seven experimentally determined FDDs. The validity of the description has been tested for beam qualities ranging from 60Co gamma rays to 18-MV x rays, using published data from several different sources as well as locally measured data sets. The small number of model parameters is attractive for computer or hand-held calculator applications. The small amount of required measured data is important in view of practical data acquisition for implementation of a computer-based dose calculation system. The generating function allows easy and accurate generation of FDD, tissue-air ratio, tissue-maximum ratio, and tissue-phantom ratio tables.

  11. Net fractional depth dose: a basis for a unified analytical description of FDD, TAR, TMR, and TPR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van de Geijn, J.; Fraass, B.A.

    The net fractional depth dose (NFD) is defined as the fractional depth dose (FDD) corrected for inverse square law. Analysis of its behavior as a function of depth, field size, and source-surface distance has led to an analytical description with only seven model parameters related to straightforward physical properties. The determination of the characteristic parameter values requires only seven experimentally determined FDDs. The validity of the description has been tested for beam qualities ranging from /sup 60/Co gamma rays to 18-MV x rays, using published data from several different sources as well as locally measured data sets. The small numbermore » of model parameters is attractive for computer or hand-held calculator applications. The small amount of required measured data is important in view of practical data acquisition for implementation of a computer-based dose calculation system. The generating function allows easy and accurate generation of FDD, tissue-air ratio, tissue-maximum ratio, and tissue-phantom ratio tables.« less

  12. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-12-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  13. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  14. s -wave scattering length of a Gaussian potential

    NASA Astrophysics Data System (ADS)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  15. The generalized Sellmeier equation for air

    PubMed Central

    Voronin, A. A.; Zheltikov, A. M.

    2017-01-01

    We present a compact, uniform generalized Sellmeier-equation (GSE) description of air refraction and its dispersion that remains highly accurate within an ultrabroad spectral range from the ultraviolet to the long-wavelength infrared. While the standard Sellmeier equation (SSE) for atmospheric air is not intended for the description of air refractivity in the mid-infrared and long-wavelength infrared, failing beyond, roughly 2.5 μm, our generalization of this equation is shown to agree remarkably well with full-scale air-refractivity calculations involving over half a million atmospheric absorption lines, providing a highly accurate description of air refractivity in the range of wavelengths from 0.3 to 13 μm. With its validity range being substantially broader than the applicability range of the SSE and its accuracy being at least an order of magnitude higher than the accuracy that the SSE can provide even within its validity range, the GSE-based approach offers a powerful analytical tool for the rapidly progressing mid- and long-wavelength-infrared optics of the atmosphere. PMID:28836624

  16. Analytic descriptions of stochastic bistable systems under force ramp

    DOE PAGES

    Friddle, Raymond W.

    2016-05-13

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  17. An accurate analytic description of neutrino oscillations in matter

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Niro, Viviana

    2008-12-01

    A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.

  18. Experimental/analytical approach to understanding mistuning in a transonic wind tunnel compressor

    NASA Technical Reports Server (NTRS)

    Kaiser, Teri; Hansen, Reed S.; Nguyen, Nhan; Hampton, Roy W.; Muzzio, Doug; Chargin, Mladen K.; Guist, Roy; Hamm, Ken; Walker, Len

    1994-01-01

    This paper will briefly set forth some of the basic tenets of mistuned rotating bladed-disk assemblies. The experience with an existing three stage compressor in a transonic wind tunnel will be documented. The manner in which the theoretical properties manifest themselves in this non-ideal compressor will be described. A description of mistuning behaviors that can and cannot be accurately substantiated will be discussed.

  19. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  20. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  1. Variational Trajectory Optimization Tool Set: Technical description and user's manual

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.

    1993-01-01

    The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.

  2. Description of the HiMAT Tailored composite structure and laboratory measured vehicle shape under load

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.

    1981-01-01

    The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.

  3. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    PubMed

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  4. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, Daniel; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de; Rehn, Dirk R.

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states weremore » performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.« less

  5. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  6. New methods for accelerating the convergence of molecular electronic integrals over exponential type orbitals

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan; Hoggan, Philip

    2003-01-01

    This review on molecular integrals for large electronic systems (MILES) places the problem of analytical integration over exponential-type orbitals (ETOs) in a historical context. After reference to the pioneering work, particularly by Barnett, Shavitt and Yoshimine, it focuses on recent progress towards rapid and accurate analytic solutions of MILES over ETOs. Software such as the hydrogenlike wavefunction package Alchemy by Yoshimine and collaborators is described. The review focuses on convergence acceleration of these highly oscillatory integrals and in particular it highlights suitable nonlinear transformations. Work by Levin and Sidi is described and applied to MILES. A step by step description of progress in the use of nonlinear transformation methods to obtain efficient codes is provided. The recent approach developed by Safouhi is also presented. The current state of the art in this field is summarized to show that ab initio analytical work over ETOs is now a viable option.

  7. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis.

    PubMed

    Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-06-01

    Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Spherical Pendulum Small Oscillations for Slewing Crane Motion

    PubMed Central

    Perig, Alexander V.; Stadnik, Alexander N.; Deriglazov, Alexander I.

    2014-01-01

    The present paper focuses on the Lagrange mechanics-based description of small oscillations of a spherical pendulum with a uniformly rotating suspension center. The analytical solution of the natural frequencies' problem has been derived for the case of uniform rotation of a crane boom. The payload paths have been found in the inertial reference frame fixed on earth and in the noninertial reference frame, which is connected with the rotating crane boom. The numerical amplitude-frequency characteristics of the relative payload motion have been found. The mechanical interpretation of the terms in Lagrange equations has been outlined. The analytical expression and numerical estimation for cable tension force have been proposed. The numerical computational results, which correlate very accurately with the experimental observations, have been shown. PMID:24526891

  9. Interactions of bright and dark solitons with localized PT-symmetric potentials.

    PubMed

    Karjanto, N; Hanif, W; Malomed, B A; Susanto, H

    2015-02-01

    We study collisions of moving nonlinear-Schrödinger solitons with a PT-symmetric dipole embedded into the one-dimensional self-focusing or defocusing medium. Accurate analytical results are produced for bright solitons, and, in a more qualitative form, for dark ones. In the former case, an essential aspect of the approximation is that it must take into regard the intrinsic chirp of the soliton, thus going beyond the framework of the simplest quasi-particle description of the soliton's dynamics. Critical velocities separating reflection and transmission of the incident bright solitons are found by means of numerical simulations, and in the approximate semi-analytical form. An exact solution for the dark soliton pinned by the complex PT-symmetric dipole is produced too.

  10. Phenomenological model to fit complex permittivity data of water from radio to optical frequencies.

    PubMed

    Shubitidze, Fridon; Osterberg, Ulf

    2007-04-01

    A general factorized form of the dielectric function together with a fractional model-based parameter estimation method is used to provide an accurate analytical formula for the complex refractive index in water for the frequency range 10(8)-10(16)Hz . The analytical formula is derived using a combination of a microscopic frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic reduction in the imaginary part of the permittivity in the visible window of the water spectrum.

  11. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    NASA Astrophysics Data System (ADS)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  12. Confinement properties of tokamak plasmas with extended regions of low magnetic shear

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.

    2017-10-01

    Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.

  13. The Effective-One-Body Approach to the General Relativistic Two Body Problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Nagar, Alessandro

    The two-body problem in General Relativity has been the subject of many analytical investigations. After reviewing some of the methods used to tackle this problem (and, more generally, the N-body problem), we focus on a new, recently introduced approach to the motion and radiation of (comparable mass) binary systems: the Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

  14. What are the correct ρ0(770 ) meson mass and width values?

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Dubnička, Stanislav; Liptaj, Andrej; Dubničková, Anna Zuzana; Kamiński, Robert

    2017-12-01

    The accuracy of the Gounaris-Sakurai pion electromagnetic form factor model at the elastic region, in which just the ρ0(770 ) resonance appears, is investigated by the particular analysis of the most accurate P-wave isovector π π scattering phase shift δ11(t ) data, obtained by the Garcia-Martin-Kamiński-Peláez-Yndurain approach, and by an application of the Unitary&Analytic pion electromagnetic structure model to a description of the newest precise data on the e+e-→π+π- process.

  15. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - II: Experimental verification

    NASA Astrophysics Data System (ADS)

    Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang; Axner, Ove

    2016-01-01

    Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is normally described by an expression, here termed the conventional (CONV) description, that is restricted to the conventional cavity-limited weak absorption condition (CCLWA), i.e. when the single pass absorbance is significantly smaller than the empty cavity losses, i.e. when α0 L < < π / F. To describe NICE-OHMS signals beyond this limit two simplified extended descriptions (termed the extended locking and extended transmission description, ELET, and the extended locking and full transmission description, ELFT), which are assumed to be valid under the relaxed cavity-limited weak absorption condition (RCLWA), i.e. when α0 L < π / F, and a full description (denoted FULL), presumed to be valid also when the α0 L < π / F condition does not hold, have recently been derived in an accompanying work (Ma W, et al. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - I. Theoretical Description. J Quant Spectrosc Radiat Transfer, 2015, http://dx.doi.org/10.1016/j.jqsrt.2015.09.007). The present work constitutes an experimental verification and assessment of the validity of these, performed in the Doppler limit for a set of Fα0 L / π values (up to 3.5); it is shown under which conditions the various descriptions are valid. It is concluded that for samples with Fα0 L / π up to 0.01, all descriptions replicate the data well. It is shown that the CONV description is adequate and provides accurate assessments of the signal strength (and thereby the analyte concentration) up to Fα0 L / π of around 0.1, while the ELET is accurate for Fα0 L / π up to around 0.3. The ELFT description mimics the Db NICE-OHMS signal well for Fα0 L / π up to around unity, while the FULL description is adequate for all Fα0 L / π values investigated. Access to these descriptions both increases considerably the dynamic range of the technique and facilitates calibration using certified reference gases, which thereby significantly broadens the applicability of the Db NICE-OHMS technique.

  16. Sum-rule corrections: a route to error cancellations in correlation matrix renormalisation theory

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Yao, Y. X.; Wang, C. Z.; Ho, K. M.

    2017-03-01

    We recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a more accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.

  17. Analytical Description of the H/D Exchange Kinetic of Macromolecule.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-04-17

    We present the accurate analytical solution obtained for the system of rate equations describing the isotope exchange process for molecules containing an arbitrary number of equivalent labile atoms. The exact solution was obtained using Mathematica 7.0 software, and this solution has the form of the time-dependent Gaussian distribution. For the case when forward exchange considerably overlaps the back exchange, it is possible to estimate the activation energy of the reaction by obtaining a temperature dependence of the reaction degree. Using a previously developed approach for performing H/D exchange directly in the ESI source, we have estimated the activation energies for ions with different functional groups and they were found to be in a range 0.04-0.3 eV. Since the value of the activation energy depends on the type of functional group, the developed approach can have potential analytical applications for determining types of functional groups in complex mixtures, such as petroleum, humic substances, bio-oil, and so on.

  18. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2004-01-01

    We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.

  19. Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory

    DOE PAGES

    Liu, C.; Liu, J.; Yao, Y. X.; ...

    2017-01-16

    Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less

  20. Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Liu, J.; Yao, Y. X.

    Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less

  1. A General Model for Performance Evaluation in DS-CDMA Systems with Variable Spreading Factors

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Franco; Gambi, Ennio; Righi, Giorgia

    This paper extends previous analytical approaches for the study of CDMA systems to the relevant case of multipath environments where users can operate at different bit rates. This scenario is of interest for the Wideband CDMA strategy employed in UMTS, and the model permits the performance comparison of classic and more innovative spreading signals. The method is based on the characteristic function approach, that allows to model accurately the various kinds of interferences. Some numerical examples are given with reference to the ITU-R M. 1225 Recommendations, but the analysis could be extended to different channel descriptions.

  2. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models

    NASA Astrophysics Data System (ADS)

    Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter

    2013-10-01

    Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.

  3. Two Approaches in the Lunar Libration Theory: Analytical vs. Numerical Methods

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Zagidullin, Arthur; Nefediev, Yurii; Kosulin, Valerii

    2016-10-01

    Observation of the physical libration of the Moon and the celestial bodies is one of the astronomical methods to remotely evaluate the internal structure of a celestial body without using expensive space experiments. Review of the results obtained due to the physical libration study, is presented in the report.The main emphasis is placed on the description of successful lunar laser ranging for libration determination and on the methods of simulating the physical libration. As a result, estimation of the viscoelastic and dissipative properties of the lunar body, of the lunar core parameters were done. The core's existence was confirmed by the recent reprocessing of seismic data Apollo missions. Attention is paid to the physical interpretation of the phenomenon of free libration and methods of its determination.A significant part of the report is devoted to describing the practical application of the most accurate to date the analytical tables of lunar libration built by comprehensive analytical processing of residual differences obtained when comparing the long-term series of laser observations with numerical ephemeris DE421 [1].In general, the basic outline of the report reflects the effectiveness of two approaches in the libration theory - numerical and analytical solution. It is shown that the two approaches complement each other for the study of the Moon in different aspects: numerical approach provides high accuracy of the theory necessary for adequate treatment of modern high-accurate observations and the analytic approach allows you to see the essence of the various kind manifestations in the lunar rotation, predict and interpret the new effects in observations of physical libration [2].[1] Rambaux, N., J. G. Williams, 2011, The Moon's physical librations and determination of their free modes, Celest. Mech. Dyn. Astron., 109, 85-100.[2] Petrova N., A. Zagidullin, Yu. Nefediev. Analysis of long-periodic variations of lunar libration parameters on the basis of analytical theory / // The Russian-Japanese Workshop, 20-25 October, Tokyo (Mitaka) - Mizusawa, Japan. - 2014.

  4. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    PubMed Central

    Ma, Junqing; Song, Aiguo

    2013-01-01

    Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA) to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency. PMID:23686144

  5. Optimal focusing conditions of lenses using Gaussian beams

    DOE PAGES

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; ...

    2016-04-02

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. In this study, we show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used inmore » wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.« less

  6. Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading

    NASA Astrophysics Data System (ADS)

    Berezvai, Szabolcs; Kossa, Attila

    2017-05-01

    This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.

  7. 21 CFR 314.50 - Content and format of an application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the protocol and a description of the statistical analyses used to evaluate the study. If the study... application: (i) Three copies of the analytical procedures and related descriptive information contained in... the samples and to validate the applicant's analytical procedures. The related descriptive information...

  8. 21 CFR 314.50 - Content and format of an application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the protocol and a description of the statistical analyses used to evaluate the study. If the study... application: (i) Three copies of the analytical procedures and related descriptive information contained in... the samples and to validate the applicant's analytical procedures. The related descriptive information...

  9. 21 CFR 314.50 - Content and format of an application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the protocol and a description of the statistical analyses used to evaluate the study. If the study... application: (i) Three copies of the analytical procedures and related descriptive information contained in... the samples and to validate the applicant's analytical procedures. The related descriptive information...

  10. 21 CFR 314.50 - Content and format of an application.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the protocol and a description of the statistical analyses used to evaluate the study. If the study... application: (i) Three copies of the analytical procedures and related descriptive information contained in... the samples and to validate the applicant's analytical procedures. The related descriptive information...

  11. 21 CFR 314.50 - Content and format of an application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the protocol and a description of the statistical analyses used to evaluate the study. If the study... application: (i) Three copies of the analytical procedures and related descriptive information contained in... the samples and to validate the applicant's analytical procedures. The related descriptive information...

  12. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change

    NASA Astrophysics Data System (ADS)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.

    2016-11-01

    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  13. Generalized Stoner-Wohlfarth model accurately describing the switching processes in pseudo-single ferromagnetic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimpoesu, Dorin, E-mail: cdorin@uaic.ro; Stoleriu, Laurentiu; Stancu, Alexandru

    2013-12-14

    We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.

  14. EXPERIMENTAL STUDIES OF IBS (INTRA-BEAM SCATTERING) IN RHIC AND COMPARISON WITH THEORY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FEDOTOV, A.V.; FISCHER, W.; TEPIKIAN, S.

    A high-energy electron cooling system is presently being developed to overcome emittance growth due to Intra-beam Scattering (IBS) in RHIC. A critical item for choosing appropriate parameters of the cooler is an accurate description of the IBS. The analytic models were verified vs dedicated IBS measurements. Analysis of the 2004 data with the Au ions showed very good agreement for the longitudinal growth rates but significant disagreement with exact IBS models for the transverse growth rates. Experimental measurements were improved for the 2005 run with the Cu ions. Here, we present comparison of the 2005 data with theoretical models.

  15. Accurate mass measurements and their appropriate use for reliable analyte identification.

    PubMed

    Godfrey, A Ruth; Brenton, A Gareth

    2012-09-01

    Accurate mass instrumentation is becoming increasingly available to non-expert users. This data can be mis-used, particularly for analyte identification. Current best practice in assigning potential elemental formula for reliable analyte identification has been described with modern informatic approaches to analyte elucidation, including chemometric characterisation, data processing and searching using facilities such as the Chemical Abstracts Service (CAS) Registry and Chemspider.

  16. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  17. New Ways of Treating Data for Diatomic Molecule 'shelf' and Double-Minimum States

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.; Tao, Jason; Khanna, Shirin; Pashov, Asen; Tellinghuisen, Joel

    2017-06-01

    Electronic states whose potential energy functions have 'shelf' or double-minimum shapes have always presented special challenges because, as functions of vibrational quantum number, the vibrational energies/spacings and inertial rotational constants either have an abrupt change of character with discontinuous slope, or past a given point, become completely chaotic. The present work shows that a `traditional' methodology developed for deep `regular' single-well potentials can also provide accurate `parameter-fit' descriptions of the v-dependence of the vibrational energies and rotational constants of shelf-state potentials that allow a conventional RKR calculation of their Potential energy functions. It is also shown that a merging of Pashov's uniquely flexible 'spline point-wise' potential function representation with Le Roy's `Morse/Long-Range' (MLR) analytic functional form which automatically incorporates the correct theoretically known long-range form, yields an analytic function that incorporates most of the advantages of both approaches. An illustrative application of this method to data to a double-minimum state of Na_2 will be described.

  18. Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se

    We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less

  19. Thermodynamically self-consistent theory for the Blume-Capel model.

    PubMed

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  20. A useful approximation for the flat surface impulse response

    NASA Technical Reports Server (NTRS)

    Brown, Gary S.

    1989-01-01

    The flat surface impulse response (FSIR) is a very useful quantity in computing the mean return power for near-nadir-oriented short-pulse radar altimeters. However, for very small antenna beamwidths and relatively large pointing angles, previous analytical descriptions become very difficult to compute accurately. An asymptotic approximation is developed to overcome these computational problems. Since accuracy is of key importance, a condition is developed under which this solution is within 2 percent of the exact answer. The asymptotic solution is shown to be in functional agreement with a conventional clutter power result and gives a 1.25-dB correction to this formula to account properly for the antenna-pattern variation over the illuminated area.

  1. A six-parameter Iwan model and its application

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming

    2016-02-01

    Iwan model is a practical tool to describe the constitutive behaviors of joints. In this paper, a six-parameter Iwan model based on a truncated power-law distribution with two Dirac delta functions is proposed, which gives a more comprehensive description of joints than the previous Iwan models. Its analytical expressions including backbone curve, unloading curves and energy dissipation are deduced. Parameter identification procedures and the discretization method are also provided. A model application based on Segalman et al.'s experiment works with bolted joints is carried out. Simulation effects of different numbers of Jenkins elements are discussed. The results indicate that the six-parameter Iwan model can be used to accurately reproduce the experimental phenomena of joints.

  2. A study of density effects in plasmas using analytical approximations for the self-consistent potential

    NASA Astrophysics Data System (ADS)

    Poirier, M.

    2015-06-01

    Density effects in ionized matter require particular attention since they modify energies, wavefunctions and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound electrons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a theory provides simple and rather accurate analytical approximations for the potential created by free electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temperature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the case of maximum orbital quantum number, and compare satisfactorily with results from a direct integration of the radial Schrödinger equation. Some formulas for lower orbital quantum numbers are also proposed.

  3. Analytical modelling of temperature effects on an AMPA-type synapse.

    PubMed

    Kufel, Dominik S; Wojcik, Grzegorz M

    2018-05-11

    It was previously reported, that temperature may significantly influence neural dynamics on the different levels of brain function. Thus, in computational neuroscience, it would be useful to make models scalable for a wide range of various brain temperatures. However, lack of experimental data and an absence of temperature-dependent analytical models of synaptic conductance does not allow to include temperature effects at the multi-neuron modeling level. In this paper, we propose a first step to deal with this problem: A new analytical model of AMPA-type synaptic conductance, which is able to incorporate temperature effects in low-frequency stimulations. It was constructed based on Markov model description of AMPA receptor kinetics using the set of coupled ODEs. The closed-form solution for the set of differential equations was found using uncoupling assumption (introduced in the paper) with few simplifications motivated both from experimental data and from Monte Carlo simulation of synaptic transmission. The model may be used for computationally efficient and biologically accurate implementation of temperature effects on AMPA receptor conductance in large-scale neural network simulations. As a result, it may open a wide range of new possibilities for researching the influence of temperature on certain aspects of brain functioning.

  4. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    NASA Astrophysics Data System (ADS)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  5. Finding accurate frontiers: A knowledge-intensive approach to relational learning

    NASA Technical Reports Server (NTRS)

    Pazzani, Michael; Brunk, Clifford

    1994-01-01

    An approach to analytic learning is described that searches for accurate entailments of a Horn Clause domain theory. A hill-climbing search, guided by an information based evaluation function, is performed by applying a set of operators that derive frontiers from domain theories. The analytic learning system is one component of a multi-strategy relational learning system. We compare the accuracy of concepts learned with this analytic strategy to concepts learned with an analytic strategy that operationalizes the domain theory.

  6. Modeling methodology for a CMOS-MEMS electrostatic comb

    NASA Astrophysics Data System (ADS)

    Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.

    2002-04-01

    A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.

  7. 21 CFR 314.94 - Content and format of an abbreviated application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... bioequivalence study contained in the abbreviated new drug application, a description of the analytical and... exclusivity under section 505(j)(5)(F) of the act. (9) Chemistry, manufacturing, and controls. (i) The... the act and one copy of the analytical procedures and descriptive information needed by FDA's...

  8. 21 CFR 314.94 - Content and format of an abbreviated application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... bioequivalence study contained in the abbreviated new drug application, a description of the analytical and... exclusivity under section 505(j)(5)(F) of the act. (9) Chemistry, manufacturing, and controls. (i) The... the act and one copy of the analytical procedures and descriptive information needed by FDA's...

  9. Stochastic dynamics of cholera epidemics

    NASA Astrophysics Data System (ADS)

    Azaele, Sandro; Maritan, Amos; Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2010-05-01

    We describe the predictions of an analytically tractable stochastic model for cholera epidemics following a single initial outbreak. The exact model relies on a set of assumptions that may restrict the generality of the approach and yet provides a realm of powerful tools and results. Without resorting to the depletion of susceptible individuals, as usually assumed in deterministic susceptible-infected-recovered models, we show that a simple stochastic equation for the number of ill individuals provides a mechanism for the decay of the epidemics occurring on the typical time scale of seasonality. The model is shown to provide a reasonably accurate description of the empirical data of the 2000/2001 cholera epidemic which took place in the Kwa Zulu-Natal Province, South Africa, with possibly notable epidemiological implications.

  10. Analysis of Magnitude Correlations in a Self-Similar model of Seismicity

    NASA Astrophysics Data System (ADS)

    Zambrano, A.; Joern, D.

    2017-12-01

    A recent model of seismicity that incorporates a self-similar Omori-Utsu relation, which is used to describe the temporal evolution of earthquake triggering, has been shown to provide a more accurate description of seismicity in Southern California when compared to epidemic type aftershock sequence models. Forecasting of earthquakes is an active research area where one of the debated points is whether magnitude correlations of earthquakes exist within real world seismic data. Prior to this work, the analysis of magnitude correlations of the aforementioned self-similar model had not been addressed. Here we present statistical properties of the magnitude correlations for the self-similar model along with an analytical analysis of the branching ratio and criticality parameters.

  11. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw gaseous exhaust sampling and... Gaseous Exhaust Test Procedures § 91.414 Raw gaseous exhaust sampling and analytical system description... the component systems. (g) The following requirements must be incorporated in each system used for raw...

  12. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and... Gaseous Exhaust Test Procedures § 91.414 Raw gaseous exhaust sampling and analytical system description... the component systems. (g) The following requirements must be incorporated in each system used for raw...

  13. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of... analytical system description. (a) General. The exhaust gas sampling system described in this section is...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 90.420 of this...

  14. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of... analytical system description. (a) General. The exhaust gas sampling system described in this section is...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 90.420 of this...

  15. A Descriptive-Analytic Study of the Practice Field Behavior of a Winning Female Coach.

    ERIC Educational Resources Information Center

    Dodds, Patt; Rife, Frank

    A winning collegiate field hockey coach was observed across seventeen practice sessions through one complete competitive season. A category system for the event recording of verbal and nonverbal behaviors delivered to the team and to the sixteen individual players produced descriptive-analytic information about relative behavior frequencies for…

  16. Fluorescence polarization immunoassays for rapid, accurate, and sensitive determination of mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...

  17. Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function.

    PubMed

    Rule, Geoffrey S; Clark, Zlatuse D; Yue, Bingfang; Rockwood, Alan L

    2013-04-16

    Stable isotope-labeled internal standards are of great utility in providing accurate quantitation in mass spectrometry (MS). An implicit assumption has been that there is no "cross talk" between signals of the internal standard and the target analyte. In some cases, however, naturally occurring isotopes of the analyte do contribute to the signal of the internal standard. This phenomenon becomes more pronounced for isotopically rich compounds, such as those containing sulfur, chlorine, or bromine, higher molecular weight compounds, and those at high analyte/internal standard concentration ratio. This can create nonlinear calibration behavior that may bias quantitative results. Here, we propose the use of a nonlinear but more accurate fitting of data for these situations that incorporates one or two constants determined experimentally for each analyte/internal standard combination and an adjustable calibration parameter. This fitting provides more accurate quantitation in MS-based assays where contributions from analyte to stable labeled internal standard signal exist. It can also correct for the reverse situation where an analyte is present in the internal standard as an impurity. The practical utility of this approach is described, and by using experimental data, the approach is compared to alternative fits.

  18. Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Dylan; Miller, G. P.

    This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physicsmore » determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.« less

  19. 75 FR 62520 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Thursday, October 7, 2010. Docket Numbers: ER10-2541-001. Applicants: Maple Analytics, LLC. Description: Maple Analytics, LLC submits tariff filing per 35: Maple Analytics, LLC Compliance Filing to be...

  20. Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data.

    PubMed

    Hammitt, Laura L; Feikin, Daniel R; Scott, J Anthony G; Zeger, Scott L; Murdoch, David R; O'Brien, Katherine L; Deloria Knoll, Maria

    2017-06-15

    Despite tremendous advances in diagnostic laboratory technology, identifying the pathogen(s) causing pneumonia remains challenging because the infected lung tissue cannot usually be sampled for testing. Consequently, to obtain information about pneumonia etiology, clinicians and researchers test specimens distant to the site of infection. These tests may lack sensitivity (eg, blood culture, which is only positive in a small proportion of children with pneumonia) and/or specificity (eg, detection of pathogens in upper respiratory tract specimens, which may indicate asymptomatic carriage or a less severe syndrome, such as upper respiratory infection). While highly sensitive nucleic acid detection methods and testing of multiple specimens improve sensitivity, multiple pathogens are often detected and this adds complexity to the interpretation as the etiologic significance of results may be unclear (ie, the pneumonia may be caused by none, one, some, or all of the pathogens detected). Some of these challenges can be addressed by adjusting positivity rates to account for poor sensitivity or incorporating test results from controls without pneumonia to account for poor specificity. However, no classical analytic methods can account for measurement error (ie, sensitivity and specificity) for multiple specimen types and integrate the results of measurements for multiple pathogens to produce an accurate understanding of etiology. We describe the major analytic challenges in determining pneumonia etiology and review how the common analytical approaches (eg, descriptive, case-control, attributable fraction, latent class analysis) address some but not all challenges. We demonstrate how these limitations necessitate a new, integrated analytical approach to pneumonia etiology data. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  1. Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data

    PubMed Central

    Feikin, Daniel R.; Scott, J. Anthony G.; Zeger, Scott L.; Murdoch, David R.; O’Brien, Katherine L.; Deloria Knoll, Maria

    2017-01-01

    Abstract Despite tremendous advances in diagnostic laboratory technology, identifying the pathogen(s) causing pneumonia remains challenging because the infected lung tissue cannot usually be sampled for testing. Consequently, to obtain information about pneumonia etiology, clinicians and researchers test specimens distant to the site of infection. These tests may lack sensitivity (eg, blood culture, which is only positive in a small proportion of children with pneumonia) and/or specificity (eg, detection of pathogens in upper respiratory tract specimens, which may indicate asymptomatic carriage or a less severe syndrome, such as upper respiratory infection). While highly sensitive nucleic acid detection methods and testing of multiple specimens improve sensitivity, multiple pathogens are often detected and this adds complexity to the interpretation as the etiologic significance of results may be unclear (ie, the pneumonia may be caused by none, one, some, or all of the pathogens detected). Some of these challenges can be addressed by adjusting positivity rates to account for poor sensitivity or incorporating test results from controls without pneumonia to account for poor specificity. However, no classical analytic methods can account for measurement error (ie, sensitivity and specificity) for multiple specimen types and integrate the results of measurements for multiple pathogens to produce an accurate understanding of etiology. We describe the major analytic challenges in determining pneumonia etiology and review how the common analytical approaches (eg, descriptive, case-control, attributable fraction, latent class analysis) address some but not all challenges. We demonstrate how these limitations necessitate a new, integrated analytical approach to pneumonia etiology data. PMID:28575372

  2. Motion of vortices in inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Groszek, Andrew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-02-01

    We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial, and are thus difficult to efficiently and accurately model using a simplified point-vortex description.

  3. Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2018-05-01

    Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to complex values. The parameters of ZREFT can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a real potential due to the exchange of electroweak gauge bosons and an imaginary potential due to wino-pair annihilation into electroweak gauge bosons. ZREFT at leading order gives an accurate analytic description of low-energy wino-wino scattering, inclusive wino-pair annihilation, and a wino-pair bound state. ZREFT can also be applied to partial annihilation rates, such as the Sommerfeld enhancement of the annihilation rate of wino pairs into monochromatic photons.

  4. Thermal effects in two-phase flow through face seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Basu, Prithwish

    1988-01-01

    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.

  5. Evaluation of selected methods for determining streamflow during periods of ice effect

    USGS Publications Warehouse

    Melcher, N.B.; Walker, J.F.

    1990-01-01

    The methods are classified into two general categories, subjective and analytical, depending on whether individual judgement is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods, and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used for streamflow-gaging stations where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice adjustment factor) may be appropriate for use for stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge ratio and multiple regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.

  6. Analytical gradients for MP2, double hybrid functionals, and TD‐DFT with polarizable embedding described by fluctuating charges

    PubMed Central

    Carnimeo, Ivan; Cappelli, Chiara

    2015-01-01

    A polarizable quantum mechanics (QM)/ molecular mechanics (MM) approach recently developed for Hartree–Fock (HF) and Kohn–Sham (KS) methods has been extended to energies and analytical gradients for MP2, double hybrid functionals, and TD‐DFT models, thus allowing the computation of equilibrium structures for excited electronic states together with more accurate results for ground electronic states. After a detailed presentation of the theoretical background and of some implementation details, a number of test cases are analyzed to show that the polarizable embedding model based on fluctuating charges (FQ) is remarkably more accurate than the corresponding electronic embedding based on a fixed charge (FX) description. In particular, a set of electronegativities and hardnesses has been optimized for interactions between QM and FQ regions together with new repulsion–dispersion parameters. After validation of both the numerical implementation and of the new parameters, absorption electronic spectra have been computed for representative model systems including vibronic effects. The results show remarkable agreement with full QM computations and significant improvement with respect to the corresponding FX results. The last part of the article provides some hints about computation of solvatochromic effects on absorption spectra in aqueous solution as a function of the number of FQ water molecules and on the use of FX external shells to improve the convergence of the results. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26399473

  7. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  8. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  9. Model reduction for stochastic chemical systems with abundant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equationmore » which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.« less

  10. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  11. Finding Our Way through Phenotypes

    PubMed Central

    Deans, Andrew R.; Lewis, Suzanna E.; Huala, Eva; Anzaldo, Salvatore S.; Ashburner, Michael; Balhoff, James P.; Blackburn, David C.; Blake, Judith A.; Burleigh, J. Gordon; Chanet, Bruno; Cooper, Laurel D.; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T. Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E.; Dumontier, Michel; Franz, Nico M.; Friedrich, Frank; Gkoutos, George V.; Haendel, Melissa; Harmon, Luke J.; Hayamizu, Terry F.; He, Yongqun; Hines, Heather M.; Ibrahim, Nizar; Jackson, Laura M.; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J.; Le Novère, Nicolas; Lundberg, John G.; Macklin, James; Mast, Austin R.; Midford, Peter E.; Mikó, István; Mungall, Christopher J.; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J.; Richter, Stefan; Robinson, Peter N.; Ruttenberg, Alan; Schulz, Katja S.; Segerdell, Erik; Seltmann, Katja C.; Sharkey, Michael J.; Smith, Aaron D.; Smith, Barry; Specht, Chelsea D.; Squires, R. Burke; Thacker, Robert W.; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D.; Vogt, Lars; Wall, Christine E.; Walls, Ramona L.; Westerfeld, Monte; Wharton, Robert A.; Wirkner, Christian S.; Woolley, James B.; Yoder, Matthew J.; Zorn, Aaron M.; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316

  12. Finding our way through phenotypes.

    PubMed

    Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

  13. A model of cause—effect relations in the study of behavior

    PubMed Central

    Chisholm, Drake C.; Cook, Donald A.

    1995-01-01

    A three-phase model useful in teaching the analysis of behavior is presented. The model employs a “black box” behavior inventory diagram (BID), with a single output arrow representing behavior and three input arrows representing stimulus field, reversible states, and conditioning history. The first BID describes the organism at Time 1, and the second describes it at Time 2. Separating the two inventory diagrams is a column for the description of the intervening procedure. The model is used as a one-page handout, and students fill in the corresponding empty areas on the sheet as they solve five types of application problems. Instructors can use the BID to shape successive approximations in the accurate use of behavior-analytic vocabulary, conceptual analysis, and applications of behavior-change strategies. PMID:22478209

  14. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  15. Insight solutions are correct more often than analytic solutions

    PubMed Central

    Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark

    2016-01-01

    How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960

  16. Effective description of domain wall strings

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.

    2018-04-01

    The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.

  17. Lessons learned from the study of masturbation and its comorbidity with psychiatric disorders in children: The first analytic study.

    PubMed

    Tashakori, Ashraf; Safavi, Atefeh; Neamatpour, Sorour

    2017-04-01

    The main source of information about children's masturbation is more on the basis of case reports. Due to the lack of consistent and accurate information. This study aimed to determine prevalence and underlying factors of masturbation and its comorbidity with psychiatric disorders in children. In this descriptive-analytical study, among the children referred to the Pediatrics Clinic of Psychiatric Ward, Golestan Hospital, Ahvaz, Southwest Iran, 98 children were selected by convenience sampling in 2014. Disorders were diagnosed by clinical interview based on the fourth edition of the Diagnostic and Statistical Manual for Psychiatric Disorders (DSM-IV) and the Child Symptom Inventory-4 (CSI-4). We also used a questionnaire, containing demographic information about the patient and their family and also other data. Data was analyzed using descriptive statistics and chi-square test with SPSS software version 16. Of the children who participated in this study (most of whom were boys), 31.6% suffered from masturbation. The phobias (p=0.002), separation anxiety disorder (p=0.044), generalized anxiety disorder (p=0.037), motor tics (p=0.033), stress disorder (p=0.005), oppositional defiant disorder (p=0.044), thumb sucking (p=0.000) and conduct disorder (p=0.001) were associated with masturbation. Masturbation was common in children referred to psychiatric clinic, and may be more associated with oppositional defiant disorder, or conduct disorder, some anxiety disorders, motor tics and other stereotypical behavior. Authors recommended more probing for psychiatric disorders in children with unusual sexual behavior.

  18. Lessons learned from the study of masturbation and its comorbidity with psychiatric disorders in children: The first analytic study

    PubMed Central

    Tashakori, Ashraf; Safavi, Atefeh; Neamatpour, Sorour

    2017-01-01

    Background The main source of information about children’s masturbation is more on the basis of case reports. Due to the lack of consistent and accurate information. Objective This study aimed to determine prevalence and underlying factors of masturbation and its comorbidity with psychiatric disorders in children. Methods In this descriptive-analytical study, among the children referred to the Pediatrics Clinic of Psychiatric Ward, Golestan Hospital, Ahvaz, Southwest Iran, 98 children were selected by convenience sampling in 2014. Disorders were diagnosed by clinical interview based on the fourth edition of the Diagnostic and Statistical Manual for Psychiatric Disorders (DSM-IV) and the Child Symptom Inventory-4 (CSI-4). We also used a questionnaire, containing demographic information about the patient and their family and also other data. Data was analyzed using descriptive statistics and chi-square test with SPSS software version 16. Results Of the children who participated in this study (most of whom were boys), 31.6% suffered from masturbation. The phobias (p=0.002), separation anxiety disorder (p=0.044), generalized anxiety disorder (p=0.037), motor tics (p=0.033), stress disorder (p=0.005), oppositional defiant disorder (p=0.044), thumb sucking (p=0.000) and conduct disorder (p=0.001) were associated with masturbation. Conclusion Masturbation was common in children referred to psychiatric clinic, and may be more associated with oppositional defiant disorder, or conduct disorder, some anxiety disorders, motor tics and other stereotypical behavior. Authors recommended more probing for psychiatric disorders in children with unusual sexual behavior. PMID:28607641

  19. Prediction of electronic structure of organic radicaloid anions using efficient, economical multireference gradient approach.

    PubMed

    Chattopadhyay, Sudip; Chaudhuri, Rajat K; Freed, Karl F

    2011-04-28

    The improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method enables an economical and reasonably accurate treatment of static correlation in systems with significant multireference character, even when using a moderate basis set. This IVO-CASCI method supplants the computationally more demanding complete active space self-consistent field (CASSCF) method by producing comparable accuracy with diminished computational effort because the IVO-CASCI approach does not require additional iterations beyond an initial SCF calculation, nor does it encounter convergence difficulties or multiple solutions that may be found in CASSCF calculations. Our IVO-CASCI analytical gradient approach is applied to compute the equilibrium geometry for the ground and lowest excited state(s) of the theoretically very challenging 2,6-pyridyne, 1,2,3-tridehydrobenzene and 1,3,5-tridehydrobenzene anionic systems for which experiments are lacking, accurate quantum calculations are almost completely absent, and commonly used calculations based on single reference configurations fail to provide reasonable results. Hence, the computational complexity provides an excellent test for the efficacy of multireference methods. The present work clearly illustrates that the IVO-CASCI analytical gradient method provides a good description of the complicated electronic quasi-degeneracies during the geometry optimization process for the radicaloid anions. The IVO-CASCI treatment produces almost identical geometries as the CASSCF calculations (performed for this study) at a fraction of the computational labor. Adiabatic energy gaps to low lying excited states likewise emerge from the IVO-CASCI and CASSCF methods as very similar. We also provide harmonic vibrational frequencies to demonstrate the stability of the computed geometries.

  20. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  1. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    PubMed

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  2. High-temperature ratchets with sawtooth potentials

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2016-11-01

    The concept of the effective potential is suggested as an efficient instrument to get a uniform analytical description of stochastic high-temperature on-off flashing and rocking ratchets. The analytical representation for the average particle velocity, obtained within this technique, allows description of ratchets with sharp potentials (and potentials with jumps in particular). For sawtooth potentials, the explicit analytical expressions for the average velocity of on-off flashing and rocking ratchets valid for arbitrary frequencies of potential energy fluctuations are derived; the difference in their high-frequency asymptotics is explored for the smooth and cusped profiles, and profiles with jumps. The origin of the difference as well as the appearance of the jump behavior in ratchet characteristics are interpreted in terms of self-similar universal solutions which give the continuous description of the effect. It is shown how the jump behavior in motor characteristics arises from the competition between the characteristic times of the system.

  3. Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2003-02-01

    We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.

  4. Psychiatric epidemiology: selected recent advances and future directions.

    PubMed Central

    Kessler, R. C.

    2000-01-01

    Reviewed in this article are selected recent advances and future challenges for psychiatric epidemiology. Major advances in descriptive psychiatric epidemiology in recent years include the development of reliable and valid fully structured diagnostic interviews, the implementation of parallel cross-national surveys of the prevalences and correlates of mental disorders, and the initiation of research in clinical epidemiology. Remaining challenges include the refinement of diagnostic categories and criteria, recognition and evaluation of systematic underreporting bias in surveys of mental disorders, creation and use of accurate assessment tools for studying disorders of children, adolescents, the elderly, and people in less developed countries, and setting up systems to carry out small area estimations for needs assessment and programme planning. Advances in analytical and experimental epidemiology have been more modest. A major challenge is for psychiatric epidemiologists to increase the relevance of their analytical research to their colleagues in preventative psychiatry as well as to social policy analysts. Another challenge is to develop interventions aimed at increasing the proportion of people with mental disorders who receive treatment. Despite encouraging advances, much work still needs to be conducted before psychiatric epidemiology can realize its potential to improve the mental health of populations. PMID:10885165

  5. Wavelet-based analysis of circadian behavioral rhythms.

    PubMed

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.

  6. Capillary Flow in an Interior Corner

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark Milton

    1996-01-01

    The design of fluids management processes in the low-gravity environment of space requires an accurate model and description of capillarity-controlled flow in containers of irregular geometry. Here we consider the capillary rise of a fluid along an interior corner of a container following a rapid reduction in gravity. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the corner, small inertia, and low gravity. New similarity solutions are found and a list of closed form expressions is provided for flow rate and column length. In particular, it is found that the flow is proportional to t(exp 1/2) for a constant height boundary condition, t(exp 2/5) for a spreading drop, and t(exp 3/5) for constant flow. In the experimental portion of the work, measurements from a 2.2s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. Comprehensive comparisons are made which illustrate the applicability of the analytic results to low-g fluid systems design.

  7. MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Samsing, Johan; Askar, Abbas; Giersz, Mirek

    2018-03-01

    We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.

  8. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  9. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  10. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less

  11. Analytical Chemistry: A Literary Approach.

    ERIC Educational Resources Information Center

    Lucy, Charles A.

    2000-01-01

    Provides an anthology of references to descriptions of analytical chemistry techniques from history, popular fiction, and film which can be used to capture student interest and frame discussions of chemical techniques. (WRM)

  12. Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water capture zone boundaries for individual pumped wells in a confined aquffer were delineated by using groundwater models. Both analytical and numerical (semi-analytical) models that more accurately represent the $round-water-flow system were used. All models delineated 2-dimensional boundaries (capture zones) that represent the areal extent of groundwater contribution to a pumped well. The resultant capture zones were evaluated on the basis of the ability of each model to realistically rapresent the part of the ground-water-flow system that contributed water to the pumped wells. Analytical models used were based on a fixed radius approach, and induded; an arbitrary radius model, a calculated fixed radius model based on the volumetric-flow equation with a time-of-travel criterion, and a calculated fixed radius model derived from modification of the Theis model with a drawdown criterion. Numerical models used induded the 2-dimensional, finite-difference models RESSQC and MWCAP. The arbitrary radius and Theis analytical models delineated capture zone boundaries that compared least favorably with capture zones delineated using the volumetric-flow analytical model and both numerical models. The numerical models produced more hydrologically reasonable capture zones (that were oriented parallel to the regional flow direction) than the volumetric-flow equation. The RESSQC numerical model computed more hydrologically realistic capture zones than the MWCAP numerical model by accounting for changes in the shape of capture zones caused by multiple-well interference. The capture zone boundaries generated by using both analytical and numerical models indicated that the curnmtly used 100-foot radius of protection around a wellhead in South Carolina is an underestimate of the extent of ground-water capture for pumped wetis in this particular wellfield in the Upper Floridan aquifer. The arbitrary fixed radius of 100 feet was shown to underestimate the upgradient contribution of ground-water flow to a pumped well.

  13. Above-threshold ionization in multicenter molecules: The role of the initial state

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Pisanty, Emilio; Ortmann, Lisa; Landsman, Alexandra S.; Picón, Antonio; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.

    2018-03-01

    A possible route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal and nanometer spatial resolution is to employ recolliding electrons as "probes." The recollision process in molecules is, however, very challenging to treat using ab initio approaches. Even for the simplest diatomic systems, such as H2, today's computational capabilities are not enough to give a complete description of the electron and nuclear dynamics initiated by a strong laser field. As a consequence, approximate qualitative descriptions are called to play an important role. In this paper we extend the work presented in Suárez et al. [N. Suárez, A. Chacón, J. A. Pérez-Hernández, J. Biegert, M. Lewenstein, and M. F. Ciappina, High-order-harmonic generation in atomic and molecular systems, Phys. Rev. A 95, 033415 (2017), 10.1103/PhysRevA.95.033415] to three-center molecular targets. Additionally, we incorporate a more accurate description of the molecular ground state, employing information extracted from quantum chemistry software packages. This step forward allows us to include, in a detailed way, both the molecular symmetries and nodes present in the high-occupied molecular orbital. We are able, on the one hand, to keep our formulation as analytical as in the case of diatomics and, on the other hand, to still give a complete description of the underlying physics behind the above-threshold ionization process. The application of our approach to complex multicenter—with more than three centers—targets appears to be straightforward.

  14. Is Analytic Information Processing a Feature of Expertise in Medicine?

    ERIC Educational Resources Information Center

    McLaughlin, Kevin; Rikers, Remy M.; Schmidt, Henk G.

    2008-01-01

    Diagnosing begins by generating an initial diagnostic hypothesis by automatic information processing. Information processing may stop here if the hypothesis is accepted, or analytical processing may be used to refine the hypothesis. This description portrays analytic processing as an optional extra in information processing, leading us to…

  15. The Analytical Limits of Modeling Short Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Kent, A. J.

    2016-12-01

    Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.

  16. Sequentially Simulated Outcomes: Kind Experience versus Nontransparent Description

    ERIC Educational Resources Information Center

    Hogarth, Robin M.; Soyer, Emre

    2011-01-01

    Recently, researchers have investigated differences in decision making based on description and experience. We address the issue of when experience-based judgments of probability are more accurate than are those based on description. If description is well understood ("transparent") and experience is misleading ("wicked"), it…

  17. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  18. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  19. Accurate analytical modeling of junctionless DG-MOSFET by green's function approach

    NASA Astrophysics Data System (ADS)

    Nandi, Ashutosh; Pandey, Nilesh

    2017-11-01

    An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.

  20. 76 FR 24820 - Supplemental Nutrition Assistance Program: Review of Major Changes in Program Design and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... estimated. The proposed rule will require that State agencies provide descriptive information regarding the... Burden on Respondents Section 272.12(3) requires that States provide both descriptive and analytic... analysis in the normal course of their own planning and decisionmaking. The descriptive information should...

  1. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill.

    PubMed

    Adhikari, Puspa L; Wong, Roberto L; Overton, Edward B

    2017-10-01

    Accurate characterization of petroleum hydrocarbons in complex and weathered oil residues is analytically challenging. This is primarily due to chemical compositional complexity of both the oil residues and environmental matrices, and the lack of instrumental selectivity due to co-elution of interferences with the target analytes. To overcome these analytical selectivity issues, we used an enhanced resolution gas chromatography coupled with triple quadrupole mass spectrometry in Multiple Reaction Monitoring (MRM) mode (GC/MS/MS-MRM) to eliminate interferences within the ion chromatograms of target analytes found in environmental samples. This new GC/MS/MS-MRM method was developed and used for forensic fingerprinting of deep-water and marsh sediment samples containing oily residues from the Deepwater Horizon oil spill. The results showed that the GC/MS/MS-MRM method increases selectivity, eliminates interferences, and provides more accurate quantitation and characterization of trace levels of alkyl-PAHs and biomarker compounds, from weathered oil residues in complex sample matrices. The higher selectivity of the new method, even at low detection limits, provides greater insights on isomer and homolog compositional patterns and the extent of oil weathering under various environmental conditions. The method also provides flat chromatographic baselines for accurate and unambiguous calculation of petroleum forensic biomarker compound ratios. Thus, this GC/MS/MS-MRM method can be a reliable analytical strategy for more accurate and selective trace level analyses in petroleum forensic studies, and for tacking continuous weathering of oil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microfluidic inertial focusing fundamentals, limitations and applications for biomedical sample processing

    NASA Astrophysics Data System (ADS)

    Reece, Amy E.

    The microfabrication of microfluidic control systems and advances in molecular amplification tools has enabled the miniaturization of single cell analytical platforms for the efficient, highly selective enumeration and molecular characterization of rare and diseased cells from clinical samples. In many cases, the high-throughput nature of microfluidic inertial focusing has enabled the popularization of this new class of Lab-on-a-Chip devices that exhibit numerous advantages over conventional methods as prognostic and diagnostic tools. Inertial focusing is the passive, sheathless alignment of particles and cells to precise spatiotemporal equilibrium positions that arise from a force balance between opposing inertial lift forces and hydrodynamic repulsions. The applicability of inertial focusing to a spectrum of filtration, separation and encapsulation challenges places heavy emphasis upon the accurate description of the hydrodynamic forces responsible for predictable inertial focusing behavior. These inertial focusing fundamentals, limitations and their applications are studied extensively throughout this work.

  3. Simulation of FIB-SEM images for analysis of porous microstructures.

    PubMed

    Prill, Torben; Schladitz, Katja

    2013-01-01

    Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.

  4. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  5. Dissolution of bulk specimens of silicon nitride

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  6. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  7. A charge-based model of Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  8. Theoretical predictor for candidate structure assignment from IMS data of biomolecule-related conformational space.

    PubMed

    Schenk, Emily R; Nau, Frederic; Fernandez-Lima, Francisco

    2015-06-01

    The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.

  9. Nanoscale Heat Conduction in Crystalline Solids

    NASA Astrophysics Data System (ADS)

    Christenson, Joel; Phillips, Ronald

    Heat conduction in crystalline solids occurs through the motion of molecular-scale vibrations, or phonons. In continuum scale problems, there are sufficient phonon-phonon interactions for local equilibrium to be established, and heat conduction is accurately described by Fourier's law. However, at length scales comparable to the phonon mean free path, Fourier's law becomes inaccurate, and more fundamental descriptions of heat transfer are required. We are investigating the viability of the phonon Boltzmann Transport Equation (BTE) to describe heat conduction in nanoscale simulations of the high-explosive material β-HMX. By using a combination of numerical and analytic solutions of the BTE, we demonstrate the existence of physical behavior that is not qualitatively captured by the classical Fourier's law in the nanoscale regime. The results are interpreted in terms of continuum-scale simulations of shock-induced collapse of air-filled pores in β-HMX, which is believed to be a precursory step towards complete detonation of the material.

  10. Plasma brake model for preliminary mission analysis

    NASA Astrophysics Data System (ADS)

    Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.

    2018-03-01

    Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.

  11. Analytic and heuristic processing influences on adolescent reasoning and decision-making.

    PubMed

    Klaczynski, P A

    2001-01-01

    The normative/descriptive gap is the discrepancy between actual reasoning and traditional standards for reasoning. The relationship between age and the normative/descriptive gap was examined by presenting adolescents with a battery of reasoning and decision-making tasks. Middle adolescents (N = 76) performed closer to normative ideals than early adolescents (N = 66), although the normative/descriptive gap was large for both groups. Correlational analyses revealed that (1) normative responses correlated positively with each other, (2) nonnormative responses were positively interrelated, and (3) normative and nonnormative responses were largely independent. Factor analyses suggested that performance was based on two processing systems. The "analytic" system operates on "decontextualized" task representations and underlies conscious, computational reasoning. The "heuristic" system operates on "contextualized," content-laden representations and produces "cognitively cheap" responses that sometimes conflict with traditional norms. Analytic processing was more clearly linked to age and to intelligence than heuristic processing. Implications for cognitive development, the competence/performance issue, and rationality are discussed.

  12. Description and Recognition of the Concept of Social Capital in Higher Education System

    ERIC Educational Resources Information Center

    Tonkaboni, Forouzan; Yousefy, Alireza; Keshtiaray, Narges

    2013-01-01

    The current research is intended to describe and recognize the concept of social capital in higher education based on theoretical method in a descriptive-analytical approach. Description and Recognition of the data, gathered from theoretical and experimental studies, indicated that social capital is one of the most important indices for…

  13. Reporting guidelines for primary research: Saying what you did.

    PubMed

    O'Connor, Annette

    2010-12-01

    Reporting guidelines aim to facilitate publication of a full and accurate description of research conducted. The motivations for a full and accurate description of research is to enable reproduction of the study, assessment of bias, extraction of data from the study, and to fulfill an ethical obligation to maximize the utility of research findings. Many reporting guidelines exist and most are based on a specific study design such as randomized controlled trials (CONSORT statement) and observational studies (STROBE statement). The REFLECT statement focuses on randomized control trials in livestock and food safety studies. The REFLECT statement has increased emphasis on conveying information about animal housing, group level allocation and challenge studies. Guidelines can be used by authors, reviewers and editors to provide readers with a full and accurate description of the work conducted. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Analytical Description of Ascending Motion of Rockets in the Atmosphere

    ERIC Educational Resources Information Center

    Rodrigues, H.; de Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and…

  15. Soft Biometrics; Human Identification Using Comparative Descriptions.

    PubMed

    Reid, Daniel A; Nixon, Mark S; Stevenage, Sarah V

    2014-06-01

    Soft biometrics are a new form of biometric identification which use physical or behavioral traits that can be naturally described by humans. Unlike other biometric approaches, this allows identification based solely on verbal descriptions, bridging the semantic gap between biometrics and human description. To permit soft biometric identification the description must be accurate, yet conventional human descriptions comprising of absolute labels and estimations are often unreliable. A novel method of obtaining human descriptions will be introduced which utilizes comparative categorical labels to describe differences between subjects. This innovative approach has been shown to address many problems associated with absolute categorical labels-most critically, the descriptions contain more objective information and have increased discriminatory capabilities. Relative measurements of the subjects' traits can be inferred from comparative human descriptions using the Elo rating system. The resulting soft biometric signatures have been demonstrated to be robust and allow accurate recognition of subjects. Relative measurements can also be obtained from other forms of human representation. This is demonstrated using a support vector machine to determine relative measurements from gait biometric signatures-allowing retrieval of subjects from video footage by using human comparisons, bridging the semantic gap.

  16. A note on the accuracy of spectral method applied to nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Wong, Peter S.

    1994-01-01

    Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.

  17. Forest landscape description and inventories - a basis for landplanning and design

    Treesearch

    R. Burton Litton

    1968-01-01

    Describes six analytical factors and seven compositional types useful in recognition and description of scenic resources. Illustrates their application in two inventories made to aid managers and landscape architects in planning and design.

  18. Visual analytics of brain networks.

    PubMed

    Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming

    2012-05-15

    Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Unified description of astrophysical properties of neutron stars independent of the equation of state

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2015-12-01

    In recent years, a lot of work was done that has revealed some very interesting properties of neutron stars. One can relate the first few multipole moments of a neutron star, or quantities that can be derived from them, with relations that are independent of the equation of state (EoS). This is a very significant result that has great implications for the description of neutron stars and in particular for the description of the spacetime around them. Additionally, it was recently shown that there is a four-parameter analytic spacetime, known as the two-soliton spacetime, which can accurately capture the properties of the geometry around neutron stars. This allows for the possibility of describing in a unified formalism the astrophysically relevant properties of the spacetime around a neutron star independently of the particulars of the EoS for the matter of the star. More precisely, the description of these astrophysical properties is done using an EoS omniscient spacetime that can describe the exterior of any neutron star. In the present work, we investigate properties such as the location of the innermost stable circular orbit RISCO (or the surface of the star when the latter overcomes the former), the various frequencies of perturbed circular equatorial geodesics, the efficiency of an accretion disc, its temperature distribution, and other properties associated with the emitted radiation from the disc, in a way that holds for all possible choices of a realistic EoS for the neutron star. Furthermore, we provide proof of principle that if one were to measure the right combinations of pairs of these properties, with the additional knowledge of the mass of the neutron star, one could determine the EoS of the star.

  20. Field-driven chiral bubble dynamics analysed by a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.; Leliaert, J.; Dupré, L.; Van Waeyenberge, B.

    2017-12-01

    Nowadays, field-driven chiral bubble dynamics in the presence of the Dzyaloshinskii-Moriya interaction are a topic of thorough investigation. In this paper, a semi-analytical approach is used to derive equations of motion that express the bubble wall (BW) velocity and the change in in-plane magnetization angle as function of the micromagnetic parameters of the involved interactions, thereby taking into account the two-dimensional nature of the bubble wall. It is demonstrated that the equations of motion enable an accurate description of the expanding and shrinking convex bubble dynamics and an expression for the transition field between shrinkage and expansion is derived. In addition, these equations of motion show that the BW velocity is not only dependent on the driving force, but also on the BW curvature. The absolute BW velocity increases for both a shrinking and an expanding bubble, but for different reasons: for expanding bubbles, it is due to the increasing importance of the driving force, while for shrinking bubbles, it is due to the increasing importance of contributions related to the BW curvature. Finally, using this approach we show how the recently proposed magnetic bubblecade memory can operate in the flow regime in the presence of a tilted sinusoidal magnetic field and at greatly reduced bubble sizes compared to the original device prototype.

  1. Formulation of the linear model from the nonlinear simulation for the F18 HARV

    NASA Technical Reports Server (NTRS)

    Hall, Charles E., Jr.

    1991-01-01

    The F-18 HARV is a modified F-18 Aircraft which is capable of flying in the post-stall regime in order to achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area is not sufficiently developed to allow its application to this problem, since many of the theorems are existance theorems and that the systems are composed of analytic functions. Thus, the feedback matrices and the state estimators are obtained from linear system theory techniques. It is important, in order to obtain the correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics be as accurate as possible. A nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data. ACSL has commands to form the linear representation for the system. Other aspects of this investigation are discussed.

  2. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  3. Evaluation of selected methods for determining streamflow during periods of ice effect

    USGS Publications Warehouse

    Melcher, Norwood B.; Walker, J.F.

    1992-01-01

    Seventeen methods for estimating ice-affected streamflow are evaluated for potential use with the U.S. Geological Survey streamflow-gaging station network. The methods evaluated were identified by written responses from U.S. Geological Survey field offices and by a comprehensive literature search. The methods selected and techniques used for applying the methods are described in this report. The methods are evaluated by comparing estimated results with data collected at three streamflow-gaging stations in Iowa during the winter of 1987-88. Discharge measurements were obtained at 1- to 5-day intervals during the ice-affected periods at the three stations to define an accurate baseline record. Discharge records were compiled for each method based on data available, assuming a 6-week field schedule. The methods are classified into two general categories-subjective and analytical--depending on whether individual judgment is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used at streamflow-gaging stations, where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice-adjustment factor) may be appropriate for use at stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge-ratio and multiple-regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.

  4. Compact and Hybrid Feature Description for Building Extraction

    NASA Astrophysics Data System (ADS)

    Li, Z.; Liu, Y.; Hu, Y.; Li, P.; Ding, Y.

    2017-05-01

    Building extraction in aerial orthophotos is crucial for various applications. Currently, deep learning has been shown to be successful in addressing building extraction with high accuracy and high robustness. However, quite a large number of samples is required in training a classifier when using deep learning model. In order to realize accurate and semi-interactive labelling, the performance of feature description is crucial, as it has significant effect on the accuracy of classification. In this paper, we bring forward a compact and hybrid feature description method, in order to guarantees desirable classification accuracy of the corners on the building roof contours. The proposed descriptor is a hybrid description of an image patch constructed from 4 sets of binary intensity tests. Experiments show that benefiting from binary description and making full use of color channels, this descriptor is not only computationally frugal, but also accurate than SURF for building extraction.

  5. Analytical description of the ternary melt and solution crystallization with a non-linear phase diagram

    NASA Astrophysics Data System (ADS)

    Toropova, L. V.; Alexandrov, D. V.

    2018-05-01

    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  6. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  7. Basic research and data analysis for the earth and ocean physics applications program and for the National Geodetic Satellite Program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Data analysis and supporting research in connection with the following objectives are discussed: (1) provide a precise and accurate geometric description of the earth's surface, (2) provide a precise and accurate mathematical description of the earth's gravitational field, and (3) determine time variations of the geometry of the ocean surface, the solid earth, the gravity field and other geophysical parameters.

  8. Creating analytically divergence-free velocity fields from grid-based data

    NASA Astrophysics Data System (ADS)

    Ravu, Bharath; Rudman, Murray; Metcalfe, Guy; Lester, Daniel R.; Khakhar, Devang V.

    2016-10-01

    We present a method, based on B-splines, to calculate a C2 continuous analytic vector potential from discrete 3D velocity data on a regular grid. A continuous analytically divergence-free velocity field can then be obtained from the curl of the potential. This field can be used to robustly and accurately integrate particle trajectories in incompressible flow fields. Based on the method of Finn and Chacon (2005) [10] this new method ensures that the analytic velocity field matches the grid values almost everywhere, with errors that are two to four orders of magnitude lower than those of existing methods. We demonstrate its application to three different problems (each in a different coordinate system) and provide details of the specifics required in each case. We show how the additional accuracy of the method results in qualitatively and quantitatively superior trajectories that results in more accurate identification of Lagrangian coherent structures.

  9. Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman

    2011-06-01

    This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.

  10. Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2 (110) Intermolecular Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Tunega, Daniel; Xu, Lai

    2013-08-29

    In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreementmore » with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.« less

  11. Teaching Analytical Thinking

    ERIC Educational Resources Information Center

    Behn, Robert D.; Vaupel, James W.

    1976-01-01

    Description of the philosophy and general nature of a course at Drake University that emphasizes basic concepts of analytical thinking, including think, decompose, simplify, specify, and rethink problems. Some sample homework exercises are included. The journal is available from University of California Press, Berkeley, California 94720.…

  12. Selection of Wavelengths for Optimum Precision in Simultaneous Spectrophotometric Determinations.

    ERIC Educational Resources Information Center

    DiTusa, Michael R.; Schilt, Alfred A.

    1985-01-01

    Although many textbooks include a description of simultaneous determinations employing absorption spectrophotometry and treat the mathematics necessary for analytical quantitations, treatment of analytical wavelength selection has been mostly qualitative. Therefore, a general method for selecting wavelengths for optimum precision in simultaneous…

  13. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  14. Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putter, Roland de; Wagner, Christian; Verde, Licia

    2012-04-01

    Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory andmore » while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only ∼ 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc{sup −1} at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc{sup −1}. As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.« less

  15. Measuring bio-oil upgrade intermediates and corrosive species with polarity-matched analytical approaches

    DOE PAGES

    Connatser, Raynella M.; Lewis, Sr., Samuel Arthur; Keiser, James R.; ...

    2014-10-03

    Integrating biofuels with conventional petroleum products requires improvements in processing to increase blendability with existing fuels. This work demonstrates analysis techniques for more hydrophilic bio-oil liquids that give improved quantitative and qualitative description of the total acid content and organic acid profiles. To protect infrastructure from damage and reduce the cost associated with upgrading, accurate determination of acid content and representative chemical compound analysis are central imperatives to assessing both the corrosivity and the progress toward removing oxygen and acidity in processed biomass liquids. Established techniques form an ample basis for bio-liquids evaluation. However, early in the upgrading process, themore » unique physical phases and varied hydrophilicity of many pyrolysis liquids can render analytical methods originally designed for use in petroleum-derived oils inadequate. In this work, the water solubility of the organic acids present in bio-oils is exploited in a novel extraction and titration technique followed by analysis on the water-based capillary electrophoresis (CE) platform. The modification of ASTM D664, the standard for Total Acid Number (TAN), to include aqueous carrier solvents improves the utility of that approach for quantifying acid content in hydrophilic bio-oils. Termed AMTAN (modified Total Acid Number), this technique offers 1.2% relative standard deviation and dynamic range comparable to the conventional ASTM method. Furthermore, the results of corrosion product evaluations using several different sources of real bio-oil are discussed in the context of the unique AMTAN and CE analytical approaches developed to facilitate those measurements.« less

  16. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.

    PubMed

    McCarty, J; Clark, A J; Copperman, J; Guenza, M G

    2014-05-28

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  17. Note: Model identification and analysis of bivalent analyte surface plasmon resonance data.

    PubMed

    Tiwari, Purushottam Babu; Üren, Aykut; He, Jin; Darici, Yesim; Wang, Xuewen

    2015-10-01

    Surface plasmon resonance (SPR) is a widely used, affinity based, label-free biophysical technique to investigate biomolecular interactions. The extraction of rate constants requires accurate identification of the particular binding model. The bivalent analyte model involves coupled non-linear differential equations. No clear procedure to identify the bivalent analyte mechanism has been established. In this report, we propose a unique signature for the bivalent analyte model. This signature can be used to distinguish the bivalent analyte model from other biphasic models. The proposed method is demonstrated using experimentally measured SPR sensorgrams.

  18. DidFail: Coverage and Precision Enhancement

    DTIC Science & Technology

    2017-07-07

    Android developer website [4] for a detailed description of these methods. To test this approach, we developed two example apps with different complexities...broadcast receivers by performing an extra analytical step to find dynamic receivers and append descriptions of them to the manifest file before the data

  19. Basic research and data analysis for the National Geodetic Satellite Program and for the Earth and Ocean Physics Application Program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Accomplishments in the continuing programs are reported. The data were obtained in support of the following broad objectives: (1) to provide a precise and accurate geometric description of the earth's surface; (2) to provide a precise and accurate mathematical description of the earth's gravitational field; and (3) to determine time variations of the geometry of the ocean surface, the solid earth, the gravity field, and other geophysical parameters.

  20. Temporal Learning Analytics for Adaptive Assessment

    ERIC Educational Resources Information Center

    Papamitsiou, Zacharoula; Economides, Anastasios A.

    2014-01-01

    Accurate and early predictions of student performance could significantly affect interventions during teaching and assessment, which gradually could lead to improved learning outcomes. In our research, we seek to identify and formalize temporal parameters as predictors of performance ("temporal learning analytics" or TLA) and examine…

  1. High-Resolution Metabolomics Assessment of Military Personnel: Evaluating Analytical Strategies for Chemical Detection.

    PubMed

    Liu, Ken H; Walker, Douglas I; Uppal, Karan; Tran, ViLinh; Rohrbeck, Patricia; Mallon, Timothy M; Jones, Dean P

    2016-08-01

    The aim of this study was to maximize detection of serum metabolites with high-resolution metabolomics (HRM). Department of Defense Serum Repository (DoDSR) samples were analyzed using ultrahigh resolution mass spectrometry with three complementary chromatographic phases and four ionization modes. Chemical coverage was evaluated by number of ions detected and accurate mass matches to a human metabolomics database. Individual HRM platforms provided accurate mass matches for up to 58% of the KEGG metabolite database. Combining two analytical methods increased matches to 72% and included metabolites in most major human metabolic pathways and chemical classes. Detection and feature quality varied by analytical configuration. Dual chromatography HRM with positive and negative electrospray ionization provides an effective generalized method for metabolic assessment of military personnel.

  2. High-resolution metabolomics assessment of military personnel: Evaluating analytical strategies for chemical detection

    PubMed Central

    Liu, Ken H.; Walker, Douglas I.; Uppal, Karan; Tran, ViLinh; Rohrbeck, Patricia; Mallon, Timothy M.; Jones, Dean P.

    2016-01-01

    Objective To maximize detection of serum metabolites with high-resolution metabolomics (HRM). Methods Department of Defense Serum Repository (DoDSR) samples were analyzed using ultra-high resolution mass spectrometry with three complementary chromatographic phases and four ionization modes. Chemical coverage was evaluated by number of ions detected and accurate mass matches to a human metabolomics database. Results Individual HRM platforms provided accurate mass matches for up to 58% of the KEGG metabolite database. Combining two analytical methods increased matches to 72%, and included metabolites in most major human metabolic pathways and chemical classes. Detection and feature quality varied by analytical configuration. Conclusions Dual chromatography HRM with positive and negative electrospray ionization provides an effective generalized method for metabolic assessment of military personnel. PMID:27501105

  3. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  4. Can Raters with Reduced Job Descriptive Information Provide Accurate Position Analysis Questionnaire (PAQ) Ratings?

    ERIC Educational Resources Information Center

    Friedman, Lee; Harvey, Robert J.

    1986-01-01

    Job-naive raters provided with job descriptive information made Position Analysis Questionnaire (PAQ) ratings which were validated against ratings of job analysts who were also job content experts. None of the reduced job descriptive information conditions enabled job-naive raters to obtain either acceptable levels of convergent validity with…

  5. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  6. IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics

    PubMed Central

    2016-01-01

    Background We live in an era of explosive data generation that will continue to grow and involve all industries. One of the results of this explosion is the need for newer and more efficient data analytics procedures. Traditionally, data analytics required a substantial background in statistics and computer science. In 2015, International Business Machines Corporation (IBM) released the IBM Watson Analytics (IBMWA) software that delivered advanced statistical procedures based on the Statistical Package for the Social Sciences (SPSS). The latest entry of Watson Analytics into the field of analytical software products provides users with enhanced functions that are not available in many existing programs. For example, Watson Analytics automatically analyzes datasets, examines data quality, and determines the optimal statistical approach. Users can request exploratory, predictive, and visual analytics. Using natural language processing (NLP), users are able to submit additional questions for analyses in a quick response format. This analytical package is available free to academic institutions (faculty and students) that plan to use the tools for noncommercial purposes. Objective To report the features of IBMWA and discuss how this software subjectively and objectively compares to other data mining programs. Methods The salient features of the IBMWA program were examined and compared with other common analytical platforms, using validated health datasets. Results Using a validated dataset, IBMWA delivered similar predictions compared with several commercial and open source data mining software applications. The visual analytics generated by IBMWA were similar to results from programs such as Microsoft Excel and Tableau Software. In addition, assistance with data preprocessing and data exploration was an inherent component of the IBMWA application. Sensitivity and specificity were not included in the IBMWA predictive analytics results, nor were odds ratios, confidence intervals, or a confusion matrix. Conclusions IBMWA is a new alternative for data analytics software that automates descriptive, predictive, and visual analytics. This program is very user-friendly but requires data preprocessing, statistical conceptual understanding, and domain expertise. PMID:27729304

  7. IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics.

    PubMed

    Hoyt, Robert Eugene; Snider, Dallas; Thompson, Carla; Mantravadi, Sarita

    2016-10-11

    We live in an era of explosive data generation that will continue to grow and involve all industries. One of the results of this explosion is the need for newer and more efficient data analytics procedures. Traditionally, data analytics required a substantial background in statistics and computer science. In 2015, International Business Machines Corporation (IBM) released the IBM Watson Analytics (IBMWA) software that delivered advanced statistical procedures based on the Statistical Package for the Social Sciences (SPSS). The latest entry of Watson Analytics into the field of analytical software products provides users with enhanced functions that are not available in many existing programs. For example, Watson Analytics automatically analyzes datasets, examines data quality, and determines the optimal statistical approach. Users can request exploratory, predictive, and visual analytics. Using natural language processing (NLP), users are able to submit additional questions for analyses in a quick response format. This analytical package is available free to academic institutions (faculty and students) that plan to use the tools for noncommercial purposes. To report the features of IBMWA and discuss how this software subjectively and objectively compares to other data mining programs. The salient features of the IBMWA program were examined and compared with other common analytical platforms, using validated health datasets. Using a validated dataset, IBMWA delivered similar predictions compared with several commercial and open source data mining software applications. The visual analytics generated by IBMWA were similar to results from programs such as Microsoft Excel and Tableau Software. In addition, assistance with data preprocessing and data exploration was an inherent component of the IBMWA application. Sensitivity and specificity were not included in the IBMWA predictive analytics results, nor were odds ratios, confidence intervals, or a confusion matrix. IBMWA is a new alternative for data analytics software that automates descriptive, predictive, and visual analytics. This program is very user-friendly but requires data preprocessing, statistical conceptual understanding, and domain expertise.

  8. Mapping the Diversity among Runaways: A Descriptive Multivariate Analysis of Selected Social Psychological Background Conditions.

    ERIC Educational Resources Information Center

    Brennan, Tim

    1980-01-01

    A review of prior classification systems of runaways is followed by a descriptive taxonomy of runaways developed using cluster-analytic methods. The empirical types illustrate patterns of weakness in bonds between runaways and families, schools, or peer relationships. (Author)

  9. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  10. Analytical Models of Legislative Texts for Muslim Scholars

    ERIC Educational Resources Information Center

    Alwan, Ammar Abdullah Naseh; Yusoff, Mohd Yakubzulkifli Bin Mohd; Al-Hami, Mohammad Said M.

    2011-01-01

    The significance of the analytical models in traditional Islamic studies is that they contribute in sharpening the intellectual capacity of the students of Islamic studies. Research literature in Islamic studies has descriptive side predominantly; the information is gathered and compiled and rarely analyzed properly. This weakness is because of…

  11. Analytic and Heuristic Processing Influences on Adolescent Reasoning and Decision-Making.

    ERIC Educational Resources Information Center

    Klaczynski, Paul A.

    2001-01-01

    Examined the relationship between age and the normative/descriptive gap--the discrepancy between actual reasoning and traditional standards for reasoning. Found that middle adolescents performed closer to normative ideals than early adolescents. Factor analyses suggested that performance was based on two processing systems, analytic and heuristic…

  12. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape.

    PubMed

    Krivov, Sergei V

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  13. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  14. Optimal dimensionality reduction of complex dynamics: The chess game as diffusion on a free-energy landscape

    NASA Astrophysics Data System (ADS)

    Krivov, Sergei V.

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game—the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  15. Effect of coulomb spline on rotor dynamic response

    NASA Technical Reports Server (NTRS)

    Nataraj, C.; Nelson, H. D.; Arakere, N.

    1985-01-01

    A rigid rotor system coupled by a coulomb spline is modelled and analyzed by approximate analytical and numerical analytical methods. Expressions are derived for the variables of the resulting limit cycle and are shown to be quite accurate for a small departure from isotropy.

  16. Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2006-01-01

    An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.

  17. The use of cognitive task analysis to improve instructional descriptions of procedures.

    PubMed

    Clark, Richard E; Pugh, Carla M; Yates, Kenneth A; Inaba, Kenji; Green, Donald J; Sullivan, Maura E

    2012-03-01

    Surgical training relies heavily on the ability of expert surgeons to provide complete and accurate descriptions of a complex procedure. However, research from a variety of domains suggests that experts often omit critical information about the judgments, analysis, and decisions they make when solving a difficult problem or performing a complex task. In this study, we compared three methods for capturing surgeons' descriptions of how to perform the procedure for inserting a femoral artery shunt (unaided free-recall, unaided free-recall with simulation, and cognitive task analysis methods) to determine which method produced more accurate and complete results. Cognitive task analysis was approximately 70% more complete and accurate than free-recall and or free-recall during a simulation of the procedure. Ten expert trauma surgeons at a major urban trauma center were interviewed separately and asked to describe how to perform an emergency shunt procedure. Four surgeons provided an unaided free-recall description of the shunt procedure, five surgeons provided an unaided free-recall description of the procedure using visual aids and surgical instruments (simulation), and one (chosen randomly) was interviewed using cognitive task analysis (CTA) methods. An 11th vascular surgeon approved the final CTA protocol. The CTA interview with only one expert surgeon resulted in significantly greater accuracy and completeness of the descriptions compared with the unaided free-recall interviews with multiple expert surgeons. Surgeons in the unaided group omitted nearly 70% of necessary decision steps. In the free-recall group, heavy use of simulation improved surgeons' completeness when describing the steps of the procedure. CTA significantly increases the completeness and accuracy of surgeons' instructional descriptions of surgical procedures. In addition, simulation during unaided free-recall interviews may improve the completeness of interview data. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Analytical and Experimental Study of Near-Threshold Interactions Between Crack Closure Mechanisms

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    The results of an analytical closure model that considers contributions and interactions between plasticity-, roughness-, and oxide-induced crack closure mechanisms are presented and compared with experimental data. The analytical model is shown to provide a good description of the combined influences of crack roughness, oxide debris, and plasticity in the near-threshold regime. Furthermore, analytical results indicate that closure mechanisms interact in a non-linear manner such that the total amount of closure is not the sum of closure contributions for each mechanism.

  19. Basic Western Lviv Region Conversational Ukrainian

    ERIC Educational Resources Information Center

    Petryshyn, Ivan

    2015-01-01

    Purpose: To present the first complete Guide for studying the Western-Ukrainian Dialect and its scientific description of Phonology. Methodology: descriptive, contrastive and analytical methods of defining the peculiarities of the Dialect. Results: the regularities and the laws have been defined as to the specifics of the Western-Ukrainian Dialect…

  20. Modern Instrumental Methods in Forensic Toxicology*

    PubMed Central

    Smith, Michael L.; Vorce, Shawn P.; Holler, Justin M.; Shimomura, Eric; Magluilo, Joe; Jacobs, Aaron J.; Huestis, Marilyn A.

    2009-01-01

    This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice. PMID:17579968

  1. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  2. Current of interacting particles inside a channel of exponential cavities: Application of a modified Fick-Jacobs equation.

    PubMed

    Suárez, G; Hoyuelos, M; Mártin, H

    2016-06-01

    Recently a nonlinear Fick-Jacobs equation has been proposed for the description of transport and diffusion of particles interacting through a hard-core potential in tubes or channels of varying cross section [Suárez et al., Phys. Rev. E 91, 012135 (2015)]PLEEE81539-375510.1103/PhysRevE.91.012135. Here we focus on the analysis of the current and mobility when the channel is composed by a chain of asymmetric cavities and a force is applied in one or the opposite direction, for both interacting and noninteracting particles, and compare analytical and Monte Carlo simulation results. We consider a cavity with a shape given by exponential functions; the linear Fick-Jacobs equation for noninteracting particles can be exactly solved in this case. The results of the current difference (when a force is applied in opposite directions) are more accurate for the modified Fick-Jacobs equation for particles with hard-core interaction than for noninteracting ones.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by themore » comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.« less

  4. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  5. Intercomparison of HONO Measurements Made Using Wet-Chemical (NITROMAC) and Spectroscopic (IBBCEAS & LP/FAGE) Techniques

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Lew, M.; Bottorff, B.; Bechara, J.; Mielke, L. H.; Berke, A.; Raff, J. D.; Stevens, P. S.; Afif, C.

    2013-12-01

    A good understanding of the oxidative capacity of the atmosphere is important to tackle fundamental issues related to climate change and air quality. The hydroxyl radical (OH) is the dominant oxidant in the daytime troposphere and an accurate description of its sources in atmospheric models is of utmost importance. Recent field studies indicate higher-than-expected concentrations of HONO during the daytime, suggesting that the photolysis of HONO may be an important underestimated source of OH. Understanding the tropospheric HONO budget requires confidence in analytical instrumentation capable of selectively measuring HONO. In this presentation, we discuss an intercomparison study of HONO measurements performed during summer 2013 at the edge of a hardwood forest in Southern Indiana. This exercise involved a wet chemical technique (NITROMAC), an Incoherent Broad-Band Cavity Enhanced Absorption Spectroscopy instrument (IBBCEAS), and a Laser-Photofragmentation/Fluorescence Assay by Gas Expansion instrument (LP/FAGE). The agreement observed between the three techniques will be discussed for both ambient measurements and cross calibration experiments.

  6. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  7. PYTHIA 6.4 Physics and Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrand, Torbjorn; /Lund U., Dept. Theor. Phys.; Mrenna, Stephen

    2006-03-01

    The Pythia program can be used to generate high-energy-physics ''events'', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. Thismore » physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.« less

  8. The Analytic Hierarchy Process and Participatory Decisionmaking

    Treesearch

    Daniel L. Schmoldt; Daniel L. Peterson; Robert L. Smith

    1995-01-01

    Managing natural resource lands requires social, as well as biophysical, considerations. Unfortunately, it is extremely difficult to accurately assess and quantify changing social preferences, and to aggregate conflicting opinions held by diverse social groups. The Analytic Hierarchy Process (AHP) provides a systematic, explicit, rigorous, and robust mechanism for...

  9. Analysis of Mathematical Modelling on Potentiometric Biosensors

    PubMed Central

    Mehala, N.; Rajendran, L.

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  10. Analysis of mathematical modelling on potentiometric biosensors.

    PubMed

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  11. Effects of biases in domain wall network evolution. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  12. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  13. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review.

    PubMed

    Blake, Christopher J

    2007-09-01

    Water-soluble vitamins include the B-group vitamins and vitamin C. In order to correctly monitor water-soluble vitamin content in fortified foods for compliance monitoring as well as to establish accurate data banks, an accurate and precise analytical method is a prerequisite. For many years microbiological assays have been used for analysis of B vitamins. However they are no longer considered to be the gold standard in vitamins analysis as many studies have shown up their deficiencies. This review describes the current status of analytical methods, including microbiological assays and spectrophotometric, biosensor and chromatographic techniques. In particular it describes the current status of the official methods and highlights some new developments in chromatographic procedures and detection methods. An overview is made of multivitamin extractions and analyses for foods and supplements.

  14. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...-IGNITION ENGINES Exhaust Emission Test Procedures § 89.412 Raw gaseous exhaust sampling and analytical... must be incorporated in each system used for raw testing under this subpart. (1) [Reserved] (2) The...

  15. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw gaseous exhaust sampling and...-IGNITION ENGINES Exhaust Emission Test Procedures § 89.412 Raw gaseous exhaust sampling and analytical... must be incorporated in each system used for raw testing under this subpart. (1) [Reserved] (2) The...

  16. Feasibility model of a high reliability five-year tape transport. Volume 3: Appendices. [detailed drawing and analytical tools used in analyses

    NASA Technical Reports Server (NTRS)

    Meyers, A. P.; Davidson, W. A.; Gortowski, R. C.

    1973-01-01

    Detailed drawings of the five year tape transport are presented. Analytical tools used in the various analyses are described. These analyses include: tape guidance, tape stress over crowned rollers, tape pack stress program, response (computer) program, and control system electronics description.

  17. Fire behavior modeling-a decision tool

    Treesearch

    Jack Cohen; Bill Bradshaw

    1986-01-01

    The usefulness of an analytical model as a fire management decision tool is determined by the correspondence of its descriptive capability to the specific decision context. Fire managers must determine the usefulness of fire models as a decision tool when applied to varied situations. Because the wildland fire phenomenon is complex, analytical fire spread models will...

  18. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  19. Sociodemographic Characteristics of Pregnant Women Exposed to Domestic Violence During Pregnancy in an Iranian Setting

    PubMed Central

    Hajikhani Golchin, Nayereh Azam; Hamzehgardeshi, Zeinab; Hamzehgardeshi, Leila; Shirzad Ahoodashti, Mahboobeh

    2014-01-01

    Background: Domestic violence refers to any type of physical, sexual, and psychological abuse enforced in the setting of familial relationships. Domestic violence has a significant relationship with poor outcome among pregnant women. Success in resolving this social phenomenon rests on accurate assessment of the society and the factors associated with violence in that specific community. Objectives: The present study was conducted to assess the demographic characteristics of pregnant women exposed to different types of domestic violence during pregnancy in Iranian setting. Patients and Methods: This is a descriptive-analytic, cross-sectional study. Sampling was done with convenience sampling method. in the current study, 301 pregnant women aged 15-45 years of Iranian nationality who were referred to the hospital for delivery or abortion, regardless of the gestational age, were selected as the subjects. Data collection tools consisted of a sociodemographic questionnaire and a violence checklist. Violence was assessed using Revised Conflict Tactics Scale (CTS2). Data were analyzed using descriptive and analytic statistics on SPSS version 16 (SPSS, Chicago, IL, USA) and STATA version 10. The characteristics of the participants were presented as mean ± SD or number and percentage. Differences between variables were determined by the χ2 test, and multivariate logistic regression. P < 0.05 was considered significant. Results: According to the findings, 34.56% of participants had experienced psychological violence, 28.24% physical violence, and 3.65% sexual violence. Multivariate logistic regression revealed a statistically significant relationship only in the case of physical violence and history of penal conviction for partner (Adjusted Odds Ratio (AOR) = 12.60) and a patriarchal household (AOR = 16.75). Conclusions: As domestic violence is greatly influenced by the customs and cultures of each community, no single strategy can be adopted to resolve it universally. Simultaneously, it is necessary to adopt comprehensive measures to control factors associated with domestic violence in the healthcare, judiciary, and the educational systems in order to prevent and curb this social challenge. PMID:24910784

  20. Improved Analytical Potentials for the a ^3Σu+ and X ^1Σg+ States of {Cs_2}

    NASA Astrophysics Data System (ADS)

    Baldwin, Jesse; Le Roy, Robert J.

    2012-06-01

    Recent studies of the collisional properties of ultracold Cs atoms have led to a renewed interest in the singlet and triplet ground-state potential energy functions of Cs_2. Coxon and Hajigeorgiou recently determined an analytic potential function for the X ^1Σ_g^+ state that accurately reproduces a large body of spectroscopic data that spanned 99.45% of the potential well. However, their potential explicitly incorporates only the three leading inverse-power terms in the long-range potential, and does not distinguish between the three asymptotes associated with the different Cs atom spin states. Similarly, Xie et al. have reported two versions of an analytic potential energy function for the a ^3Σ_u^+ state that they determined from direct potential fits to emission data that spanned 93 % of its potential energy well. However, the tail of their potential function model was not constrained to have the inverse-power-sum form required by theory. Moreover, a physically correct description of cold atom collision phenomena requires the long-range inverse-power tails of these two potentials to be identical, and they are not. Thus, these functions cannot be expected to describe cold atom collision properties correctly. The present paper describes our efforts to determine improved analytic potential energy functions for these states that have identical long-range tails, and fully represent all of the spectroscopic data used in the earlier worka,b,c as well as photoassociation data that was not considered there and experimental values of the collisional scattering lengths for the two states. J. A. Coxon and P. Hajigeorgiou, J. Chem. Phys. 132, 09105 (2010). F. Xie et al. J. Chem. Phys. 130 051102 (2009). F. Xie et al. J. Chem. Phys. 135, 024303 (2011) J. G. Danzl et al., Science, 321, 1062 (2008). C. Chin, et al., Phys. Rev. Lett. 85, 2717 (2000) P. J. Leo, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 85, 2721 (2000)

  1. An improved 3D MoF method based on analytical partial derivatives

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Zhang, Xiong

    2016-12-01

    MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.

  2. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  3. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    PubMed

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  4. Keeping It Simple: Can We Estimate Malting Quality Potential Using an Isothermal Mashing Protocol and Common Laboratory Instrumentation?

    USDA-ARS?s Scientific Manuscript database

    Current methods for generating malting quality metrics have been developed largely to support commercial malting and brewing operations, providing accurate, reproducible analytical data to guide malting and brewing production. Infrastructure to support these analytical operations often involves sub...

  5. A singularity free analytical solution of artificial satellite motion with drag

    NASA Technical Reports Server (NTRS)

    Mueller, A.

    1978-01-01

    An analytical satellite theory based on the regular, canonical Poincare-Similar (PS phi) elements is described along with an accurate density model which can be implemented into the drag theory. A computationally efficient manner in which to expand the equations of motion into a fourier series is discussed.

  6. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  7. Phase walk analysis of leptokurtic time series.

    PubMed

    Schreiber, Korbinian; Modest, Heike I; Räth, Christoph

    2018-06-01

    The Fourier phase information play a key role for the quantified description of nonlinear data. We present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting correlations among the Fourier phases. The method, being called phase walk analysis, is based on well established measures from random walk analysis, which are now applied to the unwrapped Fourier phases of time series. We provide an analytical description of its functionality and demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate the properties of leptokurtic time series and their influence on the Fourier phases of time series. The phase walk analysis is applied to measured and simulated intermittent time series, whose probability density distribution is approximated by power laws. We use the day-to-day returns of the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site. Testing for nonlinearities by means of surrogates shows that the new method yields strong significances for nonlinear behavior. Due to the drastically decreased computing time as compared to embedding space methods, the number of surrogate realizations can be increased by orders of magnitude. Thereby, the probability distribution of the test statistics can very accurately be derived and parameterized, which allows for much more precise tests on nonlinearities.

  8. Systematic Review of Model-Based Economic Evaluations of Treatments for Alzheimer's Disease.

    PubMed

    Hernandez, Luis; Ozen, Asli; DosSantos, Rodrigo; Getsios, Denis

    2016-07-01

    Numerous economic evaluations using decision-analytic models have assessed the cost effectiveness of treatments for Alzheimer's disease (AD) in the last two decades. It is important to understand the methods used in the existing models of AD and how they could impact results, as they could inform new model-based economic evaluations of treatments for AD. The aim of this systematic review was to provide a detailed description on the relevant aspects and components of existing decision-analytic models of AD, identifying areas for improvement and future development, and to conduct a quality assessment of the included studies. We performed a systematic and comprehensive review of cost-effectiveness studies of pharmacological treatments for AD published in the last decade (January 2005 to February 2015) that used decision-analytic models, also including studies considering patients with mild cognitive impairment (MCI). The background information of the included studies and specific information on the decision-analytic models, including their approach and components, assumptions, data sources, analyses, and results, were obtained from each study. A description of how the modeling approaches and assumptions differ across studies, identifying areas for improvement and future development, is provided. At the end, we present our own view of the potential future directions of decision-analytic models of AD and the challenges they might face. The included studies present a variety of different approaches, assumptions, and scope of decision-analytic models used in the economic evaluation of pharmacological treatments of AD. The major areas for improvement in future models of AD are to include domains of cognition, function, and behavior, rather than cognition alone; include a detailed description of how data used to model the natural course of disease progression were derived; state and justify the economic model selected and structural assumptions and limitations; provide a detailed (rather than high-level) description of the cost components included in the model; and report on the face-, internal-, and cross-validity of the model to strengthen the credibility and confidence in model results. The quality scores of most studies were rated as fair to good (average 87.5, range 69.5-100, in a scale of 0-100). Despite the advancements in decision-analytic models of AD, there remain several areas of improvement that are necessary to more appropriately and realistically capture the broad nature of AD and the potential benefits of treatments in future models of AD.

  9. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids

    PubMed Central

    Arnau, Antonio

    2008-01-01

    From the first applications of AT-cut quartz crystals as sensors in solutions more than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor is becoming into a good alternative analytical method in a great deal of applications such as biosensors, analysis of biomolecular interactions, study of bacterial adhesion at specific interfaces, pathogen and microorganism detection, study of polymer film-biomolecule or cell-substrate interactions, immunosensors and an extensive use in fluids and polymer characterization and electrochemical applications among others. The appropriate evaluation of this analytical method requires recognizing the different steps involved and to be conscious of their importance and limitations. The first step involved in a QCM system is the accurate and appropriate characterization of the sensor in relation to the specific application. The use of the piezoelectric sensor in contact with solutions strongly affects its behavior and appropriate electronic interfaces must be used for an adequate sensor characterization. Systems based on different principles and techniques have been implemented during the last 25 years. The interface selection for the specific application is important and its limitations must be known to be conscious of its suitability, and for avoiding the possible error propagation in the interpretation of results. This article presents a comprehensive overview of the different techniques used for AT-cut quartz crystal microbalance in in-solution applications, which are based on the following principles: network or impedance analyzers, decay methods, oscillators and lock-in techniques. The electronic interfaces based on oscillators and phase-locked techniques are treated in detail, with the description of different configurations, since these techniques are the most used in applications for detection of analytes in solutions, and in those where a fast sensor response is necessary. PMID:27879713

  10. Quantifying the life-history response to increased male exposure in female Drosophila melanogaster.

    PubMed

    Edward, Dominic A; Fricke, Claudia; Gerrard, Dave T; Chapman, Tracey

    2011-02-01

    Precise estimates of costs and benefits, the fitness economics, of mating are of key importance in understanding how selection shapes the coevolution of male and female mating traits. However, fitness is difficult to define and quantify. Here, we used a novel application of an established analytical technique to calculate individual- and population-based estimates of fitness-including those sensitive to the timing of reproduction-to measure the effects on females of increased exposure to males. Drosophila melanogaster females were exposed to high and low frequencies of contact with males, and life-history traits for each individual female were recorded. We then compared different fitness estimates to determine which of them best described the changes in life histories. We predicted that rate-sensitive estimates would be more accurate, as mating influences the rate of offspring production in this species. The results supported this prediction. Increased exposure to males led to significantly decreased fitness within declining but not stable or increasing populations. There was a net benefit of increased male exposure in expanding populations, despite a significant decrease in lifespan. The study shows how a more accurate description of fitness, and new insights can be achieved by considering individual life-history strategies within the context of population growth. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  11. Evaluation of analytical techniques to determine AQUI-S® 20E (eugenol) concentrations in water

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Hess, Karina R.

    2014-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, 86%; precision < 8.9 %CV) when determining eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  12. Accurate mass and velocity functions of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.

  13. Distinguishing Features and Similarities Between Descriptive Phenomenological and Qualitative Description Research.

    PubMed

    Willis, Danny G; Sullivan-Bolyai, Susan; Knafl, Kathleen; Cohen, Marlene Z

    2016-09-01

    Scholars who research phenomena of concern to the discipline of nursing are challenged with making wise choices about different qualitative research approaches. Ultimately, they want to choose an approach that is best suited to answer their research questions. Such choices are predicated on having made distinctions between qualitative methodology, methods, and analytic frames. In this article, we distinguish two qualitative research approaches widely used for descriptive studies: descriptive phenomenological and qualitative description. Providing a clear basis that highlights the distinguishing features and similarities between descriptive phenomenological and qualitative description research will help students and researchers make more informed choices in deciding upon the most appropriate methodology in qualitative research. We orient the reader to distinguishing features and similarities associated with each approach and the kinds of research questions descriptive phenomenological and qualitative description research address. © The Author(s) 2016.

  14. Importance of accurate measurements in nutrition research: dietary flavonoids as a case study

    USDA-ARS?s Scientific Manuscript database

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  15. Arbitrarily accurate twin composite π -pulse sequences

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Vitanov, Nikolay V.

    2018-04-01

    We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .

  16. Development and application of accurate analytical models for single active electron potentials

    NASA Astrophysics Data System (ADS)

    Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas

    2015-05-01

    The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).

  17. Rapid perfusion quantification using Welch-Satterthwaite approximation and analytical spectral filtering

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.

    2017-02-01

    CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.

  18. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  19. Resumenes Analiticos en Education del 0001 al 0230 (Analytic Resumes in Education, from 0001 to 0230).

    ERIC Educational Resources Information Center

    Scott, Patrick B., Ed.

    1991-01-01

    REDUC is a cooperative network of some 23 associated centers in 17 Latin American and Caribbean countries. The REDUC coordinating center is located in Santiago, Chile. REDUC produces a bibliographic database containing analytical summaries (approximately 800 items annually) of the most important research studies and project descriptions in the…

  20. METHOD 544. DETERMINATION OF MICROCYSTINS AND ...

    EPA Pesticide Factsheets

    Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensitivity and ability to speciate the microcystins. This method development task establishes sample preservation techniques, sample concentration and analytical procedures, aqueous and extract holding time criteria and quality control procedures. Draft Method 544 undergone a multi-laboratory verification to ensure other laboratories can implement the method and achieve the quality control measures specified in the method. It is anticipated that Method 544 may be used in UCMR 4 to collect nationwide occurrence data for selected microcystins in drinking water. The purpose of this research project is to develop an accurate and precise analytical method to concentrate and determine selected MCs and nodularin in drinking water.

  1. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    NASA Astrophysics Data System (ADS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  2. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinikos, N.; Isliker, H.; Vlahos, L.

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  3. Summary Report for the Evaluation of Current QA Processes Within the FRMAC FAL and EPA MERL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Sonoya T.; Redding, Ted; Jaussi, Lynn

    The Federal Radiological Monitoring and Assessment Center (FRMAC) relies on accurate and defensible analytical laboratory data to support its mission. Therefore, FRMAC must ensure that the environmental analytical laboratories providing analytical services maintain an ongoing capability to provide accurate analytical results to DOE. It is undeniable that the more Quality Assurance (QA) and Quality Control (QC) measures required of the laboratory, the less resources that are available for analysis of response samples. Being that QA and QC measures in general are understood to comprise a major effort related to a laboratory’s operations, requirements should only be considered if they aremore » deemed “value-added” for the FRMAC mission. This report provides observations of areas for improvement and potential interoperability opportunities in the areas of Batch Quality Control Requirements, Written Communications, Data Review Processes, Data Reporting Processes, along with the lessons learned as they apply to items in the early phase of a response that will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.« less

  4. An analytical model for regular respiratory signals derived from the probability density function of Rayleigh distribution.

    PubMed

    Li, Xin; Li, Ye

    2015-01-01

    Regular respiratory signals (RRSs) acquired with physiological sensing systems (e.g., the life-detection radar system) can be used to locate survivors trapped in debris in disaster rescue, or predict the breathing motion to allow beam delivery under free breathing conditions in external beam radiotherapy. Among the existing analytical models for RRSs, the harmonic-based random model (HRM) is shown to be the most accurate, which, however, is found to be subject to considerable error if the RRS has a slowly descending end-of-exhale (EOE) phase. The defect of the HRM motivates us to construct a more accurate analytical model for the RRS. In this paper, we derive a new analytical RRS model from the probability density function of Rayleigh distribution. We evaluate the derived RRS model by using it to fit a real-life RRS in the sense of least squares, and the evaluation result shows that, our presented model exhibits lower error and fits the slowly descending EOE phases of the real-life RRS better than the HRM.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, W.W.; Sullivan, H.H.

    Electroless nicke-plate characteristics are substantially influenced by percent phosphorous concentrations. Available ASTM analytical methods are designed for phosphorous concentrations of less than one percent compared to the 4.0 to 20.0% concentrations common in electroless nickel plate. A variety of analytical adaptations are applied through the industry resulting in poor data continuity. This paper presents a statistical comparison of five analytical methods and recommends accurate and precise procedures for use in percent phosphorous determinations in electroless nickel plate. 2 figures, 1 table.

  6. Accurate quantification of PGE2 in the polyposis in rat colon (Pirc) model by surrogate analyte-based UPLC-MS/MS.

    PubMed

    Yun, Changhong; Dashwood, Wan-Mohaiza; Kwong, Lawrence N; Gao, Song; Yin, Taijun; Ling, Qinglan; Singh, Rashim; Dashwood, Roderick H; Hu, Ming

    2018-01-30

    An accurate and reliable UPLC-MS/MS method is reported for the quantification of endogenous Prostaglandin E2 (PGE 2 ) in rat colonic mucosa and polyps. This method adopted the "surrogate analyte plus authentic bio-matrix" approach, using two different stable isotopic labeled analogs - PGE 2 -d9 as the surrogate analyte and PGE 2 -d4 as the internal standard. A quantitative standard curve was constructed with the surrogate analyte in colonic mucosa homogenate, and the method was successfully validated with the authentic bio-matrix. Concentrations of endogenous PGE 2 in both normal and inflammatory tissue homogenates were back-calculated based on the regression equation. Because of no endogenous interference on the surrogate analyte determination, the specificity was particularly good. By using authentic bio-matrix for validation, the matrix effect and exaction recovery are identically same for the quantitative standard curve and actual samples - this notably increased the assay accuracy. The method is easy, fast, robust and reliable for colon PGE 2 determination. This "surrogate analyte" approach was applied to measure the Pirc (an Apc-mutant rat kindred that models human FAP) mucosa and polyps PGE 2 , one of the strong biomarkers of colorectal cancer. A similar concept could be applied to endogenous biomarkers in other tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. School Behind Bars--A Descriptive Overview of Correctional Education in the American Prison System.

    ERIC Educational Resources Information Center

    Syracuse Univ. Research Corp., NY. Policy Inst.

    This report, intended to be a descriptive yet analytical overview of correctional education programs, is organized into six chapters. Chapter one discusses the philosophical aspects (pro and con) of prisoner education. Chapter two traces the history of prisoner education from the roots of its beginning to the present. Chapter three presents the…

  8. Research trends in human osteology: a content analysis of papers published in the American Journal of Physical Anthropology.

    PubMed

    Stojanowski, Christopher M; Buikstra, Jane E

    2005-09-01

    This paper explores recent research trends in human osteology, based on articles published in the American Journal of Physical Anthropology (AJPA) during two 5-year intervals: 1980--1984 and 1996--2000. Topical "visibility" is measured in terms of article counts; "impact" is estimated through citation indices. Our results indicate that human osteologists continue to publish a range of methodological, analytical, and descriptive research papers that address a broad array of subjects. Analytical articles are cited more frequently than descriptive articles and thus have higher impact, reflecting the discipline's continued commitment to problem-oriented research. Differences in publication patterns exist between scholars during early and later stages of their careers. Articles published by students and Ph.D.s within 2 years of their doctoral degree are more frequently descriptive than analytical, when compared to people with longer career histories. Topics such as pathology, forensic anthropology, and biodistance modeling remain highly visible, while articles on the dentition have waned. An increase in functional research directed toward the postcranial skeleton is also reflected in our data. While continued visibility for morphological investigations is apparent, the impact of recently developed applications in bone chemistry and molecular anthropology is amply documented in our data, particularly during the more recent survey years. (c) 2005 Wiley-Liss, Inc.

  9. Getting the most from dermatopathology.

    PubMed

    Campbell, Gregory A; Sauber, Leslie

    2007-03-01

    Dermatohistopathology is one of the most powerful diagnostic tools in clinical dermatology. It is a process in which the veterinary clinician and the veterinary pathologist must consider themselves a team in patient care. The veterinary clinician must know when biopsies are indicated; be able to select lesions to biopsy that are likely to yield diagnostic results; skillfully procure the biopsy samples; and provide the pathologist with an accurate history, clinical description, and clinical differential diagnosis. The pathologist should have particular interest and expertise in dermatohistopathology, be readily accessible to the clinician, and be vigilant in the pursuit of an accurate histologic description and diagnosis.

  10. Analytical method for the accurate determination of tricothecenes in grains using LC-MS/MS: a comparison between MRM transition and MS3 quantitation.

    PubMed

    Lim, Chee Wei; Tai, Siew Hoon; Lee, Lin Min; Chan, Sheot Harn

    2012-07-01

    The current food crisis demands unambiguous determination of mycotoxin contamination in staple foods to achieve safer food for consumption. This paper describes the first accurate LC-MS/MS method developed to analyze tricothecenes in grains by applying multiple reaction monitoring (MRM) transition and MS(3) quantitation strategies in tandem. The tricothecenes are nivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, fusarenon X, 3-acetyl-deoxynivalenol, 15-acetyldeoxynivalenol, diacetoxyscirpenol, and HT-2 and T-2 toxins. Acetic acid and ammonium acetate were used to convert the analytes into their respective acetate adducts and ammonium adducts under negative and positive MS polarity conditions, respectively. The mycotoxins were separated by reversed-phase LC in a 13.5-min run, ionized using electrospray ionization, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge (m/z) ratios were used to perform quantitation under MRM transition and MS(3) (linear ion trap) modes. Three experiments were made for each quantitation mode and matrix in batches over 6 days for recovery studies. The matrix effect was investigated at concentration levels of 20, 40, 80, 120, 160, and 200 μg kg(-1) (n = 3) in 5 g corn flour and rice flour. Extraction with acetonitrile provided a good overall recovery range of 90-108% (n = 3) at three levels of spiking concentration of 40, 80, and 120 μg kg(-1). A quantitation limit of 2-6 μg kg(-1) was achieved by applying an MRM transition quantitation strategy. Under MS(3) mode, a quantitation limit of 4-10 μg kg(-1) was achieved. Relative standard deviations of 2-10% and 2-11% were reported for MRM transition and MS(3) quantitation, respectively. The successful utilization of MS(3) enabled accurate analyte fragmentation pattern matching and its quantitation, leading to the development of analytical methods in fields that demand both analyte specificity and fragmentation fingerprint-matching capabilities that are unavailable under MRM transition.

  11. Radiative processes in the intracluster plasma

    NASA Astrophysics Data System (ADS)

    Itoh, N.; Sakamoto, T.; Kusano, S.; Kawana, Y.; Nozawa, S.

    2002-02-01

    We present useful analytic fitting formulae for the study of the radiative processes which take place in the hot intracluster plasma (the plasma which exists in the clusters of galaxies). The first is for the frequency-integrated emissivity of the relativistic thermal bremsstrahlung. The Gaunt factor for the relativistic thermal bremsstrahlung as a function of the ionic charge Zj, the electron temperature Te, and the photon frequency omega has been recently calculated by us and its analytic fitting formula has been presented. In this paper we will integrate this Gaunt factor over the photon frequency omega and express the results by accurate analytic fitting formulae. These results will be useful when one wishes to evaluate the total amount of energy emitted by the hot intracluster plasma as well as other hot plasmas that exist in supernova remnants. The present results for the frequency-integrated emissivity of the thermal bremsstrahlung generally have accuracy of the order of 0.1%, thus making the present results the most accurate to date that calculate the thermal bremsstrahlung due to electron-ion scattering. The present accurate results will be especially useful for the analysis of the precision data taken by the Chandra X-Ray Observatory and XMM-Newton. The second analytic fitting formula that we will present in this paper is for the thermal Sunyaev-Zeldovich effect for clusters of galaxies. The thermal Sunyaev-Zeldovich effect for clusters of galaxies has been recently calculated with high precision by the present authors as well as by other groups. We have, in particular, presented an analytic fitting formula for this effect. In this paper we will present an analytic fitting formula which has still higher accuracy. The present fitting formula will be particularly suited for the forthcoming measurements of the kinematical Sunyaev-Zeldovich effect such as the BOLOCAM project that will be carried out in the crossover frequency region where the thermal Sunyaev-Zeldovich signal changes from negative to positive sign.

  12. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  13. Evaluation of analytical techniques to determine AQUI-S(R) 20E (eugenol) concentrations in water

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Hess, Karina R.

    2013-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, < 0.70 %CV) when determining eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The spectrophotometric method's accuracy was negatively affected when analyzing water containing fish feed. The SPE–LC method was also accurate and precise (accuracy > 86%; precision < 8.9 %CV) when determining eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  14. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-01

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.

  15. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.

    PubMed

    Paesani, Francesco

    2016-09-20

    The central role played by water in fundamental processes relevant to different disciplines, including chemistry, physics, biology, materials science, geology, and climate research, cannot be overemphasized. It is thus not surprising that, since the pioneering work by Stillinger and Rahman, many theoretical and computational studies have attempted to develop a microscopic description of the unique properties of water under different thermodynamic conditions. Consequently, numerous molecular models based on either molecular mechanics or ab initio approaches have been proposed over the years. However, despite continued progress, the correct prediction of the properties of water from small gas-phase clusters to the liquid phase and ice through a single molecular model remains challenging. To large extent, this is due to the difficulties encountered in the accurate modeling of the underlying hydrogen-bond network in which both number and strength of the hydrogen bonds vary continuously as a result of a subtle interplay between energetic, entropic, and nuclear quantum effects. In the past decade, the development of efficient algorithms for correlated electronic structure calculations of small molecular complexes, accompanied by tremendous progress in the analytical representation of multidimensional potential energy surfaces, opened the doors to the design of highly accurate potential energy functions built upon rigorous representations of the many-body expansion (MBE) of the interaction energies. This Account provides a critical overview of the performance of the MB-pol many-body potential energy function through a systematic analysis of energetic, structural, thermodynamic, and dynamical properties as well as of vibrational spectra of water from the gas to the condensed phase. It is shown that MB-pol achieves unprecedented accuracy across all phases of water through a quantitative description of each individual term of the MBE, with a physically correct representation of both short- and long-range many-body contributions. Comparisons with experimental data probing different regions of the water potential energy surface from clusters to bulk demonstrate that MB-pol represents a major step toward the long-sought-after "universal model" capable of accurately describing the molecular properties of water under different conditions and in different environments. Along this path, future challenges include the extension of the many-body scheme adopted by MB-pol to the description of generic solutes as well as the integration of MB-pol in an efficient theoretical and computational framework to model acid-base reactions in aqueous environments. In this context, given the nontraditional form of the MB-pol energy and force expressions, synergistic efforts by theoretical/computational chemists/physicists and computer scientists will be critical for the development of high-performance software for many-body molecular dynamics simulations.

  16. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution.

    PubMed

    Young, Meggie N; Bleiholder, Christian

    2017-04-01

    Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å 2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C 960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.

  17. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    USDA-ARS?s Scientific Manuscript database

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  18. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  19. Brief communication: Skeletal biology past and present: Are we moving in the right direction?

    PubMed

    Hens, Samantha M; Godde, Kanya

    2008-10-01

    In 1982, Spencer's edited volume A History of American Physical Anthropology: 1930-1980 allowed numerous authors to document the state of our science, including a critical examination of skeletal biology. Some authors argued that the first 50 years of skeletal biology were characterized by the descriptive-historical approach with little regard for processual problems and that technological and statistical analyses were not rooted in theory. In an effort to determine whether Spencer's landmark volume impacted the field of skeletal biology, a content analysis was carried out for the American Journal of Physical Anthropology from 1980 to 2004. The percentage of skeletal biology articles is similar to that of previous decades. Analytical articles averaged only 32% and are defined by three criteria: statistical analysis, hypothesis testing, and broader explanatory context. However, when these criteria were scored individually, nearly 80% of papers attempted a broader theoretical explanation, 44% tested hypotheses, and 67% used advanced statistics, suggesting that the skeletal biology papers in the journal have an analytical emphasis. Considerable fluctuation exists between subfields; trends toward a more analytical approach are witnessed in the subfields of age/sex/stature/demography, skeletal maturation, anatomy, and nonhuman primate studies, which also increased in frequency, while paleontology and pathology were largely descriptive. Comparisons to the International Journal of Osteoarchaeology indicate that there are statistically significant differences between the two journals in terms of analytical criteria. These data indicate a positive shift in theoretical thinking, i.e., an attempt by most to explain processes rather than present a simple description of events.

  20. Using Learning Analytics to Enhance Student Learning in Online Courses Based on Quality Matters Standards

    ERIC Educational Resources Information Center

    Martin, Florence; Ndoye, Abdou; Wilkins, Patricia

    2016-01-01

    Quality Matters is recognized as a rigorous set of standards that guide the designer or instructor to design quality online courses. We explore how Quality Matters standards guide the identification and analysis of learning analytics data to monitor and improve online learning. Descriptive data were collected for frequency of use, time spent, and…

  1. Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide

    NASA Technical Reports Server (NTRS)

    Boland, D. E., Jr.; Lee, T.

    1982-01-01

    This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction.

  2. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    PubMed

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-07

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides a cost, time and material effective approach for characterization of ATPS phase diagram on base on highly accurate and comprehensive data. By this means the derived data opens the door for a more detailed description of ATPS towards generating mechanistic based models, since molecular approaches such as MD simulations or molecular descriptions along the line of QSAR heavily rely on accurate and comprehensive data. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Approximate analytical description of the elastic strain field due to an inclusion in a continuous medium with cubic anisotropy

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Koshkarev, A. A.; Dvurechenskii, A. V.

    2018-03-01

    We suggest an approach to the analytical calculation of the strain distribution due to an inclusion in elastically anisotropic media for the case of cubic anisotropy. The idea consists in the approximate reduction of the anisotropic problem to a (simpler) isotropic problem. This gives, for typical semiconductors, an improvement in accuracy by an order of magnitude, compared to the isotropic approximation. Our method allows using, in the case of elastically anisotropic media, analytical solutions obtained for isotropic media only, such as analytical formulas for the strain due to polyhedral inclusions. The present work substantially extends the applicability of analytical results, making them more suitable for describing real systems, such as epitaxial quantum dots.

  4. ICDA: A Platform for Intelligent Care Delivery Analytics

    PubMed Central

    Gotz, David; Stavropoulos, Harry; Sun, Jimeng; Wang, Fei

    2012-01-01

    The identification of high-risk patients is a critical component in improving patient outcomes and managing costs. This paper describes the Intelligent Care Delivery Analytics platform (ICDA), a system which enables risk assessment analytics that process large collections of dynamic electronic medical data to identify at-risk patients. ICDA works by ingesting large volumes of data into a common data model, then orchestrating a collection of analytics that identify at-risk patients. It also provides an interactive environment through which users can access and review the analytics results. In addition, ICDA provides APIs via which analytics results can be retrieved to surface in external applications. A detailed review of ICDA’s architecture is provided. Descriptions of four use cases are included to illustrate ICDA’s application within two different data environments. These use cases showcase the system’s flexibility and exemplify the types of analytics it enables. PMID:23304296

  5. Fluid dynamics of coarctation of the aorta: analytical solution, in vitro validation and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra

    2015-11-01

    Coarctation of the aorta (COA) is a congenital heart disease corresponding to a narrowing in the aorta. Cardiac catheterization is considered to be the reference standard for definitive evaluation of COA severity, based on the peak-to-peak trans-coarctation pressure gradient (PtoP TCPG) and instantaneous systolic value of trans-COA pressure gradient (TCPG). However, invasive cardiac catheterization may carry high risks given that undergoing multiple follow-up cardiac catheterizations in patients with COA is common. The objective of this study is to present an analytical description of the COA that estimates PtoP TCPG and TCPG without a need for high risk invasive data collection. Coupled Navier-Stokes and elastic deformation equations were solved analytically to estimate TCPG and PtoP TCPG. The results were validated against data measured in vitro (e.g., 90% COA: TCPG: root mean squared error (RMSE) = 3.93 mmHg; PtoP TCPG: RMSE = 7.9 mmHg). Moreover, the estimated PtoP TCPG resulted from the suggested analytical description was validated using clinical data in twenty patients with COA (maximum RMSE: 8.3 mmHg). Very good correlation and concordance were found between TCPG and PtoP TCPG obtained from the analytical formulation and in vitro and in vivo data. The suggested methodology can be considered as an alternative to cardiac catheterization and can help preventing its risks.

  6. Exact analytic solution for non-linear density fluctuation in a ΛCDM universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org

    We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.

  7. S-2 stage 1/25 scale model base region thermal environment test. Volume 1: Test results, comparison with theory and flight data

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; French, E. P.; Sexton, H.

    1973-01-01

    A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.

  8. A new analysis system for whole air sampling: description and results from 2013 SENEX

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Gilman, J.; Dumas, M.; Hughes, D.; Jaksich, A.; Hatch, C. D.; Graus, M.; Warneke, C.; Apel, E. C.; Hornbrook, R. S.; Holloway, J. S.; De Gouw, J. A.

    2014-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven especially challenging due to the requirement of both high sensitivity (pptv) and short sample collection times (≤15 s) to maximize spatial resolution and sampling frequency for targeted plume analysis. The use of stainless steel canisters to collect whole air samples (WAS) for post-flight analysis has been pioneered by the groups of D. Blake and E. Atlas [Blake et al., 1992; Atlas et al., 1993]. For the 2013 Southeast Nexus Study (SENEX), the NOAA ESRL CSD laboratory undertook WAS measurements for the first time. This required the construction of three new, highly-automated, and field-portable instruments designed to sample, analyze, and clean the canisters for re-use. Analysis was performed with a new custom-built gas chromatograph-mass spectrometer system. The instrument pre-concentrates analyte cryostatically into two parallel traps by means of a Stirling engine, a novel technique which obviates the need for liquid nitrogen to reach trapping temperatures of -175C. Here we present an evaluation of the retrieval of target VOC species from WAS canisters. We discuss the effects of humidity and sample age on the analyte, particularly upon C8+ alkane and aromatic species and biogenic species. Finally, we present results from several research flights during SENEX that targeted emissions from oil/natural gas production.

  9. Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com

    In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to smallmore » Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.« less

  10. Diffusion orientation transform revisited.

    PubMed

    Canales-Rodríguez, Erick Jorge; Lin, Ching-Po; Iturria-Medina, Yasser; Yeh, Chun-Hung; Cho, Kuan-Hung; Melie-García, Lester

    2010-01-15

    Diffusion orientation transform (DOT) is a powerful imaging technique that allows the reconstruction of the microgeometry of fibrous tissues based on diffusion MRI data. The three main error sources involving this methodology are the finite sampling of the q-space, the practical truncation of the series of spherical harmonics and the use of a mono-exponential model for the attenuation of the measured signal. In this work, a detailed mathematical description that provides an extension to the DOT methodology is presented. In particular, the limitations implied by the use of measurements with a finite support in q-space are investigated and clarified as well as the impact of the harmonic series truncation. Near- and far-field analytical patterns for the diffusion propagator are examined. The near-field pattern makes available the direct computation of the probability of return to the origin. The far-field pattern allows probing the limitations of the mono-exponential model, which suggests the existence of a limit of validity for DOT. In the regimen from moderate to large displacement lengths the isosurfaces of the diffusion propagator reveal aberrations in form of artifactual peaks. Finally, the major contribution of this work is the derivation of analytical equations that facilitate the accurate reconstruction of some orientational distribution functions (ODFs) and skewness ODFs that are relatively immune to these artifacts. The new formalism was tested using synthetic and real data from a phantom of intersecting capillaries. The results support the hypothesis that the revisited DOT methodology could enhance the estimation of the microgeometry of fiber tissues.

  11. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  12. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    DTIC Science & Technology

    2017-01-10

    benchmarks of conformational sampling methods and their all-atom force fields plus solvent descriptions to accurately model structural transitions on a...atom simulations of proteins is the replacement of explicit water interactions with a continuum description of treating implicitly the bulk physical... structure was reported by Amarasinghe and coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in complex with a 28-residue peptide extracted

  13. Faculty Forum: The GRE Analytical Writing Test-- Description and Utilization

    ERIC Educational Resources Information Center

    Briihl, Deborah S.; Wasieleski, David T.

    2007-01-01

    The authors surveyed graduate programs to see how they use the Graduate Record Examination Analytic Writing (GRE-AW) Test. Only 35% of the graduate programs that responded use the GRE-AW test in their admission policy; of the programs not using it, most do not plan to do so. The programs using the GRE-AW rated it as medium or low in importance in…

  14. A Strategy for Incorporating Learning Analytics into the Design and Evaluation of a K-12 Science Curriculum

    ERIC Educational Resources Information Center

    Monroy, Carlos; Rangel, Virginia Snodgrass; Whitaker, Reid

    2014-01-01

    In this paper, we discuss a scalable approach for integrating learning analytics into an online K-12 science curriculum. A description of the curriculum and the underlying pedagogical framework is followed by a discussion of the challenges to be tackled as part of this integration. We include examples of data visualization based on teacher usage…

  15. On the use of Lagrangian variables in descriptions of unsteady boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Cowley, Stephen J.; Vandommelen, Leon L.; Lam, Shui T.

    1990-01-01

    The Lagrangian description of unsteady boundary layer separation is reviewed from both analytical and numerical perspectives. It is explained in simple terms how particle distortion gives rise to unsteady separation, and why a theory centered on Lagrangian coordinates provides the clearest description of this phenomenon. Some of the more recent results for unsteady three dimensional compressible separation are included. The different forms of separation that can arise from symmetries are emphasized. A possible description of separation is also included when the detaching vorticity layer exits the classical boundary layer region, but still remains much closer to the surface than a typical body-lengthscale.

  16. Investigation of the "true" extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds.

    PubMed

    Yuan, Long; Ma, Li; Dillon, Lisa; Fancher, R Marcus; Sun, Huadong; Zhu, Mingshe; Lehman-McKeeman, Lois; Aubry, Anne-Françoise; Ji, Qin C

    2016-11-16

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the "true" recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the "true" recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P 1 receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with 3 H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the "true" recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  18. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  19. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  20. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  1. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  2. Review of Thawing Time Prediction Models Depending
on Process Conditions and Product Characteristics

    PubMed Central

    Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna

    2016-01-01

    Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387

  3. Big data analytics in immunology: a knowledge-based approach.

    PubMed

    Zhang, Guang Lan; Sun, Jing; Chitkushev, Lou; Brusic, Vladimir

    2014-01-01

    With the vast amount of immunological data available, immunology research is entering the big data era. These data vary in granularity, quality, and complexity and are stored in various formats, including publications, technical reports, and databases. The challenge is to make the transition from data to actionable knowledge and wisdom and bridge the knowledge gap and application gap. We report a knowledge-based approach based on a framework called KB-builder that facilitates data mining by enabling fast development and deployment of web-accessible immunological data knowledge warehouses. Immunological knowledge discovery relies heavily on both the availability of accurate, up-to-date, and well-organized data and the proper analytics tools. We propose the use of knowledge-based approaches by developing knowledgebases combining well-annotated data with specialized analytical tools and integrating them into analytical workflow. A set of well-defined workflow types with rich summarization and visualization capacity facilitates the transformation from data to critical information and knowledge. By using KB-builder, we enabled streamlining of normally time-consuming processes of database development. The knowledgebases built using KB-builder will speed up rational vaccine design by providing accurate and well-annotated data coupled with tailored computational analysis tools and workflow.

  4. Analytic theory for the selection of 2-D needle crystal at arbitrary Peclet number

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh

    1989-01-01

    An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.

  5. Strong Langmuir Turbulence and Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Glanz, James

    1991-02-01

    The staircase expansion is a new mathematical technique for deriving reduced, nonlinear-PDE descriptions from the plasma-moment equations. Such descriptions incorporate only the most significant linear and nonlinear terms of more complex systems. The technique is used to derive a set of Dawson-Zakharov or "master" equations, which unify and generalize previous work and show the limitations of models commonly used to describe nonlinear plasma waves. Fundamentally new wave-evolution equations are derived that admit of exact nonlinear solutions (solitary waves). Analytic calculations illustrate the competition between well-known effects of self-focusing, which require coupling to ion motion, and pure-electron nonlinearities, which are shown to be especially important in curved geometries. Also presented is an N -moment hydrodynamic model derived from the Vlasov equation. In this connection, the staircase expansion is shown to remain useful for all values of N >= 3. The relevance of the present work to nonlocally truncated hierarchies, which more accurately model dissipation, is briefly discussed. Finally, the general formalism is applied to the problem of electromagnetic emission from counterpropagating Langmuir pumps. It is found that previous treatments have neglected order-unity effects that increase the emission significantly. Detailed numerical results are presented to support these conclusions. The staircase expansion--so called because of its appearance when written out--should be effective whenever the largest contribution to the nonlinear wave remains "close" to some given frequency. Thus the technique should have application to studies of wake-field acceleration schemes and anomalous damping of plasma waves.

  6. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  7. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes

    NASA Astrophysics Data System (ADS)

    Mehta, Ajit Kumar; Mishra, Chandra Kant; Varma, Vijay; Ajith, Parameswaran

    2017-12-01

    We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger, and ringdown of nonspinning black-hole binaries including the effect of several nonquadrupole modes [(ℓ=2 ,m =±1 ),(ℓ=3 ,m =±3 ),(ℓ=4 ,m =±4 ) apart from (ℓ=2 ,m =±2 )]. We first construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with mass ratio 1-10) describing the late inspiral, merger, and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (unfaithfulness ≃10-4- 10-2 ) for observation of GWs from nonspinning black-hole binaries and are extremely inexpensive to generate.

  8. Dietary standards for school catering in France: serving moderate quantities to improve dietary quality without increasing the food-related cost of meals.

    PubMed

    Vieux, Florent; Dubois, Christophe; Allegre, Laëtitia; Mandon, Lionel; Ciantar, Laurent; Darmon, Nicole

    2013-01-01

    To assess the impact on food-related cost of meals to fulfill the new compulsory dietary standards for primary schools in France. A descriptive study assessed the relationship between the level of compliance with the standards of observed school meals and their food-related cost. An analytical study assessed the cost of series of meals published in professional journals, and complying or not with new dietary standards. The costs were based on prices actually paid for food used to prepare school meals. Food-related cost of meals. Parametric and nonparametric tests from a total of 42 and 120 series of 20 meals in the analytical and descriptive studies, respectively. The descriptive study indicated that meeting the standards was not related to cost. The analytical study showed that fulfilling the frequency guidelines increased the cost, whereas fulfilling the portion sizes criteria decreased it. Series of meals fully respecting the standards (ie, frequency and portion sizes) cost significantly less (-0.10 €/meal) than series not fulfilling them, because the standards recommend smaller portion sizes. Introducing portion sizes rules in dietary standards for school catering may help increase dietary quality without increasing the food cost of meals. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  9. Building pit dewatering: application of transient analytic elements.

    PubMed

    Zaadnoordijk, Willem J

    2006-01-01

    Analytic elements are well suited for the design of building pit dewatering. Wells and drains can be modeled accurately by analytic elements, both nearby to determine the pumping level and at some distance to verify the targeted drawdown at the building site and to estimate the consequences in the vicinity. The ability to shift locations of wells or drains easily makes the design process very flexible. The temporary pumping has transient effects, for which transient analytic elements may be used. This is illustrated using the free, open-source, object-oriented analytic element simulator Tim(SL) for the design of a building pit dewatering near a canal. Steady calculations are complemented with transient calculations. Finally, the bandwidths of the results are estimated using linear variance analysis.

  10. A Simple Method for Deriving the Confidence Regions for the Penalized Cox’s Model via the Minimand Perturbation†

    PubMed Central

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496

  11. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

    PubMed

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.

  12. Concurrent performance in a three-alternative choice situation: response allocation in a Rock/Paper/Scissors game.

    PubMed

    Kangas, Brian D; Berry, Meredith S; Cassidy, Rachel N; Dallery, Jesse; Vaidya, Manish; Hackenberg, Timothy D

    2009-10-01

    Adult human subjects engaged in a simulated Rock/Paper/Scissors game against a computer opponent. The computer opponent's responses were determined by programmed probabilities that differed across 10 blocks of 100 trials each. Response allocation in Experiment 1 was well described by a modified version of the generalized matching equation, with undermatching observed in all subjects. To assess the effects of instructions on response allocation, accurate probability-related information on how the computer was programmed to respond was provided to subjects in Experiment 2. Five of 6 subjects played the counter response of the computer's dominant programmed response near-exclusively (e.g., subjects played paper almost exclusively if the probability of rock was high), resulting in minor overmatching, and higher reinforcement rates relative to Experiment 1. On the whole, the study shows that the generalized matching law provides a good description of complex human choice in a gaming context, and illustrates a promising set of laboratory methods and analytic techniques that capture important features of human choice outside the laboratory.

  13. Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Pastor, M.; Fernández Merodo, J. A.; Herreros, M. I.; Mira, P.; González, E.; Haddad, B.; Quecedo, M.; Tonni, L.; Drempetic, V.

    2008-02-01

    Mathematical and numerical models are a fundamental tool for predicting the behaviour of geostructures and their interaction with the environment. The term “mathematical model” refers to a mathematical description of the more relevant physical phenomena which take place in the problem being analyzed. It is indeed a wide area including models ranging from the very simple ones for which analytical solutions can be obtained to those more complicated requiring the use of numerical approximations such as the finite element method. During the last decades, mathematical, constitutive and numerical models have been very much improved and today their use is widespread both in industry and in research. One special case is that of fast catastrophic landslides, for which simplified methods are not able to provide accurate solutions in many occasions. Moreover, many finite element codes cannot be applied for propagation of the mobilized mass. The purpose of this work is to present an overview of the different alternative mathematical and numerical models which can be applied to both the initiation and propagation mechanisms of fast catastrophic landslides and other related problems such as waves caused by landslides.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Winn, Joshua N.; Albrecht, Simon

    We present an improved formula for the anomalous radial velocity of the star during planetary transits due to the Rossiter-McLaughlin (RM) effect. The improvement comes from a more realistic description of the stellar absorption line profiles, taking into account stellar rotation, macroturbulence, thermal broadening, pressure broadening, and instrumental broadening. Although the formula is derived for the case in which radial velocities are measured by cross-correlation, we show through numerical simulations that the formula accurately describes the cases where the radial velocities are measured with the iodine absorption-cell technique. The formula relies on prior knowledge of the parameters describing macroturbulence, instrumentalmore » broadening, and other broadening mechanisms, but even 30% errors in those parameters do not significantly change the results in typical circumstances. We show that the new analytic formula agrees with previous ones that had been computed on a case-by-case basis via numerical simulations. Finally, as one application of the new formula, we reassess the impact of the differential rotation on the RM velocity anomaly. We show that differential rotation of a rapidly rotating star may have a significant impact on future RM observations.« less

  15. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    PubMed

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  16. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions

    PubMed Central

    2016-01-01

    Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought “universal model” capable of describing the behavior of water under different conditions and in different environments. PMID:27186804

  17. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties.

    PubMed

    Xu, Xin; Goddard, William A

    2004-03-02

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  18. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Goddard, William A., III

    2004-03-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  19. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    PubMed Central

    Xu, Xin; Goddard, William A.

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235

  20. Accuracy and Calibration of High Explosive Thermodynamic Equations of State

    NASA Astrophysics Data System (ADS)

    Baker, Ernest L.; Capellos, Christos; Stiel, Leonard I.; Pincay, Jack

    2010-10-01

    The Jones-Wilkins-Lee-Baker (JWLB) equation of state (EOS) was developed to more accurately describe overdriven detonation while maintaining an accurate description of high explosive products expansion work output. The increased mathematical complexity of the JWLB high explosive equations of state provides increased accuracy for practical problems of interest. Increased numbers of parameters are often justified based on improved physics descriptions but can also mean increased calibration complexity. A generalized extent of aluminum reaction Jones-Wilkins-Lee (JWL)-based EOS was developed in order to more accurately describe the observed behavior of aluminized explosives detonation products expansion. A calibration method was developed to describe the unreacted, partially reacted, and completely reacted explosive using nonlinear optimization. A reasonable calibration of a generalized extent of aluminum reaction JWLB EOS as a function of aluminum reaction fraction has not yet been achieved due to the increased mathematical complexity of the JWLB form.

  1. Prison Radicalization: The New Extremist Training Grounds?

    DTIC Science & Technology

    2007-09-01

    distributing and collecting survey data , and the data analysis. The analytical methodology includes descriptive and inferential statistical methods, in... statistical analysis of the responses to identify significant correlations and relationships. B. SURVEY DATA COLLECTION To effectively access a...Q18, Q19, Q20, and Q21. Due to the exploratory nature of this small survey, data analyses were confined mostly to descriptive statistics and

  2. Effects of a Training Package to Improve the Accuracy of Descriptive Analysis Data Recording

    ERIC Educational Resources Information Center

    Mayer, Kimberly L.; DiGennaro Reed, Florence D.

    2013-01-01

    Functional behavior assessment is an important precursor to developing interventions to address a problem behavior. Descriptive analysis, a type of functional behavior assessment, is effective in informing intervention design only if the gathered data accurately capture relevant events and behaviors. We investigated a training procedure to improve…

  3. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    NASA Astrophysics Data System (ADS)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  4. Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1-2403

    NASA Astrophysics Data System (ADS)

    Bonamigo, M.; Grillo, C.; Ettori, S.; Caminha, G. B.; Rosati, P.; Mercurio, A.; Annunziatella, M.; Balestra, I.; Lombardi, M.

    2017-06-01

    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1-2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of the X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1-2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.

  5. An asymptotically consistent approximant method with application to soft- and hard-sphere fluids.

    PubMed

    Barlow, N S; Schultz, A J; Weinstein, S J; Kofke, D A

    2012-11-28

    A modified Padé approximant is used to construct an equation of state, which has the same large-density asymptotic behavior as the model fluid being described, while still retaining the low-density behavior of the virial equation of state (virial series). Within this framework, all sequences of rational functions that are analytic in the physical domain converge to the correct behavior at the same rate, eliminating the ambiguity of choosing the correct form of Padé approximant. The method is applied to fluids composed of "soft" spherical particles with separation distance r interacting through an inverse-power pair potential, φ = ε(σ∕r)(n), where ε and σ are model parameters and n is the "hardness" of the spheres. For n < 9, the approximants provide a significant improvement over the 8-term virial series, when compared against molecular simulation data. For n ≥ 9, both the approximants and the 8-term virial series give an accurate description of the fluid behavior, when compared with simulation data. When taking the limit as n → ∞, an equation of state for hard spheres is obtained, which is closer to simulation data than the 10-term virial series for hard spheres, and is comparable in accuracy to other recently proposed equations of state. By applying a least square fit to the approximants, we obtain a general and accurate soft-sphere equation of state as a function of n, valid over the full range of density in the fluid phase.

  6. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  7. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  8. An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet

    NASA Technical Reports Server (NTRS)

    Gordon, R. A.

    1980-01-01

    Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.

  9. Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.

    PubMed

    Stolper, Charles D; Perer, Adam; Gotz, David

    2014-12-01

    As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic, waiting for it to complete, inspecting the results, and then re-Iaunching the computation with adjusted parameters is not realistic for many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual analytics paradigm by clinical researchers analyzing electronic medical records.

  10. Two dimensional model for coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  11. Accurate approximation of in-ecliptic trajectories for E-sail with constant pitch angle

    NASA Astrophysics Data System (ADS)

    Huo, Mingying; Mengali, Giovanni; Quarta, Alessandro A.

    2018-05-01

    Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.

  12. Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models.

    PubMed

    McGinitie, Teague M; Harynuk, James J

    2012-09-14

    A method was developed to accurately predict both the primary and secondary retention times for a series of alkanes, ketones and alcohols in a flow-modulated GC×GC system. This was accomplished through the use of a three-parameter thermodynamic model where ΔH, ΔS, and ΔC(p) for an analyte's interaction with the stationary phases in both dimensions are known. Coupling this thermodynamic model with a time summation calculation it was possible to accurately predict both (1)t(r) and (2)t(r) for all analytes. The model was able to predict retention times regardless of the temperature ramp used, with an average error of only 0.64% for (1)t(r) and an average error of only 2.22% for (2)t(r). The model shows promise for the accurate prediction of retention times in GC×GC for a wide range of compounds and is able to utilize data collected from 1D experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material.

    PubMed

    Dalarsson, Mariana; Tassin, Philippe

    2009-04-13

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations. Our model straightforwardly allows for arbitrary spectral dispersion.

  14. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  15. Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.

  16. The Security Education Concepts in the Textbooks of the National and Civic Education of the Primary Stage in Jordan--An Analytical Study

    ERIC Educational Resources Information Center

    Al-Edwan, Zaid Suleiman

    2016-01-01

    The present study aimed at exploring the concepts of the security education in the textbooks of the national and civic education of the higher primary stage in Jordan. It adopted the descriptive analytical method. The study sample consisted of the textbooks of the national and civic education for the basic eighth, ninth and tenth grades. To…

  17. On the theory of evolution of particulate systems

    NASA Astrophysics Data System (ADS)

    Buyevich, Yuri A.; Alexandrov, Dmitri V.

    2017-04-01

    An analytical method for the description of particulate systems at sufficiently long times is developed. This method allows us to obtain very simple analytical expressions for the particle distribution function. The method under consideration can be applied to a number of practically important problems including evaporation of a polydisperse mist, dissolution of dispersed solids, combustion of dispersed propellants, physical and chemical transformation of powders and phase transitions in metastable materials.

  18. Towards an analytical framework for tailoring supercontinuum generation.

    PubMed

    Castelló-Lurbe, David; Vermeulen, Nathalie; Silvestre, Enrique

    2016-11-14

    A fully analytical toolbox for supercontinuum generation relying on scenarios without pulse splitting is presented. Furthermore, starting from the new insights provided by this formalism about the physical nature of direct and cascaded dispersive wave emission, a unified description of this radiation in both normal and anomalous dispersion regimes is derived. Previously unidentified physics of broadband spectra reported in earlier works is successfully explained on this basis. Finally, a foundry-compatible few-millimeters-long silicon waveguide allowing octave-spanning supercontinuum generation pumped at telecom wavelengths in the normal dispersion regime is designed, hence showcasing the potential of this new analytical approach.

  19. Analytical formulation of directly modulated OOFDM signals transmitted over an IM/DD dispersive link.

    PubMed

    Sánchez, C; Ortega, B; Wei, J L; Tang, J; Capmany, J

    2013-03-25

    We provide an analytical study on the propagation effects of a directly modulated OOFDM signal through a dispersive fiber and subsequent photo-detection. The analysis includes the effects of the laser operation point and the interplay between chromatic dispersion and laser chirp. The final expression allows to understand the physics behind the transmission of a multi-carrier signal in the presence of residual frequency modulation and the description of the induced intermodulation distortion gives us a detailed insight into the diferent intermodulation products which impair the recovered signal at the receiver-end side. Numerical comparisons between transmission simulations results and those provided by evaluating the expression obtained are carried out for different laser operation points. Results obtained by changing the fiber length, laser parameters and using single mode fiber with negative and positive dispersion are calculated in order to demonstrate the validity and versatility of the theory provided in this paper. Therefore, a novel analytical formulation is presented as a versatile tool for the description and study of IM/DD OOFDM systems with variable design parameters.

  20. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua

    2015-04-15

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less

  1. Description of deformed nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Li, S. C.; Kuyucak, S.

    1996-02-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  2. Self-descriptions on LinkedIn: Recruitment or friendship identity?

    PubMed

    Garcia, Danilo; Cloninger, Kevin M; Granjard, Alexandre; Molander-Söderholm, Kristian; Amato, Clara; Sikström, Sverker

    2018-04-26

    We used quantitative semantics to find clusters of words in LinkedIn users' self-descriptions to an employer or a friend. Some of these clusters discriminated between worker and friend conditions (e.g., flexible vs. caring) and between LinkedIn users with high and low education (e.g., analytical vs. messy). © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. One- and two-center ETF-integrals of first order in relativistic calculation of NMR parameters

    NASA Astrophysics Data System (ADS)

    Slevinsky, R. M.; Temga, T.; Mouattamid, M.; Safouhi, H.

    2010-06-01

    The present work focuses on the analytical and numerical developments of first-order integrals involved in the relativistic calculation of the shielding tensor using exponential-type functions as a basis set of atomic orbitals. For the analytical development, we use the Fourier integral transformation and practical properties of spherical harmonics and the Rayleigh expansion of the plane wavefunctions. The Fourier transforms of the operators were derived in previous work and they are used for analytical development. In both the one- and two-center integrals, Cauchy's residue theorem is used in the final developments of the analytical expressions, which are shown to be accurate to machine precision.

  4. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumb, Matthew P.; Naval Research Laboratory, Washington, DC 20375; Steiner, Myles A.

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close tomore » the fundamental efficiency limit.« less

  5. Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO

    NASA Technical Reports Server (NTRS)

    Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.

    2016-01-01

    A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.

  6. The Biosurveillance Analytics Resource Directory (BARD): Facilitating the use of epidemiological models for infectious disease surveillance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margevicius, Kristen J.; Generous, Nicholas; Abeyta, Esteban

    Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subjectmore » matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.« less

  7. Ram Pressure Stripping Made Easy: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Köppen, J.; Jáchym, P.; Taylor, R.; Palouš, J.

    2018-06-01

    The removal of gas by ram pressure stripping of galaxies is treated by a purely kinematic description. The solution has two asymptotic limits: if the duration of the ram pressure pulse exceeds the period of vertical oscillations perpendicular to the galactic plane, the commonly used quasi-static criterion of Gunn & Gott is obtained which uses the maximum ram pressure that the galaxy has experienced along its orbit. For shorter pulses the outcome depends on the time-integrated ram pressure. This parameter pair fully describes the gas mass fraction that is stripped from a given galaxy. This approach closely reproduces results from SPH simulations. We show that typical galaxies follow a very tight relation in this parameter space corresponding to a pressure pulse length of about 300 Myr. Thus, the Gunn & Gott criterion provides a good description for galaxies in larger clusters. Applying the analytic description to a sample of 232 Virgo galaxies from the GoldMine database, we show that the ICM provides indeed the ram pressures needed to explain the deficiencies. We also can distinguish current and past strippers, including objects whose stripping state was unknown.

  8. The Biosurveillance Analytics Resource Directory (BARD): Facilitating the Use of Epidemiological Models for Infectious Disease Surveillance

    PubMed Central

    Margevicius, Kristen J; Generous, Nicholas; Abeyta, Esteban; Althouse, Ben; Burkom, Howard; Castro, Lauren; Daughton, Ashlynn; Del Valle, Sara Y.; Fairchild, Geoffrey; Hyman, James M.; Kiang, Richard; Morse, Andrew P.; Pancerella, Carmen M.; Pullum, Laura; Ramanathan, Arvind; Schlegelmilch, Jeffrey; Scott, Aaron; Taylor-McCabe, Kirsten J; Vespignani, Alessandro; Deshpande, Alina

    2016-01-01

    Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models. PMID:26820405

  9. The Biosurveillance Analytics Resource Directory (BARD): Facilitating the Use of Epidemiological Models for Infectious Disease Surveillance.

    PubMed

    Margevicius, Kristen J; Generous, Nicholas; Abeyta, Esteban; Althouse, Ben; Burkom, Howard; Castro, Lauren; Daughton, Ashlynn; Del Valle, Sara Y; Fairchild, Geoffrey; Hyman, James M; Kiang, Richard; Morse, Andrew P; Pancerella, Carmen M; Pullum, Laura; Ramanathan, Arvind; Schlegelmilch, Jeffrey; Scott, Aaron; Taylor-McCabe, Kirsten J; Vespignani, Alessandro; Deshpande, Alina

    2016-01-01

    Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.

  10. The Biosurveillance Analytics Resource Directory (BARD): Facilitating the use of epidemiological models for infectious disease surveillance

    DOE PAGES

    Margevicius, Kristen J.; Generous, Nicholas; Abeyta, Esteban; ...

    2016-01-28

    Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subjectmore » matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.« less

  11. Comprehensive identification and structural characterization of target components from Gelsemium elegans by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry based on accurate mass databases combined with MS/MS spectra.

    PubMed

    Liu, Yan-Chun; Xiao, Sa; Yang, Kun; Ling, Li; Sun, Zhi-Liang; Liu, Zhao-Ying

    2017-06-01

    This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data-dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC-QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans, but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.

    2007-09-01

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.

  13. Dark Matter Equilibria in Galaxies and Galaxy Systems

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Cavaliere, A.

    2009-02-01

    In the dark matter (DM) halos embedding galaxies and galaxy systems the "entropy" K ≡ σ2/ρ2/3 (a quantity that combines the radial velocity dispersion σ with the density ρ) is found from intensive N-body simulations to follow a power-law run K vprop r α throughout the halos' bulk, with α around 1.25. Taking up from phenomenology just that α≈ const. applies, we cut through the rich analytic contents of the Jeans equation describing the self-gravitating equilibria of the DM; we specifically focus on computing and discussing a set of novel physical solutions that we name α-profiles, marked by the entropy slope α itself, and by the maximal gravitational pull κcrit(α) required for a viable equilibrium to hold. We then use an advanced semianalytic description for the cosmological buildup of halos to constrain the values of α to within the narrow range 1.25-1.29 from galaxies to galaxy systems; these correspond to halos' current masses in the range 1011-1015 M sun. Our range of α applies since the transition time that—both in our semianalytic description and in state-of-the-art numerical simulations—separates two development stages: an early violent collapse that comprises a few major mergers and enforces dynamical mixing, followed by smoother mass addition through slow accretion. In our range of α we provide a close fit for the relation κcrit(α), and discuss a related physical interpretation in terms of incomplete randomization of the infall kinetic energy through dynamical mixing. We also give an accurate analytic representation of the α-profiles with parameters derived from the Jeans equation; this provides straightforward precision fits to recent detailed data from gravitational lensing in and around massive galaxy clusters, and thus replaces the empirical Navarro-Frenk-White formula relieving the related problems of high concentration and old age. We finally stress how our findings and predictions as to α and κcrit contribute to understanding hitherto unsolved issues concerning the fundamental structure of DM halos.

  14. Development of an Experimental Rig for Investigation of Higher Order Modes in Ducts

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Cabell, Randolph H.; Brown, Martha C.

    2006-01-01

    Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance of the controller to generate the desired mode while suppressing all other cut on modes in the duct.

  15. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  16. An Introduction to Path Analysis

    ERIC Educational Resources Information Center

    Wolfe, Lee M.

    1977-01-01

    The analytical procedure of path analysis is described in terms of its use in nonexperimental settings in the social sciences. The description assumes a moderate statistical background on the part of the reader. (JKS)

  17. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  18. Commutability of food microbiology proficiency testing samples.

    PubMed

    Abdelmassih, M; Polet, M; Goffaux, M-J; Planchon, V; Dierick, K; Mahillon, J

    2014-03-01

    Food microbiology proficiency testing (PT) is a useful tool to assess the analytical performances among laboratories. PT items should be close to routine samples to accurately evaluate the acceptability of the methods. However, most PT providers distribute exclusively artificial samples such as reference materials or irradiated foods. This raises the issue of the suitability of these samples because the equivalence-or 'commutability'-between results obtained on artificial vs. authentic food samples has not been demonstrated. In the clinical field, the use of noncommutable PT samples has led to erroneous evaluation of the performances when different analytical methods were used. This study aimed to provide a first assessment of the commutability of samples distributed in food microbiology PT. REQUASUD and IPH organized 13 food microbiology PTs including 10-28 participants. Three types of PT items were used: genuine food samples, sterile food samples and reference materials. The commutability of the artificial samples (reference material or sterile samples) was assessed by plotting the distribution of the results on natural and artificial PT samples. This comparison highlighted matrix-correlated issues when nonfood matrices, such as reference materials, were used. Artificially inoculated food samples, on the other hand, raised only isolated commutability issues. In the organization of a PT-scheme, authentic or artificially inoculated food samples are necessary to accurately evaluate the analytical performances. Reference materials, used as PT items because of their convenience, may present commutability issues leading to inaccurate penalizing conclusions for methods that would have provided accurate results on food samples. For the first time, the commutability of food microbiology PT samples was investigated. The nature of the samples provided by the organizer turned out to be an important factor because matrix effects can impact on the analytical results. © 2013 The Society for Applied Microbiology.

  19. Heparin removal by ecteola-cellulose pre-treatment enables the use of plasma samples for accurate measurement of anti-Yellow fever virus neutralizing antibodies.

    PubMed

    Campi-Azevedo, Ana Carolina; Peruhype-Magalhães, Vanessa; Coelho-Dos-Reis, Jordana Grazziela; Costa-Pereira, Christiane; Yamamura, Anna Yoshida; Lima, Sheila Maria Barbosa de; Simões, Marisol; Campos, Fernanda Magalhães Freire; de Castro Zacche Tonini, Aline; Lemos, Elenice Moreira; Brum, Ricardo Cristiano; de Noronha, Tatiana Guimarães; Freire, Marcos Silva; Maia, Maria de Lourdes Sousa; Camacho, Luiz Antônio Bastos; Rios, Maria; Chancey, Caren; Romano, Alessandro; Domingues, Carla Magda; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis

    2017-09-01

    Technological innovations in vaccinology have recently contributed to bring about novel insights for the vaccine-induced immune response. While the current protocols that use peripheral blood samples may provide abundant data, a range of distinct components of whole blood samples are required and the different anticoagulant systems employed may impair some properties of the biological sample and interfere with functional assays. Although the interference of heparin in functional assays for viral neutralizing antibodies such as the functional plaque-reduction neutralization test (PRNT), considered the gold-standard method to assess and monitor the protective immunity induced by the Yellow fever virus (YFV) vaccine, has been well characterized, the development of pre-analytical treatments is still required for the establishment of optimized protocols. The present study intended to optimize and evaluate the performance of pre-analytical treatment of heparin-collected blood samples with ecteola-cellulose (ECT) to provide accurate measurement of anti-YFV neutralizing antibodies, by PRNT. The study was designed in three steps, including: I. Problem statement; II. Pre-analytical steps; III. Analytical steps. Data confirmed the interference of heparin on PRNT reactivity in a dose-responsive fashion. Distinct sets of conditions for ECT pre-treatment were tested to optimize the heparin removal. The optimized protocol was pre-validated to determine the effectiveness of heparin plasma:ECT treatment to restore the PRNT titers as compared to serum samples. The validation and comparative performance was carried out by using a large range of serum vs heparin plasma:ECT 1:2 paired samples obtained from unvaccinated and 17DD-YFV primary vaccinated subjects. Altogether, the findings support the use of heparin plasma:ECT samples for accurate measurement of anti-YFV neutralizing antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.

    Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less

  1. Force 2025 and Beyond Strategic Force Design Analytic Model

    DTIC Science & Technology

    2017-01-12

    depiction of the core ideas of our force design model. Figure 1: Description of Force Design Model Figure 2 shows an overview of our methodology ...the F2025B Force Design Analytic Model research conducted by TRAC- MTRY and the Naval Postgraduate School. Our research develops a methodology for...designs. We describe a data development methodology that characterizes the data required to construct a force design model using our approach. We

  2. Summary of investigations of engine response to distorted inlet conditions

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Braithwaite, W. M.; Soeder, R. H.; Abdelwahab, M.

    1986-01-01

    A survey is presented of experimental and analytical experience of the NASA Lewis Research Center in engine response to inlet temperature and pressure distortions. This includes a description of the hardware and techniques employed, and a summary of the highlights of experimental investigations and analytical modeling. Distortion devices successfully simulated inlet distortion, and knowledge was gained about compression system response to different types of distortion. A list of NASA research references is included.

  3. Processing plutonium-contaminated soil on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-07-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical`s (TMA`s) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab.

  4. Fluorescence correlation spectroscopy of diffusion probed with a Gaussian Lorentzian spatial distribution

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2007-11-01

    Fluorescence correlation spectroscopy is fundamental in many physical, chemical and biological studies of molecular diffusion. However, the concept of fluorescence correlation is founded on the assumption that the analytical description of the correlation decay of diffusion can be achieved if the spatial profile of the detected volume obeys a three-dimensional Gaussian distribution. In the present Letter, the analytical result is instead proven for the fundamental Gaussian-Lorentzian profile.

  5. Comparison of methods for measurement of organic compounds at ultra-trace level: analytical criteria and application to analysis of amino acids in extraterrestrial samples.

    PubMed

    Vandenabeele-Trambouze, O; Claeys-Bruno, M; Dobrijevic, M; Rodier, C; Borruat, G; Commeyras, A; Garrelly, L

    2005-02-01

    The need for criteria to compare different analytical methods for measuring extraterrestrial organic matter at ultra-trace levels in relatively small and unique samples (e.g., fragments of meteorites, micrometeorites, planetary samples) is discussed. We emphasize the need to standardize the description of future analyses, and take the first step toward a proposed international laboratory network for performance testing.

  6. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately

    PubMed Central

    2017-01-01

    Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, εD(t), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors. PMID:28709377

  7. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, Stephen J.; Denton, Peter B.; Minakata, Hisakazu

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  8. Characterization of structural connections using free and forced response test data

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The accurate prediction of system dynamic response often has been limited by deficiencies in existing capabilities to characterize connections adequately. Connections between structural components often are complex mechanically, and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic preditions. A procedure for identifying physical connection properties from free and forced response test data is developed, then verified utilizing a system having both a linear and nonlinear connection. Connection properties are computed in terms of physical parameters so that the physical characteristics of the connections can better be understood, in addition to providing improved input for the system model. The identification procedure is applicable to multi-degree of freedom systems, and does not require that the test data be measured directly at the connection locations.

  9. Analytical Model For Fluid Dynamics In A Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.

  10. 77 FR 61791 - System of Records; Presidential Management Fellows Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... program personnel for the following reasons: a. To determine basic program eligibility and to evaluate... descriptive statistics and analytical studies in support of the function for which the records are collected...

  11. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2017-10-01

    Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.

  12. Moving from Descriptive to Causal Analytics: Case Study of the Health Indicators Warehouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack C.; Shankar, Mallikarjun; Xu, Songhua

    The KDD community has described a multitude of methods for knowledge discovery on large datasets. We consider some of these methods and integrate them into an analyst s workflow that proceeds from the data-centric descriptive level to the model-centric causal level. Examples of the workflow are shown for the Health Indicators Warehouse, which is a public database for community health information that is a potent resource for conducting data science on a medium scale. We demonstrate the potential of HIW as a source of serious visual analytics efforts by showing correlation matrix visualizations, multivariate outlier analysis, multiple linear regression ofmore » Medicare costs, and scatterplot matrices for a broad set of health indicators. We conclude by sketching the first steps toward a causal dependence hypothesis.« less

  13. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  14. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    PubMed

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  15. Extended internal standard method for quantitative 1H NMR assisted by chromatography (EIC) for analyte overlapping impurity on 1H NMR spectra.

    PubMed

    Saito, Naoki; Kitamaki, Yuko; Otsuka, Satoko; Yamanaka, Noriko; Nishizaki, Yuzo; Sugimoto, Naoki; Imura, Hisanori; Ihara, Toshihide

    2018-07-01

    We devised a novel extended internal standard method of quantitative 1 H NMR (qNMR) assisted by chromatography (EIC) that accurately quantifies 1 H signal areas of analytes, even when the chemical shifts of the impurity and analyte signals overlap completely. When impurity and analyte signals overlap in the 1 H NMR spectrum but can be separated in a chromatogram, the response ratio of the impurity and an internal standard (IS) can be obtained from the chromatogram. If the response ratio can be converted into the 1 H signal area ratio of the impurity and the IS, the 1 H signal area of the analyte can be evaluated accurately by mathematically correcting the contributions of the 1 H signal area of the impurity overlapping the analyte in the 1 H NMR spectrum. In this study, gas chromatography and liquid chromatography were used. We used 2-chlorophenol and 4-chlorophenol containing phenol as an impurity as examples in which impurity and analyte signals overlap to validate and demonstrate the EIC, respectively. Because the 1 H signals of 2-chlorophenol and phenol can be separated in specific alkaline solutions, 2-chlorophenol is suitable to validate the EIC by comparing analytical value obtained by the EIC with that by only qNMR under the alkaline condition. By the EIC, the purity of 2-chlorophenol was obtained with a relative expanded uncertainty (k = 2) of 0.24%. The purity matched that obtained under the alkaline condition. Furthermore, the EIC was also validated by evaluating the phenol content with the absolute calibration curve method by gas chromatography. Finally, we demonstrated that the EIC was possible to evaluate the purity of 4-chlorophenol, with a relative expanded uncertainty (k = 2) of 0.22%, which was not able to be separated from the 1 H signal of phenol under any condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Predictive modeling of complications.

    PubMed

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.

  17. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability.

  18. Structural analysis and design of multivariable control systems: An algebraic approach

    NASA Technical Reports Server (NTRS)

    Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen

    1988-01-01

    The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.

  19. Simple Parametric Model for Airfoil Shape Description

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, David

    2017-12-01

    We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.

  20. Defining the role of a PACS technologist.

    PubMed

    Cabrera, Alfred

    2002-01-01

    As hospitals convert from conventional image processing to picture archiving and communication systems (PACS) technology, new job opportunities arose for PACS analysts, PACS system administrators, PACS operators, and PACS trainers. To support a PACS, these positions require education in computer information systems and work experience in information technology. At Texas Children's Hospital, new roles for radiologic technologists (RT) in supporting the operation of PACS were not recognized until after implementation of the filmless system. A new position entitled PACS technologis was created, but roles and responsibilities largely were undefined. The inadequate job description contributed to problems with appropriate utilization of the PACS technologist. The primary role of the technologist was nebulous, and the priority of tasks was undefined. There was an excessive volume of information and technology to be mastered. The role represented a new paradigm, so no template for the job description was available that encompassed the array of functions to be performed. The result was a "morph" of the RT and PACS analyst job descriptions that was contrived and unworkable. The role of the PACS technologist is vital to the operation of the radiology department that uses PACS. There is a well-established need for cross training of RTs in PACS. PACS technology is not taught in RT training programs. There are recurrent communications problems between RT and Information Technology (IT) personnel. The PACS technologist can participate in a number of activities that improve the overall level of proficiency in the imaging operation, such as specialized PACS training for RTs, collection and analysis of quality control data, and planning for installations of PACS acquisition modalities. RTs have acquired knowledge of medical terminology and human anatomy, imaging modalities, and workflow. These qualifications constitute a common basis for communication with other RTs, physicians, and other health care providers. In addition the appropriate candidate for PACS technologist should have computer software and hardware knowledge, interpersonal skills, oral and written communications skills, and analytical skills to troubleshoot issues. This report will describe the evolution of a more accurate job description for the PACS technologist, the relationship between the PACS technologist and the RT supervisor, and specific tasks are appropriate for the PACS technologist to perform.

  1. Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.

    PubMed

    Bednarik, Michal; Cervenka, Milan

    2014-03-01

    This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.

  2. Voice Identification: Levels-of-Processing and the Relationship between Prior Description Accuracy and Recognition Accuracy.

    ERIC Educational Resources Information Center

    Walter, Todd J.

    A study examined whether a person's ability to accurately identify a voice is influenced by factors similar to those proposed by the Supreme Court for eyewitness identification accuracy. In particular, the Supreme Court has suggested that a person's prior description accuracy of a suspect, degree of attention to a suspect, and confidence in…

  3. Statistically Qualified Neuro-Analytic system and Method for Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    1998-11-04

    An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less

  4. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.

    PubMed

    Augustin, Moritz; Ladenbauer, Josef; Baumann, Fabian; Obermayer, Klaus

    2017-06-01

    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.

  5. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less

  6. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation

    PubMed Central

    Baumann, Fabian; Obermayer, Klaus

    2017-01-01

    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models. PMID:28644841

  7. How variations in distance affect eyewitness reports and identification accuracy.

    PubMed

    Lindsay, R C L; Semmler, Carolyn; Weber, Nathan; Brewer, Neil; Lindsay, Marilyn R

    2008-12-01

    Witnesses observe crimes at various distances and the courts have to interpret their testimony given the likely quality of witnesses' views of events. We examined how accurately witnesses judged the distance between themselves and a target person, and how distance affected description accuracy, choosing behavior, and identification test accuracy. Over 1,300 participants were approached during normal daily activities, and asked to observe a target person at one of a number of possible distances. Under a Perception, Immediate Memory, or Delayed Memory condition, witnesses provided a brief description of the target, estimated the distance to the target, and then examined a 6-person target-present or target-absent lineup to see if they could identify the target. Errors in distance judgments were often substantial. Description accuracy was mediocre and did not vary systematically with distance. Identification choosing rates were not affected by distance, but decision accuracy declined with distance. Contrary to previous research, a 15-m viewing distance was not critical for discriminating accurate from inaccurate decisions.

  8. Quality and safety aspects in histopathology laboratory

    PubMed Central

    Adyanthaya, Soniya; Jose, Maji

    2013-01-01

    Histopathology is an art of analyzing and interpreting the shapes, sizes and architectural patterns of cells and tissues within a given specific clinical background and a science by which the image is placed in the context of knowledge of pathobiology, to arrive at an accurate diagnosis. To function effectively and safely, all the procedures and activities of histopathology laboratory should be evaluated and monitored accurately. In histopathology laboratory, the concept of quality control is applicable to pre-analytical, analytical and post-analytical activities. Ensuring safety of working personnel as well as environment is also highly important. Safety issues that may come up in a histopathology lab are primarily those related to potentially hazardous chemicals, biohazardous materials, accidents linked to the equipment and instrumentation employed and general risks from electrical and fire hazards. This article discusses quality management system which can ensure quality performance in histopathology laboratory. The hazards in pathology laboratories and practical safety measures aimed at controlling the dangers are also discussed with the objective of promoting safety consciousness and the practice of laboratory safety. PMID:24574660

  9. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    NASA Astrophysics Data System (ADS)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  10. Engine isolation for structural-borne interior noise reduction in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1981-01-01

    Engine vibration isolation for structural-borne interior noise reduction is investigated. A laboratory based test procedure to simulate engine induced structure-borne noise transmission, the testing of a range of candidate isolators for relative performance data, and the development of an analytical model of the transmission phenomena for isolator design evaluation are addressed. The isolator relative performance test data show that the elastomeric isolators do not appear to operate as single degree of freedom systems with respect to noise isolation. Noise isolation beyond 150 Hz levels off and begins to decrease somewhat above 600 Hz. Coupled analytical and empirical models were used to study the structure-borne noise transmission phenomena. Correlation of predicted results with measured data show that (1) the modeling procedures are reasonably accurate for isolator design evaluation, (2) the frequency dependent properties of the isolators must be included in the model if reasonably accurate noise prediction beyond 150 Hz is desired. The experimental and analytical studies were carried out in the frequency range from 10 Hz to 1000 Hz.

  11. Accurate expressions for solar cell fill factors including series and shunt resistances

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2016-02-01

    Together with open-circuit voltage and short-circuit current, fill factor is a key solar cell parameter. In their classic paper on limiting efficiency, Shockley and Queisser first investigated this factor's analytical properties showing, for ideal cells, it could be expressed implicitly in terms of the maximum power point voltage. Subsequently, fill factors usually have been calculated iteratively from such implicit expressions or from analytical approximations. In the absence of detrimental series and shunt resistances, analytical fill factor expressions have recently been published in terms of the Lambert W function available in most mathematical computing software. Using a recently identified perturbative relationship, exact expressions in terms of this function are derived in technically interesting cases when both series and shunt resistances are present but have limited impact, allowing a better understanding of their effect individually and in combination. Approximate expressions for arbitrary shunt and series resistances are then deduced, which are significantly more accurate than any previously published. A method based on the insights developed is also reported for deducing one-diode fits to experimental data.

  12. Thermogravimetric analysis for rapid assessment of moisture diffusivity in polydisperse powder and thin film matrices.

    PubMed

    Thirunathan, Praveena; Arnz, Patrik; Husny, Joeska; Gianfrancesco, Alessandro; Perdana, Jimmy

    2018-03-01

    Accurate description of moisture diffusivity is key to precisely understand and predict moisture transfer behaviour in a matrix. Unfortunately, measuring moisture diffusivity is not trivial, especially at low moisture values and/or elevated temperatures. This paper presents a novel experimental procedure to accurately measure moisture diffusivity based on thermogravimetric approach. The procedure is capable to measure diffusivity even at elevated temperatures (>70°C) and low moisture values (>1%). Diffusivity was extracted from experimental data based on "regular regime approach". The approach was tailored to determine diffusivity from thin film and from poly-dispersed powdered samples. Subsequently, measured diffusivity was validated by comparing to available literature data, showing good agreement. Ability of this approach to accurately measure diffusivity at a wider range of temperatures provides better insight on temperature dependency of diffusivity. Thus, this approach can be crucial to ensure good accuracy of moisture transfer description/prediction especially when involving elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  14. AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Ramírez, J. C.; Raga, A. C.; Lora, V.

    2016-12-20

    We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. Wemore » compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.« less

  15. A Two-Variable Grading Scheme.

    ERIC Educational Resources Information Center

    Applebaum, David C.

    1979-01-01

    Explains a flexible two-part grading scheme which attempts to mix the best of both the descriptive and analytical treatments of an introductory astronomy course, to allow for differences in the academic backgrounds of the students. (GA)

  16. Deep Space Telecommunications Systems Engineering

    NASA Technical Reports Server (NTRS)

    Yuen, J. H. (Editor)

    1982-01-01

    Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed.

  17. Preliminary Description of Stresses in Railroad Rail

    DOT National Transportation Integrated Search

    1976-11-01

    One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...

  18. 77 FR 73694 - Privacy Act of 1974: Update Existing System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... survey response, and in the production of summary descriptive statistics and analytical studies in... participation in an agency's Upward Mobility Program or other personnel program designed to broaden an employee...

  19. Analytical, Numerical, and Experimental Results on Turbulent Boundary Layers

    DTIC Science & Technology

    1976-07-01

    a pitot pressure rake where the spacing between probe centers was 0.5 in. near the wall and 1.0 in. away from the wall. Recently, measurements have...Pressure Gradient, Part II. Analysis- of the Experimental Data." BRL R 1543, June 1971. 51. Allen, J. M. " Pitot -Probe Displacement in a Supersonic Turbulent...numbers; (4) a description of the data reduction of pitot pressure measurements utilizing these analytical results in order to obtain velocity

  20. PAUSE: Predictive Analytics Using SPARQL-Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R; Ainsworth, Keela; Bond, Nathaniel

    2014-07-11

    This invention relates to the medical industry and more specifically to methods of predicting risks. With the impetus towards personalized and evidence-based medicine, the need for a framework to analyze/interpret quantitative measurements (blood work, toxicology, etc.) with qualitative descriptions (specialist reports after reading images, bio-medical knowledgebase, etc.) to predict diagnostic risks is fast emerging. We describe a software solution that leverages hardware for scalable in-memory analytics and applies next-generation semantic query tools on medical data.

  1. Effect of particle inertia on turbulence in a suspension.

    PubMed

    L'vov, Victor S; Ooms, Gijs; Pomyalov, Anna

    2003-04-01

    We propose a one-fluid analytical model for a turbulently flowing dilute suspension, based on a modified Navier-Stokes equation with a k-dependent effective density of suspension rho(eff)(k) and an additional damping term proportional, variant gamma(p)(k), representing the fluid-particle friction (described by Stokes law). The statistical description of turbulence within the model is simplified by a modification of the usual closure procedure based on the Richardson-Kolmogorov picture of turbulence with a differential approximation for the energy transfer term. The resulting ordinary differential equation for the energy budget is solved analytically for various important limiting cases and numerically in the general case. In the inertial interval of scales, we describe analytically two competing effects: the energy suppression due to the fluid-particle friction and the energy enhancement during the cascade process due to decrease of the effective density of the small-scale motions. An additional suppression or enhancement of the energy density may occur in the viscous subrange, caused by the variation of the extent of the inertial interval due to the combined effect of the fluid-particle friction and the decrease of the kinematic viscosity of the suspensions. The analytical description of the complicated interplay of these effects supported by numerical calculations is presented. Our findings allow one to rationalize the qualitative picture of the isotropic homogeneous turbulence of dilute suspensions as observed in direct numerical simulations.

  2. Back analysis of geomechanical parameters in underground engineering using artificial bee colony.

    PubMed

    Zhu, Changxing; Zhao, Hongbo; Zhao, Ming

    2014-01-01

    Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.

  3. Analytic barrage attack model. Final report, January 1986-January 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.

    An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for themore » analytic model and for a numerical model used to check the analytic results.« less

  4. Post-analytical Issues in Hemostasis and Thrombosis Testing.

    PubMed

    Favaloro, Emmanuel J; Lippi, Giuseppe

    2017-01-01

    Analytical concerns within hemostasis and thrombosis testing are continuously decreasing. This is essentially attributable to modern instrumentation, improvements in test performance and reliability, as well as the application of appropriate internal quality control and external quality assurance measures. Pre-analytical issues are also being dealt with in some newer instrumentation, which are able to detect hemolysis, icteria and lipemia, and, in some cases, other issues related to sample collection such as tube under-filling. Post-analytical issues are generally related to appropriate reporting and interpretation of test results, and these are the focus of the current overview, which provides a brief description of these events, as well as guidance for their prevention or minimization. In particular, we propose several strategies for improved post-analytical reporting of hemostasis assays and advise that this may provide the final opportunity to prevent serious clinical errors in diagnosis.

  5. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  6. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  7. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  8. Development of a standardized job description for healthcare managers of metabolic syndrome management programs in Korean community health centers.

    PubMed

    Lee, Youngjin; Choo, Jina; Cho, Jeonghyun; Kim, So-Nam; Lee, Hye-Eun; Yoon, Seok-Jun; Seomun, GyeongAe

    2014-03-01

    This study aimed to develop a job description for healthcare managers of metabolic syndrome management programs using task analysis. Exploratory research was performed by using the Developing a Curriculum method, the Intervention Wheel model, and focus group discussions. Subsequently, we conducted a survey of 215 healthcare workers from 25 community health centers to verify that the job description we created was accurate. We defined the role of healthcare managers. Next, we elucidated the tasks of healthcare managers and performed needs analysis to examine the frequency, importance, and difficulty of each of their duties. Finally, we verified that our job description was accurate. Based on the 8 duties, 30 tasks, and 44 task elements assigned to healthcare managers, we found that the healthcare managers functioned both as team coordinators responsible for providing multidisciplinary health services and nurse specialists providing health promotion services. In terms of importance and difficulty of tasks performed by the healthcare managers, which were measured using a determinant coefficient, the highest-ranked task was planning social marketing (15.4), while the lowest-ranked task was managing human resources (9.9). A job description for healthcare managers may provide basic data essential for the development of a job training program for healthcare managers working in community health promotion programs. Copyright © 2014. Published by Elsevier B.V.

  9. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    PubMed

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  10. Climate change or climate cycles? Snowpack trends in the Olympic and Cascade Mountains, Washington, USA.

    PubMed

    Barry, Dwight; McDonald, Shea

    2013-01-01

    Climate change could significantly influence seasonal streamflow and water availability in the snowpack-fed watersheds of Washington, USA. Descriptions of snowpack decline often use linear ordinary least squares (OLS) models to quantify this change. However, the region's precipitation is known to be related to climate cycles. If snowpack decline is more closely related to these cycles, an OLS model cannot account for this effect, and thus both descriptions of trends and estimates of decline could be inaccurate. We used intervention analysis to determine whether snow water equivalent (SWE) in 25 long-term snow courses within the Olympic and Cascade Mountains are more accurately described by OLS (to represent gradual change), stationary (to represent no change), or step-stationary (to represent climate cycling) models. We used Bayesian information-theoretic methods to determine these models' relative likelihood, and we found 90 models that could plausibly describe the statistical structure of the 25 snow courses' time series. Posterior model probabilities of the 29 "most plausible" models ranged from 0.33 to 0.91 (mean = 0.58, s = 0.15). The majority of these time series (55%) were best represented as step-stationary models with a single breakpoint at 1976/77, coinciding with a major shift in the Pacific Decadal Oscillation. However, estimates of SWE decline differed by as much as 35% between statistically plausible models of a single time series. This ambiguity is a critical problem for water management policy. Approaches such as intervention analysis should become part of the basic analytical toolkit for snowpack or other climatic time series data.

  11. Prevalence of hypodontia in nine- to fourteen-year-old children who attended the Mashhad School of Dentistry.

    PubMed

    Ajami, Behgat-al-molok; Shabzendedar, Mahboobeh; Mehrjerdian, Maryam

    2010-01-01

    Hypodontia is defined as the congenital absence of one or a few teeth, and is also the most common anomaly in dental development. This condition occurs either individually or as part of the symptoms of a syndrome, and it is more common in permanent teeth than in deciduous teeth, reporting a prevalence of between 1.6 and 9.6%. The objective of this study is to investigate the prevalence of hypodontia for permanent teeth in nine- to 14-year-old children who attended the Mashhad School of Dentistry in 2007. We conducted this descriptive, analytical, cross-sectional study, to determine the mentioned aims. In this descriptive, cross-sectional study, panoramic radiographs belonging to 600 children (351 girls and 249 boys), aged nine to 14 years, were available for examination. All related findings were recorded in the respective forms. The data were processed using Exact and Chi-square tests. The prevalence of hypodontia in the girls was 9.2%, in the boys 8.8%, and in both sexes combined 9%. The most and the least frequent cases of absent teeth were the mandibular second premolars and the maxillary central incisor (only one child), respectively. The most commonly absent teeth were the mandibular second premolars, the maxillary lateral incisors, the mandibular central incisor, and the maxillary second premolars, in that order. This study showed a high frequency of hypodontia among the understudied population. Thus, due to the complicated treatment, accurate examination of children for on-time diagnosis of this developmental anomaly is crucial.

  12. A rapid quantitative analysis of bile acids, lysophosphatidylcholines and polyunsaturated fatty acids in biofluids based on ultraperformance liquid chromatography coupled with triple quadrupole tandem massspectrometry.

    PubMed

    Peng, Zhangxiao; Zhang, Qian; Mao, Ziming; Wang, Jie; Liu, Chunying; Lin, Xuejing; Li, Xin; Ji, Weidan; Fan, Jianhui; Wang, Maorong; Su, Changqing

    2017-11-15

    Much evidence suggested that quantitative analysis of bile acids (BAs), lysophosphatidylcholines (LPCs), and polyunsaturated fatty acids (PUFAs) in biofluids may be very useful for diagnosis and prevention of hepatobiliary disease with a non-invasive manner. However, simultaneously fast analysis of these metabolites has been challenging for their huge differences of physicochemical properties and concentration levels in biofluids. In this study, we present a liquid chromatography-mass spectrometry method with a high throughput analytical cycle (10min) to fast and accurately quantify fifteen potential biomarkers (eight BAs, four LPCs and three PUFAs) of hepatobiliary disease. The accuracy for the fifteen analytes in plasma and urine matrices was 80.45%-118.99% and 84.55%-112.66%, respectively. The intra- and inter- precisions for the fifteen analytes in plasma and urine matrices were all less than 20% and the lower limit of quantification (LLOQ) of analytes is up to 0.0283-8.2172nmol/L. Therefore, this method is fast, sensitive and accurate for the quantitative analysis of BAs, LPCs and PUFAs in biofluids. Moreover, the stability and concentration differences of the analytes in plasma and serum were evaluated, and the results demonstrated that LPCs is stable, but PUFAs is very unstable in freeze and thaw cycles, and the concentrations of the analytes in serum were slightly higher than those in plasma. We suggested plasma may be a kind of better bio-sample than serum using for quantitative analysis of metabolites in blood, due to the characteristics of plasma are more close to blood than those of serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Healthcare predictive analytics: An overview with a focus on Saudi Arabia.

    PubMed

    Alharthi, Hana

    2018-03-08

    Despite a newfound wealth of data and information, the healthcare sector is lacking in actionable knowledge. This is largely because healthcare data, though plentiful, tends to be inherently complex and fragmented. Health data analytics, with an emphasis on predictive analytics, is emerging as a transformative tool that can enable more proactive and preventative treatment options. This review considers the ways in which predictive analytics has been applied in the for-profit business sector to generate well-timed and accurate predictions of key outcomes, with a focus on key features that may be applicable to healthcare-specific applications. Published medical research presenting assessments of predictive analytics technology in medical applications are reviewed, with particular emphasis on how hospitals have integrated predictive analytics into their day-to-day healthcare services to improve quality of care. This review also highlights the numerous challenges of implementing predictive analytics in healthcare settings and concludes with a discussion of current efforts to implement healthcare data analytics in the developing country, Saudi Arabia. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. User's guide and description of the streamline divergence computer program. [turbulent convective heat transfer

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Mcanally, J. V.

    1975-01-01

    The streamline divergence program was developed to demonstrate the capability to trace inviscid surface streamlines and to calculate outflow-corrected laminar and turbulent convective heating rates on surfaces subjected to exhaust plume impingement. The analytical techniques used in formulating this program are discussed. A brief description of the streamline divergence program is given along with a user's guide. The program input and output for a sample case are also presented.

  15. Characteristics of Whipple Shield Performance in the Shatter Regime

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Bjorkman, M.; Christiansen, E. L.

    2010-01-01

    Ballistic limit equations define the failure of metallic Whipple shields in three parts: low velocity, shatter, and hypervelocity. Failure limits in the shatter regime are based on a linear interpolation between the onset of projectile fragmentation, and impulsive rupture of the shield rear wall. A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield BLE following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0-5.0 km/s, with a subsequent decrease in performance for velocities up to 6.0 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, however a number of underlying assumptions such as the occurrence of complete projectile fragmentation and the effect on performance of incipient projectile melt were found to be inaccurate. A cratering relationship based on the largest residual fragment size has been derived for application at velocities between 3.0-4.0 km/s, and was shown to accurately reproduce the trends of the experimental data. Further investigation is required to allow a full analytical description of shatter regime performance for metallic Whipple shields.

  16. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Bornhöft, Nikolaus A; Hungerbühler, Konrad; Nowack, Bernd

    2016-05-03

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental concentrations. Despite significant advances in analytical methods, it is still not possible to measure the concentrations of ENM in natural systems. Material flow and environmental fate models have been used to provide predicted environmental concentrations. However, almost all current models are static and consider neither the rapid development of ENM production nor the fact that many ENM are entering an in-use stock and are released with a lag phase. Here we use dynamic probabilistic material flow modeling to predict the flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. Caused by the increase in production, the concentrations of all ENM in all compartments are increasing. Nano-TiO2 had far higher concentrations than the other three ENM. Sediment showed in our worst-case scenario concentrations ranging from 6.7 μg/kg (CNT) to about 40 000 μg/kg (nano-TiO2). In most cases the concentrations in waste incineration residues are at the "mg/kg" level. The flows to the environment that we provide will constitute the most accurate and reliable input of masses for environmental fate models which are using process-based descriptions of the fate and behavior of ENM in natural systems and rely on accurate mass input parameters.

  17. Communicating Experimental Findings in Single Case Design Research: How to Use Celeration Values and Celeration Multipliers to Measure Direction, Magnitude, and Change of Slope

    ERIC Educational Resources Information Center

    Datchuk, Shawn M.; Kubina, Richard M., Jr.

    2011-01-01

    The accumulation of scientific knowledge greatly depends upon the critical review of experimental findings by ones peers. In single case design research, experimenters present findings with graphical displays of data and narrative description of a visual analysis. To aid in efficient and accurate description of experimental findings, the research…

  18. A Project Manager’s Personal Attributes as Predictors for Success

    DTIC Science & Technology

    2007-03-01

    Northouse (2004) explains that leadership is highly a researched topic with much written. Yet, a definitive description of this phenomenon is difficult to...express because of its complexity. Even though leadership has varied descriptions and conceptualizations, Northouse states that the concept of...characteristic of leadership is not an accurate predictor of performance. Leadership is a complex, multi-faceted attribute ( Northouse , 2004) and specific

  19. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  20. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control.

    PubMed

    Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna

    2012-05-01

    Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.

  1. Project Management in NASA: The system and the men

    NASA Technical Reports Server (NTRS)

    Pontious, R. H.; Barnes, L. B.

    1973-01-01

    An analytical description of the NASA project management system is presented with emphasis on the human element. The NASA concept of project management, program managers, and the problems and strengths of the NASA system are discussed.

  2. Developing an Emergency Physician Productivity Index Using Descriptive Health Analytics.

    PubMed

    Khalifa, Mohamed

    2015-01-01

    Emergency department (ED) crowding became a major barrier to receiving timely emergency care. At King Faisal Specialist Hospital and Research Center, Saudi Arabia, we identified variables and factors affecting crowding and performance to develop indicators to help evaluation and improvement. Measuring efficiency of work and activity of throughput processes; it was important to develop an ED physician productivity index. Data on all ED patients' encounters over the last six months of 2014 were retrieved and descriptive health analytics methods were used. Three variables were identified for their influence on productivity and performance; Number of Treated Patients per Physician, Patient Acuity Level and Treatment Time. The study suggested a formula to calculate the productivity index of each physician through dividing the Number of Treated Patients by Patient Acuity Level squared and Treatment Time to identify physicians with low productivity index and investigate causes and factors.

  3. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  4. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.

  5. The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry

    PubMed Central

    Brown, Richard J. C.

    2008-01-01

    The limit of detection (LoD) serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics. PMID:18690384

  6. VALIDATION OF ANALYTICAL METHODS AND INSTRUMENTATION FOR BERYLLIUM MEASUREMENT: REVIEW AND SUMMARY OF AVAILABLE GUIDES, PROCEDURES, AND PROTOCOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekechukwu, A.

    This document proposes to provide a listing of available sources which can be used to validate analytical methods and/or instrumentation for beryllium determination. A literature review was conducted of available standard methods and publications used for method validation and/or quality control. A comprehensive listing of the articles, papers, and books reviewed is given in Appendix 1. Available validation documents and guides are listed in the appendix; each has a brief description of application and use. In the referenced sources, there are varying approaches to validation and varying descriptions of validation at different stages in method development. This discussion focuses onmore » validation and verification of fully developed methods and instrumentation that have been offered up for use or approval by other laboratories or official consensus bodies such as ASTM International, the International Standards Organization (ISO) and the Association of Official Analytical Chemists (AOAC). This review was conducted as part of a collaborative effort to investigate and improve the state of validation for measuring beryllium in the workplace and the environment. Documents and publications from the United States and Europe are included. Unless otherwise specified, all documents were published in English.« less

  7. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion andmore » dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.« less

  8. A simple analytical model for signal amplification by reversible exchange (SABRE) process.

    PubMed

    Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V

    2016-01-07

    We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.

  9. An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.

  10. Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.

    PubMed

    Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K

    2016-08-01

    The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.

  11. Nonlinear Analyte Concentration Gradients for One-Step Kinetic Analysis Employing Optical Microring Resonators

    PubMed Central

    Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.

    2012-01-01

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186

  12. Continuous Metabolic Monitoring Based on Multi-Analyte Biomarkers to Predict Exhaustion

    PubMed Central

    Kastellorizios, Michail; Burgess, Diane J.

    2015-01-01

    This work introduces the concept of multi-analyte biomarkers for continuous metabolic monitoring. The importance of using more than one marker lies in the ability to obtain a holistic understanding of the metabolism. This is showcased for the detection and prediction of exhaustion during intense physical exercise. The findings presented here indicate that when glucose and lactate changes over time are combined into multi-analyte biomarkers, their monitoring trends are more sensitive in the subcutaneous tissue, an implantation-friendly peripheral tissue, compared to the blood. This unexpected observation was confirmed in normal as well as type 1 diabetic rats. This study was designed to be of direct value to continuous monitoring biosensor research, where single analytes are typically monitored. These findings can be implemented in new multi-analyte continuous monitoring technologies for more accurate insulin dosing, as well as for exhaustion prediction studies based on objective data rather than the subject’s perception. PMID:26028477

  13. Continuous metabolic monitoring based on multi-analyte biomarkers to predict exhaustion.

    PubMed

    Kastellorizios, Michail; Burgess, Diane J

    2015-06-01

    This work introduces the concept of multi-analyte biomarkers for continuous metabolic monitoring. The importance of using more than one marker lies in the ability to obtain a holistic understanding of the metabolism. This is showcased for the detection and prediction of exhaustion during intense physical exercise. The findings presented here indicate that when glucose and lactate changes over time are combined into multi-analyte biomarkers, their monitoring trends are more sensitive in the subcutaneous tissue, an implantation-friendly peripheral tissue, compared to the blood. This unexpected observation was confirmed in normal as well as type 1 diabetic rats. This study was designed to be of direct value to continuous monitoring biosensor research, where single analytes are typically monitored. These findings can be implemented in new multi-analyte continuous monitoring technologies for more accurate insulin dosing, as well as for exhaustion prediction studies based on objective data rather than the subject's perception.

  14. Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators.

    PubMed

    Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G

    2012-07-03

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.

  15. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    PubMed Central

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-01-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968

  16. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    NASA Astrophysics Data System (ADS)

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  17. A theoretical analysis of the free vibrations of ring- and/or stringer-stiffened elliptical cylinders with arbitrary end conditions. Volume 1: Analytical derivation and applications

    NASA Technical Reports Server (NTRS)

    Boyd, D. E.; Rao, C. K. P.

    1973-01-01

    The derivation and application of a Rayleigh-Ritz modal vibration analysis are presented for ring and/or stringer stiffened noncircular cylindrical shells with arbitrary end conditions. Comparisons with previous results from experimental and analytical studies showed this method of analysis to be accurate for a variety of end conditions. Results indicate a greater effect of rings on natural frequencies than of stringers.

  18. Generalized hydrodynamic transport in lattice-gas automata

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun

    1991-01-01

    The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.

  19. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    NASA-Lewis Research Center's work on accurate measurement of trace level of metals in various fuels is presented. The differences between laboratories and between analytical techniques especially for concentrations below 10 ppm, are discussed, detailing the Atomic Absorption Spectrometry (AAS) and DC Arc Emission Spectrometry (dc arc) techniques used by NASA-Lewis. Also presented is the design of an Interlaboratory Study which is considering the following factors: laboratory, analytical technique, fuel type, concentration and ashing additive.

  20. Sample Return Missions Where Contamination Issues are Critical: Genesis Mission Approach

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Stansbery E. K.

    2011-01-01

    The Genesis Mission, sought the challenging analytical goals of accurately and precisely measuring the elemental and isotopic composition of the Sun to levels useful for planetary science, requiring sensitivities of ppm to ppt in the outer 100 nm of collector materials. Analytical capabilities were further challenged when the hard landing in 2004 broke open the canister containing the super-clean collectors. Genesis illustrates that returned samples allow flexibility and creativity to recover from setbacks.

  1. Induction log responses to layered, dipping, and anisotropic formations: Induction log shoulder-bed corrections to anisotropic formations and the effect of shale anisotropy in thinly laminated sand/shale sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Teruhiko

    1996-12-31

    Induction log responses to layered, dipping, and anisotropic formations are examined analytically. The analytical model is especially helpful in understanding induction log responses to thinly laminated binary formations, such as sand/shale sequences, that exhibit macroscopically anisotropic: resistivity. Two applications of the analytical model are discussed. In one application we examine special induction log shoulder-bed corrections for use when thin anisotropic beds are encountered. It is known that thinly laminated sand/shale sequences act as macroscopically anisotropic: formations. Hydrocarbon-bearing formations also act as macroscopically anisotropic formations when they consist of alternating layers of different grain-size distributions. When such formations are thick, inductionmore » logs accurately read the macroscopic conductivity, from which the hydrocarbon saturation in the formations can be computed. When the laminated formations are not thick, proper shoulder-bed corrections (or thin-bed corrections) should be applied to obtain the true macroscopic formation conductivity and to estimate the hydrocarbon saturation more accurately. The analytical model is used to calculate the thin-bed effect and to evaluate the shoulder-bed corrections. We will show that the formation resistivity and hence the hydrocarbon saturation are greatly overestimated when the anisotropy effect is not accounted for and conventional shoulder-bed corrections are applied to the log responses from such laminated formations.« less

  2. Sensorineural hearing loss among cerebellopontine-angle tumor patients examined with pure tone audiometry and brainstem-evoked response audiometry

    NASA Astrophysics Data System (ADS)

    Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.

    2017-08-01

    Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.

  3. Ecotracer: analyzing concentration of contaminants and radioisotopes in an aquatic spatial-dynamic food web model.

    PubMed

    Walters, William J; Christensen, Villy

    2018-01-01

    Ecotracer is a tool in the Ecopath with Ecosim (EwE) software package used to simulate and analyze the transport of contaminants such as methylmercury or radiocesium through aquatic food webs. Ecotracer solves the contaminant dynamic equations simultaneously with the biomass dynamic equations in Ecosim/Ecospace. In this paper, we give a detailed description of the Ecotracer module and analyze the performance on two problems of differing complexity. Ecotracer was modified from previous versions to more accurately model contaminant excretion, and new numerical integration algorithms were implemented to increase accuracy and robustness. To test the mathematical robustness of the computational algorithm, Ecotracer was tested on a simple problem for which we know an analytical solution. These results demonstrated the effectiveness of the program numerics. A much more complex model, the release of the cesium radionuclide 137 Cs from the Fukushima Dai-ichi nuclear accident, was also modeled and analyzed. A comparison of the Ecotracer results to sampled 137 Cs measurements in the coastal ocean area around Fukushima show the promise of the tool but also highlight some important limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, A. P.; Ruffolo, D.; Oughton, S.

    2013-12-10

    The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less

  5. Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid

    2017-12-01

    The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.

  6. Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei

    2013-03-01

    With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.

  7. GVVPT2 energy gradient using a Lagrangian formulation.

    PubMed

    Theis, Daniel; Khait, Yuriy G; Hoffmann, Mark R

    2011-07-28

    A Lagrangian based approach was used to obtain analytic formulas for GVVPT2 energy nuclear gradients. The formalism can use either complete or incomplete model (or reference) spaces, and is limited, in this regard, only by the capabilities of the MCSCF program. An efficient means of evaluating the gradient equations is described. Demonstrative calculations were performed and compared with finite difference calculations on several molecules and show that the GVVPT2 gradients are accurate. Of particular interest, the suggested formalism can straightforwardly use state-averaged MCSCF descriptions of the reference space in which the states have arbitrary weights. This capability is demonstrated by some calculations on the ground and first excited singlet states of LiH, including calculations near an avoided crossing. The accuracy and usefulness of the GVVPT2 method and its gradient are highlighted by comparing the geometry of the near-C(2v) minimum on the conical intersection seam between the 1 (1)A(1) and 2 (1)A(1) surfaces of O(3) with values that were calculated at the multireference configuration interaction, including single and double excitations (MRCISD), level of theory. © 2011 American Institute of Physics

  8. Horizontal lifelines - review of regulations and simple design method considering anchorage rigidity.

    PubMed

    Galy, Bertrand; Lan, André

    2018-03-01

    Among the many occupational risks construction workers encounter every day falling from a height is the most dangerous. The objective of this article is to propose a simple analytical design method for horizontal lifelines (HLLs) that considers anchorage flexibility. The article presents a short review of the standards and regulations/acts/codes concerning HLLs in Canada the USA and Europe. A static analytical approach is proposed considering anchorage flexibility. The analytical results are compared with a series of 42 dynamic fall tests and a SAP2000 numerical model. The experimental results show that the analytical method is a little conservative and overestimates the line tension in most cases with a maximum of 17%. The static SAP2000 results show a maximum 2.1% difference with the analytical method. The analytical method is accurate enough to safely design HLLs and quick design abaci are provided to allow the engineer to make quick on-site verification if needed.

  9. Major advances in testing of dairy products: milk component and dairy product attribute testing.

    PubMed

    Barbano, D M; Lynch, J M

    2006-04-01

    Milk component analysis is relatively unusual in the field of quantitative analytical chemistry because an analytical test result determines the allocation of very large amounts of money between buyers and sellers of milk. Therefore, there is high incentive to develop and refine these methods to achieve a level of analytical performance rarely demanded of most methods or laboratory staff working in analytical chemistry. In the last 25 yr, well-defined statistical methods to characterize and validate analytical method performance combined with significant improvements in both the chemical and instrumental methods have allowed achievement of improved analytical performance for payment testing. A shift from marketing commodity dairy products to the development, manufacture, and marketing of value added dairy foods for specific market segments has created a need for instrumental and sensory approaches and quantitative data to support product development and marketing. Bringing together sensory data from quantitative descriptive analysis and analytical data from gas chromatography olfactometry for identification of odor-active compounds in complex natural dairy foods has enabled the sensory scientist and analytical chemist to work together to improve the consistency and quality of dairy food flavors.

  10. Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.

    PubMed

    Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María

    2017-01-01

    This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.

  11. The history of facial palsy and spasm

    PubMed Central

    Sajadi, Mohamad-Reza M.; Tabatabaie, Seyed Mahmoud

    2011-01-01

    Although Sir Charles Bell was the first to provide the anatomic basis for the condition that bears his name, in recent years researchers have shown that other European physicians provided earlier clinical descriptions of peripheral cranial nerve 7 palsy. In this article, we describe the history of facial distortion by Greek, Roman, and Persian physicians, culminating in Razi's detailed description in al-Hawi. Razi distinguished facial muscle spasm from paralysis, distinguished central from peripheral lesions, gave the earliest description of loss of forehead wrinkling, and gave the earliest known description of bilateral facial palsy. In doing so, he accurately described the clinical hallmarks of a condition that we recognize as Bell palsy. PMID:21747074

  12. The analytical validation of the Oncotype DX Recurrence Score assay

    PubMed Central

    Baehner, Frederick L

    2016-01-01

    In vitro diagnostic multivariate index assays are highly complex molecular assays that can provide clinically actionable information regarding the underlying tumour biology and facilitate personalised treatment. These assays are only useful in clinical practice if all of the following are established: analytical validation (i.e., how accurately/reliably the assay measures the molecular characteristics), clinical validation (i.e., how consistently/accurately the test detects/predicts the outcomes of interest), and clinical utility (i.e., how likely the test is to significantly improve patient outcomes). In considering the use of these assays, clinicians often focus primarily on the clinical validity/utility; however, the analytical validity of an assay (e.g., its accuracy, reproducibility, and standardisation) should also be evaluated and carefully considered. This review focuses on the rigorous analytical validation and performance of the Oncotype DX® Breast Cancer Assay, which is performed at the Central Clinical Reference Laboratory of Genomic Health, Inc. The assay process includes tumour tissue enrichment (if needed), RNA extraction, gene expression quantitation (using a gene panel consisting of 16 cancer genes plus 5 reference genes and quantitative real-time RT-PCR), and an automated computer algorithm to produce a Recurrence Score® result (scale: 0–100). This review presents evidence showing that the Recurrence Score result reported for each patient falls within a tight clinically relevant confidence interval. Specifically, the review discusses how the development of the assay was designed to optimise assay performance, presents data supporting its analytical validity, and describes the quality control and assurance programmes that ensure optimal test performance over time. PMID:27729940

  13. The analytical validation of the Oncotype DX Recurrence Score assay.

    PubMed

    Baehner, Frederick L

    2016-01-01

    In vitro diagnostic multivariate index assays are highly complex molecular assays that can provide clinically actionable information regarding the underlying tumour biology and facilitate personalised treatment. These assays are only useful in clinical practice if all of the following are established: analytical validation (i.e., how accurately/reliably the assay measures the molecular characteristics), clinical validation (i.e., how consistently/accurately the test detects/predicts the outcomes of interest), and clinical utility (i.e., how likely the test is to significantly improve patient outcomes). In considering the use of these assays, clinicians often focus primarily on the clinical validity/utility; however, the analytical validity of an assay (e.g., its accuracy, reproducibility, and standardisation) should also be evaluated and carefully considered. This review focuses on the rigorous analytical validation and performance of the Oncotype DX ® Breast Cancer Assay, which is performed at the Central Clinical Reference Laboratory of Genomic Health, Inc. The assay process includes tumour tissue enrichment (if needed), RNA extraction, gene expression quantitation (using a gene panel consisting of 16 cancer genes plus 5 reference genes and quantitative real-time RT-PCR), and an automated computer algorithm to produce a Recurrence Score ® result (scale: 0-100). This review presents evidence showing that the Recurrence Score result reported for each patient falls within a tight clinically relevant confidence interval. Specifically, the review discusses how the development of the assay was designed to optimise assay performance, presents data supporting its analytical validity, and describes the quality control and assurance programmes that ensure optimal test performance over time.

  14. Analytical Methods for Interconnection | Distributed Generation

    Science.gov Websites

    ; ANALYSIS Program Lead Kristen.Ardani@nrel.gov 303-384-4641 Accurately and quickly defining the effects of designed to accommodate voltage rises, bi-directional power flows, and other effects caused by distributed

  15. Somaesthetics of Music

    ERIC Educational Resources Information Center

    Maus, Fred Everett

    2010-01-01

    Philosopher Richard Shusterman's book "Body Consciousness" is the most recent and most extensive addition to Shusterman's project of "somaesthetics," an area of philosophy dealing with experiences of embodiment. Shusterman distinguishes three aspects of somaesthetics. Analytic somaesthetics is a "descriptive and theoretical enterprise"; pragmatic…

  16. 40 CFR 79.11 - Information and assurances to be provided by the fuel manufacturer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... description (or identification, in the case of a generally accepted method) of a suitable analytical technique... sold, offered for sale, or introduced into commerce for use in motor vehicles manufactured after model...

  17. 40 CFR 35.6555 - Competition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specifications must include a clear and accurate description of the technical requirements and the qualitative... innovative technologies. (2) The recipient must avoid the use of detailed product specifications if at all...

  18. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  19. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  20. General Solution of the Rayleigh Equation for the Description of Bubble Oscillations Near a Wall

    NASA Astrophysics Data System (ADS)

    Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay

    2018-02-01

    We consider a generalization of the Rayleigh equation for the description of the dynamics of a spherical gas bubble oscillating near an elastic or rigid wall. We show that in the non-dissipative case, i.e. neglecting the liquid viscosity and compressibility, it is possible to construct the general analytical solution of this equation. The corresponding general solution is expressed via the Weierstrass elliptic function. We analyze the dependence of this solution properties on the physical parameters.

  1. Studies of HZE particle interactions and transport for space radiation protection purposes

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn

    1987-01-01

    The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.

  2. Using quantum chemistry muscle to flex massive systems: How to respond to something perturbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Colleen

    Computational chemistry uses the theoretical advances of quantum mechanics and the algorithmic and hardware advances of computer science to give insight into chemical problems. It is currently possible to do highly accurate quantum chemistry calculations, but the most accurate methods are very computationally expensive. Thus it is only feasible to do highly accurate calculations on small molecules, since typically more computationally efficient methods are also less accurate. The overall goal of my dissertation work has been to try to decrease the computational expense of calculations without decreasing the accuracy. In particular, my dissertation work focuses on fragmentation methods, intermolecular interactionsmore » methods, analytic gradients, and taking advantage of new hardware.« less

  3. Water immersion facility general description, spacecraft design division, crew station branch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Water Immersion Facility provides an accurate, safe, neutral buoyancy simulation of zero gravity conditions for development of equipment and procedures, and the training of crews. A detailed description is given of some of the following systems: (1) water tank and support equipment; (2) communications systems; (3) environmental control and liquid cooled garment system (EcS/LCG); (4) closed circuit television system; and (5) medical support system.

  4. Molecular hydrodynamics: Vortex formation and sound wave propagation

    DOE PAGES

    Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; ...

    2018-01-14

    In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to ormore » larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.« less

  5. Technical description of endoscopic ultrasonography with fine-needle aspiration for the staging of lung cancer.

    PubMed

    Kramer, Henk; van Putten, John W G; Douma, W Rob; Smidt, Alie A; van Dullemen, Hendrik M; Groen, Harry J M

    2005-02-01

    Endoscopic ultrasonography (EUS) is a novel method for staging of the mediastinum in lung cancer patients. The recent development of linear scanners enables safe and accurate fine-needle aspiration (FNA) of mediastinal and upper abdominal structures under real-time ultrasound guidance. However, various methods and equipment for mediastinal EUS-FNA are being used throughout the world, and a detailed description of the procedures is lacking. A thorough description of linear EUS-FNA is needed. A step-by-step description of the linear EUS-FNA procedure as performed in our hospital will be provided. Ultrasonographic landmarks will be shown on images. The procedure will be related to published literature, with a systematic literature search. EUS-FNA is an outpatient procedure under conscious sedation. The typical linear EUS-FNA procedure starts with examination of the retroperitoneal area. After this, systematic scanning of the mediastinum is performed at intervals of 1-2cm. Abnormalities are noted, and FNA of the abnormalities can be performed. Specimens are assessed for cellularity on-site. The entire procedure takes 45-60 min. EUS-FNA is minimally invasive, accurate, and fast. Anatomical areas can be reached that are inaccessible for cervical mediastinoscopy. EUS-FNA is useful for the staging of lung cancer or the assessment and diagnosis of abnormalities in the posterior mediastinum.

  6. Molecular hydrodynamics: Vortex formation and sound wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kyeong Hwan; Kim, Changho; Talkner, Peter

    In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to ormore » larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.« less

  7. An analytic performance model of disk arrays and its application

    NASA Technical Reports Server (NTRS)

    Lee, Edward K.; Katz, Randy H.

    1991-01-01

    As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.

  8. Statistically qualified neuro-analytic failure detection method and system

    DOEpatents

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    2002-03-02

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  9. Analytical model for the density distribution in the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Mei, YI; Thorne, Richard M.; Bagenal, Fran

    1995-01-01

    An analytical model is developed for the diffusive equilibrium plasma density distribution in the Io plasma torus. The model has been employed successfully to follow the ray path of plasma waves in the multi-ion Jovian magnetosphere; it would also be valuable for other studies of the Io torus that require a smooth and continuous description of the plasma density and its gradients. Validity of the analytical treatment requires that the temperature of thermal electrons be much lower than the ion temperature and that superthermal electrons be much less abundant than the thermal electrons; these two conditions are satisfied in the warm outer region of the Io torus from L = 6 to L = 10. The analytical solutions agree well with exact numerical calculations for the most dense portion of the Io torus within 30 deg of the equator.

  10. Linking Policy | Smokefree 60+

    Cancer.gov

    Links to individual pages within the Smokefree 60+ website are permissible, provided attribution is made to 60plus.smokefree.gov and any descriptive notes accurately reflect the content of the linked page(s).

  11. On some approaches to model reversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Chwastek, K.; Baghel, A. P. S.; Sai Ram, B.; Borowik, B.; Daniel, L.; Kulkarni, S. V.

    2018-04-01

    This paper focuses on the problem of how reversible magnetization processes are taken into account in contemporary descriptions of hysteresis curves. For comparison, three versions of the phenomenological T(x) model based on hyperbolic tangent mapping are considered. Two of them are based on summing the output of the hysteresis operator with a linear or nonlinear mapping. The third description is inspired by the concept of the product Preisach model. Total susceptibility is modulated with a magnetization-dependent function. The models are verified using measurement data for grain-oriented electrical steel. The proposed third description represents minor loops most accurately.

  12. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    PubMed

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoogheem, T.J.; Woods, L.A.

    The Monsanto Analytical Testing (MAT) program was devised and implemented in order to provide analytical standards to Monsanto manufacturing plants involved in the self-monitoring of plant discharges as required by National Pollutant Discharge Elimination System (NPDES) permit conditions. Standards are prepared and supplied at concentration levels normally observed at each individual plant. These levels were established by canvassing all Monsanto plants having NPDES permits and by determining which analyses and concentrations were most appropriate. Standards are prepared by Monsanto's analyses and concentrations were most appropriate. Standards are prepared by Monsanto's Environmental Sciences Center (ESC) using Environmental Protection Agency (EPA) methods.more » Eleven standards are currently available, each in three concentrations. Standards are issued quarterly in a company internal round-robin program or on a per request basis or both. Since initiation of the MAT program in 1981, the internal round-robin program has become an integral part of Monsanto's overall Good Laboratory Practices (GLP) program. Overall, results have shown that the company's plant analytical personnel can accurately analyze and report standard test samples. More importantly, such personnel have gained increased confidence in their ability to report accurate values for compounds regulated in their respective plant NPDES permits. 3 references, 3 tables.« less

  14. Advances in data processing for open-path Fourier transform infrared spectrometry of greenhouse gases.

    PubMed

    Shao, Limin; Griffiths, Peter R; Leytem, April B

    2010-10-01

    The automated quantification of three greenhouse gases, ammonia, methane, and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 min is demonstrated. Spectral pretreatment, including the automated detection and correction of the effect of interrupting the infrared beam, is by a moving object, and the automated correction for the nonlinear detector response is applied to the measured interferograms. Two ways of obtaining quantitative data from OP/FT-IR data are described. The first, which is installed in a recently acquired commercial OP/FT-IR spectrometer, is based on classical least-squares (CLS) regression, and the second is based on partial least-squares (PLS) regression. It is shown that CLS regression only gives accurate results if the absorption features of the analytes are located in very short spectral intervals where lines due to atmospheric water vapor are absent or very weak; of the three analytes examined, only ammonia fell into this category. On the other hand, PLS regression works allowed what appeared to be accurate results to be obtained for all three analytes.

  15. High Accuracy Transistor Compact Model Calibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirementsmore » require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.« less

  16. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  17. Accurate monoenergetic electron parameters of laser wakefield in a bubble model

    NASA Astrophysics Data System (ADS)

    Raheli, A.; Rahmatallahpur, S. H.

    2012-11-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal model and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. As a result, the quasi-mono-energetic electrons output beam interacting with the laser plasma can be more appropriately described with this model.

  18. System safety engineering analysis handbook

    NASA Technical Reports Server (NTRS)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  19. The Exponential Expansion of Simulation in Research

    DTIC Science & Technology

    2012-12-01

    exponential growth of computing power. Although other analytic approaches also benefit from this trend, keyword searches of several scholarly search ... engines reveal that the reliance on simulation is increasing more rapidly. A descriptive analysis paints a compelling picture: simulation is frequently

  20. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  1. Adverse outcome pathway networks: Development, analytics, and applications

    EPA Science Inventory

    Product Description:The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental ...

  2. MODFLOW equipped with a new method for the accurate simulation of axisymmetric flow

    NASA Astrophysics Data System (ADS)

    Samani, N.; Kompani-Zare, M.; Barry, D. A.

    2004-01-01

    Axisymmetric flow to a well is an important topic of groundwater hydraulics, the simulation of which depends on accurate computation of head gradients. Groundwater numerical models with conventional rectilinear grid geometry such as MODFLOW (in contrast to analytical models) generally have not been used to simulate aquifer test results at a pumping well because they are not designed or expected to closely simulate the head gradient near the well. A scaling method is proposed based on mapping the governing flow equation from cylindrical to Cartesian coordinates, and vice versa. A set of relationships and scales is derived to implement the conversion. The proposed scaling method is then embedded in MODFLOW 2000. To verify the accuracy of the method steady and unsteady flows in confined and unconfined aquifers with fully or partially penetrating pumping wells are simulated and compared with the corresponding analytical solutions. In all cases a high degree of accuracy is achieved.

  3. 28 CFR 20.22 - Certification of compliance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Local Criminal History Record Information Systems § 20.22 Certification of compliance. (a) Each State to... development of complete and accurate criminal history record information; (4) A description of existing system...

  4. 28 CFR 20.22 - Certification of compliance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Local Criminal History Record Information Systems § 20.22 Certification of compliance. (a) Each State to... development of complete and accurate criminal history record information; (4) A description of existing system...

  5. 28 CFR 20.22 - Certification of compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Local Criminal History Record Information Systems § 20.22 Certification of compliance. (a) Each State to... development of complete and accurate criminal history record information; (4) A description of existing system...

  6. 28 CFR 20.22 - Certification of compliance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Local Criminal History Record Information Systems § 20.22 Certification of compliance. (a) Each State to... development of complete and accurate criminal history record information; (4) A description of existing system...

  7. 28 CFR 20.22 - Certification of compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Local Criminal History Record Information Systems § 20.22 Certification of compliance. (a) Each State to... development of complete and accurate criminal history record information; (4) A description of existing system...

  8. Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.

  9. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  10. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  11. Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo.

    PubMed

    Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J

    2017-06-08

    Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).

  12. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE PAGES

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    2017-05-17

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  13. Analytical prediction of digital signal crosstalk of FCC

    NASA Technical Reports Server (NTRS)

    Belleisle, A. P.

    1972-01-01

    The results are presented of study effort whose aim was the development of accurate means of analyzing and predicting signal cross-talk in multi-wire digital data cables. A complete analytical model is developed n + 1 wire systems of uniform transmission lines with arbitrary linear boundary conditions. In addition, a minimum set of parameter measurements required for the application of the model are presented. Comparisons between cross-talk predicted by this model and actual measured cross-talk are shown for a six conductor ribbon cable.

  14. Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1993-01-01

    Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.

  15. A New Model for Temperature Jump at a Fluid-Solid Interface

    PubMed Central

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-01-01

    The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230

  16. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory.

    PubMed

    Cao, Xiaofang; Rong, Chunying; Zhong, Aiguo; Lu, Tian; Liu, Shubin

    2018-01-15

    Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  18. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  19. Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law

    NASA Astrophysics Data System (ADS)

    Falugi, P.; Olaru, S.; Dumur, D.

    2010-08-01

    This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.

  20. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  1. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis

    NASA Astrophysics Data System (ADS)

    Chua, Alvin J. K.; Gair, Jonathan R.

    2015-12-01

    The space-based gravitational-wave detector eLISA has been selected as the ESA L3 mission, and the mission design will be finalized by the end of this decade. To prepare for mission formulation over the next few years, several outstanding and urgent questions in data analysis will be addressed using mock data challenges, informed by instrument measurements from the LISA Pathfinder satellite launching at the end of 2015. These data challenges will require accurate and computationally affordable waveform models for anticipated sources such as the extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. Previous data challenges have made use of the well-known analytic EMRI waveforms of Barack and Cutler, which are extremely quick to generate but dephase relative to more accurate waveforms within hours, due to their mismatched radial, polar and azimuthal frequencies. In this paper, we describe an augmented Barack-Cutler model that uses a frequency map to the correct Kerr frequencies, along with updated evolution equations and a simple fit to a more accurate model. The augmented waveforms stay in phase for months and may be generated with virtually no additional computational cost.

  2. Natural Frequency Testing and Model Correlation of Rocket Engine Structures in Liquid Hydrogen - Phase I, Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; DeLessio, Jennifer L.; Jacobs, Preston W.

    2018-01-01

    Many structures in the launch vehicle industry operate in liquid hydrogen (LH2), from the hydrogen fuel tanks through the ducts and valves and into the pump sides of the turbopumps. Calculating the structural dynamic response of these structures is critical for successful qualification of this hardware, but accurate knowledge of the natural frequencies is based entirely on numerical or analytical predictions of frequency reduction due to the added-fluid-mass effect because testing in LH2 has always been considered too difficult and dangerous. This fluid effect is predicted to be approximately 4-5% using analytical formulations for simple cantilever beams. As part of a comprehensive test/analysis program to more accurately assess pump inducers operating in LH2, a series of frequency tests in LH2 were performed at NASA/Marshall Space Flight Center's unique cryogenic test facility. These frequency tests are coupled with modal tests in air and water to provide critical information not only on the mass effect of LH2, but also the cryogenic temperature effect on Young's Modulus for which the data is not extensive. The authors are unaware of any other reported natural frequency testing in this media. In addition to the inducer, a simple cantilever beam was also tested in the tank to provide a more easily modeled geometry as well as one that has an analytical solution for the mass effect. This data will prove critical for accurate structural dynamic analysis of these structures, which operate in a highly-dynamic environment.

  3. Use of Speech Analyses within a Mobile Application for the Assessment of Cognitive Impairment in Elderly People.

    PubMed

    Konig, Alexandra; Satt, Aharon; Sorin, Alex; Hoory, Ran; Derreumaux, Alexandre; David, Renaud; Robert, Phillippe H

    2018-01-01

    Various types of dementia and Mild Cognitive Impairment (MCI) are manifested as irregularities in human speech and language, which have proven to be strong predictors for the disease presence and progress ion. Therefore, automatic speech analytics provided by a mobile application may be a useful tool in providing additional indicators for assessment and detection of early stage dementia and MCI. 165 participants (subjects with subjective cognitive impairment (SCI), MCI patients, Alzheimer's disease (AD) and mixed dementia (MD) patients) were recorded with a mobile application while performing several short vocal cognitive tasks during a regular consultation. These tasks included verbal fluency, picture description, counting down and a free speech task. The voice recordings were processed in two steps: in the first step, vocal markers were extracted using speech signal processing techniques; in the second, the vocal markers were tested to assess their 'power' to distinguish between SCI, MCI, AD and MD. The second step included training automatic classifiers for detecting MCI and AD, based on machine learning methods, and testing the detection accuracy. The fluency and free speech tasks obtain the highest accuracy rates of classifying AD vs. MD vs. MCI vs. SCI. Using the data, we demonstrated classification accuracy as follows: SCI vs. AD = 92% accuracy; SCI vs. MD = 92% accuracy; SCI vs. MCI = 86% accuracy and MCI vs. AD = 86%. Our results indicate the potential value of vocal analytics and the use of a mobile application for accurate automatic differentiation between SCI, MCI and AD. This tool can provide the clinician with meaningful information for assessment and monitoring of people with MCI and AD based on a non-invasive, simple and low-cost method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Colloid transport in dual-permeability media

    NASA Astrophysics Data System (ADS)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  5. Capillary device refilling. [liquid rocket propellant tank tests

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Merino, F.; Symons, E. P.

    1980-01-01

    An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.

  6. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed.

  7. Analytical modeling and analysis of magnetic field and torque for novel axial flux eddy current couplers with PM excitation

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin

    2017-10-01

    Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.

  8. The Effect of Auditory and Visual Motion Picture Descriptive Modalities in Teaching Perceptual-Motor Skills Used in the Grading of Cereal Grains.

    ERIC Educational Resources Information Center

    Hannemann, James William

    This study was designed to discover whether a student learns to imitate the skills demonstrated in a motion picture more accurately when the supportive descriptive terminology is presented in an auditory (spoken) form or in a visual (captions) form. A six-minute color 16mm film was produced--"Determining the Test Weight per Bushel of Yellow Corn".…

  9. Behavior dynamics: One perspective

    PubMed Central

    Marr, M. Jackson

    1992-01-01

    Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655

  10. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  11. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.

  12. Analytic family of post-merger template waveforms

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Nagar, Alessandro

    2017-06-01

    Building on the analytical description of the post-merger (ringdown) waveform of coalescing, nonprecessing, spinning binary black holes introduced by Damour and Nagar [Phys. Rev. D 90, 024054 (2014), 10.1103/PhysRevD.90.024054], we propose an analytic, closed form, time-domain, representation of the ℓ=m =2 gravitational radiation mode emitted after merger. This expression is given as a function of the component masses and dimensionless spins (m1 ,2,χ1 ,2) of the two inspiraling objects, as well as of the mass MBH and (complex) frequency σ1 of the fundamental quasinormal mode of the remnant black hole. Our proposed template is obtained by fitting the post-merger waveform part of several publicly available numerical relativity simulations from the Simulating eXtreme Spacetimes (SXS) catalog and then suitably interpolating over (symmetric) mass ratio and spins. We show that this analytic expression accurately reproduces (˜0.01 rad ) the phasing of the post-merger data of other data sets not used in its construction. This is notably the case of the spin-aligned run SXS:BBH:0305, whose intrinsic parameters are consistent with the 90% credible intervals reported in the parameter-estimation followup of GW150914 by B.P. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016), 10.1103/PhysRevLett.116.241102]. Using SXS waveforms as "experimental" data, we further show that our template could be used on the actual GW150914 data to perform a new measure of the complex frequency of the fundamental quasinormal mode so as to exploit the complete (high signal-to-noise-ratio) post-merger waveform. We assess the usefulness of our proposed template by analyzing, in a realistic setting, SXS full inspiral-merger-ringdown waveforms and constructing posterior probability distribution functions for the central frequency damping time of the first overtone of the fundamental quasinormal mode as well as for the physical parameters of the systems. We also briefly explore the possibility opened by our waveform model to test the second law of black hole dynamics. Our model will help improve current tests of general relativity, in particular the general-relativistic no-hair theorem, and allow for novel tests, such as that of the area theorem.

  13. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  14. Years to first rehabilitation of superpave hot mix asphalt.

    DOT National Transportation Integrated Search

    2014-07-01

    The Colorado Department of Transportation (CDOT) spends more than 30 percent of its annual construction and : maintenance budget on pavements, so pavements need to be properly designed using an analytical process with : accurate design inputs. A pave...

  15. Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  16. Power and Propulsion Characteristics of the Dulles TRANSPO '72 Personal Rapid Transit Vehicles

    DOT National Transportation Integrated Search

    1975-07-01

    The Power and Propulsion Characteristics of the four different PRT vehicles demonstrated at Transpo '72 are determined by using analytical descriptions, manufacturers' data, and the test data from the Post-Transpo '72 Test Program. A comparative anal...

  17. Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iachello, F.

    2001-07-30

    An approximate solution at the critical point of the spherical to axially deformed shape phase transition in nuclei is presented. The eigenvalues of the Hamiltonian are expressed in terms of zeros of Bessel functions of irrational order.

  18. Glossary of Dimensions and Metrics Used in Google Analytics

    EPA Pesticide Factsheets

    Dimensions are descriptive attributes, the items being measured, and metrics are the numerical values that provide data about those dimensions. See a list of all the definitions, and a shorter table of those you will most commonly use in GA reports.

  19. Student's Conceptions in Statistical Graph's Interpretation

    ERIC Educational Resources Information Center

    Kukliansky, Ida

    2016-01-01

    Histograms, box plots and cumulative distribution graphs are popular graphic representations for statistical distributions. The main research question that this study focuses on is how college students deal with interpretation of these statistical graphs when translating graphical representations into analytical concepts in descriptive statistics.…

  20. Engineering data characterizing the fleet of U.S. railway rolling stock. Volume 1 : user's guide

    DOT National Transportation Integrated Search

    1981-01-01

    This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...

  1. Engineering data characterizing the fleet of U.S. railway rolling stock. Volume 2 : methodology and data

    DOT National Transportation Integrated Search

    1981-11-01

    This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...

  2. Indoor Exposure Product Testing Protocols Version 2

    EPA Science Inventory

    EPA’s Office of Pollution Prevention and Toxics (OPPT) has developed a set of ten indoor exposure testing protocols intended to provide information on the purpose of the testing, general description of the sampling and analytical procedures, and references for tests that will be ...

  3. HANDBOOK: CONTINUOUS EMISSION MONITORING SYSTEMS FOR NON-CRITERIA POLLUTANTS

    EPA Science Inventory

    This Handbook provides a description of the methods used to continuously monitor non-criteria pollutants emitted from stationary sources. The Handbook contains a review of current regulatory programs, the state-of-the-art sampling system design, analytical techniques, and the use...

  4. Engineering data characterizing the fleet of U.S. railway rolling stock. Volume II, Methodology and data.

    DOT National Transportation Integrated Search

    1980-04-01

    This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...

  5. Planetary rings - Theory

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  6. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Stack gas monitoring and pollution control equipment. (H) Nozzle and burner design. (I) Construction.... (iii) A detailed description of sampling and monitoring procedures, including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical...

  7. Descriptions and identifications of strangers by youth and adult eyewitnesses.

    PubMed

    Pozzulo, Joanna D; Warren, Kelly L

    2003-04-01

    Two studies varying target gender and mode of target exposure were conducted to compare the quantity, nature, and accuracy of free recall person descriptions provided by youths and adults. In addition, the relation among age, identification accuracy, and number of descriptors reported was considered. Youths (10-14 years) reported fewer descriptors than adults. Exterior facial descriptors (e.g., hair items) were predominant and accurately reported by youths and adults. Accuracy was consistently problematic for youths when reporting body descriptors (e.g., height, weight) and interior facial features. Youths reported a similar number of descriptors when making accurate versus inaccurate identification decisions. This pattern also was consistent for adults. With target-absent lineups, the difference in the number of descriptors reported between adults and youths was greater when making a false positive versus correct rejection.

  8. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  9. Path generation algorithm for UML graphic modeling of aerospace test software

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao

    2018-03-01

    Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.

  10. A knowledge-based potential with an accurate description of local interactions improves discrimination between native and near-native protein conformations.

    PubMed

    Ferrada, Evandro; Vergara, Ismael A; Melo, Francisco

    2007-01-01

    The correct discrimination between native and near-native protein conformations is essential for achieving accurate computer-based protein structure prediction. However, this has proven to be a difficult task, since currently available physical energy functions, empirical potentials and statistical scoring functions are still limited in achieving this goal consistently. In this work, we assess and compare the ability of different full atom knowledge-based potentials to discriminate between native protein structures and near-native protein conformations generated by comparative modeling. Using a benchmark of 152 near-native protein models and their corresponding native structures that encompass several different folds, we demonstrate that the incorporation of close non-bonded pairwise atom terms improves the discriminating power of the empirical potentials. Since the direct and unbiased derivation of close non-bonded terms from current experimental data is not possible, we obtained and used those terms from the corresponding pseudo-energy functions of a non-local knowledge-based potential. It is shown that this methodology significantly improves the discrimination between native and near-native protein conformations, suggesting that a proper description of close non-bonded terms is important to achieve a more complete and accurate description of native protein conformations. Some external knowledge-based energy functions that are widely used in model assessment performed poorly, indicating that the benchmark of models and the specific discrimination task tested in this work constitutes a difficult challenge.

  11. Predictive data modeling of human type II diabetes related statistics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Kristina L.; Jaenisch, Holger M.; Handley, James W.; Albritton, Nathaniel G.

    2009-04-01

    During the course of routine Type II treatment of one of the authors, it was decided to derive predictive analytical Data Models of the daily sampled vital statistics: namely weight, blood pressure, and blood sugar, to determine if the covariance among the observed variables could yield a descriptive equation based model, or better still, a predictive analytical model that could forecast the expected future trend of the variables and possibly eliminate the number of finger stickings required to montior blood sugar levels. The personal history and analysis with resulting models are presented.

  12. Analytical Chemistry: A Literary Approach

    NASA Astrophysics Data System (ADS)

    Lucy, Charles A.

    2000-04-01

    The benefits of incorporating real-world examples of chemistry into lectures and lessons is reflected by the recent inclusion of the Teaching with Problems and Case Studies column in this Journal. However, these examples lie outside the experience of many students, and so much of the impact of "real-world" examples is lost. This paper provides an anthology of references to analytical chemistry techniques from history, popular fiction, and film. Such references are amusing to both instructor and student. Further, the fictional descriptions can serve as a focal point for discussions of a technique's true capabilities and limitations.

  13. Lubricant Evaluation and Performance 2

    DTIC Science & Technology

    1992-01-01

    IDENTIFICATION OF SAMPLES USED IN ANALYTICAL FERROGRAPHY STUDY INCLUDING DESCRIPTION OF FERROGRAM DEBRIS 223 89. ANALYTICAL FERROGRAPH DATA FOR DOD-L-85734(AS...testing under various test parameters for determining effects on lubricant stability. Ferrography of the wear test samples showed a change in type of... ATLA i -- 0 A~ LAO0 O0 ui C.6j 0 0 -0 VI. CD 0-. Li C . LiC: a.- CD C). > C) : 132 L Y = 1.04X - 1.60 (r = 0.99997) 0 Y = 1.03X - 1.08 (r = 0.99999) 600

  14. The mathematical research for the Kuramoto model of the describing neuronal synchrony in the brain

    NASA Astrophysics Data System (ADS)

    Lin, Chang; Lin, Mai-mai

    2009-08-01

    The Kuramoto model of the describing neuronal synchrony is mathematically investigated in the brain. A general analytical solutions (the most sententious description) for the Kuramoto model, incorporating the inclusion of a Ki,j (t) term to represent time-varying coupling strengths, have been obtained by using the precise mathematical approach. We derive an exact analytical expression, opening out the connotative and latent linear relation, for the mathematical character of the phase configurations in the Kuramoto model of the describing neuronal synchrony in the brain.

  15. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  16. Veronese geometry and the electroweak vacuum moduli space

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.

    2014-09-01

    We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. We moreover give a detailed description of this geometry, realising an extra branch as a zero-dimensional point when quadratic Higgs lifting deformations are incorporated into the superpotential.

  17. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    NASA Astrophysics Data System (ADS)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  18. Long-term CF6 engine performance deterioration: Evaluation of engine S/N 451-380

    NASA Technical Reports Server (NTRS)

    Kramer, W. H.; Smith, J. J.

    1978-01-01

    The performance testing and analytical teardown of CF6-6D engine serial number 451-380 which was recently removed from a DC-10 aircraft is summarized. The investigative test program was conducted inbound prior to normal overhaul/refurbishment. The performance testing included an inbound test, a test following cleaning of the low pressure turbine airfoils, and a final test after leading edge rework and cleaning the stage one fan blades. The analytical teardown consisted of detailed disassembly inspection measurements and airfoil surface finish checks of the as-received deteriorated hardware. Aspects discussed include the analysis of the test cell performance data, a complete analytical teardown report with a detailed description of all observed hardware distress, and an analytical assessment of the performance loss (deterioration) relating measured hardware conditions to losses in both specific fuel comsumption and exhaust gas temperature.

  19. Theory and practical understanding of the migration behavior of proteins and peptides in CE and related techniques.

    PubMed

    Freitag, Ruth; Hilbrig, Frank

    2007-07-01

    CEC is defined as an analytical method, where the analytes are separated on a chromatographic column in the presence of an applied voltage. The separation of charged analytes in CEC is complex, since chromatographic interaction, electroosmosis and electrophoresis contribute to the experimentally observed behavior. The putative contribution of effects such as surface electrodiffusion has been suggested. A sound theoretical treatment incorporating all effects is currently not available. The question of whether the different effects contribute in an independent or an interdependent manner is still under discussion. In this contribution, the state-of-the-art in the theoretical description of the individual contributions as well as models for the retention behavior and in particular possible dimensionless 'retention factors' is discussed, together with the experimental database for the separation of charged analytes, in particular proteins and peptides, by CEC and related techniques.

  20. Long-term CF6 engine performance deterioration: Evaluation of engine S/N 451-479

    NASA Technical Reports Server (NTRS)

    Kramer, W. H.; Smith, J. J.

    1978-01-01

    The performance testing and analytical teardown of CF6-6D engine is summarized. This engine had completed its initial installation on DC-10 aircraft. The investigative test program was conducted inbound prior to normal overhaul/refurbishment. The performance testing included an inbound test, a test following cleaning of the low pressure turbine airfoils, and a final test after leading edge rework and cleaning the stage one fan blades. The analytical teardown consisted of detailed disassembly inspection measurements and airfoil surface finish checks of the as received deteriorated hardware. Included in this report is a detailed analysis of the test cell performance data, a complete analytical teardown report with a detailed description of all observed hardware distress, and an analytical assessment of the performance loss (deterioration) relating measured hardware conditions to losses in both SFC (specific fuel consumption) and EGT (exhaust gas temperature).

Top