Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator
NASA Astrophysics Data System (ADS)
Wu, Baisheng; Liu, Weijia; Lim, C. W.
2017-07-01
A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2017-10-01
Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.
NASA Astrophysics Data System (ADS)
Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas
2013-03-01
Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.
Development and application of accurate analytical models for single active electron potentials
NASA Astrophysics Data System (ADS)
Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas
2015-05-01
The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).
Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations
NASA Technical Reports Server (NTRS)
Gayley, K. G.
1993-01-01
Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.
NASA Astrophysics Data System (ADS)
Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang
2017-04-01
This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.
Testing approximations for non-linear gravitational clustering
NASA Technical Reports Server (NTRS)
Coles, Peter; Melott, Adrian L.; Shandarin, Sergei F.
1993-01-01
The accuracy of various analytic approximations for following the evolution of cosmological density fluctuations into the nonlinear regime is investigated. The Zel'dovich approximation is found to be consistently the best approximation scheme. It is extremely accurate for power spectra characterized by n = -1 or less; when the approximation is 'enhanced' by truncating highly nonlinear Fourier modes the approximation is excellent even for n = +1. The performance of linear theory is less spectrum-dependent, but this approximation is less accurate than the Zel'dovich one for all cases because of the failure to treat dynamics. The lognormal approximation generally provides a very poor fit to the spatial pattern.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
Analytical approximation of the InGaZnO thin-film transistors surface potential
NASA Astrophysics Data System (ADS)
Colalongo, Luigi
2016-10-01
Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.
Effect of coulomb spline on rotor dynamic response
NASA Technical Reports Server (NTRS)
Nataraj, C.; Nelson, H. D.; Arakere, N.
1985-01-01
A rigid rotor system coupled by a coulomb spline is modelled and analyzed by approximate analytical and numerical analytical methods. Expressions are derived for the variables of the resulting limit cycle and are shown to be quite accurate for a small departure from isotropy.
NASA Astrophysics Data System (ADS)
Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John
2001-01-01
For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1994-01-01
The paper presents a method to recover exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of an approximation to the interpolation polynomial (or trigonometrical polynomial). We show that if we are given the collocation point values (or a highly accurate approximation) at the Gauss or Gauss-Lobatto points, we can reconstruct a uniform exponentially convergent approximation to the function f(x) in any sub-interval of analyticity. The proof covers the cases of Fourier, Chebyshev, Legendre, and more general Gegenbauer collocation methods.
Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
Evaluation of selected methods for determining streamflow during periods of ice effect
Melcher, N.B.; Walker, J.F.
1990-01-01
The methods are classified into two general categories, subjective and analytical, depending on whether individual judgement is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods, and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used for streamflow-gaging stations where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice adjustment factor) may be appropriate for use for stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge ratio and multiple regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
Analytic Neutrino Oscillation Probabilities in Matter: Revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parke, Stephen J.; Denton, Peter B.; Minakata, Hisakazu
2018-01-02
We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.
NASA Astrophysics Data System (ADS)
Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal
2013-01-01
A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crull, E W; Brown Jr., C G; Perkins, M P
2008-07-30
For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less
Highly accurate analytic formulae for projectile motion subjected to quadratic drag
NASA Astrophysics Data System (ADS)
Turkyilmazoglu, Mustafa
2016-05-01
The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.
Accurate approximation of in-ecliptic trajectories for E-sail with constant pitch angle
NASA Astrophysics Data System (ADS)
Huo, Mingying; Mengali, Giovanni; Quarta, Alessandro A.
2018-05-01
Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.
Padé approximant for normal stress differences in large-amplitude oscillatory shear flow
NASA Astrophysics Data System (ADS)
Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.
2018-04-01
Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.
A note on the accuracy of spectral method applied to nonlinear conservation laws
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Wong, Peter S.
1994-01-01
Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.
A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices
NASA Astrophysics Data System (ADS)
AlQurashi, Ahmed; Selvakumar, C. R.
2018-06-01
There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.
Direct application of Padé approximant for solving nonlinear differential equations.
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario
2014-01-01
This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.
Validity of the Born approximation for beyond Gaussian weak lensing observables
Petri, Andrea; Haiman, Zoltan; May, Morgan
2017-06-06
Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N-body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show thatmore » deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O(Φ 3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O(Φ 4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5σ. Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.« less
Validity of the Born approximation for beyond Gaussian weak lensing observables
NASA Astrophysics Data System (ADS)
Petri, Andrea; Haiman, Zoltán; May, Morgan
2017-06-01
Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N -body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show that deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O (Φ3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O (Φ4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5 σ . Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.
Nonlinear core deflection in injection molding
NASA Astrophysics Data System (ADS)
Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.
2018-05-01
Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.
Radiative transfer in falling snow: A two-stream approximation
NASA Astrophysics Data System (ADS)
Koh, Gary
1989-04-01
Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream approximation to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The approximate solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.
Spline methods for approximating quantile functions and generating random samples
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Matthews, C. G.
1985-01-01
Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.
Theoretical Assessment of Compressibility Factor of Gases by Using Second Virial Coefficient
NASA Astrophysics Data System (ADS)
Mamedov, Bahtiyar A.; Somuncu, Elif; Askerov, Iskender M.
2018-01-01
We present a new analytical approximation for determining the compressibility factor of real gases at various temperature values. This algorithm is suitable for the accurate evaluation of the compressibility factor using the second virial coefficient with a Lennard-Jones (12-6) potential. Numerical examples are presented for the gases H2, N2, He, CO2, CH4 and air, and the results are compared with other studies in the literature. Our results showed good agreement with the data in the literature. The consistency of the results demonstrates the effectiveness of our analytical approximation for real gases.
Accurate expressions for solar cell fill factors including series and shunt resistances
NASA Astrophysics Data System (ADS)
Green, Martin A.
2016-02-01
Together with open-circuit voltage and short-circuit current, fill factor is a key solar cell parameter. In their classic paper on limiting efficiency, Shockley and Queisser first investigated this factor's analytical properties showing, for ideal cells, it could be expressed implicitly in terms of the maximum power point voltage. Subsequently, fill factors usually have been calculated iteratively from such implicit expressions or from analytical approximations. In the absence of detrimental series and shunt resistances, analytical fill factor expressions have recently been published in terms of the Lambert W function available in most mathematical computing software. Using a recently identified perturbative relationship, exact expressions in terms of this function are derived in technically interesting cases when both series and shunt resistances are present but have limited impact, allowing a better understanding of their effect individually and in combination. Approximate expressions for arbitrary shunt and series resistances are then deduced, which are significantly more accurate than any previously published. A method based on the insights developed is also reported for deducing one-diode fits to experimental data.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Similarity solution of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Lockington, D. A.; Parlange, J.-Y.; Parlange, M. B.; Selker, J.
Similarity transforms of the Boussinesq equation in a semi-infinite medium are available when the boundary conditions are a power of time. The Boussinesq equation is reduced from a partial differential equation to a boundary-value problem. Chen et al. [Trans Porous Media 1995;18:15-36] use a hodograph method to derive an integral equation formulation of the new differential equation which they solve by numerical iteration. In the present paper, the convergence of their scheme is improved such that numerical iteration can be avoided for all practical purposes. However, a simpler analytical approach is also presented which is based on Shampine's transformation of the boundary value problem to an initial value problem. This analytical approximation is remarkably simple and yet more accurate than the analytical hodograph approximations.
Realistic Analytical Polyhedral MRI Phantoms
Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.
2015-01-01
Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724
Analytical Model For Fluid Dynamics In A Microgravity Environment
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1995-01-01
Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.
Far-infrared rotational emission by carbon monoxide
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.
1981-01-01
Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward.
An analytic performance model of disk arrays and its application
NASA Technical Reports Server (NTRS)
Lee, Edward K.; Katz, Randy H.
1991-01-01
As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.
Brownian systems with spatially inhomogeneous activity
NASA Astrophysics Data System (ADS)
Sharma, A.; Brader, J. M.
2017-09-01
We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
Analytical approximations to the dynamics of an array of coupled DC SQUIDs
NASA Astrophysics Data System (ADS)
Berggren, Susan; Palacios, Antonio
2014-04-01
Coupled dynamical systems that operate near the onset of a bifurcation can lead, under certain conditions, to strong signal amplification effects. Over the past years we have studied this generic feature on a wide range of systems, including: magnetic and electric fields sensors, gyroscopic devices, and arrays of loops of superconducting quantum interference devices, also known as SQUIDs. In this work, we consider an array of SQUID loops connected in series as a case study to derive asymptotic analytical approximations to the exact solutions through perturbation analysis. Two approaches are considered. First, a straightforward expansion in which the non-linear parameter related to the inductance of the DC SQUID is treated as the small perturbation parameter. Second, a more accurate procedure that considers the SQUID phase dynamics as non-uniform motion on a circle. This second procedure is readily extended to the series array and it could serve as a mathematical framework to find approximate solutions to related complex systems with high-dimensionality. To the best of our knowledge, an approximate analytical solutions to an array of SQUIDs has not been reported yet in the literature.
Ground state of a confined Yukawa plasma including correlation effects
NASA Astrophysics Data System (ADS)
Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.
2007-09-01
The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.
NASA Technical Reports Server (NTRS)
Greene, William H.
1990-01-01
A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.
NASA Technical Reports Server (NTRS)
Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.
1989-01-01
Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.
s -wave scattering length of a Gaussian potential
NASA Astrophysics Data System (ADS)
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
Generalized hydrodynamic transport in lattice-gas automata
NASA Technical Reports Server (NTRS)
Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun
1991-01-01
The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.
Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.
NASA Astrophysics Data System (ADS)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.
ERIC Educational Resources Information Center
Shadish, William R.
2011-01-01
This article reviews several decades of the author's meta-analytic and experimental research on the conditions under which nonrandomized experiments can approximate the results from randomized experiments (REs). Several studies make clear that we can expect accurate effect estimates from the regression discontinuity design, though its statistical…
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.
2005-09-01
We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.
NASA Astrophysics Data System (ADS)
Bakker, Mark
2001-05-01
An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.
Interactions of bright and dark solitons with localized PT-symmetric potentials.
Karjanto, N; Hanif, W; Malomed, B A; Susanto, H
2015-02-01
We study collisions of moving nonlinear-Schrödinger solitons with a PT-symmetric dipole embedded into the one-dimensional self-focusing or defocusing medium. Accurate analytical results are produced for bright solitons, and, in a more qualitative form, for dark ones. In the former case, an essential aspect of the approximation is that it must take into regard the intrinsic chirp of the soliton, thus going beyond the framework of the simplest quasi-particle description of the soliton's dynamics. Critical velocities separating reflection and transmission of the incident bright solitons are found by means of numerical simulations, and in the approximate semi-analytical form. An exact solution for the dark soliton pinned by the complex PT-symmetric dipole is produced too.
NASA Astrophysics Data System (ADS)
Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu
2016-03-01
Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.
NASA Astrophysics Data System (ADS)
Gorkunov, E. S.; Yakushenko, E. I.; Zadvorkin, S. M.; Mushnikov, A. N.
2017-12-01
Dependences of magnetization and magnetic permeability of the 15KhN4D structural steel on the value of uniaxial stresses and magnetic field strength are obtained. A polynomial approximation fairly accurately describing the observed changes is proposed on the basis of experimental data.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
NASA Technical Reports Server (NTRS)
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
An Accurate Analytic Approximation for Light Scattering by Non-absorbing Spherical Aerosol Particles
NASA Astrophysics Data System (ADS)
Lewis, E. R.
2017-12-01
The scattering of light by particles in the atmosphere is a ubiquitous and important phenomenon, with applications to numerous fields of science and technology. The problem of scattering of electromagnetic radiation by a uniform spherical particle can be solved by the method of Mie and Debye as a series of terms depending on the size parameter, x=2πr/λ, and the complex index of refraction, m. However, this solution does not provide insight into the dependence of the scattering on the radius of the particle, the wavelength, or the index of refraction, or how the scattering varies with relative humidity. Van de Hulst demonstrated that the scattering efficiency (the scattering cross section divided by the geometric cross section) of a non-absorbing sphere, over a wide range of particle sizes of atmospheric importance, depends not on x and m separately, but on the quantity 2x(m-1); this is the basis for the anomalous diffraction approximation. Here an analytic approximation for the scattering efficiency of a non-absorbing spherical particle is presented in terms of this new quantity that is accurate over a wide range of particle sizes of atmospheric importance and which readily displays the dependences of the scattering efficiency on particle radius, index of refraction, and wavelength. For an aerosol for which the particle size distribution is parameterized as a gamma function, this approximation also yields analytical results for the scattering coefficient and for the Ångström exponent, with the dependences of scattering properties on wavelength and index of refraction clearly displayed. This approximation provides insight into the dependence of light scattering properties on factors such as relative humidity, readily enables conversion of scattering from one index of refraction to another, and demonstrates the conditions under which the aerosol index (the product of the aerosol optical depth and the Ångström exponent) is a useful proxy for the number of cloud condensation nuclei.
How accurate is the Pearson r-from-Z approximation? A Monte Carlo simulation study.
Hittner, James B; May, Kim
2012-01-01
The Pearson r-from-Z approximation estimates the sample correlation (as an effect size measure) from the ratio of two quantities: the standard normal deviate equivalent (Z-score) corresponding to a one-tailed p-value divided by the square root of the total (pooled) sample size. The formula has utility in meta-analytic work when reports of research contain minimal statistical information. Although simple to implement, the accuracy of the Pearson r-from-Z approximation has not been empirically evaluated. To address this omission, we performed a series of Monte Carlo simulations. Results indicated that in some cases the formula did accurately estimate the sample correlation. However, when sample size was very small (N = 10) and effect sizes were small to small-moderate (ds of 0.1 and 0.3), the Pearson r-from-Z approximation was very inaccurate. Detailed figures that provide guidance as to when the Pearson r-from-Z formula will likely yield valid inferences are presented.
Semiclassical evaluation of quantum fidelity
NASA Astrophysics Data System (ADS)
Vaníček, Jiří; Heller, Eric J.
2003-11-01
We present a numerically feasible semiclassical (SC) method to evaluate quantum fidelity decay (Loschmidt echo) in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we show that a uniform SC expression not only is tractable but it also gives remarkably accurate numerical results for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows Monte Carlo evaluation, the uniform expression is accurate at times when there are 1070 semiclassical contributions. Remarkably, it also explicitly contains the “building blocks” of analytical theories of recent literature, and thus permits a direct test of the approximations made by other authors in these regimes, rather than an a posteriori comparison with numerical results. We explain in more detail the extended validity of the classical perturbation approximation and show that within this approximation, the so-called “diagonal approximation” is automatic and does not require ensemble averaging.
Analytic barrage attack model. Final report, January 1986-January 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.
An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for themore » analytic model and for a numerical model used to check the analytic results.« less
NASA Technical Reports Server (NTRS)
Smith, C. B.
1982-01-01
The Fymat analytic inversion method for retrieving a particle-area distribution function from anomalous diffraction multispectral extinction data and total area is generalized to the case of a variable complex refractive index m(lambda) near unity depending on spectral wavelength lambda. Inversion tests are presented for a water-haze aerosol model. An upper-phase shift limit of 5 pi/2 retrieved an accurate peak area distribution profile. Analytical corrections using both the total number and area improved the inversion.
Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes
NASA Astrophysics Data System (ADS)
Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan
2018-04-01
Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.
Two-dimensional analytic weighting functions for limb scattering
NASA Astrophysics Data System (ADS)
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Evaluation of selected methods for determining streamflow during periods of ice effect
Melcher, Norwood B.; Walker, J.F.
1992-01-01
Seventeen methods for estimating ice-affected streamflow are evaluated for potential use with the U.S. Geological Survey streamflow-gaging station network. The methods evaluated were identified by written responses from U.S. Geological Survey field offices and by a comprehensive literature search. The methods selected and techniques used for applying the methods are described in this report. The methods are evaluated by comparing estimated results with data collected at three streamflow-gaging stations in Iowa during the winter of 1987-88. Discharge measurements were obtained at 1- to 5-day intervals during the ice-affected periods at the three stations to define an accurate baseline record. Discharge records were compiled for each method based on data available, assuming a 6-week field schedule. The methods are classified into two general categories-subjective and analytical--depending on whether individual judgment is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used at streamflow-gaging stations, where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice-adjustment factor) may be appropriate for use at stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge-ratio and multiple-regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.
AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Ramírez, J. C.; Raga, A. C.; Lora, V.
2016-12-20
We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. Wemore » compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.« less
Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry
Taylor, Howard E.; Garbarino, John R.
1988-01-01
A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.
Simple heuristic for the viscosity of polydisperse hard spheres
NASA Astrophysics Data System (ADS)
Farr, Robert S.
2014-12-01
We build on the work of Mooney [Colloids Sci. 6, 162 (1951)] to obtain an heuristic analytic approximation to the viscosity of a suspension any size distribution of hard spheres in a Newtonian solvent. The result agrees reasonably well with rheological data on monodispserse and bidisperse hard spheres, and also provides an approximation to the random close packing fraction of polydisperse spheres. The implied packing fraction is less accurate than that obtained by Farr and Groot [J. Chem. Phys. 131(24), 244104 (2009)], but has the advantage of being quick and simple to evaluate.
NASA Astrophysics Data System (ADS)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
Mutation-selection balance in mixed mating populations.
Kelly, John K
2007-05-21
An approximation to the average number of deleterious mutations per gamete, Q, is derived from a model allowing selection on both zygotes and male gametes. Progeny are produced by either outcrossing or self-fertilization with fixed probabilities. The genetic model is a standard in evolutionary biology: mutations occur at unlinked loci, have equivalent effects, and combine multiplicatively to determine fitness. The approximation developed here treats individual mutation counts with a generalized Poisson model conditioned on the distribution of selfing histories in the population. The approximation is accurate across the range of parameter sets considered and provides both analytical insights and greatly increased computational speed. Model predictions are discussed in relation to several outstanding problems, including the estimation of the genomic deleterious mutation rates (U), the generality of "selective interference" among loci, and the consequences of gametic selection for the joint distribution of inbreeding depression and mating system across species. Finally, conflicting results from previous analytical treatments of mutation-selection balance are resolved to assumptions about the life-cycle and the initial fate of mutations.
Quantification of Water Flux in Vesicular Systems.
Hannesschläger, Christof; Barta, Thomas; Siligan, Christine; Horner, Andreas
2018-06-04
Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities P f . A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring P f from scattered light intensities exists, approximations potentially misjudging P f by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability p f depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.
Comparing numerical and analytic approximate gravitational waveforms
NASA Astrophysics Data System (ADS)
Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.
Theory and Circuit Model for Lossy Coaxial Transmission Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genoni, T. C.; Anderson, C. N.; Clark, R. E.
2017-04-01
The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.
Double power series method for approximating cosmological perturbations
NASA Astrophysics Data System (ADS)
Wren, Andrew J.; Malik, Karim A.
2017-04-01
We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.
NASA Technical Reports Server (NTRS)
Shemansky, D. E.; Hall, D. T.; Ajello, J. M.
1985-01-01
The cross sections sigma R 1 (2p) for excitation of H Ly-alpha emission produced by electron impact on H2 is reexamined. A more accurate estimate for sigma R 1 (2p) is obtained based on Born approximation estimates of the H2 Rydberg system cross sections using measured relative excitation functions. The obtained value is (8.18 + or -1.2) x 10 to the -18th sq cm at 100 eV, a factor of 0.69 below the value universally applied to cross section measurements over the past decade. Cross sections for the H2 Rydberg systems fixed in magnitude by the Born approximation have also been obtained using experimentally determined excitation functions. Accurate analytic expressions for these cross sections allow the direct calculation of rate coefficients.
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas
2012-08-01
In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.
Weak limit of the three-state quantum walk on the line
NASA Astrophysics Data System (ADS)
Falkner, Stefan; Boettcher, Stefan
2014-07-01
We revisit the one-dimensional discrete time quantum walk with three states and the Grover coin, the simplest model that exhibits localization in a quantum walk. We derive analytic expressions for the localization and a long-time approximation for the entire probability density function (PDF). We find the possibility for asymmetric localization to the extreme that it vanishes completely on one site of the initial conditions. We also connect the time-averaged approximation of the PDF found by Inui et al. [Phys. Rev. E 72, 056112 (2005), 10.1103/PhysRevE.72.056112] to a spatial average of the walk. We show that this smoothed approximation predicts moments of the real PDF accurately.
ERIC Educational Resources Information Center
Douvropoulos, Theodosios G.
2012-01-01
An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic…
Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads
2006-04-01
We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.
Analytic descriptions of stochastic bistable systems under force ramp
Friddle, Raymond W.
2016-05-13
Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.
Back in the saddle: large-deviation statistics of the cosmic log-density field
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.
2016-08-01
We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.
H2+, HeH and H2: Approximating potential curves, calculating rovibrational states
NASA Astrophysics Data System (ADS)
Olivares-Pilón, Horacio; Turbiner, Alexander V.
2018-06-01
Analytic consideration of the Bohr-Oppenheimer (BO) potential curves for diatomic molecules is proposed: accurate analytic interpolation for a potential curve consistent with its rovibrational spectra is found. It is shown that in the BO approximation for four lowest electronic states 1 sσg and 2 pσu, 2 pπu and 3 dπg of H2+, the ground state X2Σ+ of HeH and the two lowest states 1 Σg+ and 3 Σu+ of H2, the potential curves can be analytically interpolated in full range of internuclear distances R with not less than 4-5-6 s.d. Approximation based on matching the Laurant-type expansion at small R and a combination of the multipole expansion with one-instanton type contribution at large distances R is given by two-point Padé approximant. The position of minimum, when exists, is predicted within 1% or better. For the molecular ion H2+ in the Lagrange mesh method, the spectra of vibrational, rotational and rovibrational states (ν , L) associated with 1 sσg and 2 pσu, 2 pπu and 3 dπg potential curves are calculated. In general, it coincides with spectra found via numerical solution of the Schrödinger equation (when available) within six s.d. It is shown that 1 sσg curve contains 19 vibrational states (ν , 0) , while 2 pσu curve contains a single one (0 , 0) and 2 pπu state contains 12 vibrational states (ν , 0) . In general, 1 sσg electronic curve contains 420 rovibrational states, which increases up to 423 when we are beyond BO approximation. For the state 2 pσu the total number of rovibrational states (all with ν = 0) is equal to 3, within or beyond Bohr-Oppenheimer approximation. As for the state 2 pπu within the Bohr-Oppenheimer approximation the total number of the rovibrational bound states is equal to 284. The state 3 dπg is repulsive, no rovibrational state is found. It is confirmed in Lagrange mesh formalism the statement that the ground state potential curve of the heteronuclear molecule HeH does not support rovibrational states. Accurate analytical expression for the potential curves of the hydrogen molecule H2 for the states 1Σg+ and 3 Σu+ is presented. The ground state 1 Σg+ contains 15 vibrational states (ν , 0) , ν = 0- 14. In general, this state supports 301 rovibrational states. The potential curve of the state 3Σu+ has a shallow minimum: it does not support any rovibrational state, it is repulsive.
Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam
2009-01-01
This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.
Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes
NASA Astrophysics Data System (ADS)
Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.
2018-06-01
Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.
Exact PDF equations and closure approximations for advective-reactive transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.
2013-06-01
Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recentlymore » proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.« less
An accurate analytic description of neutrino oscillations in matter
NASA Astrophysics Data System (ADS)
Akhmedov, E. Kh.; Niro, Viviana
2008-12-01
A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.
Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks
Jiao, Yang; Torquato, Salvatore
2012-01-01
Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation, and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance (NMR) relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Yeong and Torquato [J. Chem. Phys. 106, 8814 (1997)]. We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations to link other physical properties to the transport properties of collagen networks is also discussed. PMID:22683739
NASA Technical Reports Server (NTRS)
Connor, J. N. L.; Curtis, P. R.; Farrelly, D.
1984-01-01
Methods that can be used in the numerical implementation of the uniform swallowtail approximation are described. An explicit expression for that approximation is presented to the lowest order, showing that there are three problems which must be overcome in practice before the approximation can be applied to any given problem. It is shown that a recently developed quadrature method can be used for the accurate numerical evaluation of the swallowtail canonical integral and its partial derivatives. Isometric plots of these are presented to illustrate some of their properties. The problem of obtaining the arguments of the swallowtail integral from an analytical function of its argument is considered, describing two methods of solving this problem. The asymptotic evaluation of the butterfly canonical integral is addressed.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1995-01-01
A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
NASA Astrophysics Data System (ADS)
Xing, Zhang-Fan; Greenberg, J. M.
1992-11-01
Results of an investigation of the analyticity of the complex extinction efficiency Q-tilde(ext) in different parameter domains are presented. In the size parameter domain, x = omega(a/c), numerical Hilbert transforms are used to study the analyticity properties of Q-tilde(ext) for homogeneous spheres. Q-tilde(ext) is found to be analytic in the entire lower complex x-tilde-plane when the refractive index, m, is fixed as a real constant (pure scattering) or infinity (perfect conductor); poles, however, appear in the left side of the lower complex x-tilde-plane as m becomes complex. The computation of the mean extinction produced by an extended size distribution of particles may be conveniently and accurately approximated using only a few values of the complex extinction evaluated in the complex plane.
Theodorakis, Stavros
2003-06-01
We emulate the cubic term Psi(3) in the nonlinear Schrödinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a delta function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Psi(3) one. In particular, it can be used for the nonlinear Schrödinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.
2011-01-01
Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
NASA Technical Reports Server (NTRS)
Comfort, R. H.; Baugher, C. R.; Chappell, C. R.
1982-01-01
A procedure for analyzing low-energy (less than approximately 100 eV) ion data from the plasma composition experiment on ISEE 1 is set forth. The method is based on a derived analytic expression for particle flux to a limited aperture retarding potential analyzer (RPA) in the thin sheath approximation, which makes allowance for some effects of a charged spacecraft on plasma particle trajectories. Calculations using simulated data are employed in testing the efficacy and accuracy of the technique. On the basis of an analysis of these calculation results and the mathematical model, the method is seen as being able to provide accurate ion temperatures from all good plasmaspheric RPA data. It is noted that corresponding densities and spacecraft potentials should be accurate when spacecraft potentials are negative but that they are subject to error for positive spacecraft potentials, particularly when ion Mach numbers are much less than 1. An analysis of data from a representative ISEE 1 pass produces a plasmasphere temperature profile that is consistent in overall structure with previous observations.
Chao, Jerry; Ram, Sripad; Ward, E. Sally; Ober, Raimund J.
2014-01-01
The extraction of information from images acquired under low light conditions represents a common task in diverse disciplines. In single molecule microscopy, for example, techniques for superresolution image reconstruction depend on the accurate estimation of the locations of individual particles from generally low light images. In order to estimate a quantity of interest with high accuracy, however, an appropriate model for the image data is needed. To this end, we previously introduced a data model for an image that is acquired using the electron-multiplying charge-coupled device (EMCCD) detector, a technology of choice for low light imaging due to its ability to amplify weak signals significantly above its readout noise floor. Specifically, we proposed the use of a geometrically multiplied branching process to model the EMCCD detector’s stochastic signal amplification. Geometric multiplication, however, can be computationally expensive and challenging to work with analytically. We therefore describe here two approximations for geometric multiplication that can be used instead. The high gain approximation is appropriate when a high level of signal amplification is used, a scenario which corresponds to the typical usage of an EMCCD detector. It is an accurate approximation that is computationally more efficient, and can be used to perform maximum likelihood estimation on EMCCD image data. In contrast, the Gaussian approximation is applicable at all levels of signal amplification, but is only accurate when the initial signal to be amplified is relatively large. As we demonstrate, it can importantly facilitate the analysis of an information-theoretic quantity called the noise coefficient. PMID:25075263
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
Schweiger, Regev; Fisher, Eyal; Rahmani, Elior; Shenhav, Liat; Rosset, Saharon; Halperin, Eran
2018-06-22
Estimation of heritability is an important task in genetics. The use of linear mixed models (LMMs) to determine narrow-sense single-nucleotide polymorphism (SNP)-heritability and related quantities has received much recent attention, due of its ability to account for variants with small effect sizes. Typically, heritability estimation under LMMs uses the restricted maximum likelihood (REML) approach. The common way to report the uncertainty in REML estimation uses standard errors (SEs), which rely on asymptotic properties. However, these assumptions are often violated because of the bounded parameter space, statistical dependencies, and limited sample size, leading to biased estimates and inflated or deflated confidence intervals (CIs). In addition, for larger data sets (e.g., tens of thousands of individuals), the construction of SEs itself may require considerable time, as it requires expensive matrix inversions and multiplications. Here, we present FIESTA (Fast confidence IntErvals using STochastic Approximation), a method for constructing accurate CIs. FIESTA is based on parametric bootstrap sampling, and, therefore, avoids unjustified assumptions on the distribution of the heritability estimator. FIESTA uses stochastic approximation techniques, which accelerate the construction of CIs by several orders of magnitude, compared with previous approaches as well as to the analytical approximation used by SEs. FIESTA builds accurate CIs rapidly, for example, requiring only several seconds for data sets of tens of thousands of individuals, making FIESTA a very fast solution to the problem of building accurate CIs for heritability for all data set sizes.
NASA Astrophysics Data System (ADS)
Kerst, Stijn; Shyrokau, Barys; Holweg, Edward
2018-05-01
This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.
NASA Astrophysics Data System (ADS)
Pommé, S.
2009-06-01
An analytical model is presented to calculate the total detection efficiency of a well-type radiation detector for photons, electrons and positrons emitted from a radioactive source at an arbitrary position inside the well. The model is well suited to treat a typical set-up with a point source or cylindrical source and vial inside a NaI well detector, with or without lead shield surrounding it. It allows for fast absolute or relative total efficiency calibrations for a wide variety of geometrical configurations and also provides accurate input for the calculation of coincidence summing effects. Depending on its accuracy, it may even be applied in 4π-γ counting, a primary standardisation method for activity. Besides an accurate account of photon interactions, precautions are taken to simulate the special case of 511 keV annihilation quanta and to include realistic approximations for the range of (conversion) electrons and β -- and β +-particles.
Analytical solution for a class of network dynamics with mechanical and financial applications
NASA Astrophysics Data System (ADS)
Krejčí, P.; Lamba, H.; Melnik, S.; Rachinskii, D.
2014-09-01
We show that for a certain class of dynamics at the nodes the response of a network of any topology to arbitrary inputs is defined in a simple way by its response to a monotone input. The nodes may have either a discrete or continuous set of states and there is no limit on the complexity of the network. The results provide both an efficient numerical method and the potential for accurate analytic approximation of the dynamics on such networks. As illustrative applications, we introduce a quasistatic mechanical model with objects interacting via frictional forces and a financial market model with avalanches and critical behavior that are generated by momentum trading strategies.
Applying the method of fundamental solutions to harmonic problems with singular boundary conditions
NASA Astrophysics Data System (ADS)
Valtchev, Svilen S.; Alves, Carlos J. S.
2017-07-01
The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.
NASA Astrophysics Data System (ADS)
Poirier, M.
2015-06-01
Density effects in ionized matter require particular attention since they modify energies, wavefunctions and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound electrons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a theory provides simple and rather accurate analytical approximations for the potential created by free electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temperature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the case of maximum orbital quantum number, and compare satisfactorily with results from a direct integration of the radial Schrödinger equation. Some formulas for lower orbital quantum numbers are also proposed.
NASA Astrophysics Data System (ADS)
Asami, Koji
2010-12-01
There are a few concerns in dielectric modeling of biological cells by the finite-element method (FEM) to simulate their dielectric spectra. Cells possess thin plasma membranes and membrane-bound intracellular organelles, requiring extra fine meshes and considerable computational tasks in the simulation. To solve the problems, the “thin-layer” approximation (TLA) and the “effective medium” approximation (EMA) were adopted. TLA deals with the membrane as an interface of the specific membrane impedance, and therefore it is not necessary to divide the membrane region. EMA regards the composite cytoplasm as an effective homogeneous phase whose dielectric properties are calculated separately. It was proved that TLA and EMA were both useful for greatly reducing computational tasks while accurately coinciding with analytical solutions.
NASA Astrophysics Data System (ADS)
Bhagwat, Swetha; Kumar, Prayush; Barkett, Kevin; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela; LIGO Collaboration
2016-03-01
Detection of gravitational wave involves extracting extremely weak signal from noisy data and their detection depends crucially on the accuracy of the signal models. The most accurate models of compact binary coalescence are known to come from solving the Einstein's equation numerically without any approximations. However, this is computationally formidable. As a more practical alternative, several analytic or semi analytic approximations are developed to model these waveforms. However, the work of Nitz et al. (2013) demonstrated that there is disagreement between these models. We present a careful follow up study on accuracies of different waveform families for spinning black-hole neutron star binaries, in context of both detection and parameter estimation and find that SEOBNRv2 to be the most faithful model. Post Newtonian models can be used for detection but we find that they could lead to large parameter bias. Supported by National Science Foundation (NSF) Awards No. PHY-1404395 and No. AST-1333142.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
NASA Astrophysics Data System (ADS)
Wu, Dongmei; Wang, Zhongcheng
2006-03-01
According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an approximation to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an approximation to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as y˜(x)=∑n=1m acos[(2n-1)ωx]. How to calculate the coefficients of the Fourier series efficiently with a computer program is still an open problem. For HB method, by substituting approximation y˜(x) into force equation, expanding the resulting expression into a trigonometric series, then letting the coefficients of the resulting lowest-order harmonic be zero, one can obtain approximate coefficients of approximation y˜(x) [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations such as Duffing equation, it is very difficult to construct higher-order analytical approximations, because the HB method requires solving a set of algebraic equations for a large number of unknowns with very complex nonlinearities. To overcome the difficulty, forty years ago, Urabe derived a computational method for Duffing equation based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl. 14 (1966) 107-140]. Dooren obtained an approximate solution of the Duffing oscillator with a special set of parameters by using Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite difference method for numerical integration, J. Comput. Phys. 16 (1974) 186-192]. In this paper, in the frame of the general HB method, we present a new iteration algorithm to calculate the coefficients of the Fourier series. By using this new method, the iteration procedure starts with a(x)cos(ωx)+b(x)sin(ωx), and the accuracy may be improved gradually by determining new coefficients a,a,… will be produced automatically in an one-by-one manner. In all the stage of calculation, we need only to solve a cubic equation. Using this new algorithm, we develop a Mathematica program, which demonstrates following main advantages over the previous HB method: (1) it avoids solving a set of associate nonlinear equations; (2) it is easier to be implemented into a computer program, and produces a highly accurate solution with analytical expression efficiently. It is interesting to find that, generally, for a given set of parameters, a nonlinear Duffing equation can have three independent oscillation modes. For some sets of the parameters, it can have two modes with complex displacement and one with real displacement. But in some cases, it can have three modes, all of them having real displacement. Therefore, we can divide the parameters into two classes, according to the solution property: there is only one mode with real displacement and there are three modes with real displacement. This program should be useful to study the dynamically periodic behavior of a Duffing oscillator and can provide an approximate analytical solution with high-accuracy for testing the error behavior of newly developed numerical methods with a wide range of parameters. Program summaryTitle of program:AnalyDuffing.nb Catalogue identifier:ADWR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWR_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computer for which the program is designed and others on which it has been tested:the program has been designed for a microcomputer and been tested on the microcomputer. Computers:IBM PC Installations:the address(es) of your computer(s) Operating systems under which the program has been tested:Windows XP Programming language used:Software Mathematica 4.2, 5.0 and 5.1 No. of lines in distributed program, including test data, etc.:23 663 No. of bytes in distributed program, including test data, etc.:152 321 Distribution format:tar.gz Memory required to execute with typical data:51 712 Bytes No. of bits in a word: No. of processors used:1 Has the code been vectorized?:no Peripherals used:no Program Library subprograms used:no Nature of physical problem:To find an approximate solution with analytical expressions for the undamped nonlinear Duffing equation with periodic driving force when the fundamental frequency is identical to the driving force. Method of solution:In the frame of the general HB method, by using a new iteration algorithm to calculate the coefficients of the Fourier series, we can obtain an approximate analytical solution with high-accuracy efficiently. Restrictions on the complexity of the problem:For problems, which have a large driving frequency, the convergence may be a little slow, because more iterative times are needed. Typical running time:several seconds Unusual features of the program:For an undamped Duffing equation, it can provide all the solutions or the oscillation modes with real displacement for any interesting parameters, for the required accuracy, efficiently. The program can be used to study the dynamically periodic behavior of a nonlinear oscillator, and can provide a high-accurate approximate analytical solution for developing high-accurate numerical method.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-10-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-09-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium
NASA Astrophysics Data System (ADS)
Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand
2014-05-01
The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.
Gap solitons in Ginzburg-Landau media.
Sakaguchi, Hidetsugu; Malomed, Boris A
2008-05-01
We introduce a model combining basic elements of conservative systems which give rise to gap solitons, i.e., a periodic potential and self-defocusing cubic nonlinearity, and dissipative terms corresponding to the complex Ginzburg-Landau (CGL) equation of the cubic-quintic type. The model may be realized in optical cavities with a periodic transverse modulation of the refractive index, self-defocusing nonlinearity, linear gain, and saturable absorption. By means of systematic simulations and analytical approximations, we find three species of stable dissipative gap solitons (DGSs), and also dark solitons. They are located in the first finite band gap, very close to the border of the Bloch band separating the finite and the semi-infinite gaps. Two species represent loosely and tightly bound solitons, in cases when the underlying Bloch band is, respectively, relatively broad or very narrow. These two families of stationary solitons are separated by a region of breathers. The loosely bound DGSs are accurately described by means of two approximations, which rely on the product of a carrier Bloch function and a slowly varying envelope, or reduce the model to CGL-Bragg equations. The former approximation also applies to dark solitons. Another method, based on the variational approximation, accurately describes tightly bound solitons. The loosely bound DGSs, as well as dark solitons, are mobile, and their collisions are quasielastic.
Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2003-02-01
We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.
An analytical model for scanning electron microscope Type I magnetic contrast with energy filtering
NASA Astrophysics Data System (ADS)
Chim, W. K.
1994-02-01
In this article, a theoretical model for type I magnetic contrast calculations in the scanning electron microscope with energy filtering is presented. This model uses an approximate form of the secondary electron (SE) energy distribution by Chung and Everhart [M. S. Chung and T. E. Everhart, J. Appl. Phys. 45, 707 (1974). Closed form analytical expressions for the contrast and quality factors, which take into consideration the work function and field-distance integral of the material being studied, are obtained. This analytical model is compared with that of a more accurate numerical model. Results showed that the contrast and quality factors for the analytical model differed by not more than 20% from the numerical model, with the actual difference depending on the range of filtered SE energies considered. This model has also been extended to the situation of a two-detector (i.e., detector A and B) configuration, in which enhanced magnetic contrast and quality factor can be obtained by operating in the ``A-B'' mode.
Ren, Lei; Howard, David; Ren, Luquan; Nester, Chris; Tian, Limei
2010-01-19
The objective of this paper is to develop an analytical framework to representing the ankle-foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function rho=rho(phi). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE approximately 10%) and CoP (relative RMSE approximately 15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering. Copyright 2009 Elsevier Ltd. All rights reserved.
A useful approximation for the flat surface impulse response
NASA Technical Reports Server (NTRS)
Brown, Gary S.
1989-01-01
The flat surface impulse response (FSIR) is a very useful quantity in computing the mean return power for near-nadir-oriented short-pulse radar altimeters. However, for very small antenna beamwidths and relatively large pointing angles, previous analytical descriptions become very difficult to compute accurately. An asymptotic approximation is developed to overcome these computational problems. Since accuracy is of key importance, a condition is developed under which this solution is within 2 percent of the exact answer. The asymptotic solution is shown to be in functional agreement with a conventional clutter power result and gives a 1.25-dB correction to this formula to account properly for the antenna-pattern variation over the illuminated area.
An asymptotically consistent approximant method with application to soft- and hard-sphere fluids.
Barlow, N S; Schultz, A J; Weinstein, S J; Kofke, D A
2012-11-28
A modified Padé approximant is used to construct an equation of state, which has the same large-density asymptotic behavior as the model fluid being described, while still retaining the low-density behavior of the virial equation of state (virial series). Within this framework, all sequences of rational functions that are analytic in the physical domain converge to the correct behavior at the same rate, eliminating the ambiguity of choosing the correct form of Padé approximant. The method is applied to fluids composed of "soft" spherical particles with separation distance r interacting through an inverse-power pair potential, φ = ε(σ∕r)(n), where ε and σ are model parameters and n is the "hardness" of the spheres. For n < 9, the approximants provide a significant improvement over the 8-term virial series, when compared against molecular simulation data. For n ≥ 9, both the approximants and the 8-term virial series give an accurate description of the fluid behavior, when compared with simulation data. When taking the limit as n → ∞, an equation of state for hard spheres is obtained, which is closer to simulation data than the 10-term virial series for hard spheres, and is comparable in accuracy to other recently proposed equations of state. By applying a least square fit to the approximants, we obtain a general and accurate soft-sphere equation of state as a function of n, valid over the full range of density in the fluid phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourdon, Christopher Jay; Olsen, Michael G.; Gorby, Allen D.
The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian (Exp. Fluids, 29, pp. S166-S174, 2000) has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics. Additionally, it was found that the Gaussian particlemore » approximation made in this model does not significantly affect the model's performance. It is also demonstrated that this modified analytical model easily predicts the depth of correlation when viewing into a medium of a different index of refraction than the immersion medium.« less
Analytic double product integrals for all-frequency relighting.
Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun
2013-07-01
This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.
Multifrequency characterization of viscoelastic polymers and vapor sensing based on SAW oscillators.
Yadava, R D S; Kshetrimayum, Roshan; Khaneja, Mamta
2009-12-01
Simplified relations for the changes in SAW velocity and attenuation due to thin polymer coatings and vapor sorption are presented by making analytic approximations to the complex theoretical model developed earlier by Martin et al. [Anal. Chem. 66 (14) (1994) 2201-2219]. The approximate velocity relation is accurate within 4% for the film thicknesses up to 20% of the acoustic wavelength in the polymer film, and is useful for analyzing the mass loading, swelling and viscoelastic effects in SAW vapor sensors. The approximate attenuation relation is accurate within 20% for very thin films, (less than 2% of the acoustic wavelength in the film). Based on these relations, a new procedure for determination of polymer viscoelastic properties is described that exploits the frequency dependence of the velocity and attenuation perturbations, and employs multifrequency measurement on the same SAW platform. Expressions for individual contributions from the mass loading, film swelling and viscoelastic effects in SAW vapor sensors are derived, and their implications for the sensor design and operation are discussed. Also, a new SAW comb filter design is proposed that offers possibility for multimode SAW oscillator operation over a decade of frequency variation, and illustrates feasibility for experimental realization of wide bandwidth multifrequency SAW platforms.
Dominating Scale-Free Networks Using Generalized Probabilistic Methods
Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.
2014-01-01
We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937
On the wing behaviour of the overtones of self-localized modes
NASA Astrophysics Data System (ADS)
Dusi, R.; Wagner, M.
1998-08-01
In this paper the solutions for self-localized modes in a nonlinear chain are investigated. We present a converging iteration procedure, which is based on analytical information of the wings and which takes into account higher overtones of the solitonic oscillations. The accuracy is controlled in a step by step manner by means of a Gaussian error analysis. Our numerical procedure allows for highly accurate solutions, in all anharmonicity regimes, and beyond the rotating-wave approximation (RWA). It is found that the overtone wings change their analytical behaviour at certain critical values of the energy of the self-localized mode: there is a turnover in the exponent of descent. The results are shown for a Fermi-Pasta-Ulam (FPU) chain with quartic anharmonicity.
Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry
Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui
2014-01-01
Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355
Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui
2012-09-18
Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.
Directly comparing gravitational wave data to numerical relativity simulations: systematics
NASA Astrophysics Data System (ADS)
Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Zlochower, Yosef; Shoemaker, Deirdre; Lovelace, Geoffrey; Pankow, Christopher; Brady, Patrick; Scheel, Mark; Pfeiffer, Harald; Ossokine, Serguei
2017-01-01
We compare synthetic data directly to complete numerical relativity simulations of binary black holes. In doing so, we circumvent ad-hoc approximations introduced in semi-analytical models previously used in gravitational wave parameter estimation and compare the data against the most accurate waveforms including higher modes. In this talk, we focus on the synthetic studies that test potential sources of systematic errors. We also run ``end-to-end'' studies of intrinsically different synthetic sources to show we can recover parameters for different systems.
Lateral trapping of DNA inside a voltage gated nanopore
NASA Astrophysics Data System (ADS)
Töws, Thomas; Reimann, Peter
2017-06-01
The translocation of a short DNA fragment through a nanopore is addressed when the perforated membrane contains an embedded electrode. Accurate numerical solutions of the coupled Poisson, Nernst-Planck, and Stokes equations for a realistic, fully three-dimensional setup as well as analytical approximations for a simplified model are worked out. By applying a suitable voltage to the membrane electrode, the DNA can be forced to preferably traverse the pore either along the pore axis or at a small but finite distance from the pore wall.
Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment
NASA Astrophysics Data System (ADS)
Glukhov, I. L.; Ovsiannikov, V. D.
2012-05-01
The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.
Simulation of free-electron lasers seeded with broadband radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl
2011-03-10
The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FELmore » process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.« less
Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors
Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech
2011-01-01
Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935
The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim
2013-07-01
An extension of Onsager's second virial theory is developed to describe the isotropic-nematic phase transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The effect of chain-flexibility on the second virial coefficient is described using an accurate, analytical approximation for the orientation-dependent pair-excluded volume. The use of this approximation allows for an analytical treatment of intramolecular flexibility by using a single pure-component parameter. Two approaches to approximate the effect of the higher virial coefficients are considered, i.e., the Vega-Lago rescaling and Scaled Particle Theory (SPT). The Onsager trial function is employed to describe the orientational distribution function. Theoretical predictions for the equation of state and orientational order parameter are tested against the results from Monte Carlo (MC) simulations. For linear chains of length 9 and longer, theoretical results are in excellent agreement with MC data. For smaller chain lengths, small errors introduced by the approximation of the higher virial coefficients become apparent, leading to a small under- and overestimation of the pressure and density difference at the phase transition, respectively. For rod-coil fluids of reasonable rigidity, a quantitative comparison between theory and MC simulations is obtained. For more flexible chains, however, both the Vega-Lago rescaling and SPT lead to a small underestimation of the location of the phase transition.
Dillon, C R; Borasi, G; Payne, A
2016-01-01
For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344
Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples
Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.
2015-02-14
Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less
Confinement properties of tokamak plasmas with extended regions of low magnetic shear
NASA Astrophysics Data System (ADS)
Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.
2017-10-01
Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.
Correlations and analytical approaches to co-evolving voter models
NASA Astrophysics Data System (ADS)
Ji, M.; Xu, C.; Choi, C. W.; Hui, P. M.
2013-11-01
The difficulty in formulating analytical treatments in co-evolving networks is studied in light of the Vazquez-Eguíluz-San Miguel voter model (VM) and a modified VM (MVM) that introduces a random mutation of the opinion as a noise in the VM. The density of active links, which are links that connect the nodes of opposite opinions, is shown to be highly sensitive to both the degree k of a node and the active links n among the neighbors of a node. We test the validity in the formalism of analytical approaches and show explicitly that the assumptions behind the commonly used homogeneous pair approximation scheme in formulating a mean-field theory are the source of the theory's failure due to the strong correlations between k, n and n2. An improved approach that incorporates spatial correlation to the nearest-neighbors explicitly and a random approximation for the next-nearest neighbors is formulated for the VM and the MVM, and it gives better agreement with the simulation results. We introduce an empirical approach that quantifies the correlations more accurately and gives results in good agreement with the simulation results. The work clarifies why simply mean-field theory fails and sheds light on how to analyze the correlations in the dynamic equations that are often generated in co-evolving processes.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; DeLessio, Jennifer L.; Jacobs, Preston W.
2018-01-01
Many structures in the launch vehicle industry operate in liquid hydrogen (LH2), from the hydrogen fuel tanks through the ducts and valves and into the pump sides of the turbopumps. Calculating the structural dynamic response of these structures is critical for successful qualification of this hardware, but accurate knowledge of the natural frequencies is based entirely on numerical or analytical predictions of frequency reduction due to the added-fluid-mass effect because testing in LH2 has always been considered too difficult and dangerous. This fluid effect is predicted to be approximately 4-5% using analytical formulations for simple cantilever beams. As part of a comprehensive test/analysis program to more accurately assess pump inducers operating in LH2, a series of frequency tests in LH2 were performed at NASA/Marshall Space Flight Center's unique cryogenic test facility. These frequency tests are coupled with modal tests in air and water to provide critical information not only on the mass effect of LH2, but also the cryogenic temperature effect on Young's Modulus for which the data is not extensive. The authors are unaware of any other reported natural frequency testing in this media. In addition to the inducer, a simple cantilever beam was also tested in the tank to provide a more easily modeled geometry as well as one that has an analytical solution for the mass effect. This data will prove critical for accurate structural dynamic analysis of these structures, which operate in a highly-dynamic environment.
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Stimulated neutrino transformation through turbulence
Patton, Kelly M.; Kneller, James P.; McLaughlin, Gail C.
2014-04-30
We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Lastly, we also find a suppression of transitions due to the long wavelength modes when the ratio ofmore » their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function J 0.« less
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.
A screening tool for delineating subregions of steady recharge within groundwater models
Dickinson, Jesse; Ferré, T.P.A.; Bakker, Mark; Crompton, Becky
2014-01-01
We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.
Liu, Jian; Miller, William H
2008-09-28
The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.
NASA Technical Reports Server (NTRS)
Robertson, J. S.; Siegman, W. L.; Jacobson, M. J.
1989-01-01
There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal.
Rotor/Wing Interactions in Hover
NASA Technical Reports Server (NTRS)
Young, Larry A.; Derby, Michael R.
2002-01-01
Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Analytical Expressions for Deformation from an Arbitrarily Oriented Spheroid in a Half-Space
NASA Astrophysics Data System (ADS)
Cervelli, P. F.
2013-12-01
Deformation from magma chambers can be modeled by an elastic half-space with an embedded cavity subject to uniform pressure change along its interior surface. For a small number of cavity shapes, such as a sphere or a prolate spheroid, closed-form, analytical expressions for deformation have been derived, although these only approximate the uniform-pressure-change boundary condition, with the approximation becoming more accurate as the ratio of source depth to source dimension increases. Using the method of Elshelby [1957] and Yang [1988], which consists of a distribution of double forces and centers of dilatation along the vertical axis, I have derived expressions for displacement from a finite spheroid of arbitrary orientation and aspect ratio that are exact in an infinite elastic medium and approximate in a half-space. The approximation, like those for other cavity shapes, becomes increasingly accurate as the depth to source ratio grows larger, and is accurate to within a few percent in most real-world cases. I have also derived expressions for the deformation-gradient tensor, i.e., the derivatives of each component of displacement with respect to each coordinate direction. These can be transformed easily into the strain and stress tensors. The expressions give deformation both at the surface and at any point within the half-space, and include conditional statements that account for limiting cases that would otherwise prove singular. I have developed MATLAB code for these expressions (and their derivatives), which I use to demonstrate the accuracy of the approximation by showing how well the uniform-pressure-change boundary condition is satisfied in a variety of cases. I also show that a vertical, oblate spheroid with a zero-length vertical axis is equivalent to the penny-shaped crack of Fialko [2001] in an infinite medium and an excellent approximation in a half-space. Finally, because, in many cases, volume change is more tangible than pressure change, I have derived an equation that relates these two quantities for the spheroid: volume change equals pressure change × 2/3 × π/μ × a constant that depends on Poisson's ratio and the spheroid geometry. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. London, Ser. A, 241, 376-396, 1957. Fialko, Y., Khazan, Y, and Simons, M. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy, Geophys. J. Int., no. 146, 181-190, 2001. Yang, X., Davis, P. M., and Dieterich, J.H, Deformation from inflation of a dipping finite prolate spheroid in an Elastic Half-Space as a model for volcanic stressing, J. Geophys. Res., vol. 93, no. B5, 4249-4257, 1988.
Transition probability functions for applications of inelastic electron scattering
Löffler, Stefan; Schattschneider, Peter
2012-01-01
In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709
NASA Technical Reports Server (NTRS)
Cox, D. P.; Edgar, R. J.
1982-01-01
Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.
Sum-rule corrections: a route to error cancellations in correlation matrix renormalisation theory
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, J.; Yao, Y. X.; Wang, C. Z.; Ho, K. M.
2017-03-01
We recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a more accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A
2014-08-01
Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Noah, Joyce E.
Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.
Goldstein, S J; Hensley, C A; Armenta, C E; Peters, R J
1997-03-01
Recent developments in extraction chromatography have simplified the separation of americium from complex matrices in preparation for alpha-spectroscopy relative to traditional methods. Here we present results of procedures developed/adapted for water, air, and bioassay samples with less than 1 g of inorganic residue. Prior analytical methods required the use of a complex, multistage procedure for separation of americium from these matrices. The newer, simplified procedure requires only a single 2 mL extraction chromatographic separation for isolation of Am and lanthanides from other components of the sample. This method has been implemented on an extensive variety of "real" environmental and bioassay samples from the Los Alamos area, and consistently reliable and accurate results with appropriate detection limits have been obtained. The new method increases analytical throughput by a factor of approximately 2 and decreases environmental hazards from acid and mixed-waste generation relative to the prior technique. Analytical accuracy, reproducibility, and reliability are also significantly improved over the more complex and laborious method used previously.
NASA Astrophysics Data System (ADS)
Keshet, Uri; Naor, Yossi
2016-10-01
Compressible flows around blunt objects have diverse applications, but current analytic treatments are inaccurate and limited to narrow parameter regimes. We show that the gas-dynamic flow in front of an axisymmetric blunt body is accurately derived analytically using a low order expansion of the perpendicular gradients in terms of the parallel velocity. This reproduces both subsonic and supersonic flows measured and simulated for a sphere, including the transonic regime and the bow shock properties. Some astrophysical implications are outlined, in particular for planets in the solar wind and for clumps and bubbles in the intergalactic medium. The bow shock standoff distance normalized by the obstacle curvature is ∼ 2/(3g) in the strong shock limit, where g is the compression ratio. For a subsonic Mach number M approaching unity, the thickness δ of an initially weak, draped magnetic layer is a few times larger than in the incompressible limit, with amplification ∼ (1+1.3{M}2.6)/(3δ ).
Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.
Chao, Fa-An; Byrd, R Andrew
2017-04-01
The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C', C α , H α , etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain. Published by Elsevier Inc.
Hasegawa, Chihiro; Duffull, Stephen B
2018-02-01
Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
NASA Astrophysics Data System (ADS)
Alshaery, Aisha; Ebaid, Abdelhalim
2017-11-01
Kepler's equation is one of the fundamental equations in orbital mechanics. It is a transcendental equation in terms of the eccentric anomaly of a planet which orbits the Sun. Determining the position of a planet in its orbit around the Sun at a given time depends upon the solution of Kepler's equation, which we will solve in this paper by the Adomian decomposition method (ADM). Several properties of the periodicity of the obtained approximate solutions have been proved in lemmas. Our calculations demonstrated a rapid convergence of the obtained approximate solutions which are displayed in tables and graphs. Also, it has been shown in this paper that only a few terms of the Adomian decomposition series are sufficient to achieve highly accurate numerical results for any number of revolutions of the Earth around the Sun as a consequence of the periodicity property. Numerically, the four-term approximate solution coincides with the Bessel-Fourier series solution in the literature up to seven decimal places at some values of the time parameter and nine decimal places at other values. Moreover, the absolute error approaches zero using the nine term approximate Adomian solution. In addition, the approximate Adomian solutions for the eccentric anomaly have been used to show the convergence of the approximate radial distances of the Earth from the Sun for any number of revolutions. The minimal distance (perihelion) and maximal distance (aphelion) approach 147 million kilometers and 152.505 million kilometers, respectively, and these coincide with the well known results in astronomical physics. Therefore, the Adomian decomposition method is validated as an effective tool to solve Kepler's equation for elliptical orbits.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2016-10-03
A novel accurate and useful approximation of the well-known Beckmann distribution is presented here, which is used to model generalized pointing errors in the context of free-space optical (FSO) communication systems. We derive an approximate closed-form probability density function (PDF) for the composite gamma-gamma (GG) atmospheric turbulence with the pointing error model using the proposed approximation of the Beckmann distribution, which is valid for most practical terrestrial FSO links. This approximation takes into account the effect of the beam width, different jitters for the elevation and the horizontal displacement and the simultaneous effect of nonzero boresight errors for each axis at the receiver plane. Additionally, the proposed approximation allows us to delimit two different FSO scenarios. The first of them is when atmospheric turbulence is the dominant effect in relation to generalized pointing errors, and the second one when generalized pointing error is the dominant effect in relation to atmospheric turbulence. The second FSO scenario has not been studied in-depth by the research community. Moreover, the accuracy of the method is measured both visually and quantitatively using curve-fitting metrics. Simulation results are further included to confirm the analytical results.
NASA Astrophysics Data System (ADS)
Gilleron, Franck; Piron, Robin
2015-12-01
We present Dédale, a fast code implementing a simplified non-local-thermodynamic-equilibrium (NLTE) plasma model. In this approach, the stationary collisional-radiative rates equations are solved for a set of well-chosen Layzer complexes in order to determine the ion state populations. The electronic structure is approximated using the screened hydrogenic model (SHM) of More with relativistic corrections. The radiative and collisional cross-sections are based on Kramers and Van Regemorter formula, respectively, which are extrapolated to derive analytical expressions for all the rates. The latter are improved thereafter using Gaunt factors or more accurate tabulated data. Special care is taken for dielectronic rates which are compared and rescaled with quantum calculations from the Averroès code. The emissivity and opacity spectra are calculated under the same assumptions as for the radiative rates, either in a detailed manner by summing the transitions between each pair of complexes, or in a coarser statistical way by summing the one-electron transitions averaged over the complexes. Optionally, nℓ-splitting can be accounted for using a WKB approach in an approximate potential reconstructed analytically from the screened charges. It is also possible to improve the spectra by replacing some transition arrays with more accurate data tabulated using the SCO-RCG or FAC codes. This latter option is particularly useful for K-shell emission spectroscopy. The Dédale code was used to submit neon and tungsten cases in the last NLTE-8 workshop (Santa Fe, November 4-8, 2013). Some of these results are presented, as well as comparisons with Averroès calculations.
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
Song, Chenchen; Martinez, Todd J.
2017-08-29
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. Furthermore, the resulting energy conservation in micro-canonical AIMD demonstrates that the implementationmore » provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.« less
Planetary spectra for anisotropic scattering
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1976-01-01
Some effects on planetary spectra that would be produced by departures from isotropic scattering are examined. The phase function is the simplest departure to handle analytically and the only phase function, other than the isotropic one, that can be incorporated into a Chandrasekhar first approximation. This approach has the advantage of illustrating effects resulting from anisotropies while retaining the simplicity that yields analytic solutions. The curve of growth is the sine qua non of planetary spectroscopy. The discussion emphasizes the difficulties and importance of ascertaining curves of growth as functions of observing geometry. A plea is made to observers to analyze their empirical curves of growth, whenever it seems feasible, in terms of coefficients of which are the leading terms in radiative-transfer analysis. An algebraic solution to the two sets of anisotropic H functions is developed which gives emergent intensities accurate to 0.3%.
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
NASA Astrophysics Data System (ADS)
Song, Chenchen; Martínez, Todd J.
2017-10-01
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. The resulting energy conservation in micro-canonical AIMD demonstrates that the implementation provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chenchen; Martinez, Todd J.
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. Furthermore, the resulting energy conservation in micro-canonical AIMD demonstrates that the implementationmore » provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.« less
Larson, Jeffrey S.; Goodman, Laurie J.; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C.; Cook, Jennifer W.; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D. B.; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J.; Whitcomb, Jeannette M.
2010-01-01
We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH). PMID:21151530
Larson, Jeffrey S; Goodman, Laurie J; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C; Cook, Jennifer W; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D B; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J; Whitcomb, Jeannette M
2010-06-28
We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7-10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH).
NASA Astrophysics Data System (ADS)
Ipsen, Andreas; Ebbels, Timothy M. D.
2014-10-01
In a recent article, we derived a probability distribution that was shown to closely approximate that of the data produced by liquid chromatography time-of-flight mass spectrometry (LC/TOFMS) instruments employing time-to-digital converters (TDCs) as part of their detection system. The approach of formulating detailed and highly accurate mathematical models of LC/MS data via probability distributions that are parameterized by quantities of analytical interest does not appear to have been fully explored before. However, we believe it could lead to a statistically rigorous framework for addressing many of the data analytical problems that arise in LC/MS studies. In this article, we present new procedures for correcting for TDC saturation using such an approach and demonstrate that there is potential for significant improvements in the effective dynamic range of TDC-based mass spectrometers, which could make them much more competitive with the alternative analog-to-digital converters (ADCs). The degree of improvement depends on our ability to generate mass and chromatographic peaks that conform to known mathematical functions and our ability to accurately describe the state of the detector dead time—tasks that may be best addressed through engineering efforts.
King, Andrew W; Baskerville, Adam L; Cox, Hazel
2018-03-13
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
NASA Technical Reports Server (NTRS)
Dubois, George B; Ocvirk, Fred W
1953-01-01
An approximate analytical solution including the effect of end leakage from the oil film of short plain bearings is presented because of the importance of endwise flow in sleeve bearings of the short lengths commonly used. The analytical approximation is supported by experimental data, resulting in charts which facilitate analysis of short plain bearings. The analytical approximation includes the endwise flow and that part of the circumferential flow which is related to surface velocity and film thickness but neglects the effect of film pressure on the circumferential flow. In practical use, this approximation applies best to bearings having a length-diameter ratio up to 1, and the effects of elastic deflection, inlet oil pressure, and changes of clearance with temperature minimize the relative importance of the neglected term. The analytical approximation was found to be an extension of a little-known pressure-distribution function originally proposed by Michell and Cardullo.
Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory
Liu, C.; Liu, J.; Yao, Y. X.; ...
2017-01-16
Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less
Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Liu, J.; Yao, Y. X.
Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.
Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N
2015-04-21
Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Thomas, A. G. R.
2011-03-01
In the preceding Comment, Corde, Stordeur, and Malka claim that the trapping threshold derived in my recent paper is incorrect. Their principal argument is that the elliptical orbits I used are not exact solutions of the equation of motion in the fields of the bubble. The original paper never claimed this—rather I claimed that the use of elliptical orbits was a reasonable approximation, which I based on observations from particle-in-cell simulations. Integration of the equation of motion for analytical expressions for idealized bubble fields (either analytically [I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov, Phys. Rev. Lett. 103, 175003 (2009)] or numerically [S. Corde, A. Stordeur, and V. Malka, "Comment on `Scalings for radiation from plasma bubbles,' " Phys. Plasmas 18, 034701 (2011)]) produces a trapping threshold wholly inconsistent with experiments and full particle-in-cell (PIC) simulations (e.g., requiring an estimated laser intensity of a0˜30 for ne˜1019 cm-3). The inconsistency in the particle trajectories between PIC and the numeric model used by the comment authors arises due to the fact that the analytical fields are only approximately true for "real" plasma bubbles, and lack certain key features of the field structure. Two possible methods of resolution to this inconsistency are either to find ever more complicated but accurate models for the bubble fields or to find approximate solutions to the equations of motion that capture the essential features of the self-consistent electron trajectories. The latter, heuristic approach used in my recent paper produced a threshold that is better matched to experimental observations. In this reply, I will also revisit the problem and examine the relationship between bubble radius and electron momentum at the point of trapping without reference to a particular trajectory.
Super-sample covariance approximations and partial sky coverage
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Lima, Marcos; Aguena, Michel
2018-04-01
Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.
Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.
de Barros, Louis; Dietrich, Michel
2008-03-01
Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poroelastic wave equations in the plane-wave domain using the Born approximation. This approach yields the Frechet derivatives of the P-SV- and SH-wave responses in terms of the Green's functions of the unperturbed medium. The accuracy and stability of the derived operators are checked by comparing, in the time-distance domain, differential seismograms computed from these analytical expressions with complete solutions obtained by introducing discrete perturbations into the model properties. For vertical and horizontal point forces, it is found that the Frechet derivative approach is remarkably accurate for small and localized perturbations of the medium properties which are consistent with the Born approximation requirements. Furthermore, the first-order formulation appears to be stable at all source-receiver offsets. The porosity, consolidation parameter, solid density, and mineral shear modulus emerge as the most sensitive parameters in forward and inverse modeling problems. Finally, the amplitude-versus-angle response of a thin layer shows strong coupling effects between several model parameters.
An empirical model for calculation of the collimator contamination dose in therapeutic proton beams
NASA Astrophysics Data System (ADS)
Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.
2016-02-01
Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.
NASA Astrophysics Data System (ADS)
Bakker, Mark
2010-08-01
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.
Vacuum Stress in Schwarzschild Spacetime
NASA Astrophysics Data System (ADS)
Howard, Kenneth Webster
Vacuum stress in the conformally invariant scalar field in the region exterior to the horizon of a Schwarzschild black hole is examined. In the Hartle-Hawking vacuum state <(phi)('2)> and
NASA Astrophysics Data System (ADS)
Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.
2018-05-01
We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.
Accurate mass measurements and their appropriate use for reliable analyte identification.
Godfrey, A Ruth; Brenton, A Gareth
2012-09-01
Accurate mass instrumentation is becoming increasingly available to non-expert users. This data can be mis-used, particularly for analyte identification. Current best practice in assigning potential elemental formula for reliable analyte identification has been described with modern informatic approaches to analyte elucidation, including chemometric characterisation, data processing and searching using facilities such as the Chemical Abstracts Service (CAS) Registry and Chemspider.
Limits of linearity and detection for some drugs of abuse.
Needleman, S B; Romberg, R W
1990-01-01
The limits of linearity (LOL) and detection (LOD) are important factors in establishing the reliability of an analytical procedure for accurately assaying drug concentrations in urine specimens. Multiple analyses of analyte over an extended range of concentrations provide a measure of the ability of the analytical procedure to correctly identify known quantities of drug in a biofluid matrix. Each of the seven drugs of abuse gives linear analytical responses from concentrations at or near their LOD to concentrations several-fold higher than those generally encountered in the drug screening laboratory. The upper LOL exceeds the Department of Navy (DON) cutoff values by factors of approximately 2 to 160. The LOD varies from 0.4 to 5.0% of the DON cutoff value for each drug. The limit of quantitation (LOQ) is calculated as the LOD + 7 SD. The range for LOL is greater for drugs analyzed with deuterated internal standards compared with those using conventional internal standards. For THC acid, cocaine, PCP, and morphine, LOLs are 8 to 160-fold greater than the defined cutoff concentrations. For the other drugs, the LOL's are only 2 to 4-fold greater than the defined cutoff concentrations.
Applications of δ-function perturbation to the pricing of derivative securities
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann; Goovaerts, Marc
2004-11-01
In the recent econophysics literature, the use of functional integrals is widespread for the calculation of option prices. In this paper, we extend this approach in several directions by means of δ-function perturbations. First, we show that results about infinitely repulsive δ-function are applicable to the pricing of barrier options. We also introduce functional integrals over skew paths that give rise to a new European option formula when combined with δ-function potential. We propose accurate closed-form approximations based on the theory of comonotonic risks in case the functional integrals are not analytically computable.
Quasi-optical grids with thin rectangular patch/aperture elements
NASA Technical Reports Server (NTRS)
Wu, Te-Kao
1993-01-01
Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.
Approximation of Failure Probability Using Conditional Sampling
NASA Technical Reports Server (NTRS)
Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.
2008-01-01
In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.
Kaon condensation in dense matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.; Heiselberg, H.; Pandharipande, V. R.
The kaon energy in neutron matter is calculated analytically with the Klein-Gordon equation, by making a Wigner-Seitz cell approximation and employing a K{sup -}N square well potential. The transition from the low density Lenz potential, proportional to scattering length, to the high density Hartree potential is found to begin at fairly low densities. Exact nonrelativistic calculations of the kaon energy in a simple cubic crystal of neutrons are used to test the Wigner-Seitz and the Ericson-Ericson approximation methods. In this case the frequently used Erickson-Erickson approximation is found to be fairly accurate up to twice nuclear matter density. All themore » calculations indicate that by {approx}4 times nuclear matter density the Hartree limit is reached. We also show that in the Hartree limit the energy of zero momentum kaons does not have relativistic energy dependent factors present in the low density expansions. The results indicate that the density for kaon condensation is higher than previously estimated.« less
Global optimization method based on ray tracing to achieve optimum figure error compensation
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin
2017-02-01
Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.
Theory of dissociative tunneling ionization
NASA Astrophysics Data System (ADS)
Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer
2016-05-01
We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.
Computation of Relative Magnetic Helicity in Spherical Coordinates
NASA Astrophysics Data System (ADS)
Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo
2018-06-01
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.
Shen, Y; Kevrekidis, P G; Sen, S; Hoffman, A
2014-08-01
Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of the relevant Hertzian FPU-type lattice through both the Korteweg-de Vries (KdV) equation and the Toda lattice. Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections to bounds established in the mathematical literature are also given.
Contribution of Twinning to Low Strain Deformation in a Mg Alloy
NASA Astrophysics Data System (ADS)
Barnett, Matthew R.; Ghaderi, Alireza; Robson, Joseph D.
2014-07-01
Deformation twinning plays an important role in the yielding of extruded magnesium alloys, especially when loaded in compression along the extrusion axis. The magnitude of this contribution is not accurately known. The present study employs electron backscatter diffraction to reveal the influence of grain orientation on twin-volume fraction for alloy AZ31 tested in compression to strains between 0.008 and 0.015. For these strains, it is seen that approximately 45 pct of the deformation can be attributed to "tensile" twinning. The variation of twin-volume fraction over different orientation classes correlates closely with the maximum Schmid factors for both tensile twinning and basal slip. These effects are readily explained quantitatively using a mean field crystal plasticity model without recourse to stochastic effects. Encouraged by this, we introduce an analytical approximation based on the uniformity of (axial) work.
Lopes, J S; Arenas, M; Posada, D; Beaumont, M A
2014-03-01
The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1 coding data sets.
Semiclassical evaluation of quantum fidelity
NASA Astrophysics Data System (ADS)
Vanicek, Jiri
2004-03-01
We present a numerically feasible semiclassical method to evaluate quantum fidelity (Loschmidt echo) in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we show that a uniform semiclassical expression not only is tractable but it gives remarkably accurate numerical results for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows a Monte-Carlo evaluation, this uniform expression is accurate at times where there are 10^70 semiclassical contributions. Remarkably, the method also explicitly contains the ``building blocks'' of analytical theories of recent literature, and thus permits a direct test of approximations made by other authors in these regimes, rather than an a posteriori comparison with numerical results. We explain in more detail the extended validity of the classical perturbation approximation and thus provide a ``defense" of the linear response theory from the famous Van Kampen objection. We point out the potential use of our uniform expression in other areas because it gives a most direct link between the quantum Feynman propagator based on the path integral and the semiclassical Van Vleck propagator based on the sum over classical trajectories. Finally, we test the applicability of our method in integrable and mixed systems.
Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio
NASA Technical Reports Server (NTRS)
Thomas, James
2008-01-01
Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications
A general analytical platform and strategy in search for illegal drugs.
Johansson, Monika; Fransson, Dick; Rundlöf, Torgny; Huynh, Ngoc-Hang; Arvidsson, Torbjörn
2014-11-01
An effective screening procedure to identify and quantify active pharmaceutical substances in suspected illegal medicinal products is described. The analytical platform, consisting of accurate mass determination with liquid chromatography time-of-flight mass spectrometry (LC-QTOF-MS) in combination with nuclear magnetic resonance (NMR) spectroscopy provides an excellent analytical tool to screen for unknowns in medicinal products, food supplements and herbal formulations. This analytical approach has been successfully applied to analyze thousands of samples. The general screening method usually starts with a methanol extraction of tablets/capsules followed by liquid chromatographic separation on a Halo Phenyl-Hexyl column (2.7μm; 100mm×2.1mm) using an acetonitrile/0.1% formic acid gradient as eluent. The accurate mass of peaks of interest was recorded and a search made against an in-house database containing approximately 4200 substances, mostly pharmaceutical compounds. The search could be general or tailored against different classes of compounds. Hits were confirmed by analyzing a reference substance and/or by NMR. Quantification was normally performed with quantitative NMR (qNMR) spectroscopy. Applications for weight-loss substances like sibutramine and orlistat, sexual potency enhancement (PDE-5 inhibitors), and analgesic drugs are presented in this study. We have also identified prostaglandin analogues in eyelash growth serum, exemplified by isopropyl cloprostenate and bimatoprost. For creams and ointments, matrix solid-phase dispersion (MSPD) was found to give a clean extracts with high recovery prior to LC-MS analyses. The structural elucidation of cetilistat, a new weight-loss substance recently found in illegal medicines purchased over the Internet, is also presented. Copyright © 2014 Elsevier B.V. All rights reserved.
A radio-frequency sheath model for complex waveforms
NASA Astrophysics Data System (ADS)
Turner, M. M.; Chabert, P.
2014-04-01
Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada; Palomares, A.
In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinementmore » holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.« less
The Hubbard Dimer: A Complete DFT Solution to a Many-Body Problem
NASA Astrophysics Data System (ADS)
Smith, Justin; Carrascal, Diego; Ferrer, Jaime; Burke, Kieron
2015-03-01
In this work we explain the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site asymmetric Hubbard model. We discuss the connection between the lattice and real-space and how this is a simple model for stretched H2. We can solve this elementary example analytically, and with that we can illuminate the underlying logic and aims of DFT. While the many-body solution is analytic, the density functional is given only implicitly. We overcome this difficulty by creating a highly accurate parameterization of the exact function. We use this parameterization to perform benchmark calculations of correlation kinetic energy, the adiabatic connection, etc. We also test Hartree-Fock and the Bethe Ansatz Local Density Approximation. We also discuss and illustrate the derivative discontinuity in the exchange-correlation energy and the infamous gap problem in DFT. DGE-1321846, DE-FG02-08ER46496.
Analytical model of diffuse reflectance spectrum of skin tissue
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.
2014-01-01
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.
Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices
Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad
2015-03-10
We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplifiedmore » model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.« less
Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.
Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai
2016-10-10
Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.
NASA Astrophysics Data System (ADS)
Prayogi, A.; Majidi, M. A.
2017-07-01
In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.
Approximate Bayesian evaluations of measurement uncertainty
NASA Astrophysics Data System (ADS)
Possolo, Antonio; Bodnar, Olha
2018-04-01
The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Probing-models for interdigitated electrode systems with ferroelectric thin films
NASA Astrophysics Data System (ADS)
Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul
2018-05-01
In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.
Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics
Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.; ...
2015-04-21
Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less
Computation of viscous blast wave flowfields
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
Deriving the exact nonadiabatic quantum propagator in the mapping variable representation.
Hele, Timothy J H; Ananth, Nandini
2016-12-22
We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete electronic states. The resulting Liouvillian is a Moyal series that, when suitably approximated, can allow for the use of classical dynamics to efficiently model large systems. We demonstrate that different truncations of the exact Liouvillian lead to existing approximate semiclassical and mixed quantum-classical methods and we derive an associated error term for each method. Furthermore, by combining the imaginary-time path-integral representation of the Boltzmann operator with the exact Liouvillian, we obtain an analytic expression for thermal quantum real-time correlation functions. These results provide a rigorous theoretical foundation for the development of accurate and efficient classical-like dynamics to compute observables such as electron transfer reaction rates in complex quantized systems.
NASA Astrophysics Data System (ADS)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
Application of the variational-asymptotical method to composite plates
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Lee, Bok W.; Atilgan, Ali R.
1992-01-01
A method is developed for the 3D analysis of laminated plate deformation which is an extension of a variational-asymptotical method by Atilgan and Hodges (1991). Both methods are based on the treatment of plate deformation by splitting the 3D analysis into linear through-the-thickness analysis and 2D plate analysis. Whereas the first technique tackles transverse shear deformation in the second asymptotical approximation, the present method simplifies its treatment and restricts it to the first approximation. Both analytical techniques are applied to the linear cylindrical bending problem, and the strain and stress distributions are derived and compared with those of the exact solution. The present theory provides more accurate results than those of the classical laminated-plate theory for the transverse displacement of 2-, 3-, and 4-layer cross-ply laminated plates. The method can give reliable estimates of the in-plane strain and displacement distributions.
Quantitative phenomenological model of the BOLD contrast mechanism
NASA Astrophysics Data System (ADS)
Dickson, John D.; Ash, Tom W. J.; Williams, Guy B.; Sukstanskii, Alexander L.; Ansorge, Richard E.; Yablonskiy, Dmitriy A.
2011-09-01
Different theoretical models of the BOLD contrast mechanism are used for many applications including BOLD quantification (qBOLD) and vessel size imaging, both in health and disease. Each model simplifies the system under consideration, making approximations about the structure of the blood vessel network and diffusion of water molecules through inhomogeneities in the magnetic field created by deoxyhemoglobin-containing blood vessels. In this study, Monte-Carlo methods are used to simulate the BOLD MR signal generated by diffusing water molecules in the presence of long, cylindrical blood vessels. Using these simulations we introduce a new, phenomenological model that is far more accurate over a range of blood oxygenation levels and blood vessel radii than existing models. This model could be used to extract physiological parameters of the blood vessel network from experimental data in BOLD-based experiments. We use our model to establish ranges of validity for the existing analytical models of Yablonskiy and Haacke, Kiselev and Posse, Sukstanskii and Yablonskiy (extended to the case of arbitrary time in the spin echo sequence) and Bauer et al. (extended to the case of randomly oriented cylinders). Although these models are shown to be accurate in the limits of diffusion under which they were derived, none of them is accurate for the whole physiological range of blood vessels radii and blood oxygenation levels. We also show the extent of systematic errors that are introduced due to the approximations of these models when used for BOLD signal quantification.
A non-grey analytical model for irradiated atmospheres. II. Analytical vs. numerical solutions
NASA Astrophysics Data System (ADS)
Parmentier, Vivien; Guillot, Tristan; Fortney, Jonathan J.; Marley, Mark S.
2015-02-01
Context. The recent discovery and characterization of the diversity of the atmospheres of exoplanets and brown dwarfs calls for the development of fast and accurate analytical models. Aims: We wish to assess the goodness of the different approximations used to solve the radiative transfer problem in irradiated atmospheres analytically, and we aim to provide a useful tool for a fast computation of analytical temperature profiles that remains correct over a wide range of atmospheric characteristics. Methods: We quantify the accuracy of the analytical solution derived in paper I for an irradiated, non-grey atmosphere by comparing it to a state-of-the-art radiative transfer model. Then, using a grid of numerical models, we calibrate the different coefficients of our analytical model for irradiated solar-composition atmospheres of giant exoplanets and brown dwarfs. Results: We show that the so-called Eddington approximation used to solve the angular dependency of the radiation field leads to relative errors of up to ~5% on the temperature profile. For grey or semi-grey atmospheres (i.e., when the visible and thermal opacities, respectively, can be considered independent of wavelength), we show that the presence of a convective zone has a limited effect on the radiative atmosphere above it and leads to modifications of the radiative temperature profile of approximately ~2%. However, for realistic non-grey planetary atmospheres, the presence of a convective zone that extends to optical depths smaller than unity can lead to changes in the radiative temperature profile on the order of 20% or more. When the convective zone is located at deeper levels (such as for strongly irradiated hot Jupiters), its effect on the radiative atmosphere is again on the same order (~2%) as in the semi-grey case. We show that the temperature inversion induced by a strong absorber in the optical, such as TiO or VO is mainly due to non-grey thermal effects reducing the ability of the upper atmosphere to cool down rather than an enhanced absorption of the stellar light as previously thought. Finally, we provide a functional form for the coefficients of our analytical model for solar-composition giant exoplanets and brown dwarfs. This leads to fully analytical pressure-temperature profiles for irradiated atmospheres with a relative accuracy better than 10% for gravities between 2.5 m s-2 and 250 m s-2 and effective temperatures between 100 K and 3000 K. This is a great improvement over the commonly used Eddington boundary condition. A FORTRAN implementation of the analytical model is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A35 or at http://www.oca.eu/parmentier/nongrey.Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Jain, Amber; Herman, Michael F.; Ouyang, Wenjun; Subotnik, Joseph E.
2015-10-01
We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.
Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?
NASA Astrophysics Data System (ADS)
Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard
2018-05-01
Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.
Application of the superposition principle to solar-cell analysis
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.
1979-01-01
The superposition principle of differential-equation theory - which applies if and only if the relevant boundary-value problems are linear - is used to derive the widely used shifting approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. Analytical methods are presented to treat cases where shifting is not strictly valid. Well-defined conditions necessary for superposition to apply are established. For high injection in the base region, the method of analysis accurately yields the dependence of the open-circuit voltage on the short-circuit current (or the illumination level).
Flight Validation of Mars Mission Technologies
NASA Technical Reports Server (NTRS)
Eberspeaker, P. J.
2000-01-01
Effective exploration and characterization of Mars will require the deployment of numerous surface probes, tethered balloon stations and free-flying balloon systems as well as larger landers and orbiting satellite systems. Since launch opportunities exist approximately every two years it is extremely critical that each and every mission maximize its potential for success. This will require significant testing of each system in an environment that simulates the actual operational environment as closely as possible. Analytical techniques and laboratory testing goes a long way in mitigating the inherent risks associated with space exploration, however they fall sort of accurately simulating the unpredictable operational environment in which these systems must function.
Finding accurate frontiers: A knowledge-intensive approach to relational learning
NASA Technical Reports Server (NTRS)
Pazzani, Michael; Brunk, Clifford
1994-01-01
An approach to analytic learning is described that searches for accurate entailments of a Horn Clause domain theory. A hill-climbing search, guided by an information based evaluation function, is performed by applying a set of operators that derive frontiers from domain theories. The analytic learning system is one component of a multi-strategy relational learning system. We compare the accuracy of concepts learned with this analytic strategy to concepts learned with an analytic strategy that operationalizes the domain theory.
Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, M
2004-04-22
I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.
NASA Astrophysics Data System (ADS)
Ladiges, Daniel R.; Sader, John E.
2018-05-01
Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.
NASA Astrophysics Data System (ADS)
Sepulveda, N.; Rohrer, K.
2008-05-01
The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.
Capricorn-A Web-Based Automatic Case Log and Volume Analytics for Diagnostic Radiology Residents.
Chen, Po-Hao; Chen, Yin Jie; Cook, Tessa S
2015-10-01
On-service clinical learning is a mainstay of radiology education. However, an accurate and timely case log is difficult to keep, especially in the absence of software tools tailored to resident education. Furthermore, volume-related feedback from the residency program sometimes occurs months after a rotation ends, limiting the opportunity for meaningful intervention. We surveyed the residents of a single academic institution to evaluate the current state of and the existing need for tracking interpretation volume. Using the results of the survey, we created an open-source automated case log software. Finally, we evaluated the effect of the software tool on the residency in a 1-month, postimplementation survey. Before implementation of the system, 89% of respondents stated that volume is an important component of training, but 71% stated that volume data was inconvenient to obtain. Although the residency program provides semiannual reviews, 90% preferred reviewing interpretation volumes at least once monthly. After implementation, 95% of the respondents stated that the software is convenient to access, 75% found it useful, and 88% stated they would use the software at least once a month. The included analytics module, which benchmarks the user using historical aggregate average volumes, is the most often used feature of the software. Server log demonstrates that, on average, residents use the system approximately twice a week. An automated case log software system may fulfill a previously unmet need in diagnostic radiology training, making accurate and timely review of volume-related performance analytics a convenient process. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Approximated analytical solution to an Ebola optimal control problem
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.
A moment-convergence method for stochastic analysis of biochemical reaction networks.
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
NASA Astrophysics Data System (ADS)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; Zhang, Guannan; Ye, Ming; Wu, Jianfeng; Wu, Jichun
2017-12-01
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.
Transport of phase space densities through tetrahedral meshes using discrete flow mapping
NASA Astrophysics Data System (ADS)
Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor
2017-01-01
Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Jaroslaw H.
2011-03-15
In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less
A pertinent approach to solve nonlinear fuzzy integro-differential equations.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.
Greenbaum, Gili
2015-09-07
Evaluation of the time scale of the fixation of neutral mutations is crucial to the theoretical understanding of the role of neutral mutations in evolution. Diffusion approximations of the Wright-Fisher model are most often used to derive analytic formulations of genetic drift, as well as for the time scales of the fixation of neutral mutations. These approximations require a set of assumptions, most notably that genetic drift is a stochastic process in a continuous allele-frequency space, an assumption appropriate for large populations. Here equivalent approximations are derived using a coalescent theory approach which relies on a different set of assumptions than the diffusion approach, and adopts a discrete allele-frequency space. Solutions for the mean and variance of the time to fixation of a neutral mutation derived from the two approaches converge for large populations but slightly differ for small populations. A Markov chain analysis of the Wright-Fisher model for small populations is used to evaluate the solutions obtained, showing that both the mean and the variance are better approximated by the coalescent approach. The coalescence approximation represents a tighter upper-bound for the mean time to fixation than the diffusion approximation, while the diffusion approximation and coalescence approximation form an upper and lower bound, respectively, for the variance. The converging solutions and the small deviations of the two approaches strongly validate the use of diffusion approximations, but suggest that coalescent theory can provide more accurate approximations for small populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nenashev, A. V.; Koshkarev, A. A.; Dvurechenskii, A. V.
2018-03-01
We suggest an approach to the analytical calculation of the strain distribution due to an inclusion in elastically anisotropic media for the case of cubic anisotropy. The idea consists in the approximate reduction of the anisotropic problem to a (simpler) isotropic problem. This gives, for typical semiconductors, an improvement in accuracy by an order of magnitude, compared to the isotropic approximation. Our method allows using, in the case of elastically anisotropic media, analytical solutions obtained for isotropic media only, such as analytical formulas for the strain due to polyhedral inclusions. The present work substantially extends the applicability of analytical results, making them more suitable for describing real systems, such as epitaxial quantum dots.
Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity.
Zeng, Jianhua; Malomed, Boris A
2017-05-01
Recent studies have demonstrated that defocusing cubic nonlinearity with local strength growing from the center to the periphery faster than r^{D}, in space of dimension D with radial coordinate r, supports a vast variety of robust bright solitons. In the framework of the same model, but with a weaker spatial-growth rate ∼r^{α} with α≤D, we test here the possibility to create stable localized continuous waves (LCWs) in one-dimensional (1D) and 2D geometries, localized dark solitons (LDSs) in one dimension, and localized dark vortices (LDVs) in two dimensions, which are all realized as loosely confined states with a divergent norm. Asymptotic tails of the solutions, which determine the divergence of the norm, are constructed in a universal analytical form by means of the Thomas-Fermi approximation (TFA). Global approximations for the LCWs, LDSs, and LDVs are constructed on the basis of interpolations between analytical approximations available far from (TFA) and close to the center. In particular, the interpolations for the 1D LDS, as well as for the 2D LDVs, are based on a deformed-tanh expression, which is suggested by the usual 1D dark-soliton solution. The analytical interpolations produce very accurate results, in comparison with numerical findings, for the 1D and 2D LCWs, 1D LDSs, and 2D LDVs with vorticity S=1. In addition to the 1D fundamental LDSs with the single notch and 2D vortices with S=1, higher-order LDSs with multiple notches are found too, as well as double LDVs, with S=2. Stability regions for the modes under consideration are identified by means of systematic simulations, the LCWs being completely stable in one and two dimensions, as they are ground states in the corresponding settings. Basic evolution scenarios are identified for those vortices that are unstable. The settings considered in this work may be implemented in nonlinear optics and in Bose-Einstein condensates.
Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity
NASA Astrophysics Data System (ADS)
Zeng, Jianhua; Malomed, Boris A.
2017-05-01
Recent studies have demonstrated that defocusing cubic nonlinearity with local strength growing from the center to the periphery faster than rD, in space of dimension D with radial coordinate r , supports a vast variety of robust bright solitons. In the framework of the same model, but with a weaker spatial-growth rate ˜rα with α ≤D , we test here the possibility to create stable localized continuous waves (LCWs) in one-dimensional (1D) and 2D geometries, localized dark solitons (LDSs) in one dimension, and localized dark vortices (LDVs) in two dimensions, which are all realized as loosely confined states with a divergent norm. Asymptotic tails of the solutions, which determine the divergence of the norm, are constructed in a universal analytical form by means of the Thomas-Fermi approximation (TFA). Global approximations for the LCWs, LDSs, and LDVs are constructed on the basis of interpolations between analytical approximations available far from (TFA) and close to the center. In particular, the interpolations for the 1D LDS, as well as for the 2D LDVs, are based on a deformed-tanh expression, which is suggested by the usual 1D dark-soliton solution. The analytical interpolations produce very accurate results, in comparison with numerical findings, for the 1D and 2D LCWs, 1D LDSs, and 2D LDVs with vorticity S =1 . In addition to the 1D fundamental LDSs with the single notch and 2D vortices with S =1 , higher-order LDSs with multiple notches are found too, as well as double LDVs, with S =2 . Stability regions for the modes under consideration are identified by means of systematic simulations, the LCWs being completely stable in one and two dimensions, as they are ground states in the corresponding settings. Basic evolution scenarios are identified for those vortices that are unstable. The settings considered in this work may be implemented in nonlinear optics and in Bose-Einstein condensates.
2013-01-01
Background A conventional gravimetry and electro-gravimetry study has been carried out for the precise and accurate purity determination of lead (Pb) in high purity lead stick and for preparation of reference standard. Reference materials are standards containing a known amount of an analyte and provide a reference value to determine unknown concentrations or to calibrate analytical instruments. A stock solution of approximate 2 kg has been prepared after dissolving approximate 2 g of Pb stick in 5% ultra pure nitric acid. From the stock solution five replicates of approximate 50 g have been taken for determination of purity by each method. The Pb has been determined as PbSO4 by conventional gravimetry, as PbO2 by electro gravimetry. The percentage purity of the metallic Pb was calculated accordingly from PbSO4 and PbO2. Results On the basis of experimental observations it has been concluded that by conventional gravimetry and electro-gravimetry the purity of Pb was found to be 99.98 ± 0.24 and 99.97 ± 0.27 g/100 g and on the basis of Pb purity the concentration of reference standard solutions were found to be 1000.88 ± 2.44 and 1000.81 ± 2.68 mg kg-1 respectively with 95% confidence level (k = 2). The uncertainty evaluation has also been carried out in Pb determination following EURACHEM/GUM guidelines. The final analytical results quantifying uncertainty fulfills this requirement and gives a measure of the confidence level of the concerned laboratory. Conclusions Gravimetry is the most reliable technique in comparison to titremetry and instrumental method and the results of gravimetry are directly traceable to SI unit. Gravimetric analysis, if methods are followed carefully, provides for exceedingly precise analysis. In classical gravimetry the major uncertainties are due to repeatability but in electro-gravimetry several other factors also affect the final results. PMID:23800080
Singh, Nahar; Singh, Niranjan; Tripathy, S Swarupa; Soni, Daya; Singh, Khem; Gupta, Prabhat K
2013-06-26
A conventional gravimetry and electro-gravimetry study has been carried out for the precise and accurate purity determination of lead (Pb) in high purity lead stick and for preparation of reference standard. Reference materials are standards containing a known amount of an analyte and provide a reference value to determine unknown concentrations or to calibrate analytical instruments. A stock solution of approximate 2 kg has been prepared after dissolving approximate 2 g of Pb stick in 5% ultra pure nitric acid. From the stock solution five replicates of approximate 50 g have been taken for determination of purity by each method. The Pb has been determined as PbSO4 by conventional gravimetry, as PbO2 by electro gravimetry. The percentage purity of the metallic Pb was calculated accordingly from PbSO4 and PbO2. On the basis of experimental observations it has been concluded that by conventional gravimetry and electro-gravimetry the purity of Pb was found to be 99.98 ± 0.24 and 99.97 ± 0.27 g/100 g and on the basis of Pb purity the concentration of reference standard solutions were found to be 1000.88 ± 2.44 and 1000.81 ± 2.68 mg kg-1 respectively with 95% confidence level (k = 2). The uncertainty evaluation has also been carried out in Pb determination following EURACHEM/GUM guidelines. The final analytical results quantifying uncertainty fulfills this requirement and gives a measure of the confidence level of the concerned laboratory. Gravimetry is the most reliable technique in comparison to titremetry and instrumental method and the results of gravimetry are directly traceable to SI unit. Gravimetric analysis, if methods are followed carefully, provides for exceedingly precise analysis. In classical gravimetry the major uncertainties are due to repeatability but in electro-gravimetry several other factors also affect the final results.
USDA-ARS?s Scientific Manuscript database
Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.
2011-12-01
This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.
Partially ionized hydrogen plasma in strong magnetic fields.
Potekhin, A Y; Chabrier, G; Shibanov, Y A
1999-08-01
We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.
The varieties of symmetric stellar rings and radial caustics in galaxy disks
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Lotan, Pnina
1990-01-01
Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.
Variational Trajectory Optimization Tool Set: Technical description and user's manual
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.
1993-01-01
The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.
Predicting thermal history a-priori for magnetic nanoparticle hyperthermia of internal carcinoma
NASA Astrophysics Data System (ADS)
Dhar, Purbarun; Sirisha Maganti, Lakshmi
2017-08-01
This article proposes a simplistic and realistic method where a direct analytical expression can be derived for the temperature field within a tumour during magnetic nanoparticle hyperthermia. The approximated analytical expression for thermal history within the tumour is derived based on the lumped capacitance approach and considers all therapy protocols and parameters. The present method is simplistic and provides an easy framework for estimating hyperthermia protocol parameters promptly. The model has been validated with respect to several experimental reports on animal models such as mice/rabbit/hamster and human clinical trials. It has been observed that the model is able to accurately estimate the thermal history within the carcinoma during the hyperthermia therapy. The present approach may find implications in a-priori estimation of the thermal history in internal tumours for optimizing magnetic hyperthermia treatment protocols with respect to the ablation time, tumour size, magnetic drug concentration, field strength, field frequency, nanoparticle material and size, tumour location, and so on.
Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
NASA Astrophysics Data System (ADS)
Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li
2016-04-01
A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).
Leading non-Gaussian corrections for diffusion orientation distribution function.
Jensen, Jens H; Helpern, Joseph A; Tabesh, Ali
2014-02-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves on the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. 2013 John Wiley & Sons, Ltd.
Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function
Jensen, Jens H.; Helpern, Joseph A.; Tabesh, Ali
2014-01-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed out of the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves upon the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. PMID:24738143
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.
Rule, Geoffrey S; Clark, Zlatuse D; Yue, Bingfang; Rockwood, Alan L
2013-04-16
Stable isotope-labeled internal standards are of great utility in providing accurate quantitation in mass spectrometry (MS). An implicit assumption has been that there is no "cross talk" between signals of the internal standard and the target analyte. In some cases, however, naturally occurring isotopes of the analyte do contribute to the signal of the internal standard. This phenomenon becomes more pronounced for isotopically rich compounds, such as those containing sulfur, chlorine, or bromine, higher molecular weight compounds, and those at high analyte/internal standard concentration ratio. This can create nonlinear calibration behavior that may bias quantitative results. Here, we propose the use of a nonlinear but more accurate fitting of data for these situations that incorporates one or two constants determined experimentally for each analyte/internal standard combination and an adjustable calibration parameter. This fitting provides more accurate quantitation in MS-based assays where contributions from analyte to stable labeled internal standard signal exist. It can also correct for the reverse situation where an analyte is present in the internal standard as an impurity. The practical utility of this approach is described, and by using experimental data, the approach is compared to alternative fits.
NASA Astrophysics Data System (ADS)
Bervillier, C.; Boisseau, B.; Giacomini, H.
2008-02-01
The relation between the Wilson-Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson-Polchinski case in the study of which they fail).
Steady-state and dynamic models for particle engulfment during solidification
NASA Astrophysics Data System (ADS)
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Far-infrared rotational emission by carbon monoxide
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.
1982-01-01
Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.
Richtmyer-Meshkov flow in elastic solids.
Piriz, A R; López Cela, J J; Tahir, N A; Hoffmann, D H H
2006-09-01
Richtmyer-Meshkov flow is studied by means of an analytical model which describes the asymptotic oscillations of a corrugated interface between two perfectly elastic solids after the interaction with a shock wave. The model shows that the flow stability is due to the restoring effect of the elastic force. It provides a simple approximate but still very accurate formula for the oscillation period. It also shows that as it is observed in numerical simulations, the amplitude oscillates around a mean value equal to the post-shock amplitude, and that this is a consequence of the stress free conditions of the material immediately after the shock interaction. Extensive numerical simulations are presented to validate the model results.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Hodges, Dewey H.; Leung, Martin S.; Bless, Robert R.
1991-01-01
The proposed investigation on a Matched Asymptotic Expansion (MAE) method was carried out. It was concluded that the method of MAE is not applicable to launch vehicle ascent trajectory optimization due to a lack of a suitable stretched variable. More work was done on the earlier regular perturbation approach using a piecewise analytic zeroth order solution to generate a more accurate approximation. In the meantime, a singular perturbation approach using manifold theory is also under current investigation. Work on a general computational environment based on the use of MACSYMA and the weak Hamiltonian finite element method continued during this period. This methodology is capable of the solution of a large class of optimal control problems.
A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems
NASA Astrophysics Data System (ADS)
Caponetto, Riccardo; Fazzino, Stefano
2013-01-01
Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.
Thermodynamically self-consistent theory for the Blume-Capel model.
Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G
2001-04-01
We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.
Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
NASA Astrophysics Data System (ADS)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996), 10.1103/PhysRevD.54.5049] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.
Fast and Accurate Approximation to Significance Tests in Genome-Wide Association Studies
Zhang, Yu; Liu, Jun S.
2011-01-01
Genome-wide association studies commonly involve simultaneous tests of millions of single nucleotide polymorphisms (SNP) for disease association. The SNPs in nearby genomic regions, however, are often highly correlated due to linkage disequilibrium (LD, a genetic term for correlation). Simple Bonferonni correction for multiple comparisons is therefore too conservative. Permutation tests, which are often employed in practice, are both computationally expensive for genome-wide studies and limited in their scopes. We present an accurate and computationally efficient method, based on Poisson de-clumping heuristics, for approximating genome-wide significance of SNP associations. Compared with permutation tests and other multiple comparison adjustment approaches, our method computes the most accurate and robust p-value adjustments for millions of correlated comparisons within seconds. We demonstrate analytically that the accuracy and the efficiency of our method are nearly independent of the sample size, the number of SNPs, and the scale of p-values to be adjusted. In addition, our method can be easily adopted to estimate false discovery rate. When applied to genome-wide SNP datasets, we observed highly variable p-value adjustment results evaluated from different genomic regions. The variation in adjustments along the genome, however, are well conserved between the European and the African populations. The p-value adjustments are significantly correlated with LD among SNPs, recombination rates, and SNP densities. Given the large variability of sequence features in the genome, we further discuss a novel approach of using SNP-specific (local) thresholds to detect genome-wide significant associations. This article has supplementary material online. PMID:22140288
Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S
2008-10-01
Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.
Prediction of apparent extinction for optical transmission through rain
NASA Astrophysics Data System (ADS)
Vasseur, H.; Gibbins, C. J.
1996-12-01
At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.
An analysis of river bank slope and unsaturated flow effects on bank storage.
Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G
2012-01-01
Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbero, E.J.
1989-01-01
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminatedmore » cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.« less
NASA Astrophysics Data System (ADS)
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
Sampling and sample processing in pesticide residue analysis.
Lehotay, Steven J; Cook, Jo Marie
2015-05-13
Proper sampling and sample processing in pesticide residue analysis of food and soil have always been essential to obtain accurate results, but the subject is becoming a greater concern as approximately 100 mg test portions are being analyzed with automated high-throughput analytical methods by agrochemical industry and contract laboratories. As global food trade and the importance of monitoring increase, the food industry and regulatory laboratories are also considering miniaturized high-throughput methods. In conjunction with a summary of the symposium "Residues in Food and Feed - Going from Macro to Micro: The Future of Sample Processing in Residue Analytical Methods" held at the 13th IUPAC International Congress of Pesticide Chemistry, this is an opportune time to review sampling theory and sample processing for pesticide residue analysis. If collected samples and test portions do not adequately represent the actual lot from which they came and provide meaningful results, then all costs, time, and efforts involved in implementing programs using sophisticated analytical instruments and techniques are wasted and can actually yield misleading results. This paper is designed to briefly review the often-neglected but crucial topic of sample collection and processing and put the issue into perspective for the future of pesticide residue analysis. It also emphasizes that analysts should demonstrate the validity of their sample processing approaches for the analytes/matrices of interest and encourages further studies on sampling and sample mass reduction to produce a test portion.
pyJac: Analytical Jacobian generator for chemical kinetics
NASA Astrophysics Data System (ADS)
Niemeyer, Kyle E.; Curtis, Nicholas J.; Sung, Chih-Jen
2017-06-01
Accurate simulations of combustion phenomena require the use of detailed chemical kinetics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of practical interest typically have large numbers of species and reactions and exhibit high levels of mathematical stiffness in the governing differential equations, particularly for larger fuel molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations. Some in situ and a posteriori computational diagnostics methods also require accurate Jacobian matrices, including computational singular perturbation and chemical explosive mode analysis. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the number of chemical source term evaluations scales with the square of species count. Furthermore, existing analytical Jacobian tools do not optimize evaluations or support emerging SIMD processors such as GPUs. Here we introduce pyJac, a Python-based open-source program that generates analytical Jacobian matrices for use in chemical kinetics modeling and analysis. In addition to producing the necessary customized source code for evaluating reaction rates (including all modern reaction rate formulations), the chemical source terms, and the Jacobian matrix, pyJac uses an optimized evaluation order to minimize computational and memory operations. As a demonstration, we first establish the correctness of the Jacobian matrices for kinetic models of hydrogen, methane, ethylene, and isopentanol oxidation (number of species ranging 13-360) by showing agreement within 0.001% of matrices obtained via automatic differentiation. We then demonstrate the performance achievable on CPUs and GPUs using pyJac via matrix evaluation timing comparisons; the routines produced by pyJac outperformed first-order finite differences by 3-7.5 times and the existing analytical Jacobian software TChem by 1.1-2.2 times on a single-threaded basis. It is noted that TChem is not thread-safe, while pyJac is easily parallelized, and hence can greatly outperform TChem on multicore CPUs. The Jacobian matrix generator we describe here will be useful for reducing the cost of integrating chemical source terms with implicit algorithms in particular and algorithms that require an accurate Jacobian matrix in general. Furthermore, the open-source release of the program and Python-based implementation will enable wide adoption.
An approximate analytical solution for interlaminar stresses in angle-ply laminates
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Herakovich, Carl T.
1991-01-01
An improved approximate analytical solution for interlaminar stresses in finite width, symmetric, angle-ply laminated coupons subjected to axial loading is presented. The solution is based upon statically admissible stress fields which take into consideration local property mismatch effects and global equilibrium requirements. Unknown constants in the admissible stress states are determined through minimization of the complementary energy. Typical results are presented for through-the-thickness and interlaminar stress distributions for angle-ply laminates. It is shown that the results represent an improved approximate analytical solution for interlaminar stresses.
Effects of biases in domain wall network evolution. II. Quantitative analysis
NASA Astrophysics Data System (ADS)
Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.
2018-04-01
Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.
Mass functions from the excursion set model
NASA Astrophysics Data System (ADS)
Hiotelis, Nicos; Del Popolo, Antonino
2017-11-01
Aims: We aim to study the stochastic evolution of the smoothed overdensity δ at scale S of the form δ(S) = ∫0S K(S,u)dW(u), where K is a kernel and dW is the usual Wiener process. Methods: For a Gaussian density field, smoothed by the top-hat filter, in real space, we used a simple kernel that gives the correct correlation between scales. A Monte Carlo procedure was used to construct random walks and to calculate first crossing distributions and consequently mass functions for a constant barrier. Results: We show that the evolution considered here improves the agreement with the results of N-body simulations relative to analytical approximations which have been proposed from the same problem by other authors. In fact, we show that an evolution which is fully consistent with the ideas of the excursion set model, describes accurately the mass function of dark matter haloes for values of ν ≤ 1 and underestimates the number of larger haloes. Finally, we show that a constant threshold of collapse, lower than it is usually used, it is able to produce a mass function which approximates the results of N-body simulations for a variety of redshifts and for a wide range of masses. Conclusions: A mass function in good agreement with N-body simulations can be obtained analytically using a lower than usual constant collapse threshold.
Laleian, Artin; Valocchi, Albert J.; Werth, Charles J.
2015-11-24
Two-dimensional (2D) pore-scale models have successfully simulated microfluidic experiments of aqueous-phase flow with mixing-controlled reactions in devices with small aperture. A standard 2D model is not generally appropriate when the presence of mineral precipitate or biomass creates complex and irregular three-dimensional (3D) pore geometries. We modify the 2D lattice Boltzmann method (LBM) to incorporate viscous drag from the top and bottom microfluidic device (micromodel) surfaces, typically excluded in a 2D model. Viscous drag from these surfaces can be approximated by uniformly scaling a steady-state 2D velocity field at low Reynolds number. We demonstrate increased accuracy by approximating the viscous dragmore » with an analytically-derived body force which assumes a local parabolic velocity profile across the micromodel depth. Accuracy of the generated 2D velocity field and simulation permeability have not been evaluated in geometries with variable aperture. We obtain permeabilities within approximately 10% error and accurate streamlines from the proposed 2D method relative to results obtained from 3D simulations. Additionally, the proposed method requires a CPU run time approximately 40 times less than a standard 3D method, representing a significant computational benefit for permeability calculations.« less
Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G
2017-12-07
We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
NASA Astrophysics Data System (ADS)
Diveyev, Bohdan; Konyk, Solomija; Crocker, Malcolm J.
2018-01-01
The main aim of this study is to predict the elastic and damping properties of composite laminated plates. This problem has an exact elasticity solution for simple uniform bending and transverse loading conditions. This paper presents a new stress analysis method for the accurate determination of the detailed stress distributions in laminated plates subjected to cylindrical bending. Some approximate methods for the stress state predictions for laminated plates are presented here. The present method is adaptive and does not rely on strong assumptions about the model of the plate. The theoretical model described here incorporates deformations of each sheet of the lamina, which account for the effects of transverse shear deformation, transverse normal strain-stress and nonlinear variation of displacements with respect to the thickness coordinate. Predictions of the dynamic and damping values of laminated plates for various geometrical, mechanical and fastening properties are presented. Comparison with the Timoshenko beam theory is systematically made for analytical and approximation variants.
Analytical approximations to seawater optical phase functions of scattering
NASA Astrophysics Data System (ADS)
Haltrin, Vladimir I.
2004-11-01
This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.
Higgins, Victoria; Truong, Dorothy; Woroch, Amy; Chan, Man Khun; Tahmasebi, Houman; Adeli, Khosrow
2018-03-01
Evidence-based reference intervals (RIs) are essential to accurately interpret pediatric laboratory test results. To fill gaps in pediatric RIs, the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) project developed an age- and sex-specific pediatric RI database based on healthy pediatric subjects. Originally established for Abbott ARCHITECT assays, CALIPER RIs were transferred to assays on Beckman, Roche, Siemens, and Ortho analytical platforms. This study provides transferred reference intervals for 29 biochemical assays for the Ortho VITROS 5600 Chemistry System (Ortho). Based on Clinical Laboratory Standards Institute (CLSI) guidelines, a method comparison analysis was performed by measuring approximately 200 patient serum samples using Abbott and Ortho assays. The equation of the line of best fit was calculated and the appropriateness of the linear model was assessed. This equation was used to transfer RIs from Abbott to Ortho assays. Transferred RIs were verified using 84 healthy pediatric serum samples from the CALIPER cohort. RIs for most chemistry analytes successfully transferred from Abbott to Ortho assays. Calcium and CO 2 did not meet statistical criteria for transference (r 2 <0.70). Of the 32 transferred reference intervals, 29 successfully verified with approximately 90% of results from reference samples falling within transferred confidence limits. Transferred RIs for total bilirubin, magnesium, and LDH did not meet verification criteria and are not reported. This study broadens the utility of the CALIPER pediatric RI database to laboratories using Ortho VITROS 5600 biochemical assays. Clinical laboratories should verify CALIPER reference intervals for their specific analytical platform and local population as recommended by CLSI. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krachler, Michael; Mohl, Carola; Emons, Hendrik; Shotyk, William
2002-08-01
A simple, robust and reliable analytical procedure for the determination of 15 elements, namely Ca, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Ag, Cd, Ba, Tl, Th and U in peat and plant materials by inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) was developed. Powdered sample aliquots of approximately 220 mg were dissolved with various acid mixtures in a microwave heated high-pressure autoclave capable to digest 40 samples simultaneously. The selection of appropriate amounts of digestion acids (nitric acid, hydrofluoric acid or tetrafluoroboric acid) was crucial to obtain accurate results. The optimized acid mixture for digestion of plant and peat samples consisted of 3 ml HNO 3 and 0.1 ml HBF 4. An ultrasonic nebulizer with an additional membrane desolvation unit was found beneficial for the determination of Co, Ni, Ag, Tl, Th and U, allowing to aspirate a dry sample aerosol into the ICP-QMS. A pneumatic cross flow nebulizer served as sample introduction device for the other elements. Internal standardization was achieved with 103Rh for all elements, except for Th whose ICP-QMS signals were corrected by 103Rh and 185Re. Quality control was ascertained by analysis of the certified plant reference material GBW 07602 Bush Branches and Leaves. In almost all cases HNO 3 alone could not fully liberate the analytes of interest from the peat or plant matrix, probably because of the silicates present. After adding small amounts (0.05-0.1 ml) of either HF or HBF 4 to the digestion mixture, concentrations quantified by ICP-QMS generally increased significantly, in the case of Rb up to 80%. Further increasing the volumes of HF or HBF 4 in turn, resulted in a loss of recoveries of almost all elements, some of which amounted to approximately 60%. The successful analytical procedures were applied to the determination of two bulk peat materials. In general, good agreement between the found concentrations and results from an inter-laboratory trial or from instrumental neutron activation data were obtained, underpinning the suitability of the developed analytical approach.
Prospective regularization design in prior-image-based reconstruction
NASA Astrophysics Data System (ADS)
Dang, Hao; Siewerdsen, Jeffrey H.; Webster Stayman, J.
2015-12-01
Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in phantoms where the optimal parameters vary spatially by an order of magnitude or more. In a series of studies designed to explore potential unknowns associated with accurate PIBR, optimal prior image strength was found to vary with attenuation differences associated with anatomical change but exhibited only small variations as a function of the shape and size of the change. The results suggest that, given a target change attenuation, prospective patient-, change-, and data-specific customization of the prior image strength can be performed to ensure reliable reconstruction of specific anatomical changes.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; ...
2017-12-27
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
A moment-convergence method for stochastic analysis of biochemical reaction networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in termsmore » of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.« less
Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.
2011-09-30
Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertaintymore » considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly.« less
Bonomo, Anthony L; Isakson, Marcia J; Chotiros, Nicholas P
2015-04-01
The finite element method is used to model acoustic scattering from rough poroelastic surfaces. Both monostatic and bistatic scattering strengths are calculated and compared with three analytic models: Perturbation theory, the Kirchhoff approximation, and the small-slope approximation. It is found that the small-slope approximation is in very close agreement with the finite element results for all cases studied and that perturbation theory and the Kirchhoff approximation can be considered valid in those instances where their predictions match those given by the small-slope approximation.
Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q
2015-07-08
We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.
General properties and analytical approximations of photorefractive solitons
NASA Astrophysics Data System (ADS)
Geisler, A.; Homann, F.; Schmidt, H.-J.
2004-08-01
We investigate general properties of spatial 1-dimensional bright photorefractive solitons and discuss various analytical approximations for the soliton profile and the half width, both depending on an intensity parameter r. The case of dark solitons is also briefly addressed.
NASA Astrophysics Data System (ADS)
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean dispersion are shown to produce results several orders of magnitude more efficiently with a loss of accuracy small compared to the absolute accuracy of advanced dispersion models near sources. The method can be readily incorporated into existing dispersion models, and may allow for additional computation time to be expended on modelling dispersion processes more accurately in future, rather than on accounting for source geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Hidetsugu; Malomed, Boris A.
We study ordinary solitons and gap solitons (GS's) in the framework of the one-dimensional Gross-Pitaevskii equation (GPE) with a combination of both linear and nonlinear lattice potentials. The main points of the analysis are the effects of (in)commensurability between the lattices, the development of analytical methods, viz., the variational approximation (VA) for narrow ordinary solitons and various forms of the averaging method for broad solitons of both types, and also the study of the mobility of the solitons. Under the direct commensurability (equal periods of the lattices, L{sub lin}=L{sub nonlin}), the family of ordinary solitons is similar to its counterpartmore » in the GPE without external potentials. In the case of the subharmonic commensurability with L{sub lin}=(1/2)L{sub nonlin}, or incommensurability, there is an existence threshold for the ordinary solitons and the scaling relation between their amplitude and width is different from that in the absence of the potentials. GS families demonstrate a bistability unless the direct commensurability takes place. Specific scaling relations are found for them as well. Ordinary solitons can be readily set in motion by kicking. GS's are also mobile and feature inelastic collisions. The analytical approximations are shown to be quite accurate, predicting correct scaling relations for the soliton families in different cases. The stability of the ordinary solitons is fully determined by the Vakhitov-Kolokolov (VK) criterion (i.e., a negative slope in the dependence between the solitons's chemical potential mu and norm N). The stability of GS families obeys an inverted ('anti-VK') criterion dmu/dN>0, which is explained by the approximation based on the averaging method. The present system provides for the unique possibility to check the anti-VK criterion, as mu(N) dependencies for GS's feature turning points except in the case of direct commensurability.« less
Cosmological Perturbation Theory and the Spherical Collapse model - I. Gaussian initial conditions
NASA Astrophysics Data System (ADS)
Fosalba, Pablo; Gaztanaga, Enrique
1998-12-01
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, xi_J, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S_J=xi_J/xi^J-1_2. We compare our analytic results with N-body simulations, which turn out to be in very good agreement up to scales where sigma~1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.
Insight solutions are correct more often than analytic solutions
Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark
2016-01-01
How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960
ΛCDM Cosmology for Astronomers
NASA Astrophysics Data System (ADS)
Condon, J. J.; Matthews, A. M.
2018-07-01
The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.
On the Development of a Deterministic Three-Dimensional Radiation Transport Code
NASA Technical Reports Server (NTRS)
Rockell, Candice; Tweed, John
2011-01-01
Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
NASA Astrophysics Data System (ADS)
Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.
2015-12-01
Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.
2014-01-01
In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679
On the specta of X-ray bursters: Expansion and contraction stages
NASA Technical Reports Server (NTRS)
Titarchuk, Lev
1994-01-01
The theory of spectral formation during the explosion and contraction stages of X-ray bursters, which include the effects of Computonization and free-free absorption and emission, is described. Analytical expressions are provided for color ratios, and the spectral shape is given as a function of input parameters, elemental abundance, neutron star mass and radius, and Eddington ratio. An Eulerian calculation is used to determine the photospheric evolution accurately during the Eddington luminosity phase. The developed analytical theory for hydrodynamics of the expansion takes into account the dependence of Compton scattering opacity on electron temperature. An analytical expression is derived from the sonic point position and the value of the sonic velcoity. Using this value as a boundary condition at the sonic point, the velocity, density, and temperature profile are calculated throughout the whole photosphere. It is shown that the atmopsphere radiates spectra having a low-energy power-law shape and blackbody-like hard tail. In the expansion stage the spectra depend strongly on the temperature of the helium-burning zone at the neutron star surface. The X-ray photosheric radius increases to approximately 100 km or more, depending on the condition of the nuclear burning on the surface of the neutron star in the course of the expansion.
Xie, Xiaofeng; Tolley, Luke T; Truong, Thy X; Tolley, H Dennis; Farnsworth, Paul B; Lee, Milton L
2017-11-10
The design of a miniaturized LED-based UV-absorption detector was significantly improved for on-column nanoflow LC. The detector measures approximately 27mm×24mm×10mm and weighs only 30g. Detection limits down to the nanomolar range and linearity across 3 orders of magnitude were obtained using sodium anthraquinone-2-sulfonate as a test analyte. Using two miniaturized detectors, a dual-detector system was assembled containing 255nm and 275nm LEDs with only 216nL volume between the detectors A 100μm slit was used for on-column detection with a 150μm i.d. packed capillary column. Chromatographic separation of a phenol mixture was demonstrated using the dual-detector system, with each detector producing a unique chromatogram. Less than 6% variation in the ratios of absorbances measured at the two wavelengths for specific analytes was obtained across 3 orders of magnitude concentration, which demonstrates the potential of using absorption ratio measurements for target analyte detection. The dual-detector system was used for simple, but accurate, mobile phase flow rate measurement at the exit of the column. With a flow rate range from 200 to 2000nL/min, less than 3% variation was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Desmarais, R. N.
1982-01-01
This paper describes an accurate economical method for generating approximations to the kernel of the integral equation relating unsteady pressure to normalwash in nonplanar flow. The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the non elementary integrals in the kernel by exponential approximations and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. Coefficients for 8, 12, 24, and 72 term approximations are tabulated in the report. Also, since the method is automated, it can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.
Quo vadis, analytical chemistry?
Valcárcel, Miguel
2016-01-01
This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.
Conservative Analytical Collision Probabilities for Orbital Formation Flying
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2004-01-01
The literature offers a number of approximations for analytically and/or efficiently computing the probability of collision between two space objects. However, only one of these techniques is a completely analytical approximation that is suitable for use in the preliminary design phase, when it is more important to quickly analyze a large segment of the trade space than it is to precisely compute collision probabilities. Unfortunately, among the types of formations that one might consider, some combine a range of conditions for which this analytical method is less suitable. This work proposes a simple, conservative approximation that produces reasonable upper bounds on the collision probability in such conditions. Although its estimates are much too conservative under other conditions, such conditions are typically well suited for use of the existing method.
Conservative Analytical Collision Probability for Design of Orbital Formations
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2004-01-01
The literature offers a number of approximations for analytically and/or efficiently computing the probability of collision between two space objects. However, only one of these techniques is a completely analytical approximation that is suitable for use in the preliminary design phase, when it is more important to quickly analyze a large segment of the trade space than it is to precisely compute collision probabilities. Unfortunately, among the types of formations that one might consider, some combine a range of conditions for which this analytical method is less suitable. This work proposes a simple, conservative approximation that produces reasonable upper bounds on the collision probability in such conditions. Although its estimates are much too conservative under other conditions, such conditions are typically well suited for use of the existing method.
Analytical phase diagrams for colloids and non-adsorbing polymer.
Fleer, Gerard J; Tuinier, Remco
2008-11-04
We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-29
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
Derivation of phase functions from multiply scattered sunlight transmitted through a hazy atmosphere
NASA Technical Reports Server (NTRS)
Weinman, J. A.; Twitty, J. T.; Browning, S. R.; Herman, B. M.
1975-01-01
The intensity of sunlight multiply scattered in model atmospheres is derived from the equation of radiative transfer by an analytical small-angle approximation. The approximate analytical solutions are compared to rigorous numerical solutions of the same problem. Results obtained from an aerosol-laden model atmosphere are presented. Agreement between the rigorous and the approximate solutions is found to be within a few per cent. The analytical solution to the problem which considers an aerosol-laden atmosphere is then inverted to yield a phase function which describes a single scattering event at small angles. The effect of noisy data on the derived phase function is discussed.
Substrate mass transfer: analytical approach for immobilized enzyme reactions
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Saibavani, T. N.
2018-04-01
In this paper, the boundary value problem in immobilized enzyme reactions is formulated and approximate expression for substrate concentration without external mass transfer resistance is presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear differential equation containing a non linear term related to enzymatic reaction. The relevant analytical solution for the dimensionless substrate concentration profile is discussed in terms of dimensionless reaction parameters α and β.
Anzano, Jesús M; Villoria, Mark A; Ruíz-Medina, Antonio; Lasheras, Roberto J
2006-08-11
A microscopic laser-induced breakdown spectrometer was used to evaluate the analytical matrix effect commonly observed in the analysis of geological materials. Samples were analyzed in either the powder or pressed pellet forms. Calibration curves of a number of iron and aluminum compounds showed a linear relationship between the elemental concentration and peak intensity. A direct determination of elemental content can thus be made from extrapolation on these calibration curves. To investigate matrix effects, synthetic model samples were prepared from various iron and aluminum compounds spiked with SiO2 and CaCO3. The addition of these matrices had a pronounced analytical effect on those compounds prepared as pressed pellets. However, results indicated the absence of matrix effects when the samples were presented to the laser as loose powders on tape and results were compared to certified values, indicating the reliability of this approach for accurate analysis, provided the sample particle diameters are greater than approximately 100 microm. Finally, the simultaneous analysis of two different elements was demonstrated using powders on tape.
Brownian aggregation rate of colloid particles with several active sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V., E-mail: chern@ns.kinetics.nsc.ru
2014-08-14
We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shownmore » to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.« less
Thermal Cyclotron Absorption Coefficients. II. Opacities in the Stokes Formalism
NASA Astrophysics Data System (ADS)
Vaeth, H. M.; Chanmugam, G.
1995-05-01
We extend the discussion of the calculation of the cyclotron opacities α± of the ordinary and extraordinary mode (Chanmugam et al.) to the opacities κ, q, υ in the Stokes formalism. We derive formulae with which a can be calculated from κ, q, υ. We are hence able to compare our calculations of the opacities, which are based on the single-particle method, with results obtained with the dielectric tensor method of Tam or. Excellent agreement is achieved. We present extensive tables of the opacities in the Stokes formalism for frequencies up to 25ωc, where ωc is the cyclotron frequency, and temperatures kT = 5, 10,20, 30,40, and 50 keV. Furthermore, we derive approximate formulae with which κ, q, υ can be calculated from α± and hence use the Robinson & Melrose analytic formulae for α± in order to calculate the opacities in the Stokes formalism. We compare these opacities to accurate numerical opacities and find that the analytic formulae can reproduce the qualitative behavior of the opacities in the regions where the harmonic structure is unimportant.
Chemical association in simple models of molecular and ionic fluids. III. The cavity function
NASA Astrophysics Data System (ADS)
Zhou, Yaoqi; Stell, George
1992-01-01
Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.
On the dynamics of approximating schemes for dissipative nonlinear equations
NASA Technical Reports Server (NTRS)
Jones, Donald A.
1993-01-01
Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.
An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2018-03-01
By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.
Bardhan, Jaydeep P
2008-10-14
The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement is obtained in only a few iterations. The boundary-integral-equation framework may also provide a means to derive rigorous results explaining how the empirical correction terms in many modern GB models significantly improve accuracy despite their simple analytical forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manuel, M. J.-E.; Zylstra, A. B.; Rinderknecht, H. G.
2012-06-15
A monoenergetic proton source has been characterized and a modeling tool developed for proton radiography experiments at the OMEGA [T. R. Boehly et al., Opt. Comm. 133, 495 (1997)] laser facility. Multiple diagnostics were fielded to measure global isotropy levels in proton fluence and images of the proton source itself provided information on local uniformity relevant to proton radiography experiments. Global fluence uniformity was assessed by multiple yield diagnostics and deviations were calculated to be {approx}16% and {approx}26% of the mean for DD and D{sup 3}He fusion protons, respectively. From individual fluence images, it was found that the angular frequenciesmore » of Greater-Than-Or-Equivalent-To 50 rad{sup -1} contributed less than a few percent to local nonuniformity levels. A model was constructed using the Geant4 [S. Agostinelli et al., Nuc. Inst. Meth. A 506, 250 (2003)] framework to simulate proton radiography experiments. The simulation implements realistic source parameters and various target geometries. The model was benchmarked with the radiographs of cold-matter targets to within experimental accuracy. To validate the use of this code, the cold-matter approximation for the scattering of fusion protons in plasma is discussed using a typical laser-foil experiment as an example case. It is shown that an analytic cold-matter approximation is accurate to within Less-Than-Or-Equivalent-To 10% of the analytic plasma model in the example scenario.« less
In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. t has been reported that by treating the radioactive de...
A k-Space Method for Moderately Nonlinear Wave Propagation
Jing, Yun; Wang, Tianren; Clement, Greg T.
2013-01-01
A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114
Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow
Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.
Testing validity of the Kirkwood approximation using an extended Sznajd model
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Galam, Serge
2015-12-01
We revisit the deduction of the exit probability of the one-dimensional Sznajd model through the Kirkwood approximation [F. Slanina et al., Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006]. This approximation is peculiar in that, in spite of the agreement with simulation results [F. Slanina et al., Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007; A. M. Timpanaro and C. P. C. Prado, Phys. Rev. E 89, 052808 (2014), 10.1103/PhysRevE.89.052808], the hypothesis about the correlation lengths behind it are inconsistent and fixing these inconsistencies leads to the same results as a simple mean field. We use an extended version of the Sznajd model to test the Kirkwood approximation in a wider context. This model includes the voter, Sznajd, and "United we stand, divided we fall" models [R. A. Holley and T. M. Liggett, Ann. Prob. 3, 643 (1975), 10.1214/aop/1176996306; K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000), 10.1142/S0129183100000936] as different parameter combinations, meaning that some analytical results from these models can be used to evaluate the performance of the Kirkwood approximation. We also compare the predicted exit probability with simulation results for networks with 103 sites. The results show clearly the regions in parameter space where the approximation gives accurate predictions, as well as where it starts failing, leading to a better understanding of its reliability.
Model independent approach to the single photoelectron calibration of photomultiplier tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saldanha, R.; Grandi, L.; Guardincerri, Y.
2017-08-01
The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions aboutmore » the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.« less
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
High accurate interpolation of NURBS tool path for CNC machine tools
NASA Astrophysics Data System (ADS)
Liu, Qiang; Liu, Huan; Yuan, Songmei
2016-09-01
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.
The Analytical Limits of Modeling Short Diffusion Timescales
NASA Astrophysics Data System (ADS)
Bradshaw, R. W.; Kent, A. J.
2016-12-01
Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.
Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry.
Thevis, Mario; Piper, Thomas; Geyer, Hans; Thomas, Andreas; Schaefer, Maximilian S; Kienbaum, Peter; Schänzer, Wilhelm
2014-07-15
Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation <20%) and specificity demonstrated the fitness-for-purpose of the analytical approach to unambiguously detect xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. If relevant to doping controls, xenon can be determined from plasma and blood samples, i.e. common specimens of routine sports drug testing in the context of Athlete Biological Passport (ABP) analyses. Optimization of sampling and analytical procedures will allow the detection limit to be further improved and potentially enable accurate quantification of the anesthetic agent. Copyright © 2014 John Wiley & Sons, Ltd.
A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
Bartzsch, Stefan; Oelfke, Uwe
2013-11-01
The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques. In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived. The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV. The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.
Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd
2015-01-01
The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585
Approximate analytic expression for the Skyrmions crystal
NASA Astrophysics Data System (ADS)
Grandi, Nicolás; Sturla, Mauricio
2018-01-01
We find approximate solutions for the two-dimensional nonlinear Σ-model with Dzyalioshinkii-Moriya term, representing magnetic Skyrmions. They are built in an analytic form, by pasting different approximate solutions found in different regions of space. We verify that our construction reproduces the phenomenology known from numerical solutions and Monte Carlo simulations, giving rise to a Skyrmion lattice at an intermediate range of magnetic field, flanked by spiral and spin-polarized phases for low and high magnetic fields, respectively.
Comparison of three methods for wind turbine capacity factor estimation.
Ditkovich, Y; Kuperman, A
2014-01-01
Three approaches to calculating capacity factor of fixed speed wind turbines are reviewed and compared using a case study. The first "quasiexact" approach utilizes discrete wind raw data (in the histogram form) and manufacturer-provided turbine power curve (also in discrete form) to numerically calculate the capacity factor. On the other hand, the second "analytic" approach employs a continuous probability distribution function, fitted to the wind data as well as continuous turbine power curve, resulting from double polynomial fitting of manufacturer-provided power curve data. The latter approach, while being an approximation, can be solved analytically thus providing a valuable insight into aspects, affecting the capacity factor. Moreover, several other merits of wind turbine performance may be derived based on the analytical approach. The third "approximate" approach, valid in case of Rayleigh winds only, employs a nonlinear approximation of the capacity factor versus average wind speed curve, only requiring rated power and rotor diameter of the turbine. It is shown that the results obtained by employing the three approaches are very close, enforcing the validity of the analytically derived approximations, which may be used for wind turbine performance evaluation.
Simulations of binary black hole mergers
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2017-01-01
Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.
Cloning the Professor, an Alternative to Ineffective Teaching in a Large Course
Nelson, Jennifer; Robison, Diane F.; Bell, John D.
2009-01-01
Pedagogical strategies have been experimentally applied in large-enrollment biology courses in an attempt to amplify what teachers do best in effecting deep learning, thus more closely approximating a one-on-one interaction with students. Carefully orchestrated in-class formative assessments were conducted to provide frequent, high-quality feedback that allows students to accurately diagnose the current state of their understanding of fundamental biological concepts and make specific plans to remedy any deficiencies. Teachers can also assume responsibility to guide out-of-class study among classmates by promoting Elaborative Questioning, an inquiry exchange that permits misconceptions to be identified and corrected and that promotes long-lasting metacognitive and analytical thinking skills. Data are presented that demonstrate the positive impact of these innovations on student performance and affect. PMID:19723819
A model of cause—effect relations in the study of behavior
Chisholm, Drake C.; Cook, Donald A.
1995-01-01
A three-phase model useful in teaching the analysis of behavior is presented. The model employs a “black box” behavior inventory diagram (BID), with a single output arrow representing behavior and three input arrows representing stimulus field, reversible states, and conditioning history. The first BID describes the organism at Time 1, and the second describes it at Time 2. Separating the two inventory diagrams is a column for the description of the intervening procedure. The model is used as a one-page handout, and students fill in the corresponding empty areas on the sheet as they solve five types of application problems. Instructors can use the BID to shape successive approximations in the accurate use of behavior-analytic vocabulary, conceptual analysis, and applications of behavior-change strategies. PMID:22478209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
Accurate analytical modeling of junctionless DG-MOSFET by green's function approach
NASA Astrophysics Data System (ADS)
Nandi, Ashutosh; Pandey, Nilesh
2017-11-01
An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Mathias, Gerald; Tavan, Paul
2014-03-01
We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.
Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics
NASA Astrophysics Data System (ADS)
Dawson, Scott T. M.
This thesis focuses on two major themes: modeling and understanding the dynamics of rapidly pitching airfoils, and developing methods that can be used to extract models and pertinent features from datasets obtained in the study of these and other systems in fluid mechanics and aerodynamics. Much of the work utilizes in some capacity dynamic mode decomposition (DMD), a recently developed method to extract dynamical features and models from data. The investigation of pitching airfoils includes both wind tunnel experiments and direct numerical simulations. Experiments are performed on a NACA 0012 airfoil undergoing rapid pitching motion, with the focus on developing a switched linear modeling framework that can accurately predict unsteady aerodynamic forces and pressure distributions throughout arbitrary pitching motions. Numerical simulations are used to study the behavior of sinusoidally pitching airfoils. By systematically varying the amplitude, frequency, mean angle and axis of pitching, a comprehensive database of results is acquired, from which interesting regions in parameter space are identified and studied. Attention is given to pitching at "preferred" frequencies, where vortex shedding in the wake is excited or amplified, leading to larger lift forces. More generally, the ability to extract nonlinear models that describe the behavior of complex fluids systems can assist in not only understanding the dominant features of such systems, but also to achieve accurate prediction and control. One potential avenue to achieve this objective is through numerical approximation of the Koopman operator, an infinite-dimensional linear operator capable of describing finite-dimensional nonlinear systems, such as those that might describe the dominant dynamics of fluids systems. This idea is explored by showing that algorithms designed to approximate the Koopman operator can indeed be utilized to accurately model nonlinear fluids systems, even when the data available is limited or noisy. Data-driven algorithms can be adversely affected by noisy data. Focusing on DMD, it is shown analytically that the algorithm is biased to sensor noise, which explains a previously observed sensitivity to noisy data. Using this finding, a number of modifications to DMD are proposed, which all give better approximations of the true dynamics using noise-corrupted data.
Bauer, Sebastian; Mathias, Gerald; Tavan, Paul
2014-03-14
We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, Marvin; /SLAC
It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for themore » behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will turn to tunneling problems and show that the instanton can also be though of in the same way. I will do this for the classic problem of a double well potential in the extreme limit when the splitting between the two lowest levels is extremely small and the tunneling rate from one well to another is also very small.« less
Lin, Chen-Yen; Halabi, Susan
2017-01-01
We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496
Lin, Chen-Yen; Halabi, Susan
2017-01-01
We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.
Accurate modelling of unsteady flows in collapsible tubes.
Marchandise, Emilie; Flaud, Patrice
2010-01-01
The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1991-01-01
An approximate axisymmetric method was developed which can reliably calculate fully viscous hypersonic flows over blunt nosed bodies. By substituting Maslen's second order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. The approach is applicable to perfect gas, equilibrium, and nonequilibrium flowfields. Since the method is fully viscous, the problems associated with a boundary layer solution with an inviscid layer solution are avoided. This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or VSL solvers and would be useful in a preliminary design environment. Problems associated with a previously developed approximate VSL technique are addressed before extending the method to nonequilibrium calculations. Perfect gas (laminar and turbulent), equilibrium, and nonequilibrium solutions were generated for airflows over several analytic body shapes. Surface heat transfer, skin friction, and pressure predictions are comparable to VSL results. In addition, computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher order procedures which require starting solutions.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr; School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras; Hadjinicolaou, Maria
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient inmore » a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.« less
NASA Astrophysics Data System (ADS)
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.
Hantush Well Function revisited
NASA Astrophysics Data System (ADS)
Veling, E. J. M.; Maas, C.
2010-11-01
SummaryIn this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology 338, 152-153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology 318, 173-183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179-183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt's representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear's table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8-6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702-714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.
Ahmadzadeh, Arman; Arjmandi, Hamidreza; Burkovski, Andreas; Schober, Robert
2016-10-01
This paper studies the problem of receiver modeling in molecular communication systems. We consider the diffusive molecular communication channel between a transmitter nano-machine and a receiver nano-machine in a fluid environment. The information molecules released by the transmitter nano-machine into the environment can degrade in the channel via a first-order degradation reaction and those that reach the receiver nano-machine can participate in a reversible bimolecular reaction with receiver receptor proteins. Thereby, we distinguish between two scenarios. In the first scenario, we assume that the entire surface of the receiver is covered by receptor molecules. We derive a closed-form analytical expression for the expected received signal at the receiver, i.e., the expected number of activated receptors on the surface of the receiver. Then, in the second scenario, we consider the case where the number of receptor molecules is finite and the uniformly distributed receptor molecules cover the receiver surface only partially. We show that the expected received signal for this scenario can be accurately approximated by the expected received signal for the first scenario after appropriately modifying the forward reaction rate constant. The accuracy of the derived analytical results is verified by Brownian motion particle-based simulations of the considered environment, where we also show the impact of the effect of receptor occupancy on the derived analytical results.
Exact moments of the Sachdev-Ye-Kitaev model up to order 1 /N 2
NASA Astrophysics Data System (ADS)
García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.
2018-04-01
We analytically evaluate the moments of the spectral density of the q-body Sachdev-Ye-Kitaev (SYK) model, and obtain order 1 /N 2 corrections for all moments, where N is the total number of Majorana fermions. To order 1 /N, moments are given by those of the weight function of the Q-Hermite polynomials. Representing Wick contractions by rooted chord diagrams, we show that the 1 /N 2 correction for each chord diagram is proportional to the number of triangular loops of the corresponding intersection graph, with an extra grading factor when q is odd. Therefore the problem of finding 1 /N 2 corrections is mapped to a triangle counting problem. Since the total number of triangles is a purely graph-theoretic property, we can compute them for the q = 1 and q = 2 SYK models, where the exact moments can be obtained analytically using other methods, and therefore we have solved the moment problem for any q to 1 /N 2 accuracy. The moments are then used to obtain the spectral density of the SYK model to order 1 /N 2. We also obtain an exact analytical result for all contraction diagrams contributing to the moments, which can be evaluated up to eighth order. This shows that the Q-Hermite approximation is accurate even for small values of N.
Analytical modeling of light transport in scattering materials with strong absorption.
Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L
2017-10-02
We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.
Adhikari, Puspa L; Wong, Roberto L; Overton, Edward B
2017-10-01
Accurate characterization of petroleum hydrocarbons in complex and weathered oil residues is analytically challenging. This is primarily due to chemical compositional complexity of both the oil residues and environmental matrices, and the lack of instrumental selectivity due to co-elution of interferences with the target analytes. To overcome these analytical selectivity issues, we used an enhanced resolution gas chromatography coupled with triple quadrupole mass spectrometry in Multiple Reaction Monitoring (MRM) mode (GC/MS/MS-MRM) to eliminate interferences within the ion chromatograms of target analytes found in environmental samples. This new GC/MS/MS-MRM method was developed and used for forensic fingerprinting of deep-water and marsh sediment samples containing oily residues from the Deepwater Horizon oil spill. The results showed that the GC/MS/MS-MRM method increases selectivity, eliminates interferences, and provides more accurate quantitation and characterization of trace levels of alkyl-PAHs and biomarker compounds, from weathered oil residues in complex sample matrices. The higher selectivity of the new method, even at low detection limits, provides greater insights on isomer and homolog compositional patterns and the extent of oil weathering under various environmental conditions. The method also provides flat chromatographic baselines for accurate and unambiguous calculation of petroleum forensic biomarker compound ratios. Thus, this GC/MS/MS-MRM method can be a reliable analytical strategy for more accurate and selective trace level analyses in petroleum forensic studies, and for tacking continuous weathering of oil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei; Weinberg, David H.
1993-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully non-linear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel-dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel-dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei F.; Weinberg, David H.
1994-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully nonlinear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel'dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel'dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate that that from ZA to TZA, (b) the error in the phase angle of Fourier components is worse that that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
Precise analytic approximations for the Bessel function J1 (x)
NASA Astrophysics Data System (ADS)
Maass, Fernando; Martin, Pablo
2018-03-01
Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.
Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading
NASA Technical Reports Server (NTRS)
Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.
1998-01-01
The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.
Computational Prediction of Kinetic Rate Constants
2006-11-30
without requiring additional data. Zero-point energy ( ZPE ) anharmonicity has a large effect on the accuracy of approximate partition function estimates. If...the accurate ZPE is taken into account, separable approximation partition functions using the most accurate torsion treatment and harmonic treatments...for the remaining degrees of freedom agree with accurate QM partition functions to within a mean accuracy of 9%. If no ZPE anharmonicity correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parfenov, O.G.
1994-12-25
We discuss three results. The first exhibits the order of decrease of the s-values as a function of the CR-dimension of a compact set on which we approximate the class of analytic functions being studied. The second is an asymptotic formula for the case when the domain of analyticity and the compact set are Reinhart domains. The third is the computation of the s-values of a special operator that is of interest for approximation theory on one-dimensional manifolds.
Numerical modeling and analytical evaluation of light absorption by gold nanostars
NASA Astrophysics Data System (ADS)
Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery
2018-04-01
In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.
NASA Technical Reports Server (NTRS)
Desmarais, R. N.
1982-01-01
The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.
Analytic approximations to the modon dispersion relation. [in oceanography
NASA Technical Reports Server (NTRS)
Boyd, J. P.
1981-01-01
Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.
NASA Astrophysics Data System (ADS)
Hatami, N.; Setare, M. R.
2017-10-01
We present approximate analytical solutions of the Klein-Gordon equation with arbitrary l state for the Manning-Rosen potential using the Nikiforov-Uvarov method and adopting the approximation scheme for the centrifugal term. We provide the bound state energy spectrum and the wave function in terms of the hypergeometric functions.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J
2005-02-07
The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.
Optimal CCD readout by digital correlated double sampling
NASA Astrophysics Data System (ADS)
Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.
2016-01-01
Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.
NASA Astrophysics Data System (ADS)
Klatt, Michael A.; Torquato, Salvatore
2018-01-01
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
Noise Suppression and Surplus Synchrony by Coincidence Detection
Schultze-Kraft, Matthias; Diesmann, Markus; Grün, Sonja; Helias, Moritz
2013-01-01
The functional significance of correlations between action potentials of neurons is still a matter of vivid debate. In particular, it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to correlated spiking on a fine temporal scale between pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high input correlation, in the presence of synchrony, a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks. PMID:23592953
Visual analytics of brain networks.
Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming
2012-05-15
Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. Copyright © 2012 Elsevier Inc. All rights reserved.
An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels
NASA Astrophysics Data System (ADS)
Langfeldt, F.; Gleine, W.; von Estorff, O.
2018-03-01
A new analytical model for the oblique incidence sound transmission loss prediction of baffled panels with multiple subwavelength sized membrane-type acoustic metamaterial (MAM) unit cells is proposed. The model employs a novel approach via the concept of the effective surface mass density and approximates the unit cell vibrations in the form of piston-like displacements. This yields a coupled system of linear equations that can be solved efficiently using well-known solution procedures. A comparison with results from finite element model simulations for both normal and diffuse field incidence shows that the analytical model delivers accurate results as long as the edge length of the MAM unit cells is smaller than half the acoustic wavelength. The computation times for the analytical calculations are 100 times smaller than for the numerical simulations. In addition to that, the effect of flexible MAM unit cell edges compared to the fixed edges assumed in the analytical model is studied numerically. It is shown that the compliance of the edges has only a small impact on the transmission loss of the panel, except at very low frequencies in the stiffness-controlled regime. The proposed analytical model is applied to investigate the effect of variations of the membrane prestress, added mass, and mass eccentricity on the diffuse transmission loss of a MAM panel with 120 unit cells. Unlike most previous investigations of MAMs, these results provide a better understanding of the acoustic performance of MAMs under more realistic conditions. For example, it is shown that by varying these parameters deliberately in a checkerboard pattern, a new anti-resonance with large transmission loss values can be introduced. A random variation of these parameters, on the other hand, is shown to have only little influence on the diffuse transmission loss, as long as the standard deviation is not too large. For very large random variations, it is shown that the peak transmission loss value can be greatly diminished.
Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity
NASA Astrophysics Data System (ADS)
Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad
2017-12-01
A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.
NASA Astrophysics Data System (ADS)
Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel
2013-10-01
We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2004-01-01
We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.
NASA Astrophysics Data System (ADS)
Cannoni, Mirco
2015-03-01
We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.
Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N
2017-10-17
The limit-of-detection (LOD) in analytical instruments with fluorescence detection can be improved by reducing noise of optical background. Efficiently reducing optical background noise in systems with spectrally nonuniform background requires complex optimization of an emission filter-the main element of spectral filtration. Here, we introduce a filter-optimization method, which utilizes an expression for the signal-to-noise ratio (SNR) as a function of (i) all noise components (dark, shot, and flicker), (ii) emission spectrum of the analyte, (iii) emission spectrum of the optical background, and (iv) transmittance spectrum of the emission filter. In essence, the noise components and the emission spectra are determined experimentally and substituted into the expression. This leaves a single variable-the transmittance spectrum of the filter-which is optimized numerically by maximizing SNR. Maximizing SNR provides an accurate way of filter optimization, while a previously used approach based on maximizing a signal-to-background ratio (SBR) is the approximation that can lead to much poorer LOD specifically in detection of fluorescently labeled biomolecules. The proposed filter-optimization method will be an indispensable tool for developing new and improving existing fluorescence-detection systems aiming at ultimately low LOD.
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
Capillary Flow in Containers of Polygonal Section: Theory and Experiment
NASA Technical Reports Server (NTRS)
Weislogel, Mark M.; Rame, Enrique (Technical Monitor)
2001-01-01
An improved understanding of the large-length-scale capillary flows arising in a low-gravity environment is critical to that engineering community concerned with the design and analysis of spacecraft fluids management systems. Because a significant portion of liquid behavior in spacecraft is capillary dominated it is natural to consider designs that best exploit the spontaneous character of such flows. In the present work, a recently verified asymptotic analysis is extended to approximate spontaneous capillary flows in a large class of cylindrical containers of irregular polygonal section experiencing a step reduction in gravitational acceleration. Drop tower tests are conducted using partially-filled irregular triangular containers for comparison with the theoretical predictions. The degree to which the experimental data agree with the theory is a testament to the robustness of the basic analytical assumption of predominantly parallel flow. As a result, the closed form analytical expressions presented serve as simple, accurate tools for predicting bulk flow characteristics essential to practical low-g system design and analysis. Equations for predicting corner wetting rates, total container flow rates, and transient surfaces shapes are provided that are relevant also to terrestrial applications such as capillary flow in porous media.
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck
2015-02-01
Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.
NASA Astrophysics Data System (ADS)
Wu, Samantha; Coughlin, Eric R.; Nixon, Chris
2018-04-01
After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.
A two-dimensional composite grid numerical model based on the reduced system for oceanography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Y.F.; Browning, G.L.; Chesshire, G.
The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less
Rapid Design of Gravity Assist Trajectories
NASA Technical Reports Server (NTRS)
Carrico, J.; Hooper, H. L.; Roszman, L.; Gramling, C.
1991-01-01
Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described.
Green functions of graphene: An analytic approach
NASA Astrophysics Data System (ADS)
Lawlor, James A.; Ferreira, Mauro S.
2015-04-01
In this article we derive the lattice Green Functions (GFs) of graphene using a Tight Binding Hamiltonian incorporating both first and second nearest neighbour hoppings and allowing for a non-orthogonal electron wavefunction overlap. It is shown how the resulting GFs can be simplified from a double to a single integral form to aid computation, and that when considering off-diagonal GFs in the high symmetry directions of the lattice this single integral can be approximated very accurately by an algebraic expression. By comparing our results to the conventional first nearest neighbour model commonly found in the literature, it is apparent that the extended model leads to a sizeable change in the electronic structure away from the linear regime. As such, this article serves as a blueprint for researchers who wish to examine quantities where these considerations are important.
Geometric phase and o -mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity
NASA Astrophysics Data System (ADS)
Timofeev, Ivan V.; Gunyakov, Vladimir A.; Sutormin, Vitaly S.; Myslivets, Sergey A.; Arkhipkin, Vasily G.; Vetrov, Stepan Ya.; Lee, Wei; Zyryanov, Victor Ya.
2015-11-01
Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o -mode blueshift is measured for a 4-methoxybenzylidene-4 '-n -butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.
NASA Astrophysics Data System (ADS)
Longhurst, M. J.; Quirke, N.
2006-11-01
We have previously shown that the upshift in the radial breathing mode (RBM) of closed (or infinite) carbon nanotubes in solution is almost entirely due to coupling of the RBM with an adsorbed layer of fluid on the nanotube surface. The upshift can be modeled analytically by considering the adsorbed fluid as an infinitesimally thin shell, which interacts with the nanotube via a continuum Lennard-Jones potential. Here we extend the model to include internally as well as externally adsorbed waterlike molecules, and find that filling the nanotubes leads to an additional upshift of two to six wave numbers. We show that using molecular dynamics, the RBM can be accurately reproduced by replacing the fluid molecules with a mean field harmonic shell potential, greatly reducing simulation times.
A Comparison of Interactional Aerodynamics Methods for a Helicopter in Low Speed Flight
NASA Technical Reports Server (NTRS)
Berry, John D.; Letnikov, Victor; Bavykina, Irena; Chaffin, Mark S.
1998-01-01
Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.
Quasi-steady-state analysis of coupled flashing ratchets.
Levien, Ethan; Bressloff, Paul C
2015-10-01
We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.
PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra
NASA Astrophysics Data System (ADS)
Sibaev, Marat; Crittenden, Deborah L.
2016-06-01
The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee, E-mail: symolloi@uci.edu
Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diametermore » of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector.« less
Creating analytically divergence-free velocity fields from grid-based data
NASA Astrophysics Data System (ADS)
Ravu, Bharath; Rudman, Murray; Metcalfe, Guy; Lester, Daniel R.; Khakhar, Devang V.
2016-10-01
We present a method, based on B-splines, to calculate a C2 continuous analytic vector potential from discrete 3D velocity data on a regular grid. A continuous analytically divergence-free velocity field can then be obtained from the curl of the potential. This field can be used to robustly and accurately integrate particle trajectories in incompressible flow fields. Based on the method of Finn and Chacon (2005) [10] this new method ensures that the analytic velocity field matches the grid values almost everywhere, with errors that are two to four orders of magnitude lower than those of existing methods. We demonstrate its application to three different problems (each in a different coordinate system) and provide details of the specifics required in each case. We show how the additional accuracy of the method results in qualitatively and quantitatively superior trajectories that results in more accurate identification of Lagrangian coherent structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Tunega, Daniel; Xu, Lai
2013-08-29
In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreementmore » with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.« less
NASA Astrophysics Data System (ADS)
Escobar Gómez, J. D.; Torres-Verdín, C.
2018-03-01
Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.
An analytical technique for approximating unsteady aerodynamics in the time domain
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1980-01-01
An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.
Analytical approximations to the Hotelling trace for digital x-ray detectors
NASA Astrophysics Data System (ADS)
Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.
2001-06-01
The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
An accurate potential model for the a3Σu+ state of the alkali dimers Na2, K2, Rb2, and Cs2
NASA Astrophysics Data System (ADS)
Lau, Jascha A.; Toennies, J. Peter; Tang, K. T.
2016-11-01
A modified semi-empirical Tang-Toennies potential model is used to describe the a3Σu+ potentials of the alkali dimers. These potentials are currently of interest in connection with the laser manipulation of the ultracold alkali gases. The fully analytical model is based on three experimental parameters, the well depth De, well location Re, and the harmonic vibrational frequency ωe of which the latter is only slightly optimized within the range of the literature values. Comparison with the latest spectroscopic data shows good agreement for Na2, K2, Rb2, and Cs2, comparable to that found with published potential models with up to 55 parameters. The differences between the reduced potential of Li2 and the conformal reduced potentials of the heavier dimers are analyzed together with why the model describes Li2 less accurately. The new model potential provides a test of the principle of corresponding states and an excellent first order approximation for further optimization to improve the fits to the spectroscopic data and describe the scattering lengths and Feshbach resonances at ultra-low temperatures.
Modifying PASVART to solve singular nonlinear 2-point boundary problems
NASA Technical Reports Server (NTRS)
Fulton, James P.
1988-01-01
To study the buckling and post-buckling behavior of shells and various other structures, one must solve a nonlinear 2-point boundary problem. Since closed-form analytic solutions for such problems are virtually nonexistent, numerical approximations are inevitable. This makes the availability of accurate and reliable software indispensable. In a series of papers Lentini and Pereyra, expanding on the work of Keller, developed PASVART: an adaptive finite difference solver for nonlinear 2-point boundary problems. While the program does produce extremely accurate solutions with great efficiency, it is hindered by a major limitation. PASVART will only locate isolated solutions of the problem. In buckling problems, the solution set is not unique. It will contain singular or bifurcation points, where different branches of the solution set may intersect. Thus, PASVART is useless precisely when the problem becomes interesting. To resolve this deficiency we propose a modification of PASVART that will enable the user to perform a more complete bifurcation analysis. PASVART would be combined with the Thurston bifurcation solution: as adaptation of Newton's method that was motivated by the work of Koiter 3 are reinterpreted in terms of an iterative computational method by Thurston.
Compact perturbative expressions for neutrino oscillations in matter
Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.
2016-06-08
We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmosphericmore » $$\\Delta m^2$$ scales but with a unique choice of the atmospheric $$\\Delta m^2$$ such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and $$\\sin\\theta_{13}$$. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. Furthermore, the first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order.« less
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Vastano, John A.; Lomax, Harvard
1992-01-01
Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.
SU-F-T-144: Analytical Closed Form Approximation for Carbon Ion Bragg Curves in Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuomanen, S; Moskvin, V; Farr, J
2016-06-15
Purpose: Semi-empirical modeling is a powerful computational method in radiation dosimetry. A set of approximations exist for proton ion depth dose distribution (DDD) in water. However, the modeling is more complicated for carbon ions due to fragmentation. This study addresses this by providing and evaluating a new methodology for DDD modeling of carbon ions in water. Methods: The FLUKA, Monte Carlo (MC) general-purpose transport code was used for simulation of carbon DDDs for energies of 100–400 MeV in water as reference data model benchmarking. Based on Thomas Bortfeld’s closed form equation approximating proton Bragg Curves as a basis, we derivedmore » the critical constants for a beam of Carbon ions by applying models of radiation transport by Lee et. al. and Geiger to our simulated Carbon curves. We hypothesized that including a new exponential (κ) residual distance parameter to Bortfeld’s fluence reduction relation would improve DDD modeling for carbon ions. We are introducing an additional term to be added to Bortfeld’s equation to describe fragmentation tail. This term accounts for the pre-peak dose from nuclear fragments (NF). In the post peak region, the NF transport will be treated as new beams utilizing the Glauber model for interaction cross sections and the Abrasion- Ablation fragmentation model. Results: The carbon beam specific constants in the developed model were determined to be : p= 1.75, β=0.008 cm-1, γ=0.6, α=0.0007 cm MeV, σmono=0.08, and the new exponential parameter κ=0.55. This produced a close match for the plateau part of the curve (max deviation 6.37%). Conclusion: The derived semi-empirical model provides an accurate approximation of the MC simulated clinical carbon DDDs. This is the first direct semi-empirical simulation for the dosimetry of therapeutic carbon ions. The accurate modeling of the NF tail in the carbon DDD will provide key insight into distal edge dose deposition formation.« less
Cosmographic analysis with Chebyshev polynomials
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.
Testing the mutual information expansion of entropy with multivariate Gaussian distributions.
Goethe, Martin; Fita, Ignacio; Rubi, J Miguel
2017-12-14
The mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.
Stable computations with flat radial basis functions using vector-valued rational approximations
NASA Astrophysics Data System (ADS)
Wright, Grady B.; Fornberg, Bengt
2017-02-01
One commonly finds in applications of smooth radial basis functions (RBFs) that scaling the kernels so they are 'flat' leads to smaller discretization errors. However, the direct numerical approach for computing with flat RBFs (RBF-Direct) is severely ill-conditioned. We present an algorithm for bypassing this ill-conditioning that is based on a new method for rational approximation (RA) of vector-valued analytic functions with the property that all components of the vector share the same singularities. This new algorithm (RBF-RA) is more accurate, robust, and easier to implement than the Contour-Padé method, which is similarly based on vector-valued rational approximation. In contrast to the stable RBF-QR and RBF-GA algorithms, which are based on finding a better conditioned base in the same RBF-space, the new algorithm can be used with any type of smooth radial kernel, and it is also applicable to a wider range of tasks (including calculating Hermite type implicit RBF-FD stencils). We present a series of numerical experiments demonstrating the effectiveness of this new method for computing RBF interpolants in the flat regime. We also demonstrate the flexibility of the method by using it to compute implicit RBF-FD formulas in the flat regime and then using these for solving Poisson's equation in a 3-D spherical shell.
NASA Astrophysics Data System (ADS)
Nagar, Alessandro; Akcay, Sarp
2012-02-01
We propose, within the effective-one-body approach, a new, resummed analytical representation of the gravitational-wave energy flux absorbed by a system of two circularized (nonspinning) black holes. This expression is such that it is well-behaved in the strong-field, fast-motion regime, notably up to the effective-one-body-defined last unstable orbit. Building conceptually upon the procedure adopted to resum the multipolar asymptotic energy flux, we introduce a multiplicative decomposition of the multipolar absorbed flux made by three factors: (i) the leading-order contribution, (ii) an “effective source” and (iii) a new residual amplitude correction (ρ˜ℓmH)2ℓ. In the test-mass limit, we use a frequency-domain perturbative approach to accurately compute numerically the horizon-absorbed fluxes along a sequence of stable and unstable circular orbits, and we extract from them the functions ρ˜ℓmH. These quantities are then fitted via rational functions. The resulting analytically represented test-mass knowledge is then suitably hybridized with lower-order analytical information that is valid for any mass ratio. This yields a resummed representation of the absorbed flux for a generic, circularized, nonspinning black-hole binary. Our result adds new information to the state-of-the-art calculation of the absorbed flux at fractional 5 post-Newtonian order [S. Taylor and E. Poisson, Phys. Rev. D 78, 084016 (2008)], which is recovered in the weak-field limit approximation by construction.
Bending of an Infinite beam on a base with two parameters in the absence of a part of the base
NASA Astrophysics Data System (ADS)
Aleksandrovskiy, Maxim; Zaharova, Lidiya
2018-03-01
Currently, in connection with the rapid development of high-rise construction and the improvement of joint operation of high-rise structures and bases models, the questions connected with the use of various calculation methods become topical. The rigor of analytical methods is capable of more detailed and accurate characterization of the structures behavior, which will affect the reliability of objects and can lead to a reduction in their cost. In the article, a model with two parameters is used as a computational model of the base that can effectively take into account the distributive properties of the base by varying the coefficient reflecting the shift parameter. The paper constructs the effective analytical solution of the problem of a beam of infinite length interacting with a two-parameter voided base. Using the Fourier integral equations, the original differential equation is reduced to the Fredholm integral equation of the second kind with a degenerate kernel, and all the integrals are solved analytically and explicitly, which leads to an increase in the accuracy of the computations in comparison with the approximate methods. The paper consider the solution of the problem of a beam loaded with a concentrated force applied at the point of origin with a fixed value of the length of the dip section. The paper gives the analysis of the obtained results values for various parameters of coefficient taking into account cohesion of the ground.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles; Xing, Changhu; Jensen, Colby
2015-03-01
Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less
Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Kapil, Venkat; Ceriotti, Michele
2018-03-01
Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. We develop quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, and show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modeling of vibrational dynamics of molecules, liquids, and solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Schmit, P. F.
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Schmit, P. F.
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
Velikovich, A. L.; Schmit, P. F.
2015-12-28
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
Criticality in charge-asymmetric hard-sphere ionic fluids.
Aqua, Jean-Noël; Banerjee, Shubho; Fisher, Michael E
2005-10-01
Phase separation and criticality are analyzed in z:1 charge-asymmetric ionic fluids of equisized hard spheres by generalizing the Debye-Hückel approach combined with ionic association, cluster solvation by charged ions, and hard-core interactions, following lines developed by Fisher and Levin for the 1:1 case (i.e., the restricted primitive model). Explicit analytical calculations for 2:1 and 3:1 systems account for ionic association into dimers, trimers, and tetramers and subsequent multipolar cluster solvation. The reduced critical temperatures, Tc* (normalized by z), decrease with charge asymmetry, while the critical densities increase rapidly with . The results compare favorably with simulations and represent a distinct improvement over all current theories such as the mean spherical approximation, symmetric Poisson-Boltzmann theory, etc. For z not equal to 1, the interphase Galvani (or absolute electrostatic) potential difference, Deltaphi(T), between coexisting liquid and vapor phases is calculated and found to vanish as absolute value (T-Tc) beta when T-->Tc-with, since our approximations are classical, beta = (1/2). Above Tc, the compressibility maxima and so-called k-inflection loci (which aid the fast and accurate determination of the critical parameters) are found to exhibit a strong z dependence.
On the Problem of Bandwidth Partitioning in FDD Block-Fading Single-User MISO/SIMO Systems
NASA Astrophysics Data System (ADS)
Ivrlač, Michel T.; Nossek, Josef A.
2008-12-01
We report on our research activity on the problem of how to optimally partition the available bandwidth of frequency division duplex, multi-input single-output communication systems, into subbands for the uplink, the downlink, and the feedback. In the downlink, the transmitter applies coherent beamforming based on quantized channel information which is obtained by feedback from the receiver. As feedback takes away resources from the uplink, which could otherwise be used to transfer payload data, it is highly desirable to reserve the "right" amount of uplink resources for the feedback. Under the assumption of random vector quantization, and a frequency flat, independent and identically distributed block-fading channel, we derive closed-form expressions for both the feedback quantization and bandwidth partitioning which jointly maximize the sum of the average payload data rates of the downlink and the uplink. While we do introduce some approximations to facilitate mathematical tractability, the analytical solution is asymptotically exact as the number of antennas approaches infinity, while for systems with few antennas, it turns out to be a fairly accurate approximation. In this way, the obtained results are meaningful for practical communication systems, which usually can only employ a few antennas.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmit, P. F.
2015-12-01
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].
Traction-free vibrations of finite trigonal elastic cylinders.
Heyliger, Paul R; Johnson, Ward L
2003-04-01
The unrestrained, traction-free vibrations of finite elastic cylinders with trigonal material symmetry are studied using two approaches, based on the Ritz method, which formulate the weak form of the equations of motion in cylindrical and rectangular coordinates. Elements of group theory are used to divide approximation functions into orthogonal subsets, thus reducing the size of the computational problem and classifying the general symmetries of the vibrational modes. Results for the special case of an isotropic cylinder are presented and compared with values published by other researchers. For the isotropic case, the relative accuracy of the formulations in cylindrical and rectangular coordinates can be evaluated, because exact analytical solutions are known for the torsional modes. The calculation in cylindrical coordinates is found to be more accurate for a given number of terms in the series approximation functions. For a representative trigonal material, langatate, calculations of the resonant frequencies and the sensitivity of the frequencies on each of the elastic constants are presented. The dependence on geometry (ratio of length to diameter) is briefly explored. The special case of a transversely isotropic cylinder (with the elastic stiffness C14 equal to zero) is also considered.
Paing, Htoo W; Marcus, R Kenneth
2018-03-12
A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.
Note: Model identification and analysis of bivalent analyte surface plasmon resonance data.
Tiwari, Purushottam Babu; Üren, Aykut; He, Jin; Darici, Yesim; Wang, Xuewen
2015-10-01
Surface plasmon resonance (SPR) is a widely used, affinity based, label-free biophysical technique to investigate biomolecular interactions. The extraction of rate constants requires accurate identification of the particular binding model. The bivalent analyte model involves coupled non-linear differential equations. No clear procedure to identify the bivalent analyte mechanism has been established. In this report, we propose a unique signature for the bivalent analyte model. This signature can be used to distinguish the bivalent analyte model from other biphasic models. The proposed method is demonstrated using experimentally measured SPR sensorgrams.
A semi-analytical study of positive corona discharge in wire-plane electrode configuration
NASA Astrophysics Data System (ADS)
Yanallah, K.; Pontiga, F.; Chen, J. H.
2013-08-01
Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.
Accurate numerical forward model for optimal retracking of SIRAL2 SAR echoes over open ocean
NASA Astrophysics Data System (ADS)
Phalippou, L.; Demeestere, F.
2011-12-01
The SAR mode of SIRAL-2 on board Cryosat-2 has been designed to measure primarily sea-ice and continental ice (Wingham et al. 2005). In 2005, K. Raney (KR, 2005) pointed out the improvements brought by SAR altimeter for open ocean. KR results were mostly based on 'rule of thumb' considerations on speckle noise reduction due to the higher PRF and to speckle decorrelation after SAR processing. In 2007, Phalippou and Enjolras (PE,2007) provided the theoretical background for optimal retracking of SAR echoes over ocean with a focus on the forward modelling of the power-waveforms. The accuracies of geophysical parameters (range, significant wave heights, and backscattering coefficient) retrieved from SAR altimeter data were derived accounting for SAR echo shape and speckle noise accurate modelling. The step forward to optimal retracking using numerical forward model (NFM) was also pointed out. NFM of the power waveform avoids analytical approximation, a warranty to minimise the geophysical dependent biases in the retrieval. NFM have been used for many years, in operational meteorology in particular, for retrieving temperature and humidity profiles from IR and microwave radiometers as the radiative transfer function is complex (Eyre, 1989). So far this technique was not used in the field of ocean conventional altimetry as analytical models (e.g. Brown's model for instance) were found to give sufficient accuracy. However, although NFM seems desirable even for conventional nadir altimetry, it becomes inevitable if one wish to process SAR altimeter data as the transfer function is too complex to be approximated by a simple analytical function. This was clearly demonstrated in PE 2007. The paper describes the background to SAR data retracking over open ocean. Since PE 2007 improvements have been brought to the forward model and it is shown that the altimeter on-ground and in flight characterisation (e.g antenna pattern range impulse response, azimuth impulse response, altimeter transfer function) can be accurately accounted for, in order to minimise the systematic errors in the retrieval. The paper presents the retrieval of range and SWH for several Cryosat 2 orbits arcs, spanning different sea state conditions. The retrieval results are found to be in excellent agreement with the noise expectations derived from the Cramer-Rao bounds (see PE 2007.). The improvement upon conventional Low Resolution mode is about a factor of two in range. Improvements in SWH accuracy is also discussed. Comparisons with the MSL and conventional LRM-like retracking is also shown. Finally, the paper will give some insights for future oceanic altimetry missions. References : Wingham et al., 2005 : CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields. Advances in Space Research 37 (2006) 841-871 Raney, R.K. 2005 : Resolution and precision ofa delayDoppler Radar Altimeter, Proc IEEE OCEANS 2005. Phalippou L, V. Enjolras 2007 : Re-tracking of SAR altimeter ocean power waveforms and related accuracies of Sea surface Height, significant wave height and wind speed. Proc IEEE IGARSS 2007. Eyre, J. 1989 : Inversion of cloudy satellite radiances by non linear estimation : Theory and simulation for TOVS. Quaterly Journal of the Royal Meteorological Society, 115, pp1001-1026.
Temporal Learning Analytics for Adaptive Assessment
ERIC Educational Resources Information Center
Papamitsiou, Zacharoula; Economides, Anastasios A.
2014-01-01
Accurate and early predictions of student performance could significantly affect interventions during teaching and assessment, which gradually could lead to improved learning outcomes. In our research, we seek to identify and formalize temporal parameters as predictors of performance ("temporal learning analytics" or TLA) and examine…
Liu, Ken H; Walker, Douglas I; Uppal, Karan; Tran, ViLinh; Rohrbeck, Patricia; Mallon, Timothy M; Jones, Dean P
2016-08-01
The aim of this study was to maximize detection of serum metabolites with high-resolution metabolomics (HRM). Department of Defense Serum Repository (DoDSR) samples were analyzed using ultrahigh resolution mass spectrometry with three complementary chromatographic phases and four ionization modes. Chemical coverage was evaluated by number of ions detected and accurate mass matches to a human metabolomics database. Individual HRM platforms provided accurate mass matches for up to 58% of the KEGG metabolite database. Combining two analytical methods increased matches to 72% and included metabolites in most major human metabolic pathways and chemical classes. Detection and feature quality varied by analytical configuration. Dual chromatography HRM with positive and negative electrospray ionization provides an effective generalized method for metabolic assessment of military personnel.
Liu, Ken H.; Walker, Douglas I.; Uppal, Karan; Tran, ViLinh; Rohrbeck, Patricia; Mallon, Timothy M.; Jones, Dean P.
2016-01-01
Objective To maximize detection of serum metabolites with high-resolution metabolomics (HRM). Methods Department of Defense Serum Repository (DoDSR) samples were analyzed using ultra-high resolution mass spectrometry with three complementary chromatographic phases and four ionization modes. Chemical coverage was evaluated by number of ions detected and accurate mass matches to a human metabolomics database. Results Individual HRM platforms provided accurate mass matches for up to 58% of the KEGG metabolite database. Combining two analytical methods increased matches to 72%, and included metabolites in most major human metabolic pathways and chemical classes. Detection and feature quality varied by analytical configuration. Conclusions Dual chromatography HRM with positive and negative electrospray ionization provides an effective generalized method for metabolic assessment of military personnel. PMID:27501105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo
2014-07-15
Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximatemore » BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.« less
Barros, Wilson; Gochberg, Daniel F.; Gore, John C.
2009-01-01
The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch–Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch–Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations. PMID:19425789
Positron kinetics in an idealized PET environment
Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.
2015-01-01
The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002
Modeling of drop breakup in the bag breakup regime
NASA Astrophysics Data System (ADS)
Wang, C.; Chang, S.; Wu, H.; Xu, J.
2014-04-01
Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.
NASA Astrophysics Data System (ADS)
Pikus, F. G.; Efros, A. L.
1993-06-01
A two-dimensional electron liquid (TDEL), subjected to a smooth random potential, is studied in the regime of the fractional quantum Hall effect. An analytical theory of the nonlinear screening is presented for the case when the fractional gap is much less than the magnitude of the unscreened random potential. In this ``narrow-gap approximation'' (NGA), we calculate the electron density distribution function, the fraction of the TDEL which is in the incompressible state, and the thermodynamic density of states. The magnetocapacitance is calculated to compare with the recent experiments. The NGA is found to be not accurate enough to describe the data. The results for larger fractional gaps are obtained by computer modeling. To fit the recent experimental data we have also taken into account the anyon-anyon interaction in the vicinity of a fractional singularity.
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Schumaker, M F; Kentler, C J
1998-01-01
We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651
NASA Astrophysics Data System (ADS)
Dutta, Kishore
2018-02-01
Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.
Spacecraft self-contamination due to back-scattering of outgas products
NASA Technical Reports Server (NTRS)
Robertson, S. J.
1976-01-01
The back-scattering of outgas contamination near an orbiting spacecraft due to intermolecular collisions was analyzed. Analytical tools were developed for making reasonably accurate quantitative estimates of the outgas contamination return flux, given a knowledge of the pertinent spacecraft and orbit conditions. Two basic collision mechanisms were considered: (1) collisions involving only outgas molecules (self-scattering) and (2) collisions between outgas molecules and molecules in the ambient atmosphere (ambient-scattering). For simplicity, the geometry was idealized to a uniformly outgassing sphere and to a disk oriented normal to the freestream. The method of solution involved an integration of an approximation of the Boltzmann kinetic equation known as the BGK (or Krook) model equation. Results were obtained in the form of simple equations relating outgas return flux to spacecraft and orbit parameters. Results were compared with previous analyses based on more simplistic models of the collision processes.
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.
2004-01-01
An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.
Rubab, Khansa; Mustafa, M
2016-01-01
This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.
Yu, Chanki; Lee, Sang Wook
2016-05-20
We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.
Cooley, Richard L.
1992-01-01
MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.
NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.
2018-01-01
Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.
Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett
2004-01-01
Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zillich, Robert E., E-mail: robert.zillich@jku.at
2015-11-15
We construct an accurate imaginary time propagator for path integral Monte Carlo simulations for heterogeneous systems consisting of a mixture of atoms and molecules. We combine the pair density approximation, which is highly accurate but feasible only for the isotropic interactions between atoms, with the Takahashi–Imada approximation for general interactions. We present finite temperature simulations results for energy and structure of molecules–helium clusters X{sup 4}He{sub 20} (X=HCCH and LiH) which show a marked improvement over the Trotter approximation which has a 2nd-order time step bias. We show that the 4th-order corrections of the Takahashi–Imada approximation can also be applied perturbativelymore » to a 2nd-order simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Bues, M
2015-06-15
Purpose: To present an analytical formula for deriving mechanical isocenter (MIC) of a rotational gantry treatment unit. The input data to the formula is obtained by a custom-made device. The formula has been implemented and used in an operational proton therapy facility since 2005. Methods: The custom made device consisted of 3 mutually perpendicular dial indicators and 5 clinometers, to obtain displacement data and gantry angle data simultaneously. During measurement, a steel sphere was affixed to the patient couch, and the device was attached to the snout rotating with the gantry. The displacement data and angle data were obtained simultaneouslymore » at angular increments of less than 1 degree. The analytical formula took the displacement and angle as input and derived the positions of dial indicator tips (DIT) position in room-fixed coordinate system. The formula derivation presupposes trigonometry and 3-dimentional coordinate transformations. Due to the symmetry properties of the defining equations, the DIT position can be solved for analytically without using mathematical approximations. We define the mean of all points in the DIT trajectory as the MIC. The formula was implemented in computer code, which has been employed during acceptance test, commissioning, as well as routine QA practice in an operational proton facility since 2005. Results: It took one minute for the custom-made device to acquire the measurement data for a full gantry rotation. The DIT trajectory and MIS are instantaneously available after the measurement. The MIC Result agrees well with vendor’s Result, which came from a different measurement setup, as well as different data analysis algorithm. Conclusion: An analytical formula for deriving mechanical isocenter was developed and validated. The formula is considered to be absolutely accurate mathematically. Be analyzing measured data of radial displacements as function of gantry angle, the formula calculates the MI position in room coordinate.« less
Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids
NASA Technical Reports Server (NTRS)
Soulas, George C.
2006-01-01
An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.
NASA Astrophysics Data System (ADS)
Cummings, Patrick
We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
NASA Astrophysics Data System (ADS)
Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.
2017-12-01
The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.
Heskes, Tom; Eisinga, Rob; Breitling, Rainer
2014-11-21
The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
2017-01-30
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less
NASA Astrophysics Data System (ADS)
Long, Yin; Zhang, Xiao-Jun; Wang, Kui
2018-05-01
In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.
Padé Approximant and Minimax Rational Approximation in Standard Cosmology
NASA Astrophysics Data System (ADS)
Zaninetti, Lorenzo
2016-02-01
The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
NASA Astrophysics Data System (ADS)
Allphin, Devin
Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.
Extending generalized Kubelka-Munk to three-dimensional radiative transfer.
Sandoval, Christopher; Kim, Arnold D
2015-08-10
The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.
The Analytic Hierarchy Process and Participatory Decisionmaking
Daniel L. Schmoldt; Daniel L. Peterson; Robert L. Smith
1995-01-01
Managing natural resource lands requires social, as well as biophysical, considerations. Unfortunately, it is extremely difficult to accurately assess and quantify changing social preferences, and to aggregate conflicting opinions held by diverse social groups. The Analytic Hierarchy Process (AHP) provides a systematic, explicit, rigorous, and robust mechanism for...
Brownian dynamics without Green's functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delong, Steven; Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Usabiaga, Florencio Balboa
2014-04-07
We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions “on the fly.” Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. Thismore » is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.« less
Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki
2009-11-01
We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a approximately 21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes.
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Militzer, Burkhard
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less
Virtual ellipsometry on layered micro-facet surfaces.
Wang, Chi; Wilkie, Alexander; Harcuba, Petr; Novosad, Lukas
2017-09-18
Microfacet-based BRDF models are a common tool to describe light scattering from glossy surfaces. Apart from their wide-ranging applications in optics, such models also play a significant role in computer graphics for photorealistic rendering purposes. In this paper, we mainly investigate the computer graphics aspect of this technology, and present a polarisation-aware brute force simulation of light interaction with both single and multiple layered micro-facet surfaces. Such surface models are commonly used in computer graphics, but the resulting BRDF is ultimately often only approximated. Recently, there has been work to try to make these approximations more accurate, and to better understand the behaviour of existing analytical models. However, these brute force verification attempts still emitted the polarisation state of light and, as we found out, this renders them prone to mis-estimating the shape of the resulting BRDF lobe for some particular material types, such as smooth layered dielectric surfaces. For these materials, non-polarising computations can mis-estimate some areas of the resulting BRDF shape by up to 23%. But we also identified some other material types, such as dielectric layers over rough conductors, for which the difference turned out to be almost negligible. The main contribution of our work is to clearly demonstrate that the effect of polarisation is important for accurate simulation of certain material types, and that there are also other common materials for which it can apparently be ignored. As this required a BRDF simulator that we could rely on, a secondary contribution is that we went to considerable lengths to validate our software. We compare it against a state-of-art model from graphics, a library from optics, and also against ellipsometric measurements of real surface samples.
Analytic studies of the hard dumbell fluid
NASA Astrophysics Data System (ADS)
Morriss, G. P.; Cummings, P. T.
A closed form analytic theory for the structure of the hard dumbell fluid is introduced and evaluated. It is found to be comparable in accuracy to the reference interaction site approximation (RISA) of Chandler and Andersen.
Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review.
Blake, Christopher J
2007-09-01
Water-soluble vitamins include the B-group vitamins and vitamin C. In order to correctly monitor water-soluble vitamin content in fortified foods for compliance monitoring as well as to establish accurate data banks, an accurate and precise analytical method is a prerequisite. For many years microbiological assays have been used for analysis of B vitamins. However they are no longer considered to be the gold standard in vitamins analysis as many studies have shown up their deficiencies. This review describes the current status of analytical methods, including microbiological assays and spectrophotometric, biosensor and chromatographic techniques. In particular it describes the current status of the official methods and highlights some new developments in chromatographic procedures and detection methods. An overview is made of multivitamin extractions and analyses for foods and supplements.
Accurate and efficient modeling of the detector response in small animal multi-head PET systems.
Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto
2013-10-07
In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.
Accurate and efficient modeling of the detector response in small animal multi-head PET systems
NASA Astrophysics Data System (ADS)
Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto
2013-10-01
In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.
Lithographic image simulation for the 21st century with 19th-century tools
NASA Astrophysics Data System (ADS)
Gordon, Ronald L.; Rosenbluth, Alan E.
2004-01-01
Simulation of lithographic processes in semiconductor manufacturing has gone from a crude learning tool 20 years ago to a critical part of yield enhancement strategy today. Although many disparate models, championed by equally disparate communities, exist to describe various photoresist development phenomena, these communities would all agree that the one piece of the simulation picture that can, and must, be computed accurately is the image intensity in the photoresist. The imaging of a photomask onto a thin-film stack is one of the only phenomena in the lithographic process that is described fully by well-known, definitive physical laws. Although many approximations are made in the derivation of the Fourier transform relations between the mask object, the pupil, and the image, these and their impacts are well-understood and need little further investigation. The imaging process in optical lithography is modeled as a partially-coherent, Kohler illumination system. As Hopkins has shown, we can separate the computation into 2 pieces: one that takes information about the illumination source, the projection lens pupil, the resist stack, and the mask size or pitch, and the other that only needs the details of the mask structure. As the latter piece of the calculation can be expressed as a fast Fourier transform, it is the first piece that dominates. This piece involves computation of a potentially large number of numbers called Transmission Cross-Coefficients (TCCs), which are correlations of the pupil function weighted with the illumination intensity distribution. The advantage of performing the image calculations this way is that the computation of these TCCs represents an up-front cost, not to be repeated if one is only interested in changing the mask features, which is the case in Model-Based Optical Proximity Correction (MBOPC). The down side, however, is that the number of these expensive double integrals that must be performed increases as the square of the mask unit cell area; this number can cause even the fastest computers to balk if one needs to study medium- or long-range effects. One can reduce this computational burden by approximating with a smaller area, but accuracy is usually a concern, especially when building a model that will purportedly represent a manufacturing process. This work will review the current methodologies used to simulate the intensity distribution in air above the resist and address the above problems. More to the point, a methodology has been developed to eliminate the expensive numerical integrations in the TCC calculations, as the resulting integrals in many cases of interest can be either evaluated analytically, or replaced by analytical functions accurate to within machine precision. With the burden of computing these numbers lightened, more accurate representations of the image field can be realized, and better overall models are then possible.
Murray, Ian; Walker, Glenn; Bereman, Michael S
2016-06-20
Two paper-based microfluidic techniques, photolithography and wax patterning, were investigated for their potential to improve upon the sensitivity, reproducibility, and versatility of paper spray mass spectrometry. The main limitation of photolithography was the significant signal (approximately three orders of magnitude) above background which was attributed to the chemicals used in the photoresist process. Hydrophobic barriers created via wax patterning were discovered to have approximately 2 orders of magnitude less background signal compared to analogous barriers created using photolithography. A minimum printed wax barrier thickness of approximately 0.3 mm was necessary to consistently retain commonly used paper spray solvents (1 : 1 water : acetonitrile/methanol) and avoid leakage. Constricting capillary flow via wax-printed channels yielded both a significant increase in signal and detection time for detection of model analytes. This signal increase, which was attributed to restricting the radial flow of analyte/solvent on paper (i.e., a concentrating effect), afforded a significant increase in sensitivity (p ≪ 0.05) for the detection of pesticides spiked into residential tap water using a five-point calibration curve. Finally, unique mixing designs using wax patterning can be envisioned to perform on-paper analyte derivatization.
On accelerated flow of MHD powell-eyring fluid via homotopy analysis method
NASA Astrophysics Data System (ADS)
Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul
2017-09-01
The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
NASA Astrophysics Data System (ADS)
Barsan, Victor
2018-05-01
Several classes of transcendental equations, mainly eigenvalue equations associated to non-relativistic quantum mechanical problems, are analyzed. Siewert's systematic approach of such equations is discussed from the perspective of the new results recently obtained in the theory of generalized Lambert functions and of algebraic approximations of various special or elementary functions. Combining exact and approximate analytical methods, quite precise analytical outputs are obtained for apparently untractable problems. The results can be applied in quantum and classical mechanics, magnetism, elasticity, solar energy conversion, etc.
NASA Astrophysics Data System (ADS)
Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.
2013-08-01
By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity
Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.
2010-01-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183
Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.
Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L
2010-02-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.
USDA-ARS?s Scientific Manuscript database
Current methods for generating malting quality metrics have been developed largely to support commercial malting and brewing operations, providing accurate, reproducible analytical data to guide malting and brewing production. Infrastructure to support these analytical operations often involves sub...
A singularity free analytical solution of artificial satellite motion with drag
NASA Technical Reports Server (NTRS)
Mueller, A.
1978-01-01
An analytical satellite theory based on the regular, canonical Poincare-Similar (PS phi) elements is described along with an accurate density model which can be implemented into the drag theory. A computationally efficient manner in which to expand the equations of motion into a fourier series is discussed.
AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)
A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...
An Analytical Solution for Transient Thermal Response of an Insulated Structure
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.
Analytical approximations for spiral waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less
Stochasticity in staged models of epidemics: quantifying the dynamics of whooping cough
Black, Andrew J.; McKane, Alan J.
2010-01-01
Although many stochastic models can accurately capture the qualitative epidemic patterns of many childhood diseases, there is still considerable discussion concerning the basic mechanisms generating these patterns; much of this stems from the use of deterministic models to try to understand stochastic simulations. We argue that a systematic method of analysing models of the spread of childhood diseases is required in order to consistently separate out the effects of demographic stochasticity, external forcing and modelling choices. Such a technique is provided by formulating the models as master equations and using the van Kampen system-size expansion to provide analytical expressions for quantities of interest. We apply this method to the susceptible–exposed–infected–recovered (SEIR) model with distributed exposed and infectious periods and calculate the form that stochastic oscillations take on in terms of the model parameters. With the use of a suitable approximation, we apply the formalism to analyse a model of whooping cough which includes seasonal forcing. This allows us to more accurately interpret the results of simulations and to make a more quantitative assessment of the predictions of the model. We show that the observed dynamics are a result of a macroscopic limit cycle induced by the external forcing and resonant stochastic oscillations about this cycle. PMID:20164086
High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
Haxton, Thomas K
2015-03-10
We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process.
Petermann, Simon; Kniesburges, Stefan; Ziethe, Anke; Schützenberger, Anne; Döllinger, Michael
2016-01-01
The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO), called the voice onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
NASA Technical Reports Server (NTRS)
Wahls, Richard A.
1990-01-01
The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.
2017-09-01
In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.
Transverse signal decay under the weak field approximation: Theory and validation.
Berman, Avery J L; Pike, G Bruce
2018-07-01
To derive an expression for the transverse signal time course from systems in the motional narrowing regime, such as water diffusing in blood. This was validated in silico and experimentally with ex vivo blood samples. A closed-form solution (CFS) for transverse signal decay under any train of refocusing pulses was derived using the weak field approximation. The CFS was validated via simulations of water molecules diffusing in the presence of spherical perturbers, with a range of sizes and under various pulse sequences. The CFS was compared with more conventional fits assuming monoexponential decay, including chemical exchange, using ex vivo blood Carr-Purcell-Meiboom-Gill data. From simulations, the CFS was shown to be valid in the motional narrowing regime and partially into the intermediate dephasing regime, with increased accuracy with increasing Carr-Purcell-Meiboom-Gill refocusing rate. In theoretical calculations of the CFS, fitting for the transverse relaxation rate (R 2 ) gave excellent agreement with the weak field approximation expression for R 2 for Carr-Purcell-Meiboom-Gill sequences, but diverged for free induction decay. These same results were confirmed in the ex vivo analysis. Transverse signal decay in the motional narrowing regime can be accurately described analytically. This theory has applications in areas such as tissue iron imaging, relaxometry of blood, and contrast agent imaging. Magn Reson Med 80:341-350, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Proxy-SU(3) symmetry in heavy deformed nuclei
NASA Astrophysics Data System (ADS)
Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.
2017-06-01
Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.
Analytical ground state for the Jaynes-Cummings model with ultrastrong coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yuanwei; Institute of Theoretical Physics, Shanxi University, Taiyuan 030006; Chen Gang
2011-06-15
We present a generalized variational method to analytically obtain the ground-state properties of the Jaynes-Cummings model with the ultrastrong coupling. An explicit expression for the ground-state energy, which agrees well with the numerical simulation in a wide range of the experimental parameters, is given. In particular, the introduced method can successfully solve this Jaynes-Cummings model with the positive detuning (the atomic resonant level is larger than the photon frequency), which cannot be treated in the adiabatical approximation and the generalized rotating-wave approximation. Finally, we also demonstrate analytically how to control the mean photon number by means of the current experimentalmore » parameters including the photon frequency, the coupling strength, and especially the atomic resonant level.« less
Importance of accurate measurements in nutrition research: dietary flavonoids as a case study
USDA-ARS?s Scientific Manuscript database
Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...
Arbitrarily accurate twin composite π -pulse sequences
NASA Astrophysics Data System (ADS)
Torosov, Boyan T.; Vitanov, Nikolay V.
2018-04-01
We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .
Improved response functions for gamma-ray skyshine analyses
NASA Astrophysics Data System (ADS)
Shultis, J. K.; Faw, R. E.; Deng, X.
1992-09-01
A computationally simple method, based on line-beam response functions, is refined for estimating gamma skyshine dose rates. Critical to this method is the availability of an accurate approximation for the line-beam response function (LBRF). In this study, the LBRF is evaluated accurately with the point-kernel technique using recent photon interaction data. Various approximations to the LBRF are considered, and a three parameter formula is selected as the most practical approximation. By fitting the approximating formula to point-kernel results, a set of parameters is obtained that allows the LBRF to be quickly and accurately evaluated for energies between 0.01 and 15 MeV, for source-to-detector distances from 1 to 3000 m, and for beam angles from 0 to 180 degrees. This re-evaluation of the approximate LBRF gives better accuracy, especially at low energies, over a greater source-to-detector range than do previous LBRF approximations. A conical beam response function is also introduced for application to skyshine sources that are azimuthally symmetric about a vertical axis. The new response functions are then applied to three simple skyshine geometries (an open silo geometry, an infinite wall, and a rectangular four-wall building) and the results are compared to previous calculations and benchmark data.
Improved response functions for gamma-ray skyshine analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Deng, X.
1992-09-01
A computationally simple method, based on line-beam response functions, is refined for estimating gamma skyshine dose rates. Critical to this method is the availability of an accurate approximation for the line-beam response function (LBRF). In this study the LBRF is evaluated accurately with the point-kernel technique using recent photon interaction data. Various approximations to the LBRF are considered, and a three parameter formula is selected as the most practical approximation. By fitting the approximating formula to point-kernel results, a set of parameters is obtained that allows the LBRF to be quickly and accurately evaluated for energies between 0.01 and 15more » MeV, for source-to-detector distances from 1 to 3000 m, and for beam angles from 0 to 180 degrees. This reevaluation of the approximate LBRF gives better accuracy, especially at low energies, over a greater source-to-detector range than do previous LBRF approximations. A conical beam response function is also introduced for application to skyshine sources that are azimuthally symmetric about a vertical axis. The new response functions are then applied to three simple skyshine geometries (an open silo geometry, an infinite wall, and a rectangular four-wall building) and the results compared to previous calculations and benchmark data.« less
METHOD 544. DETERMINATION OF MICROCYSTINS AND ...
Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensitivity and ability to speciate the microcystins. This method development task establishes sample preservation techniques, sample concentration and analytical procedures, aqueous and extract holding time criteria and quality control procedures. Draft Method 544 undergone a multi-laboratory verification to ensure other laboratories can implement the method and achieve the quality control measures specified in the method. It is anticipated that Method 544 may be used in UCMR 4 to collect nationwide occurrence data for selected microcystins in drinking water. The purpose of this research project is to develop an accurate and precise analytical method to concentrate and determine selected MCs and nodularin in drinking water.
Suvarapu, Lakshmi Narayana; Baek, Sung-Ok
2015-01-01
This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539
Evolutionary Games of Multiplayer Cooperation on Graphs
Arranz, Jordi; Traulsen, Arne
2016-01-01
There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946
Summary Report for the Evaluation of Current QA Processes Within the FRMAC FAL and EPA MERL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanks, Sonoya T.; Redding, Ted; Jaussi, Lynn
The Federal Radiological Monitoring and Assessment Center (FRMAC) relies on accurate and defensible analytical laboratory data to support its mission. Therefore, FRMAC must ensure that the environmental analytical laboratories providing analytical services maintain an ongoing capability to provide accurate analytical results to DOE. It is undeniable that the more Quality Assurance (QA) and Quality Control (QC) measures required of the laboratory, the less resources that are available for analysis of response samples. Being that QA and QC measures in general are understood to comprise a major effort related to a laboratory’s operations, requirements should only be considered if they aremore » deemed “value-added” for the FRMAC mission. This report provides observations of areas for improvement and potential interoperability opportunities in the areas of Batch Quality Control Requirements, Written Communications, Data Review Processes, Data Reporting Processes, along with the lessons learned as they apply to items in the early phase of a response that will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.« less
Li, Xin; Li, Ye
2015-01-01
Regular respiratory signals (RRSs) acquired with physiological sensing systems (e.g., the life-detection radar system) can be used to locate survivors trapped in debris in disaster rescue, or predict the breathing motion to allow beam delivery under free breathing conditions in external beam radiotherapy. Among the existing analytical models for RRSs, the harmonic-based random model (HRM) is shown to be the most accurate, which, however, is found to be subject to considerable error if the RRS has a slowly descending end-of-exhale (EOE) phase. The defect of the HRM motivates us to construct a more accurate analytical model for the RRS. In this paper, we derive a new analytical RRS model from the probability density function of Rayleigh distribution. We evaluate the derived RRS model by using it to fit a real-life RRS in the sense of least squares, and the evaluation result shows that, our presented model exhibits lower error and fits the slowly descending EOE phases of the real-life RRS better than the HRM.
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to NeMoR theory. At higher temperatures, we suggest to use NeMoR theory, because it has the same numerical costs as modified Redfield theory, but is more accurate.
Characterization of energy response for photon-counting detectors using x-ray fluorescence
Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee
2014-01-01
Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector. PMID:25471962
Analytic closures for M1 neutrino transport
Murchikova, E. M.; Abdikamalov, E.; Urbatsch, T.
2017-04-25
Carefully accounting for neutrino transport is an essential component of many astrophysical studies. Solving the full transport equation is too expensive for most realistic applications, especially those involving multiple spatial dimensions. For such cases, resorting to approximations is often the only viable option for obtaining solutions. One such approximation, which recently became popular, is the M1 method. It utilizes the system of the lowest two moments of the transport equation and closes the system with an ad hoc closure relation. The accuracy of the M1 solution depends on the quality of the closure. Several closures have been proposed in themore » literature and have been used in various studies. We carry out an extensive study of these closures by comparing the results of M1 calculations with precise Monte Carlo calculations of the radiation field around spherically symmetric protoneutron star models. We find that no closure performs consistently better or worse than others in all cases. The level of accuracy that a given closure yields depends on the matter configuration, neutrino type and neutrino energy. As a result, given this limitation, the maximum entropy closure by Minerbo on average yields relatively accurate results in the broadest set of cases considered in this work.« less
Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing
NASA Astrophysics Data System (ADS)
Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.
2016-12-01
Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.
Model reduction for stochastic chemical systems with abundant species.
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2015-12-07
Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.
On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas
NASA Astrophysics Data System (ADS)
Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.
2017-01-01
The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.
Rapid Acceleration of a Coronal Mass Ejection in the Low Corona and Implications of Propagation
NASA Technical Reports Server (NTRS)
Gallagher, Peter T.; Lawrence, Gareth R.; Dennis, Brian R.
2003-01-01
A high-velocity Coronal Mass Ejection (CME) associated with the 2002 April 21 X1.5 flare is studied using a unique set of observations from the Transition Region and Coronal Explorer (TRACE), the Ultraviolet Coronagraph Spectrometer (UVCS), and the Large-Angle Spectrometric Coronagraph (LASCO). The event is first observed as a rapid rise in GOES X-rays, followed by simultaneous conjugate footpoint brightenings connected by an ascending loop or flux-rope feature. While expanding, the appearance of the feature remains remarkably constant as it passes through the TRACE 195 A passband and LASCO fields-of-view, allowing its height-time behavior to be accurately determined. An analytic function, having exponential and linear components, is found to represent the height-time evolution of the CME in the range 1.05-26 R. The CME acceleration rises exponentially to approx. 900 km/sq s within approximately 20-min, peaking at approx.1400 m/sq s when the leading edge is at approx. 1.7 R. The acceleration subsequently falls off as a slowly varying exponential for approx.,90-min. At distances beyond approx. 3.4 R, the height-time profile is approximately linear with a constant velocity of approx. 2400 km/s. These results are briefly discussed in light of recent kinematic models of CMEs.
Model reduction for stochastic chemical systems with abundant species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2015-12-07
Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equationmore » which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.« less
Using block pulse functions for seismic vibration semi-active control of structures with MR dampers
NASA Astrophysics Data System (ADS)
Rahimi Gendeshmin, Saeed; Davarnia, Daniel
2018-03-01
This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.
A numerical approximation to the elastic properties of sphere-reinforced composites
NASA Astrophysics Data System (ADS)
Segurado, J.; Llorca, J.
2002-10-01
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the "exact" solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.
Volume Holograms in Photopolymers: Comparison between Analytical and Rigorous Theories
Gallego, Sergi; Neipp, Cristian; Estepa, Luis A.; Ortuño, Manuel; Márquez, Andrés; Francés, Jorge; Pascual, Inmaculada; Beléndez, Augusto
2012-01-01
There is no doubt that the concept of volume holography has led to an incredibly great amount of scientific research and technological applications. One of these applications is the use of volume holograms as optical memories, and in particular, the use of a photosensitive medium like a photopolymeric material to record information in all its volume. In this work we analyze the applicability of Kogelnik’s Coupled Wave theory to the study of volume holograms recorded in photopolymers. Some of the theoretical models in the literature describing the mechanism of hologram formation in photopolymer materials use Kogelnik’s theory to analyze the gratings recorded in photopolymeric materials. If Kogelnik’s theory cannot be applied is necessary to use a more general Coupled Wave theory (CW) or the Rigorous Coupled Wave theory (RCW). The RCW does not incorporate any approximation and thus, since it is rigorous, permits judging the accurateness of the approximations included in Kogelnik’s and CW theories. In this article, a comparison between the predictions of the three theories for phase transmission diffraction gratings is carried out. We have demonstrated the agreement in the prediction of CW and RCW and the validity of Kogelnik’s theory only for gratings with spatial frequencies higher than 500 lines/mm for the usual values of the refractive index modulations obtained in photopolymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, W.W.; Sullivan, H.H.
Electroless nicke-plate characteristics are substantially influenced by percent phosphorous concentrations. Available ASTM analytical methods are designed for phosphorous concentrations of less than one percent compared to the 4.0 to 20.0% concentrations common in electroless nickel plate. A variety of analytical adaptations are applied through the industry resulting in poor data continuity. This paper presents a statistical comparison of five analytical methods and recommends accurate and precise procedures for use in percent phosphorous determinations in electroless nickel plate. 2 figures, 1 table.
Yun, Changhong; Dashwood, Wan-Mohaiza; Kwong, Lawrence N; Gao, Song; Yin, Taijun; Ling, Qinglan; Singh, Rashim; Dashwood, Roderick H; Hu, Ming
2018-01-30
An accurate and reliable UPLC-MS/MS method is reported for the quantification of endogenous Prostaglandin E2 (PGE 2 ) in rat colonic mucosa and polyps. This method adopted the "surrogate analyte plus authentic bio-matrix" approach, using two different stable isotopic labeled analogs - PGE 2 -d9 as the surrogate analyte and PGE 2 -d4 as the internal standard. A quantitative standard curve was constructed with the surrogate analyte in colonic mucosa homogenate, and the method was successfully validated with the authentic bio-matrix. Concentrations of endogenous PGE 2 in both normal and inflammatory tissue homogenates were back-calculated based on the regression equation. Because of no endogenous interference on the surrogate analyte determination, the specificity was particularly good. By using authentic bio-matrix for validation, the matrix effect and exaction recovery are identically same for the quantitative standard curve and actual samples - this notably increased the assay accuracy. The method is easy, fast, robust and reliable for colon PGE 2 determination. This "surrogate analyte" approach was applied to measure the Pirc (an Apc-mutant rat kindred that models human FAP) mucosa and polyps PGE 2 , one of the strong biomarkers of colorectal cancer. A similar concept could be applied to endogenous biomarkers in other tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1988-01-01
Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu
2013-02-01
A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiotelis, Nicos; Popolo, Antonino Del, E-mail: adelpopolo@oact.inaf.it, E-mail: hiotelis@ipta.demokritos.gr
We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions aremore » in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.« less
Lim, Chee Wei; Tai, Siew Hoon; Lee, Lin Min; Chan, Sheot Harn
2012-07-01
The current food crisis demands unambiguous determination of mycotoxin contamination in staple foods to achieve safer food for consumption. This paper describes the first accurate LC-MS/MS method developed to analyze tricothecenes in grains by applying multiple reaction monitoring (MRM) transition and MS(3) quantitation strategies in tandem. The tricothecenes are nivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, fusarenon X, 3-acetyl-deoxynivalenol, 15-acetyldeoxynivalenol, diacetoxyscirpenol, and HT-2 and T-2 toxins. Acetic acid and ammonium acetate were used to convert the analytes into their respective acetate adducts and ammonium adducts under negative and positive MS polarity conditions, respectively. The mycotoxins were separated by reversed-phase LC in a 13.5-min run, ionized using electrospray ionization, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge (m/z) ratios were used to perform quantitation under MRM transition and MS(3) (linear ion trap) modes. Three experiments were made for each quantitation mode and matrix in batches over 6 days for recovery studies. The matrix effect was investigated at concentration levels of 20, 40, 80, 120, 160, and 200 μg kg(-1) (n = 3) in 5 g corn flour and rice flour. Extraction with acetonitrile provided a good overall recovery range of 90-108% (n = 3) at three levels of spiking concentration of 40, 80, and 120 μg kg(-1). A quantitation limit of 2-6 μg kg(-1) was achieved by applying an MRM transition quantitation strategy. Under MS(3) mode, a quantitation limit of 4-10 μg kg(-1) was achieved. Relative standard deviations of 2-10% and 2-11% were reported for MRM transition and MS(3) quantitation, respectively. The successful utilization of MS(3) enabled accurate analyte fragmentation pattern matching and its quantitation, leading to the development of analytical methods in fields that demand both analyte specificity and fragmentation fingerprint-matching capabilities that are unavailable under MRM transition.