Accurate Analytic Results for the Steady State Distribution of the Eigen Model
NASA Astrophysics Data System (ADS)
Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun
2016-04-01
Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-29
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
Development and application of accurate analytical models for single active electron potentials
NASA Astrophysics Data System (ADS)
Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas
2015-05-01
The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).
Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation
NASA Astrophysics Data System (ADS)
Poddar, Banibrata; Giurgiutiu, Victor
2016-04-01
Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.
Accurate analytical modelling of cosmic ray induced failure rates of power semiconductor devices
NASA Astrophysics Data System (ADS)
Bauer, Friedhelm D.
2009-06-01
A new, simple and efficient approach is presented to conduct estimations of the cosmic ray induced failure rate for high voltage silicon power devices early in the design phase. This allows combining common design issues such as device losses and safe operating area with the constraints imposed by the reliability to result in a better and overall more efficient design methodology. Starting from an experimental and theoretical background brought forth a few yeas ago [Kabza H et al. Cosmic radiation as a cause for power device failure and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 9-12, Zeller HR. Cosmic ray induced breakdown in high voltage semiconductor devices, microscopic model and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 339-40, and Matsuda H et al. Analysis of GTO failure mode during d.c. blocking. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 221-5], an exact solution of the failure rate integral is derived and presented in a form which lends itself to be combined with the results available from commercial semiconductor simulation tools. Hence, failure rate integrals can be obtained with relative ease for realistic two- and even three-dimensional semiconductor geometries. Two case studies relating to IGBT cell design and planar junction termination layout demonstrate the purpose of the method.
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
NASA Technical Reports Server (NTRS)
1984-01-01
A system-level design and analysis model was developed. This model was conceived to have several key elements: a solar pond thermodynamic performance model, a power generation subsystem model, and an economic analysis element. The basic approach was to create these elements or modules and refine them on an individual basis yet retain the capability to easily couple them into a full system design model. This building block approach allows for maximum flexibility and substitution of refined descriptions as the technology develops. A general overview of interconnecting these subsystem models is presented. The primary program control element will perform the administrative functions of data input, data output, information storage and transfer, and sequential calling of the subsystem models. From the point of view of the requirements of a system design model, a power conversion subsystem model was developed. The goal of the effort was a preliminary subsystem model compatible with the solar pond subsystem model so that a first order system simulation analysis could be performed.
Accurate mask model for advanced nodes
NASA Astrophysics Data System (ADS)
Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle
2014-07-01
Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.
Pre-Modeling Ensures Accurate Solid Models
ERIC Educational Resources Information Center
Gow, George
2010-01-01
Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…
ANALYTIC MODELING OF STARSHADES
Cash, Webster
2011-09-01
External occulters, otherwise known as starshades, have been proposed as a solution to one of the highest priority yet technically vexing problems facing astrophysics-the direct imaging and characterization of terrestrial planets around other stars. New apodization functions, developed over the past few years, now enable starshades of just a few tens of meters diameter to occult central stars so efficiently that the orbiting exoplanets can be revealed and other high-contrast imaging challenges addressed. In this paper, an analytic approach to the analysis of these apodization functions is presented. It is used to develop a tolerance analysis suitable for use in designing practical starshades. The results provide a mathematical basis for understanding starshades and a quantitative approach to setting tolerances.
Accurate modeling of parallel scientific computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Townsend, James C.
1988-01-01
Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.
Universality: Accurate Checks in Dyson's Hierarchical Model
NASA Astrophysics Data System (ADS)
Godina, J. J.; Meurice, Y.; Oktay, M. B.
2003-06-01
In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.
The importance of accurate atmospheric modeling
NASA Astrophysics Data System (ADS)
Payne, Dylan; Schroeder, John; Liang, Pang
2014-11-01
This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
NASA Astrophysics Data System (ADS)
Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang
2016-08-01
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Ghittorelli, Matteo; Torricelli, Fabrizio; Kovács-Vajna, Zsolt Miklos
2015-12-01
Surface-potential-based mathematical models are among the most accurate and physically based compact models of Thin-Film Transistors (TFTs) and, in turn, of Organic Thin-Film Transistors (OTFTs), available today. However, the need for iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not enough accurate to model OTFTs and, in particular, transconductances and transcapacitances. In this paper we present an accurate and computationally efficient closed-form approximation of the surface potential, based on the Lagrange Reversion Theorem, that can be exploited in advanced surface-potential-based OTFTs and TFTs device models.
Analytical model for ramp compression
NASA Astrophysics Data System (ADS)
Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Hu, Yun; Ding, Yongkun
2016-08-01
An analytical ramp compression model for condensed matter, which can provide explicit solutions for isentropic compression flow fields, is reported. A ramp compression experiment can be easily designed according to the capability of the loading source using this model. Specifically, important parameters, such as the maximum isentropic region width, material properties, profile of the pressure pulse, and the pressure pulse duration can be reasonably allocated or chosen. To demonstrate and study this model, laser-direct-driven ramp compression experiments and code simulation are performed successively, and the factors influencing the accuracy of the model are studied. The application and simulation show that this model can be used as guidance in the design of a ramp compression experiment. However, it is verified that further optimization work is required for a precise experimental design.
Analytical modeling of the steady radiative shock
NASA Astrophysics Data System (ADS)
Boireau, L.; Bouquet, S.; Michaut, C.; Clique, C.
2006-06-01
In a paper dated 2000 [1], a fully analytical theory of the radiative shock has been presented. This early model had been used to design [2] radiative shock experiments at the Laboratory for the Use of Intense Lasers (LULI) [3 5]. It became obvious from numerical simulations [6, 7] that this model had to be improved in order to accurately recover experiments. In this communication, we present a new theory in which the ionization rates in the unshocked (bar{Z_1}) and shocked (bar{Z_2} neq bar{Z_1}) material, respectively, are included. Associated changes in excitation energy are also taken into account. We study the influence of these effects on the compression and temperature in the shocked medium.
Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models
Sun, Y; Glascoe, L
2005-06-09
The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.
A quick accurate model of nozzle backflow
NASA Technical Reports Server (NTRS)
Kuharski, R. A.
1991-01-01
Backflow from nozzles is a major source of contamination on spacecraft. If the craft contains any exposed high voltages, the neutral density produced by the nozzles in the vicinity of the craft needs to be known in order to assess the possibility of Paschen breakdown or the probability of sheath ionization around a region of the craft that collects electrons for the plasma. A model for backflow has been developed for incorporation into the Environment-Power System Analysis Tool (EPSAT) which quickly estimates both the magnitude of the backflow and the species makeup of the flow. By combining the backflow model with the Simons (1972) model for continuum flow it is possible to quickly estimate the density of each species from a nozzle at any position in space. The model requires only a few physical parameters of the nozzle and the gas as inputs and is therefore ideal for engineering applications.
Accurate Drawbead Modeling in Stamping Simulations
NASA Astrophysics Data System (ADS)
Sester, M.; Burchitz, I.; Saenz de Argandona, E.; Estalayo, F.; Carleer, B.
2016-08-01
An adaptive line bead model that continually updates according to the changing conditions during the forming process has been developed. In these calculations, the adaptive line bead's geometry is treated as a 3D object where relevant phenomena like hardening curve, yield surface, through thickness stress effects and contact description are incorporated. The effectiveness of the adaptive drawbead model will be illustrated by an industrial example.
Accurate spectral modeling for infrared radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Gupta, S. K.
1977-01-01
Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.
Accurate theoretical chemistry with coupled pair models.
Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan
2009-05-19
Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now
Analytic Model of Reactive Flow
Souers, P C; Vitello, P
2004-08-02
A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.
Analytic Model of Reactive Flow
Souers, P C; Vitello, P
2004-11-15
A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.
Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young
2015-07-01
This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.
Predictive analytics can support the ACO model.
Bradley, Paul
2012-04-01
Predictive analytics can be used to rapidly spot hard-to-identify opportunities to better manage care--a key tool in accountable care. When considering analytics models, healthcare providers should: Make value-based care a priority and act on information from analytics models. Create a road map that includes achievable steps, rather than major endeavors. Set long-term expectations and recognize that the effectiveness of an analytics program takes time, unlike revenue cycle initiatives that may show a quick return.
Analytic Modeling of Pressurization and Cryogenic Propellant
NASA Technical Reports Server (NTRS)
Corpening, Jeremy H.
2010-01-01
An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.
Dismer, Florian; Hansen, Sigrid; Oelmeier, Stefan Alexander; Hubbuch, Jürgen
2013-03-01
Chromatography is the method of choice for the separation of proteins, at both analytical and preparative scale. Orthogonal purification strategies for industrial use can easily be implemented by combining different modes of adsorption. Nevertheless, with flexibility comes the freedom of choice and optimal conditions for consecutive steps need to be identified in a robust and reproducible fashion. One way to address this issue is the use of mathematical models that allow for an in silico process optimization. Although this has been shown to work, model parameter estimation for complex feedstocks becomes the bottleneck in process development. An integral part of parameter assessment is the accurate measurement of retention times in a series of isocratic or gradient elution experiments. As high-resolution analytics that can differentiate between proteins are often not readily available, pure protein is mandatory for parameter determination. In this work, we present an approach that has the potential to solve this problem. Based on the uniqueness of UV absorption spectra of proteins, we were able to accurately measure retention times in systems of up to four co-eluting compounds. The presented approach is calibration-free, meaning that prior knowledge of pure component absorption spectra is not required. Actually, pure protein spectra can be determined from co-eluting proteins as part of the methodology. The approach was tested for size-exclusion chromatograms of 38 mixtures of co-eluting proteins. Retention times were determined with an average error of 0.6 s (1.6% of average peak width), approximated and measured pure component spectra showed an average coefficient of correlation of 0.992.
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1989-01-01
An accurate analytic expression for the nonlinear change of the volume of a solid as a function of applied pressure is of great interest in high-pressure experimentation. It is found that a two-parameter analytic expression, fits the experimental volume-change data to within a few percent over the entire experimentally attainable pressure range. Results are presented for 24 different materials including metals, ceramic semiconductors, polymers, and ionic and rare-gas solids.
An analytic performance model of disk arrays and its application
NASA Technical Reports Server (NTRS)
Lee, Edward K.; Katz, Randy H.
1991-01-01
As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.
ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS
Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...
Analytic barrage attack model. Final report, January 1986-January 1989
St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.
1989-01-01
An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for the analytic model and for a numerical model used to check the analytic results.
Analytical Model For Fluid Dynamics In A Microgravity Environment
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1995-01-01
Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.
Przybylski, D.; Shelyag, S.; Cally, P. S.
2015-07-01
We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave.
An articulated statistical shape model for accurate hip joint segmentation.
Kainmueller, Dagmar; Lamecker, Hans; Zachow, Stefan; Hege, Hans-Christian
2009-01-01
In this paper we propose a framework for fully automatic, robust and accurate segmentation of the human pelvis and proximal femur in CT data. We propose a composite statistical shape model of femur and pelvis with a flexible hip joint, for which we extend the common definition of statistical shape models as well as the common strategy for their adaptation. We do not analyze the joint flexibility statistically, but model it explicitly by rotational parameters describing the bent in a ball-and-socket joint. A leave-one-out evaluation on 50 CT volumes shows that image driven adaptation of our composite shape model robustly produces accurate segmentations of both proximal femur and pelvis. As a second contribution, we evaluate a fine grain multi-object segmentation method based on graph optimization. It relies on accurate initializations of femur and pelvis, which our composite shape model can generate. Simultaneous optimization of both femur and pelvis yields more accurate results than separate optimizations of each structure. Shape model adaptation and graph based optimization are embedded in a fully automatic framework. PMID:19964159
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-01
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
Analytic gain in probabilistic decompression sickness models.
Howle, Laurens E
2013-11-01
Decompression sickness (DCS) is a disease known to be related to inert gas bubble formation originating from gases dissolved in body tissues. Probabilistic DCS models, which employ survival and hazard functions, are optimized by fitting model parameters to experimental dive data. In the work reported here, I develop methods to find the survival function gain parameter analytically, thus removing it from the fitting process. I show that the number of iterations required for model optimization is significantly reduced. The analytic gain method substantially improves the condition number of the Hessian matrix which reduces the model confidence intervals by more than an order of magnitude. PMID:24209920
Analytic gain in probabilistic decompression sickness models.
Howle, Laurens E
2013-11-01
Decompression sickness (DCS) is a disease known to be related to inert gas bubble formation originating from gases dissolved in body tissues. Probabilistic DCS models, which employ survival and hazard functions, are optimized by fitting model parameters to experimental dive data. In the work reported here, I develop methods to find the survival function gain parameter analytically, thus removing it from the fitting process. I show that the number of iterations required for model optimization is significantly reduced. The analytic gain method substantially improves the condition number of the Hessian matrix which reduces the model confidence intervals by more than an order of magnitude.
Knowledge Generation Model for Visual Analytics.
Sacha, Dominik; Stoffel, Andreas; Stoffel, Florian; Kwon, Bum Chul; Ellis, Geoffrey; Keim, Daniel A
2014-12-01
Visual analytics enables us to analyze huge information spaces in order to support complex decision making and data exploration. Humans play a central role in generating knowledge from the snippets of evidence emerging from visual data analysis. Although prior research provides frameworks that generalize this process, their scope is often narrowly focused so they do not encompass different perspectives at different levels. This paper proposes a knowledge generation model for visual analytics that ties together these diverse frameworks, yet retains previously developed models (e.g., KDD process) to describe individual segments of the overall visual analytic processes. To test its utility, a real world visual analytics system is compared against the model, demonstrating that the knowledge generation process model provides a useful guideline when developing and evaluating such systems. The model is used to effectively compare different data analysis systems. Furthermore, the model provides a common language and description of visual analytic processes, which can be used for communication between researchers. At the end, our model reflects areas of research that future researchers can embark on. PMID:26356874
Knowledge Generation Model for Visual Analytics.
Sacha, Dominik; Stoffel, Andreas; Stoffel, Florian; Kwon, Bum Chul; Ellis, Geoffrey; Keim, Daniel A
2014-12-01
Visual analytics enables us to analyze huge information spaces in order to support complex decision making and data exploration. Humans play a central role in generating knowledge from the snippets of evidence emerging from visual data analysis. Although prior research provides frameworks that generalize this process, their scope is often narrowly focused so they do not encompass different perspectives at different levels. This paper proposes a knowledge generation model for visual analytics that ties together these diverse frameworks, yet retains previously developed models (e.g., KDD process) to describe individual segments of the overall visual analytic processes. To test its utility, a real world visual analytics system is compared against the model, demonstrating that the knowledge generation process model provides a useful guideline when developing and evaluating such systems. The model is used to effectively compare different data analysis systems. Furthermore, the model provides a common language and description of visual analytic processes, which can be used for communication between researchers. At the end, our model reflects areas of research that future researchers can embark on.
Methods for accurate homology modeling by global optimization.
Joo, Keehyoung; Lee, Jinwoo; Lee, Jooyoung
2012-01-01
High accuracy protein modeling from its sequence information is an important step toward revealing the sequence-structure-function relationship of proteins and nowadays it becomes increasingly more useful for practical purposes such as in drug discovery and in protein design. We have developed a protocol for protein structure prediction that can generate highly accurate protein models in terms of backbone structure, side-chain orientation, hydrogen bonding, and binding sites of ligands. To obtain accurate protein models, we have combined a powerful global optimization method with traditional homology modeling procedures such as multiple sequence alignment, chain building, and side-chain remodeling. We have built a series of specific score functions for these steps, and optimized them by utilizing conformational space annealing, which is one of the most successful combinatorial optimization algorithms currently available.
Interpolation method for accurate affinity ranking of arrayed ligand-analyte interactions.
Schasfoort, Richard B M; Andree, Kiki C; van der Velde, Niels; van der Kooi, Alex; Stojanović, Ivan; Terstappen, Leon W M M
2016-05-01
The values of the affinity constants (kd, ka, and KD) that are determined by label-free interaction analysis methods are affected by the ligand density. This article outlines a surface plasmon resonance (SPR) imaging method that yields high-throughput globally fitted affinity ranking values using a 96-plex array. A kinetic titration experiment without a regeneration step has been applied for various coupled antibodies binding to a single antigen. Globally fitted rate (kd and ka) and dissociation equilibrium (KD) constants for various ligand densities and analyte concentrations are exponentially interpolated to the KD at Rmax = 100 RU response level (KD(R100)).
Analytic modeling of aerosol size distributions
NASA Technical Reports Server (NTRS)
Deepack, A.; Box, G. P.
1979-01-01
Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Evaluation of the WIND System atmospheric models: An analytic approach
Fast, J.D.
1991-11-25
An analytic approach was used in this study to test the logic, coding, and the theoretical limits of the WIND System atmospheric models for the Savannah River Plant. In this method, dose or concentration estimates predicted by the models were compared to the analytic solutions to evaluate their performance. The results from AREA EVACUATION and PLTFF/PLUME were very nearly identical to the analytic solutions they are based on and the evaluation procedure demonstrated that these models were able to reproduce the theoretical characteristics of a puff or a plume. The dose or concentration predicted by PLTFF/PLUME was always within 1% of the analytic solution. Differences between the dose predicted by 2DPUF and its analytic solution were substantially greater than those associated with PUFF/PLUME, but were usually smaller than 6%. This behavior was expected because PUFF/PLUME solves a form of the analytic solution for a single puff, and 2DPUF performs an integration over a period of time for several puffs to obtain the dose. Relatively large differences between the dose predicted by 2DPUF and its analytic solution were found to occur close to the source under stable atmospheric conditions. WIND System users should be aware of these situations in which the assumptions of the System atmospheric models may be violated so that dose predictions can be interpreted correctly. The WIND System atmospheric models are similar to many other dispersion codes used by the EPA, NRC, and DOE. If the quality of the source term and meteorological data is high, relatively accurate and timely forecasts for emergency response situations can be made by the WIND System atmospheric models.
An analytic model for the Phobos surface
NASA Technical Reports Server (NTRS)
Duxbury, Thomas C.
1991-01-01
Analytic expressions are derived to model the surface topography and the normal to the surface of Phobos. The analytic expressions are comprised of a spherical harmonic expansion for the global figure of Phobos, augmented by addition terms for the large crater Stickney and other craters. Over 300 craters were measured in more than 100 Viking Orbiter images to produce the model. In general, the largest craters were measured since they have a significant effect on topography. The topographic model derived has a global spatial and topographic accuracy ranging from about 100 m in areas having the highest resolution and convergent, stereo coverage, up to 500 m in the poorest areas.
An analytic model for the PHOBOS surface
NASA Astrophysics Data System (ADS)
Duxbury, T. C.
1991-02-01
Analytic expressions are derived to model the surface topography and the normal to the surface of Phobos. The analytic expressions are comprised of a spherical harmonic expansion for the global figure of Phobos, augmented by addition terms for the large crater Stickney and other craters. Over 300 craters were measured in more than 100 Viking Orbiter images to produce the model. In general, the largest craters were measured since they have a significant effect on topography. The topographic model derived has a global spatial and topographic accuracy ranging from about 100 m in areas having the highest resolution and convergent, stereo coverage, up to 500 m in the poorest areas.
ESTIMATING UNCERTAINITIES IN FACTOR ANALYTIC MODELS
When interpreting results from factor analytic models as used in receptor modeling, it is important to quantify the uncertainties in those results. For example, if the presence of a species on one of the factors is necessary to interpret the factor as originating from a certain ...
Palm: Easing the Burden of Analytical Performance Modeling
Tallent, Nathan R.; Hoisie, Adolfy
2014-06-01
Analytical (predictive) application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult because they must be both accurate and concise. To ease the burden of performance modeling, we developed Palm, a modeling tool that combines top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. To express insight, Palm defines a source code modeling annotation language. By coordinating models and source code, Palm's models are `first-class' and reproducible. Unlike prior work, Palm formally links models, functions, and measurements. As a result, Palm (a) uses functions to either abstract or express complexity (b) generates hierarchical models (representing an application's static and dynamic structure); and (c) automatically incorporates measurements to focus attention, represent constant behavior, and validate models. We discuss generating models for three different applications.
A SPICE model for a phase-change memory cell based on the analytical conductivity model
NASA Astrophysics Data System (ADS)
Yiqun, Wei; Xinnan, Lin; Yuchao, Jia; Xiaole, Cui; Jin, He; Xing, Zhang
2012-11-01
By way of periphery circuit design of the phase-change memory, it is necessary to present an accurate compact model of a phase-change memory cell for the circuit simulation. Compared with the present model, the model presented in this work includes an analytical conductivity model, which is deduced by means of the carrier transport theory instead of the fitting model based on the measurement. In addition, this model includes an analytical temperature model based on the 1D heat-transfer equation and the phase-transition dynamic model based on the JMA equation to simulate the phase-change process. The above models for phase-change memory are integrated by using Verilog-A language, and results show that this model is able to simulate the I-V characteristics and the programming characteristics accurately.
An Analytical Model for the Influence of Contact Resistance on Thermoelectric Efficiency
NASA Astrophysics Data System (ADS)
Bjørk, Rasmus
2016-03-01
An analytical model is presented that can account for both electrical and hot and cold thermal contact resistances when calculating the efficiency of a thermoelectric generator. The model is compared to a numerical model of a thermoelectric leg for 16 different thermoelectric materials, as well as to the analytical models of Ebling et al. (J Electron Mater 39:1376, 2010) and Min and Rowe (J Power Sour 38:253, 1992). The model presented here is shown to accurately calculate the efficiency for all systems and all contact resistances considered, with an average difference in efficiency between the numerical model and the analytical model of -0.07 ± 0.35pp. This makes the model more accurate than previously published models. The maximum absolute difference in efficiency between the analytical model and the numerical model is 1.14pp for all materials and all contact resistances considered.
More-Accurate Model of Flows in Rocket Injectors
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford
2011-01-01
An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
An accurate temperature correction model for thermocouple hygrometers.
Savage, M J; Cass, A; de Jager, J M
1982-02-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature.
An accurate temperature correction model for thermocouple hygrometers.
Savage, M J; Cass, A; de Jager, J M
1982-02-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature. PMID:16662241
On the importance of having accurate data for astrophysical modelling
NASA Astrophysics Data System (ADS)
Lique, Francois
2016-06-01
The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.
Accurate method of modeling cluster scaling relations in modified gravity
NASA Astrophysics Data System (ADS)
He, Jian-hua; Li, Baojiu
2016-06-01
We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.
Some analytical models of radiating collapsing spheres
Herrera, L.; Di Prisco, A; Ospino, J.
2006-08-15
We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.
NASA Astrophysics Data System (ADS)
Martínez, M. J.; Marco, F. J.; López, J. A.
2009-02-01
The Hipparcos catalog provides a reference frame at optical wavelengths for the new International Celestial Reference System (ICRS). This new reference system was adopted following the resolution agreed at the 23rd IAU General Assembly held in Kyoto in 1997. Differences in the Hipparcos system of proper motions and the previous materialization of the reference frame, the FK5, are expected to be caused only by the combined effects of the motion of the equinox of the FK5 and the precession of the equator and the ecliptic. Several authors have pointed out an inconsistency between the differences in proper motion of the Hipparcos-FK5 and the correction of the precessional values derived from VLBI and lunar laser ranging (LLR) observations. Most of them have claimed that these discrepancies are due to slightly biased proper motions in the FK5 catalog. The different mathematical models that have been employed to explain these errors have not fully accounted for the discrepancies in the correction of the precessional parameters. Our goal here is to offer an explanation for this fact. We propose the use of independent parametric and nonparametric models. The introduction of a nonparametric model, combined with the inner product in the square integrable functions over the unitary sphere, would give us values which do not depend on the possible interdependencies existing in the data set. The evidence shows that zonal studies are needed. This would lead us to introduce a local nonparametric model. All these models will provide independent corrections to the precessional values, which could then be compared in order to study the reliability in each case. Finally, we obtain values for the precession corrections that are very consistent with those that are currently adopted.
Analytical modeling for microwave and optical metasurfaces
NASA Astrophysics Data System (ADS)
Monti, Alessio; Soric, Jason; Alù, Andrea; Toscano, Alessandro; Bilotti, Filiberto
2016-06-01
A metasurface is an artificial structure composed by an ultrathin surface textured at a subwavelength scale. In the last years, metasurfaces have been revealed to be particularly useful in the design of electromagnetic scattering cancellation devices operating at microwave and optical frequencies. In this contribution we summarize our results about the analytical modelling of microwave and optical metasurfaces composed, respectively, by patterned metallic surfaces and arrays of plasmonic nanoparticles. The analytical results are compared with the numerical ones obtained with a proper set of full-wave simulations showing an excellent agreement.
Analytical model of internally coupled ears.
Vossen, Christine; Christensen-Dalsgaard, Jakob; van Hemmen, J Leo
2010-08-01
Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry.
Analytical model of internally coupled ears.
Vossen, Christine; Christensen-Dalsgaard, Jakob; van Hemmen, J Leo
2010-08-01
Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry. PMID:20707461
Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.
Huynh, Linh; Tagkopoulos, Ilias
2015-08-21
In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.
Inflation model building with an accurate measure of e -folding
NASA Astrophysics Data System (ADS)
Chongchitnan, Sirichai
2016-08-01
It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation, despite the well-known fact that this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to show how this approximation can be completely avoided using an alternative framework for inflation model building. We show that using the inverse Hubble radius, H =a H , as the key dynamical parameter, the correct number of e -folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.
Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid
2016-01-01
A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137
Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid
2016-01-01
A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Mouse models of human AML accurately predict chemotherapy response
Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.
2009-01-01
The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691
MATLAB/Simulink analytic radar modeling environment
NASA Astrophysics Data System (ADS)
Esken, Bruce L.; Clayton, Brian L.
2001-09-01
Analytic radar models are simulations based on abstract representations of the radar, the RF environment that radar signals are propagated, and the reflections produced by targets, clutter and multipath. These models have traditionally been developed in FORTRAN and have evolved over the last 20 years into efficient and well-accepted codes. However, current models are limited in two primary areas. First, by the nature of algorithm based analytical models, they can be difficult to understand by non-programmers and equally difficult to modify or extend. Second, there is strong interest in re-using these models to support higher-level weapon system and mission level simulations. To address these issues, a model development approach has been demonstrated which utilizes the MATLAB/Simulink graphical development environment. Because the MATLAB/Simulink environment graphically represents model algorithms - thus providing visibility into the model - algorithms can be easily analyzed and modified by engineers and analysts with limited software skills. In addition, software tools have been created that provide for the automatic code generation of C++ objects. These objects are created with well-defined interfaces enabling them to be used by modeling architectures external to the MATLAB/Simulink environment. The approach utilized is generic and can be extended to other engineering fields.
Some analytical models of anisotropic strange stars
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan
2016-01-01
Over the years of the concept of local isotropy has become a too stringent condition in modeling relativistic self-gravitating objects. Taking local anisotropy into consideration, in this work, some analytical models of relativistic anisotropic charged strange stars have been developed. The Einstein-Maxwell gravitational field equations have been solved with a particular form of one of the metric potentials. The radial pressure and the energy density have been assumed to follow the usual linear equation of state of strange quark matter, the MIT bag model.
Combining Modeling and Gaming for Predictive Analytics
Riensche, Roderick M.; Whitney, Paul D.
2012-08-22
Many of our most significant challenges involve people. While human behavior has long been studied, there are recent advances in computational modeling of human behavior. With advances in computational capabilities come increases in the volume and complexity of data that humans must understand in order to make sense of and capitalize on these modeling advances. Ultimately, models represent an encapsulation of human knowledge. One inherent challenge in modeling is efficient and accurate transfer of knowledge from humans to models, and subsequent retrieval. The simulated real-world environment of games presents one avenue for these knowledge transfers. In this paper we describe our approach of combining modeling and gaming disciplines to develop predictive capabilities, using formal models to inform game development, and using games to provide data for modeling.
Analytical Solution of Traffic Cellular Automata Model
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Hsu, Chia-Hung
2009-08-01
Complex traffic system seems to be simulated successfully by cellular automaton (CA) models. Various models are developed to understand single-lane traffic, multilane traffic, lane-changing behavior and network traffic situations. However, the result of CA simulation can only be obtained after massive microscopic computation. Although, the mean field theory (MFT) has been studied to be the approximation of CA model, the MFT can only applied to the simple CA rules or small value of parameters. In this study, we simulate traffic flow by the NaSch model under different combination of parameters, which are maximal speed, dawdling probability and density. After that, the position of critical density, the slope of free-flow and congested regime are observed and modeled due to the simulated data. Finally, the coefficients of the model will be calibrated by the simulated data and the analytical solution of traffic CA is obtained.
Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.
Wu, Tim; Hung, Alice; Mithraratne, Kumar
2014-11-01
This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.
Accurate verification of the conserved-vector-current and standard-model predictions
Sirlin, A.; Zucchini, R.
1986-10-20
An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.
An Analytic Function of Lunar Surface Temperature for Exospheric Modeling
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Sarantos, Menelaos; Grava, Cesare; Williams, Jean-Pierre; Retherford, Kurt D.; Siegler, Matthew; Greenhagen, Benjamin; Paige, David
2014-01-01
We present an analytic expression to represent the lunar surface temperature as a function of Sun-state latitude and local time. The approximation represents neither topographical features nor compositional effects and therefore does not change as a function of selenographic latitude and longitude. The function reproduces the surface temperature measured by Diviner to within +/-10 K at 72% of grid points for dayside solar zenith angles of less than 80, and at 98% of grid points for nightside solar zenith angles greater than 100. The analytic function is least accurate at the terminator, where there is a strong gradient in the temperature, and the polar regions. Topographic features have a larger effect on the actual temperature near the terminator than at other solar zenith angles. For exospheric modeling the effects of topography on the thermal model can be approximated by using an effective longitude for determining the temperature. This effective longitude is randomly redistributed with 1 sigma of 4.5deg. The resulting ''roughened'' analytical model well represents the statistical dispersion in the Diviner data and is expected to be generally useful for future models of lunar surface temperature, especially those implemented within exospheric simulations that address questions of volatile transport.
An Improved Analytic Model for Microdosimeter Response
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Xapsos, Michael A.
2001-01-01
An analytic model used to predict energy deposition fluctuations in a microvolume by ions through direct events is improved to include indirect delta ray events. The new model can now account for the increase in flux at low lineal energy when the ions are of very high energy. Good agreement is obtained between the calculated results and available data for laboratory ion beams. Comparison of GCR (galactic cosmic ray) flux between Shuttle TEPC (tissue equivalent proportional counter) flight data and current calculations draws a different assessment of developmental work required for the GCR transport code (HZETRN) than previously concluded.
Chewing simulation with a physically accurate deformable model.
Pascale, Andra Maria; Ruge, Sebastian; Hauth, Steffen; Kordaß, Bernd; Linsen, Lars
2015-01-01
Nowadays, CAD/CAM software is being used to compute the optimal shape and position of a new tooth model meant for a patient. With this possible future application in mind, we present in this article an independent and stand-alone interactive application that simulates the human chewing process and the deformation it produces in the food substrate. Chewing motion sensors are used to produce an accurate representation of the jaw movement. The substrate is represented by a deformable elastic model based on the finite linear elements method, which preserves physical accuracy. Collision detection based on spatial partitioning is used to calculate the forces that are acting on the deformable model. Based on the calculated information, geometry elements are added to the scene to enhance the information available for the user. The goal of the simulation is to present a complete scene to the dentist, highlighting the points where the teeth came into contact with the substrate and giving information about how much force acted at these points, which therefore makes it possible to indicate whether the tooth is being used incorrectly in the mastication process. Real-time interactivity is desired and achieved within limits, depending on the complexity of the employed geometric models. The presented simulation is a first step towards the overall project goal of interactively optimizing tooth position and shape under the investigation of a virtual chewing process using real patient data (Fig 1). PMID:26389135
NASA Astrophysics Data System (ADS)
Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal
2013-01-01
A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.
Accurate, low-cost 3D-models of gullies
NASA Astrophysics Data System (ADS)
Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine
2015-04-01
Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we
Analytic Models of Plausible Gravitational Lens Potentials
Baltz, Edward A.; Marshall, Phil; Oguri, Masamune
2007-05-04
Gravitational lenses on galaxy scales are plausibly modeled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasizing that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential.We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modeled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.
Towards Accurate Molecular Modeling of Plastic Bonded Explosives
NASA Astrophysics Data System (ADS)
Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.
2010-03-01
There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.
Towards accurate observation and modelling of Antarctic glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
King, M.
2012-04-01
The response of the solid Earth to glacial mass changes, known as glacial isostatic adjustment (GIA), has received renewed attention in the recent decade thanks to the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE measures Earth's gravity field every 30 days, but cannot partition surface mass changes, such as present-day cryospheric or hydrological change, from changes within the solid Earth, notably due to GIA. If GIA cannot be accurately modelled in a particular region the accuracy of GRACE estimates of ice mass balance for that region is compromised. This lecture will focus on Antarctica, where models of GIA are hugely uncertain due to weak constraints on ice loading history and Earth structure. Over the last years, however, there has been a step-change in our ability to measure GIA uplift with the Global Positioning System (GPS), including widespread deployments of permanent GPS receivers as part of the International Polar Year (IPY) POLENET project. I will particularly focus on the Antarctic GPS velocity field and the confounding effect of elastic rebound due to present-day ice mass changes, and then describe the construction and calibration of a new Antarctic GIA model for application to GRACE data, as well as highlighting areas where further critical developments are required.
"Analytic continuation" of = 2 minimal model
NASA Astrophysics Data System (ADS)
Sugawara, Yuji
2014-04-01
In this paper we discuss what theory should be identified as the "analytic continuation" with N rArr -N of the {mathcal N}=2 minimal model with the central charge hat {c} = 1 - frac {2}{N}. We clarify how the elliptic genus of the expected model is written in terms of holomorphic linear combinations of the "modular completions" introduced in [T. Eguchi and Y. Sugawara, JHEP 1103, 107 (2011)] in the SL(2)_{N+2}/U(1) supercoset theory. We further discuss how this model could be interpreted as a kind of model of the SL(2)_{N+2}/U(1) supercoset in the (widetilde {{R}},widetilde {R}) sector, in which only the discrete spectrum appears in the torus partition function and the potential IR divergence due to the non-compactness of the target space is removed. We also briefly discuss possible definitions of the sectors with other spin structures.
An accurate and simple quantum model for liquid water.
Paesani, Francesco; Zhang, Wei; Case, David A; Cheatham, Thomas E; Voth, Gregory A
2006-11-14
The path-integral molecular dynamics and centroid molecular dynamics methods have been applied to investigate the behavior of liquid water at ambient conditions starting from a recently developed simple point charge/flexible (SPC/Fw) model. Several quantum structural, thermodynamic, and dynamical properties have been computed and compared to the corresponding classical values, as well as to the available experimental data. The path-integral molecular dynamics simulations show that the inclusion of quantum effects results in a less structured liquid with a reduced amount of hydrogen bonding in comparison to its classical analog. The nuclear quantization also leads to a smaller dielectric constant and a larger diffusion coefficient relative to the corresponding classical values. Collective and single molecule time correlation functions show a faster decay than their classical counterparts. Good agreement with the experimental measurements in the low-frequency region is obtained for the quantum infrared spectrum, which also shows a higher intensity and a redshift relative to its classical analog. A modification of the original parametrization of the SPC/Fw model is suggested and tested in order to construct an accurate quantum model, called q-SPC/Fw, for liquid water. The quantum results for several thermodynamic and dynamical properties computed with the new model are shown to be in a significantly better agreement with the experimental data. Finally, a force-matching approach was applied to the q-SPC/Fw model to derive an effective quantum force field for liquid water in which the effects due to the nuclear quantization are explicitly distinguished from those due to the underlying molecular interactions. Thermodynamic and dynamical properties computed using standard classical simulations with this effective quantum potential are found in excellent agreement with those obtained from significantly more computationally demanding full centroid molecular dynamics
Analytical modeling of orthogonal spiral structures
NASA Astrophysics Data System (ADS)
Santos, Auteliano A.; Hobeck, Jared D.; Inman, Daniel J.
2016-11-01
This paper presents the analytical modeling of orthogonal spiral structures (OSS), a promising option for small-scale energy harvesting applications. This unique multi-beam structure is analyzed using a distributed parameter approach with Euler–Bernoulli assumptions. First, an aluminum substrate is evaluated to determine if the proposed design can be used to capture vibration energy in the desired frequency range using a twelve beam OSS. Finite element calculations are used to validate the analytical model. This model is then modified to include the electromechanical effects of a piezoelectric layer added to the aluminum substrate. Lastly, the effects of the beam width and the number of beams is analyzed for a particular surface area of the OSS. Results show that increasing the number of beams causes a reduction in the first natural frequency. From those results, it is possible to conclude that OSS can be used as an alternative to current energy harvesting systems for MEMS applications, allowing the capture of environmental energy in the frequency range of common mechanical systems.
Personalized Orthodontic Accurate Tooth Arrangement System with Complete Teeth Model.
Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Liu, Yi; Fan, Qilei; Hou, Yulin; Jiang, Xiaotong
2015-09-01
The accuracy, validity and lack of relation information between dental root and jaw in tooth arrangement are key problems in tooth arrangement technology. This paper aims to describe a newly developed virtual, personalized and accurate tooth arrangement system based on complete information about dental root and skull. Firstly, a feature constraint database of a 3D teeth model is established. Secondly, for computed simulation of tooth movement, the reference planes and lines are defined by the anatomical reference points. The matching mathematical model of teeth pattern and the principle of the specific pose transformation of rigid body are fully utilized. The relation of position between dental root and alveolar bone is considered during the design process. Finally, the relative pose relationships among various teeth are optimized using the object mover, and a personalized therapeutic schedule is formulated. Experimental results show that the virtual tooth arrangement system can arrange abnormal teeth very well and is sufficiently flexible. The relation of position between root and jaw is favorable. This newly developed system is characterized by high-speed processing and quantitative evaluation of the amount of 3D movement of an individual tooth.
Analytical models for complex swirling flows
NASA Astrophysics Data System (ADS)
Borissov, A.; Hussain, V.
1996-11-01
We develops a new class of analytical solutions of the Navier-Stokes equations for swirling flows, and suggests ways to predict and control such flows occurring in various technological applications. We view momentum accumulation on the axis as a key feature of swirling flows and consider vortex-sink flows on curved axisymmetric surfaces with an axial flow. We show that these solutions model swirling flows in a cylindrical can, whirlpools, tornadoes, and cosmic swirling jets. The singularity of these solutions on the flow axis is removed by matching them with near-axis Schlichting and Long's swirling jets. The matched solutions model flows with very complex patterns, consisting of up to seven separation regions with recirculatory 'bubbles' and vortex rings. We apply the matched solutions for computing flows in the Ranque-Hilsch tube, in the meniscus of electrosprays, in vortex breakdown, and in an industrial vortex burner. The simple analytical solutions allow a clear understanding of how different control parameters affect the flow and guide selection of optimal parameter values for desired flow features. These solutions permit extension to other problems (such as heat transfer and chemical reaction) and have the potential of being significantly useful for further detailed investigation by direct or large-eddy numerical simulations as well as laboratory experimentation.
Analytical model of Europa's O2 exosphere
NASA Astrophysics Data System (ADS)
Milillo, Anna; Plainaki, Christina; Orsini, Stefano; Mangano, Valeria; Massetti, Stefano; Mura, Alessandro
2014-05-01
The origin of the exosphere of Europa is its water ice surface. The existing exosphere models, assuming either a collisionless environment (simple Monte Carlo techniques) or a kinetic approach (Direct Monte Carlo Method) both predicts that the major constituent of the exosphere is molecular oxygen. Specifically, O2 is generated at the surface through radiolysis and chemical interactions of the water dissociation products. The non-escaping O2 molecules circulate around the moon impacting the surface several times, due to their long lifetime and due to their non-sticking, suffering thermalization to the surface temperature after each impact. In fact, the HST observations of the O emission lines have manifested the presence of an asymmetric atomic Oxygen envelope, evidencing the existence of a thin asymmetric molecular Oxygen atmosphere. The existing Monte Carlo models are not easily applicable as input of simulations devoted to the study of the plasma interactions with the moon. On the contrary, it would be important to have a suitable and user-friendly model to use as a tool. This study presents an analytical 3D model that is able to describe the molecular Oxygen exosphere by reproducing the asymmetries due to different configurations among Europa, Jupiter and the Sun. This model is obtained by a non-linear fit procedure of the EGEON Monte Carlo model results to a Chamberlain density profile. Different parameters of the model are able to describe various exosphere properties thus allowing a detailed investigation of the exospheric characteristics.
An analytical model of a longitudinal-torsional ultrasonic transducer
NASA Astrophysics Data System (ADS)
Al-Budairi, Hassan; Lucas, Margaret
2012-08-01
The combination of longitudinal and torsional (LT) vibrations at high frequencies finds many applications such as ultrasonic drilling, ultrasonic welding, and ultrasonic motors. The LT mode can be obtained by modifications to the design of a standard bolted Langevin ultrasonic transducer driven by an axially poled piezoceramic stack, by a technique that degenerates the longitudinal mode to an LT motion by a geometrical alteration of the wave path. The transducer design is developed and optimised through numerical modelling which can represent the geometry and mechanical properties of the transducer and its vibration response to an electrical input applied across the piezoceramic stack. However, although these models can allow accurate descriptions of the mechanical behaviour, they do not generally provide adequate insights into the electrical characteristics of the transducer. In this work, an analytical model is developed to present the LT transducer based on the equivalent circuit method. This model can represent both the mechanical and electrical aspects and is used to extract many of the design parameters, such as resonance and anti-resonance frequencies, the impedance spectra and the coupling coefficient of the transducer. The validity of the analytical model is demonstrated by close agreement with experimental results.
Analytical model for self-heating in nanowire geometries
NASA Astrophysics Data System (ADS)
Hunley, D. Patrick; Johnson, Stephen L.; Flores, Roel L.; Sundararajan, Abhishek; Strachan, Douglas R.
2013-06-01
An analytical closed form diffusive model is developed of Joule heating in a device consisting of a nanowire connected to two contacts on a substrate. This analytical model is compared to finite-element simulations and demonstrates excellent agreement over a wider range of system parameters in comparison to other recent models, with particularly large improvements in cases when the width of the nanowire is less than the thermal healing length of the contacts and when the thermal resistance of the contact is appreciable relative to the thermal resistance of the nanowire. The success of this model is due to more accurately accounting for the heat spreading within the contact region of a device and below the nanowire into a substrate. The heat spreading is achieved by matching the linear heat flow near the nanowire interfaces with a radially symmetric spreading solution through an interpolation function. Additional features of this model are the ability to incorporate contact resistances that may be present at the nanowire-contact interfaces, as well as accommodating materials with a linear temperature-dependent electrical resistivity.
Radiative Torques: Analytical Model And Basic Properties
NASA Astrophysics Data System (ADS)
Hoang, Thiem; Lazarian, A.
2007-05-01
We attempt to get a physical insight into grain alignment processes by studying basic properties of radiative torques (RATs). For this purpose we consider a simple toy model of a helical grain that reproduces well the basic features of RATs. The model grain consists of a reflecting spheroidal body with a reflecting mirror attached at an angle to it. Being very simple, the model allows analytical description of RATs that act upon it. We show a good correspondence of RATs obtained for this model and those of irregular grains calculated by DDSCAT. Our analysis of the role of different torque components for grain alignment reveals that one of the three RAT components does not affect the alignment, but induces only for grain precession. The other two components provide a generic alignment with grain long axes perpendicular to the light radiation, if the radiation dominates the grain precession, and perpendicular to magnetic field, otherwise. The latter coincides with the famous predictions of the Davis-Greenstein process, but our model does not invoke paramagnetic relaxation. In addition, we find that a substantial part of grains subjected to RATs gets aligned with low angular momentum, which testifies, that most of the grains in diffuse interstellar medium do not rotate fast, i.e. rotate with thermal or even sub-thermal velocities. For the radiation-dominated environments, we find that the alignment can take place on the time scale much shorter than the time of gaseous damping of grain rotation.
Comparison between analytical and numerical solution of mathematical drying model
NASA Astrophysics Data System (ADS)
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
ANALYTIC MODELING OF THE MORETON WAVE KINEMATICS
Temmer, M.; Veronig, A. M.
2009-09-10
The issue whether Moreton waves are flare-ignited or coronal mass ejection (CME)-driven, or a combination of both, is still a matter of debate. We develop an analytical model describing the evolution of a large-amplitude coronal wave emitted by the expansion of a circular source surface in order to mimic the evolution of a Moreton wave. The model results are confronted with observations of a strong Moreton wave observed in association with the X3.8/3B flare/CME event from 2005 January 17. Using different input parameters for the expansion of the source region, either derived from the real CME observations (assuming that the upward moving CME drives the wave), or synthetically generated scenarios (expanding flare region, lateral expansion of the CME flanks), we calculate the kinematics of the associated Moreton wave signature. Those model input parameters are determined which fit the observed Moreton wave kinematics best. Using the measured kinematics of the upward moving CME as the model input, we are not able to reproduce the observed Moreton wave kinematics. The observations of the Moreton wave can be reproduced only by applying a strong and impulsive acceleration for the source region expansion acting in a piston mechanism scenario. Based on these results we propose that the expansion of the flaring region or the lateral expansion of the CME flanks is more likely the driver of the Moreton wave than the upward moving CME front.
Analytical model of Europa's O2 exosphere
NASA Astrophysics Data System (ADS)
Milillo, Anna; Plainaki, Christina; De Angelis, Elisabetta; Mangano, Valeria; Massetti, Stefano; Mura, Alessandro; Orsini, Stefano; Rispoli, Rosanna
2016-10-01
The origin of the exosphere of Europa is its water ice surface. The existing exosphere models, assuming either a collisionless environment (simple Monte Carlo techniques) or a kinetic approach (Direct Monte Carlo Method) both predict that the major constituent of the exosphere is molecular oxygen. Specifically, O2 is generated at the surface through radiolysis and chemical interactions of the water dissociation products. The non-escaping O2 molecules circulate around the moon impacting the surface several times, due to their long lifetime and due to their non- sticking, suffering thermalization to the surface temperature after each impact. In fact, the HST observations of the O emission lines proved the presence of an asymmetric atomic Oxygen distribution, related to a thin asymmetric molecular Oxygen atmosphere. The existing Monte Carlo models are not easily applicable as input of simulations devoted to the study of the plasma interactions with the moon. On the other hand, the simple exponential density profiles cannot well depict the higher temperature/higher altitudes component originating by radiolysis. It would thus be important to have a suitable and user-friendly model able to describe the major exospheric characteristics to use as a tool. This study presents an analytical 3D model that is able to describe the molecular Oxygen exosphere by reproducing the two-component profiles and the asymmetries due to diverse configurations among Europa, Jupiter and the Sun. This model is obtained by a non-linear fit procedure of the EGEON Monte Carlo model (Plainaki et al. 2013) to a Chamberlain density profile. Different parameters of the model are able to describe various exosphere properties thus allowing a detailed investigation of the exospheric characteristics. As an example a discussion on the exospheric temperatures in different configurations and space regions is given.
Analytical model of Europa's O2 exosphere
NASA Astrophysics Data System (ADS)
Milillo, Anna; Plainaki, Christina; Orsini, Stefano; De Angelis, Elisabetta; Mangano, Valeria; Massetti, Stefano; Mura, Alessandro; Rispoli, Rosanna; Colasanti, Luca
2015-04-01
The origin of the exosphere of Europa is its water ice surface. The existing exosphere models, assuming either a collisionless environment (simple Monte Carlo techniques) or a kinetic approach (Direct Monte Carlo Method) both predict that the major constituent of the exosphere is molecular oxygen. Specifically, O2 is generated at the surface through radiolysis and chemical interactions of the water dissociation products. The non-escaping O2 molecules circulate around the moon impacting the surface several times, due to their long lifetime and due to their non- sticking, suffering thermalization to the surface temperature after each impact. In fact, the HST observations of the O emission lines have manifested the presence of an asymmetric atomic Oxygen envelope, evidencing the possible existence of a thin asymmetric molecular Oxygen atmosphere. The existing Monte Carlo models are not easily applicable as input of simulations devoted to the study of the plasma interactions with the moon. On the other hand, the simple exponential density profiles cannot well depict the higher temperature/higher altitudes component originating by radiolysis. On the contrary, it would be important to have a suitable and user-friendly model to use as a tool. This study presents an analytical 3D model that is able to describe the molecular Oxygen exosphere by reproducing the asymmetries due to two configurations among Europa, Jupiter and the Sun, that is illumination at leading and at trailing side. This model is obtained by a non-linear fit procedure of the EGEON Monte Carlo model to a Chamberlain density profile. Different parameters of the model are able to describe various exosphere properties thus allowing a detailed investigation of the exospheric characteristics.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL
The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volumeconstancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em
2010-05-19
Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.
A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics
Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em
2010-01-01
Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330
Lumb, Matthew P.; Steiner, Myles A.; Geisz, John F.; Walters, Robert J.
2014-11-21
The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
Applying an accurate spherical model to gamma-ray burst afterglow observations
NASA Astrophysics Data System (ADS)
Leventis, K.; van der Horst, A. J.; van Eerten, H. J.; Wijers, R. A. M. J.
2013-05-01
We present results of model fits to afterglow data sets of GRB 970508, GRB 980703 and GRB 070125, characterized by long and broad-band coverage. The model assumes synchrotron radiation (including self-absorption) from a spherical adiabatic blast wave and consists of analytic flux prescriptions based on numerical results. For the first time it combines the accuracy of hydrodynamic simulations through different stages of the outflow dynamics with the flexibility of simple heuristic formulas. The prescriptions are especially geared towards accurate description of the dynamical transition of the outflow from relativistic to Newtonian velocities in an arbitrary power-law density environment. We show that the spherical model can accurately describe the data only in the case of GRB 970508, for which we find a circumburst medium density n ∝ r-2. We investigate in detail the implied spectra and physical parameters of that burst. For the microphysics we show evidence for equipartition between the fraction of energy density carried by relativistic electrons and magnetic field. We also find that for the blast wave to be adiabatic, the fraction of electrons accelerated at the shock has to be smaller than 1. We present best-fitting parameters for the afterglows of all three bursts, including uncertainties in the parameters of GRB 970508, and compare the inferred values to those obtained by different authors.
A simplified analytical random walk model for proton dose calculation
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.
3ARM: A Fast, Accurate Radiative Transfer Model for Use in Climate Models
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.
1996-01-01
A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.
3ARM: A Fast, Accurate Radiative Transfer Model for use in Climate Models
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.
1996-01-01
A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.
NASA Astrophysics Data System (ADS)
Smith, R.; Flynn, C.; Candlish, G. N.; Fellhauer, M.; Gibson, B. K.
2015-04-01
We present accurate models of the gravitational potential produced by a radially exponential disc mass distribution. The models are produced by combining three separate Miyamoto-Nagai discs. Such models have been used previously to model the disc of the Milky Way, but here we extend this framework to allow its application to discs of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disc treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disc by <0.4 per cent out to 4 disc scalelengths, and <1.9 per cent out to 10 disc scalelengths. We tabulate fitting parameters which facilitate construction of exponential discs for any scalelength, and a wide range of disc thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disc galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disc, and a discy dwarf galaxy.
Analytical higher-order model for flexible and stretchable sensors
NASA Astrophysics Data System (ADS)
Zhang, Yongfang; Zhu, Hongbin; Liu, Cheng; Liu, Xu; Liu, Fuxi; Lü, Yanjun
2015-03-01
The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil. The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil. According to the requirement of mechanical flexibility of the sensor, the combined use of a layered flexible structural formation and a strain isolation layer is implemented. An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors. The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model. The stress distribution in the structure is investigated when bending load is applied to the structures. The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation (polydimethylsiloxane) layer accurately. The results by the proposed model are in good agreement with the finite element method, in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer. The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.
Analytic Ballistic Performance Model of Whipple Shields
NASA Technical Reports Server (NTRS)
Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.
2015-01-01
The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.
Analytic wave model of Stark deceleration dynamics
Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav
2006-06-15
Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.
Radiative torques: analytical model and basic properties
NASA Astrophysics Data System (ADS)
Lazarian, A.; Hoang, Thiem
2007-07-01
We attempt to get a physical insight into grain alignment processes by studying basic properties of radiative torques (RATs). For this purpose we consider a simple toy model of a helical grain that reproduces well the basic features of RATs. The model grain consists of a spheroidal body with a mirror attached at an angle to it. Being very simple, the model allows analytical description of RATs that act upon it. We show a good correspondence of RATs obtained for this model and those of irregular grains calculated by DDSCAT. Our analysis of the role of different torque components for grain alignment reveals that one of the three RAT components does not affect the alignment, but induces only for grain precession. The other two components provide a generic alignment with grain long axes perpendicular to the radiation direction, if the radiation dominates the grain precession, and perpendicular to magnetic field, otherwise. The latter coincides with the famous predictions of the Davis-Greenstein process, but our model does not invoke paramagnetic relaxation. In fact, we identify a narrow range of angles between the radiation beam and the magnetic field, for which the alignment is opposite to the Davis-Greenstein predictions. This range is likely to vanish, however, in the presence of thermal wobbling of grains. In addition, we find that a substantial part of grains subjected to RATs gets aligned with low angular momentum, which testifies that most of the grains in diffuse interstellar medium do not rotate fast, that is, rotate with thermal or even subthermal velocities. This tendency of RATs to decrease grain angular velocity as a result of the RAT alignment decreases the degree of polarization, by decreasing the degree of internal alignment, that is, the alignment of angular momentum with the grain axes. For the radiation-dominated environments, we find that the alignment can take place on the time-scale much shorter than the time of gaseous damping of grain rotation
Analytical Jacobian Calculation in RT Model Including Polarization Effect
NASA Astrophysics Data System (ADS)
Okabayashi, Y.; Yoshida, Y.; Ota, Y.
2014-12-01
The greenhouse gas observing satellite "GOSAT" launched in January 2009 has been observing global distribution of CO2 and CH4. The TANSO-FTS mounted on GOSAT measures the two polarized components (called "P" and "S") of short wavelength infrared (SWIR) spectrum reflected from the earth's surface. In NIES, column-averaged dry air mole fraction of CO2 and CH4 (XCO2 and XCH4) are retrieved from SWIR spectra. However, the observed polarization information is not effectively utilized in the retrieval process due to the large computational cost of a vector RT model, instead the polarization synthesized spectra and a scalar RT model are used in the operational processing. An optical path length modification due to aerosol scattering is known as the major error source for XCO2 and XCH4 retrieval from SWIR spectra. Because the aerosol scattering changes polarization state of light, more accurate or additional aerosol information is expected by using the observed polarization spectra effectively in the retrieval process, which improves the retrieval accuracy of XCO2 and XCH4. In addition, for information content analysis, sensitivity analysis and error analysis, Jacobian matrix is important onto retrieval algorithm design before analyses for actual observed data. However, in the case of using RT model including polarization effect in retrieval process, the computational cost of Jacobian matrix calculations in maximum a posteriori retrieval is significantly large. Efficient calculation of analytical Jacobian is necessary. As a first step, we are implementing an analytical Jacobian calculation function to the vector RT model "Pstar". RT scheme of Pstar is based on hybrid method comprising the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each vertical layer through the discrete ordinate solution, and the vertically inhomogeneous system is constructed using the matrix operator method. Because the delta
Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm
NASA Astrophysics Data System (ADS)
Huang, Yanhua; Gu, Lizhi
2015-09-01
The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and
Analytical model of diffuse reflectance spectrum of skin tissue
Lisenko, S A; Kugeiko, M M; Firago, V A; Sobchuk, A N
2014-01-31
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)
Analytical model of diffuse reflectance spectrum of skin tissue
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.
2014-01-01
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.
Analytical modeling of Cosmic Winds and Jets
NASA Astrophysics Data System (ADS)
Vlahakis, Nektarios
1998-11-01
stellar wind and the Blandford and Payne (1982) model of a disk-wind; it also contains nonpolytropic models, such as those of winds/jets in Sauty and Tsinganos (1994), Lima et al (1996) and Trussoni et al (1997). Besides the unification of all known cases under a common scheme, several new classes emerge and some are briefly analyzed; they could be explored for a further understanding of the physical properties of MHD outflows from various magnetized astrophysical rotators. We also propose a new class of exact and self-consistent MHD solutions which describe steady and axisymmetric hydromagnetic outflows from the magnetized atmosphere of a rotating gravitating central object with possibly an orbiting accretion disk. The plasma is driven by a thermal pressure gradient, as well as by magnetic rotator and radiative forces. At the Alfvenic and fast critical points the appropriate criticality conditions are applied. The outflows start almost radially but after the Alfven transition and before the fast critical surface is encountered the magnetic pinching force bends the poloidal streamlines into a cylindrical jet-type shape. The terminal speed, Alfven number, cross-sectional area of the jet, as well as its final pressure and density obtain uniform values at large distances from the source. The goal of the study is to give an analytical discussion of the two-dimensional interplay of the thermal pressure gradient, gravitational, Lorentz and inertial forces in accelerating and collimating an MHD flow. A parametric study of the model is given, as well as a brief sketch of its applicability to a self-consistent modeling of collimated outflows from various astrophysical objects. For example, the obtained characteristics of the collimated outflow in agreement with those in jets associated with YSO's. General theoretical arguments and various analytic self-similar solutions have recently shown that magnetized and rotating astrophysical outflows may become asymptotically cylindrical
Models in biology: 'accurate descriptions of our pathetic thinking'.
Gunawardena, Jeremy
2014-01-01
In this essay I will sketch some ideas for how to think about models in biology. I will begin by trying to dispel the myth that quantitative modeling is somehow foreign to biology. I will then point out the distinction between forward and reverse modeling and focus thereafter on the former. Instead of going into mathematical technicalities about different varieties of models, I will focus on their logical structure, in terms of assumptions and conclusions. A model is a logical machine for deducing the latter from the former. If the model is correct, then, if you believe its assumptions, you must, as a matter of logic, also believe its conclusions. This leads to consideration of the assumptions underlying models. If these are based on fundamental physical laws, then it may be reasonable to treat the model as 'predictive', in the sense that it is not subject to falsification and we can rely on its conclusions. However, at the molecular level, models are more often derived from phenomenology and guesswork. In this case, the model is a test of its assumptions and must be falsifiable. I will discuss three models from this perspective, each of which yields biological insights, and this will lead to some guidelines for prospective model builders. PMID:24886484
Clarifying types of uncertainty: when are models accurate, and uncertainties small?
Cox, Louis Anthony Tony
2011-10-01
Professor Aven has recently noted the importance of clarifying the meaning of terms such as "scientific uncertainty" for use in risk management and policy decisions, such as when to trigger application of the precautionary principle. This comment examines some fundamental conceptual challenges for efforts to define "accurate" models and "small" input uncertainties by showing that increasing uncertainty in model inputs may reduce uncertainty in model outputs; that even correct models with "small" input uncertainties need not yield accurate or useful predictions for quantities of interest in risk management (such as the duration of an epidemic); and that accurate predictive models need not be accurate causal models.
Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics
Baele, Guy; Li, Wai Lok Sibon; Drummond, Alexei J.; Suchard, Marc A.; Lemey, Philippe
2013-01-01
Recent implementations of path sampling (PS) and stepping-stone sampling (SS) have been shown to outperform the harmonic mean estimator (HME) and a posterior simulation-based analog of Akaike’s information criterion through Markov chain Monte Carlo (AICM), in Bayesian model selection of demographic and molecular clock models. Almost simultaneously, a Bayesian model averaging approach was developed that avoids conditioning on a single model but averages over a set of relaxed clock models. This approach returns estimates of the posterior probability of each clock model through which one can estimate the Bayes factor in favor of the maximum a posteriori (MAP) clock model; however, this Bayes factor estimate may suffer when the posterior probability of the MAP model approaches 1. Here, we compare these two recent developments with the HME, stabilized/smoothed HME (sHME), and AICM, using both synthetic and empirical data. Our comparison shows reassuringly that MAP identification and its Bayes factor provide similar performance to PS and SS and that these approaches considerably outperform HME, sHME, and AICM in selecting the correct underlying clock model. We also illustrate the importance of using proper priors on a large set of empirical data sets. PMID:23090976
Accurate modelling of anisotropic effects in austenitic stainless steel welds
Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.
2014-02-18
The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.
Analytical solution of a model for complex food webs
NASA Astrophysics Data System (ADS)
Camacho, Juan; Guimerà, Roger; Amaral, Luís A.
2002-03-01
We investigate numerically and analytically a recently proposed model for food webs [Nature 404, 180 (2000)] in the limit of large web sizes and sparse interaction matrices. We obtain analytical expressions for several quantities with ecological interest, in particular, the probability distributions for the number of prey and the number of predators. We find that these distributions have fast-decaying exponential and Gaussian tails, respectively. We also find that our analytical expressions are robust to changes in the details of the model.
Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective.
Khazaei, Hamzeh; Mench-Bressan, Nadja; McGregor, Carolyn; Pugh, James Edward
2015-01-01
The effective use of data within intensive care units (ICUs) has great potential to create new cloud-based health analytics solutions for disease prevention or earlier condition onset detection. The Artemis project aims to achieve the above goals in the area of neonatal ICUs (NICU). In this paper, we proposed an analytical model for the Artemis cloud project which will be deployed at McMaster Children's Hospital in Hamilton. We collect not only physiological data but also the infusion pumps data that are attached to NICU beds. Using the proposed analytical model, we predict the amount of storage, memory, and computation power required for the system. Capacity planning and tradeoff analysis would be more accurate and systematic by applying the proposed analytical model in this paper. Numerical results are obtained using real inputs acquired from McMaster Children's Hospital and a pilot deployment of the system at The Hospital for Sick Children (SickKids) in Toronto. PMID:27170907
Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective.
Khazaei, Hamzeh; Mench-Bressan, Nadja; McGregor, Carolyn; Pugh, James Edward
2015-01-01
The effective use of data within intensive care units (ICUs) has great potential to create new cloud-based health analytics solutions for disease prevention or earlier condition onset detection. The Artemis project aims to achieve the above goals in the area of neonatal ICUs (NICU). In this paper, we proposed an analytical model for the Artemis cloud project which will be deployed at McMaster Children's Hospital in Hamilton. We collect not only physiological data but also the infusion pumps data that are attached to NICU beds. Using the proposed analytical model, we predict the amount of storage, memory, and computation power required for the system. Capacity planning and tradeoff analysis would be more accurate and systematic by applying the proposed analytical model in this paper. Numerical results are obtained using real inputs acquired from McMaster Children's Hospital and a pilot deployment of the system at The Hospital for Sick Children (SickKids) in Toronto.
Towards an Accurate Performance Modeling of Parallel SparseFactorization
Grigori, Laura; Li, Xiaoye S.
2006-05-26
We present a performance model to analyze a parallel sparseLU factorization algorithm on modern cached-based, high-end parallelarchitectures. Our model characterizes the algorithmic behavior bytakingaccount the underlying processor speed, memory system performance, aswell as the interconnect speed. The model is validated using theSuperLU_DIST linear system solver, the sparse matrices from realapplications, and an IBM POWER3 parallel machine. Our modelingmethodology can be easily adapted to study performance of other types ofsparse factorizations, such as Cholesky or QR.
Accurate Low-mass Stellar Models of KOI-126
NASA Astrophysics Data System (ADS)
Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron
2011-10-01
The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.
Magnetic field models of nine CP stars from "accurate" measurements
NASA Astrophysics Data System (ADS)
Glagolevskij, Yu. V.
2013-01-01
The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.
Project Summary. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS
Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...
Accurate first principles model potentials for intermolecular interactions.
Gordon, Mark S; Smith, Quentin A; Xu, Peng; Slipchenko, Lyudmila V
2013-01-01
The general effective fragment potential (EFP) method provides model potentials for any molecule that is derived from first principles, with no empirically fitted parameters. The EFP method has been interfaced with most currently used ab initio single-reference and multireference quantum mechanics (QM) methods, ranging from Hartree-Fock and coupled cluster theory to multireference perturbation theory. The most recent innovations in the EFP model have been to make the computationally expensive charge transfer term much more efficient and to interface the general EFP dispersion and exchange repulsion interactions with QM methods. Following a summary of the method and its implementation in generally available computer programs, these most recent new developments are discussed.
Simulation model accurately estimates total dietary iodine intake.
Verkaik-Kloosterman, Janneke; van 't Veer, Pieter; Ocké, Marga C
2009-07-01
One problem with estimating iodine intake is the lack of detailed data about the discretionary use of iodized kitchen salt and iodization of industrially processed foods. To be able to take into account these uncertainties in estimating iodine intake, a simulation model combining deterministic and probabilistic techniques was developed. Data from the Dutch National Food Consumption Survey (1997-1998) and an update of the Food Composition database were used to simulate 3 different scenarios: Dutch iodine legislation until July 2008, Dutch iodine legislation after July 2008, and a potential future situation. Results from studies measuring iodine excretion during the former legislation are comparable with the iodine intakes estimated with our model. For both former and current legislation, iodine intake was adequate for a large part of the Dutch population, but some young children (<5%) were at risk of intakes that were too low. In the scenario of a potential future situation using lower salt iodine levels, the percentage of the Dutch population with intakes that were too low increased (almost 10% of young children). To keep iodine intakes adequate, salt iodine levels should not be decreased, unless many more foods will contain iodized salt. Our model should be useful in predicting the effects of food reformulation or fortification on habitual nutrient intakes.
Analytic model for the bispectrum of galaxies in redshift space
Smith, Robert E.; Sheth, Ravi K.; Scoccimarro, Roman
2008-07-15
We develop an analytic theory for the redshift space bispectrum of dark matter, haloes, and galaxies. This is done within the context of the halo model of structure formation, as this allows for the self-consistent inclusion of linear and nonlinear redshift-space distortions and also for the nonlinearity of the halo bias. The model is applicable over a wide range of scales: on the largest scales the predictions reduce to those of the standard perturbation theory (PT); on smaller scales they are determined primarily by the nonlinear virial velocities of galaxies within haloes, and this gives rise to the U-shaped anisotropy in the reduced bispectrum--a finger print of the Finger-Of-God distortions. We then confront the predictions with measurements of the redshift-space bispectrum of dark matter from an ensemble of numerical simulations. On very large scales, k=0.05h Mpc{sup -1}, we find reasonably good agreement between our halo model, PT and the data, to within the errors. On smaller scales, k=0.1h Mpc{sup -1}, the measured bispectra differ from the PT at the level of {approx}10%-20%, especially for colinear triangle configurations. The halo model predictions improve over PT, but are accurate to no better than 10%. On smaller scales k=0.5-1.0h Mpc{sup -1}, our model provides a significant improvement over PT, which breaks down. This implies that studies which use the lowest order PT to extract galaxy bias information are not robust on scales k > or approx. 0.1h Mpc{sup -1}. The analytic and simulation results also indicate that there is no observable scale for which the configuration dependence of the reduced bispectrum is constant--hierarchical models for the higher-order correlation functions in redshift space are unlikely to be useful. It is hoped that our model will facilitate extraction of information from large-scale structure surveys of the Universe, because different galaxy populations are naturally included into our description.
Accurate numerical solutions for elastic-plastic models. [LMFBR
Schreyer, H. L.; Kulak, R. F.; Kramer, J. M.
1980-03-01
The accuracy of two integration algorithms is studied for the common engineering condition of a von Mises, isotropic hardening model under plane stress. Errors in stress predictions for given total strain increments are expressed with contour plots of two parameters: an angle in the pi plane and the difference between the exact and computed yield-surface radii. The two methods are the tangent-predictor/radial-return approach and the elastic-predictor/radial-corrector algorithm originally developed by Mendelson. The accuracy of a combined tangent-predictor/radial-corrector algorithm is also investigated.
An analytically linearized helicopter model with improved modeling accuracy
NASA Technical Reports Server (NTRS)
Jensen, Patrick T.; Curtiss, H. C., Jr.; Mckillip, Robert M., Jr.
1991-01-01
An analytically linearized model for helicopter flight response including rotor blade dynamics and dynamic inflow, that was recently developed, was studied with the objective of increasing the understanding, the ease of use, and the accuracy of the model. The mathematical model is described along with a description of the UH-60A Black Hawk helicopter and flight test used to validate the model. To aid in utilization of the model for sensitivity analysis, a new, faster, and more efficient implementation of the model was developed. It is shown that several errors in the mathematical modeling of the system caused a reduction in accuracy. These errors in rotor force resolution, trim force and moment calculation, and rotor inertia terms were corrected along with improvements to the programming style and documentation. Use of a trim input file to drive the model is examined. Trim file errors in blade twist, control input phase angle, coning and lag angles, main and tail rotor pitch, and uniform induced velocity, were corrected. Finally, through direct comparison of the original and corrected model responses to flight test data, the effect of the corrections on overall model output is shown.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.
2015-12-01
We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.
Accurate numerical forward model for optimal retracking of SIRAL2 SAR echoes over open ocean
NASA Astrophysics Data System (ADS)
Phalippou, L.; Demeestere, F.
2011-12-01
The SAR mode of SIRAL-2 on board Cryosat-2 has been designed to measure primarily sea-ice and continental ice (Wingham et al. 2005). In 2005, K. Raney (KR, 2005) pointed out the improvements brought by SAR altimeter for open ocean. KR results were mostly based on 'rule of thumb' considerations on speckle noise reduction due to the higher PRF and to speckle decorrelation after SAR processing. In 2007, Phalippou and Enjolras (PE,2007) provided the theoretical background for optimal retracking of SAR echoes over ocean with a focus on the forward modelling of the power-waveforms. The accuracies of geophysical parameters (range, significant wave heights, and backscattering coefficient) retrieved from SAR altimeter data were derived accounting for SAR echo shape and speckle noise accurate modelling. The step forward to optimal retracking using numerical forward model (NFM) was also pointed out. NFM of the power waveform avoids analytical approximation, a warranty to minimise the geophysical dependent biases in the retrieval. NFM have been used for many years, in operational meteorology in particular, for retrieving temperature and humidity profiles from IR and microwave radiometers as the radiative transfer function is complex (Eyre, 1989). So far this technique was not used in the field of ocean conventional altimetry as analytical models (e.g. Brown's model for instance) were found to give sufficient accuracy. However, although NFM seems desirable even for conventional nadir altimetry, it becomes inevitable if one wish to process SAR altimeter data as the transfer function is too complex to be approximated by a simple analytical function. This was clearly demonstrated in PE 2007. The paper describes the background to SAR data retracking over open ocean. Since PE 2007 improvements have been brought to the forward model and it is shown that the altimeter on-ground and in flight characterisation (e.g antenna pattern range impulse response, azimuth impulse response
Accurate assessment of mass, models and resolution by small-angle scattering
Rambo, Robert P.; Tainer, John A.
2013-01-01
Modern small angle scattering (SAS) experiments with X-rays or neutrons provide a comprehensive, resolution-limited observation of the thermodynamic state. However, methods for evaluating mass and validating SAS based models and resolution have been inadequate. Here, we define the volume-of-correlation, Vc: a SAS invariant derived from the scattered intensities that is specific to the structural state of the particle, yet independent of concentration and the requirements of a compact, folded particle. We show Vc defines a ratio, Qr, that determines the molecular mass of proteins or RNA ranging from 10 to 1,000 kDa. Furthermore, we propose a statistically robust method for assessing model-data agreements (X2free) akin to cross-validation. Our approach prevents over-fitting of the SAS data and can be used with a newly defined metric, Rsas, for quantitative evaluation of resolution. Together, these metrics (Vc, Qr, X2free, and Rsas) provide analytical tools for unbiased and accurate macromolecular structural characterizations in solution. PMID:23619693
Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model
NASA Astrophysics Data System (ADS)
Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.
2007-05-01
Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem
Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations*
Xu, Zhenli; Cai, Wei
2013-01-01
We review recent developments of fast analytical methods for macroscopic electrostatic calculations in biological applications, including the Poisson–Boltzmann (PB) and the generalized Born models for electrostatic solvation energy. The focus is on analytical approaches for hybrid solvation models, especially the image charge method for a spherical cavity, and also the generalized Born theory as an approximation to the PB model. This review places much emphasis on the mathematical details behind these methods. PMID:23745011
Lim, Chee Wei; Tai, Siew Hoon; Lee, Lin Min; Chan, Sheot Harn
2012-07-01
The current food crisis demands unambiguous determination of mycotoxin contamination in staple foods to achieve safer food for consumption. This paper describes the first accurate LC-MS/MS method developed to analyze tricothecenes in grains by applying multiple reaction monitoring (MRM) transition and MS(3) quantitation strategies in tandem. The tricothecenes are nivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, fusarenon X, 3-acetyl-deoxynivalenol, 15-acetyldeoxynivalenol, diacetoxyscirpenol, and HT-2 and T-2 toxins. Acetic acid and ammonium acetate were used to convert the analytes into their respective acetate adducts and ammonium adducts under negative and positive MS polarity conditions, respectively. The mycotoxins were separated by reversed-phase LC in a 13.5-min run, ionized using electrospray ionization, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge (m/z) ratios were used to perform quantitation under MRM transition and MS(3) (linear ion trap) modes. Three experiments were made for each quantitation mode and matrix in batches over 6 days for recovery studies. The matrix effect was investigated at concentration levels of 20, 40, 80, 120, 160, and 200 μg kg(-1) (n = 3) in 5 g corn flour and rice flour. Extraction with acetonitrile provided a good overall recovery range of 90-108% (n = 3) at three levels of spiking concentration of 40, 80, and 120 μg kg(-1). A quantitation limit of 2-6 μg kg(-1) was achieved by applying an MRM transition quantitation strategy. Under MS(3) mode, a quantitation limit of 4-10 μg kg(-1) was achieved. Relative standard deviations of 2-10% and 2-11% were reported for MRM transition and MS(3) quantitation, respectively. The successful utilization of MS(3) enabled accurate analyte fragmentation pattern matching and its quantitation, leading to the development of analytical methods in fields that demand both analyte specificity and fragmentation fingerprint-matching capabilities that are
Feedbacks Between Numerical and Analytical Models in Hydrogeology
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Cardenas, M. B.; Toundykov, D.; Cohn, S.
2012-12-01
Hydrogeology is a relatively young discipline which combines elements of Earth science and engineering. Mature fundamental disciplines (e.g., physics, chemistry, fluid mechanics) have centuries-long history of mathematical modeling even prior to discovery of Darcy's law. Thus, in hydrogeology, relatively few classic analytical models (such those by Theis, Polubarinova-Kochina, Philip, Toth, Henry, Dagan, Neuman) were developed by the early 1970's. The advent of computers and practical demands refocused mathematical models towards numerical techniques. With more diverse but less mathematically-oriented training, most hydrogeologists shifted from analytical methods to use of standardized computational software. Spatial variability in internal properties and external boundary conditions and geometry, and the added complexity of chemical and biological processes will remain major challenges for analytical modeling. Possibly, analytical techniques will play a subordinate role to numerical approaches in many applications. On the other hand, the rise of analytical element modeling of groundwater flow is a strong alternative to numerical models when data demand and computational efficiency is considered. The hallmark of analytical models - transparency and accuracy - will remain indispensable for scientific exploration of complex phenomena and for benchmarking numerical models. Therefore, there will always be feedbacks and complementarities between numerical and analytical techniques, as well as a certain ideological schism among various views to modeling. We illustrate the idea of feedbacks by reviewing evolution of Joszef Toth's analytical model of gravity driven flow systems. Toth's (1963) approach was to reduce the flow domain to a rectangle which allowed for closed-form solution of the governing equations. Succeeding numerical finite-element models by Freeze and Witherspoon (1966-1968) explored the effects of geometry and heterogeneity on regional groundwater flow
Combined experimental/analytical modeling using component mode synthesis
Martinez, D.R.; Carne, T.G.; Gregory, D.L.; Miller, A.K.
1984-01-01
This study evaluates the accuracy of computed model frequencies and mode shapes obtained from a combined experimental/analytical model for a simple beam structure. The structure was divided into two subsystems, and one subsystem was tested to obtain its free-free modes. Using a Component Mode Synthesis (CMS) technique, the experimental model data base for one subsystem was directly coupled with a finite element model of the other subsystem to create an experimental/analytical model of the total structure. Both the translational and rotational elements of the residual flexibilities and mode shapes at the interface of the experimental subsystem were measured and used in the coupling. The modal frequencies and mode shapes obtained for the combined experimental/analytical model are compared to those for a reference finite element model of the entire structure. The sensitivity of the CMS model predictions to errors in the modal parameters and residual flexibilities, which are required to define a subsystem, is also examined.
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface.
Zhang, Ziyin; Nagy, Peter B; Hassan, Waled
2016-02-01
Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the additional nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation. PMID:26482394
Experimental and analytical generic space station dynamic models
NASA Technical Reports Server (NTRS)
Belvin, W. K.; Edighoffer, H. H.
1986-01-01
A dynamic model used for verification of analytical and experimental methods is documented. The model consists of five substructures to simulate the multibody, low frequency nature of large space structures. Design considerations which led to a fundamental vibration frequency of less than one Hz are described. Finite element analysis used to predict the vibration modes and frequencies of the experimental model is presented. In addition, modeling of cable suspension effects using prestressed vibration analysis is described. Details of the expermental and analytical models are included to permit replication of the study. Results of the modal vibration tests and analysis are presented in a separate document.
Analytical model for orbital debris environmental management
NASA Technical Reports Server (NTRS)
Talent, David L.
1990-01-01
A differential equation, also referred to as the PIB (particle-in-a-box) model, expressing the time rate of change of the number of objects in orbit, is developed, and its applicability is illustrated. The model can be used as a tool for the assessment of LEO environment stability, and as a starting point for the development of numerical evolutionary models. Within the context of the model, evolutionary scenarios are examined, and found to be sensitive to the growth rate. It is determined that the present environment is slightly unstable to catastrophic growth, and that the number of particles on orbit will continue to increase until approximately 2250-2350 AD, with a maximum of 2,000,000. The model is expandable to the more realistic (complex) case of multiple species in a multiple-tier system.
Retardation analytical model to extend service life
NASA Technical Reports Server (NTRS)
Matejczyk, J.
1984-01-01
A fatigue crack growth model that incorporates crack growth retardation effects and is applicable to the materials characteristics and service environments of high performance LH2/LO2 engine systems is discussed. Future Research plans are outlined.
Retardation analytical model to extend service life
NASA Technical Reports Server (NTRS)
Matejczyk, D.
1984-01-01
A fatigue crack growth model that incorporates crack growth retardation effects and is applicable to the materials characteristics and service environments of high performance LH2/LO2 engine systems was developed and tested.
Combined experimental/analytical modeling using component mode synthesis
Martinez, D.R.; Carne, T.G.; Gregory, D.L.; Miller, A.K.
1984-04-01
This study evaluates the accuracy of computed modal frequencies and mode shapes obtained from a combined experimental/analytical model for a simple beam structure. The structure was divided into two subsystems and one subsystem was tested to obtain its free-free modes. Using a Component Mode Synthesis (CMS) technique, the experimental modal data base for one subsystem was directly coupled with a finite element model of the other subsystem to create an experimental/analytical model of the total structure. Both the translational and rotational elements of the residual flexibilities and mode shapes at the interface of the experimental subsystem were measured and used in the coupling. The modal frequencies and mode shapes obtained for the combined experimental/analytical model are compared to those for a reference finite element model of the entire structure. The sensitivity of the CMS model predictions to errors in the modal parameters and residual flexibilities, which are required to define a subsystem, is also examined.
An analytic model of high solidity vertical axis windmills
NASA Astrophysics Data System (ADS)
Carothers, R. G.; Bragg, G. M.
By introducing an induced cross flow to the conventional flow models used for vertical-axis windmills an analytic model for high solidity rotors is developed. Results as predicted by the model are compared with those determined from wind tunnel tests.
Analytic modeling of a spray diffusion flame
NASA Technical Reports Server (NTRS)
Harsha, P. T.; Edelman, R. B.
1984-01-01
A detailed model for a spray diffusion flame is described. The model is based on the boundary layer form of the equations of motion, with droplet transport accounted for using a discretized droplet size distribution function. Interphase transport of mass and energy are accounted for, with a flame-sheet model used to describe the combustion process on a droplet scale. Near dynamic equilibrium is assumed for the description of droplet transport; droplets can diffuse relative to the gas phase. Gas-phase mixing is accounted for using a two-equation turbulence model; buoyancy effects are included, with a temperature fluctuation equation used to account for buoyancy effects on turbulence structure. Thermal radiation from gas-phase CO2 and H2O is included. Gas-phase chemical kinetics are modeled using a 20-reaction, 10-species version of the advanced quasi-global chemical kinetics formulation. Results are compared with data for a vaporizing Freon spray and a pentane spray flame. It is shown that the computational approach provides a reasonably valid picture of the overall development of a spray diffusion flame, and, furthermore, provides a useful tool for the parametric examination of the spray combustion process.
Evaluating Child Welfare policies with decision-analytic simulation models
Goldhaber-Fiebert, Jeremy D.; Bailey, Stephanie L.; Hurlburt, Michael S.; Zhang, Jinjin; Snowden, Lonnie R.; Wulczyn, Fred; Landsverk, John; Horwitz, Sarah M.
2013-01-01
The objective was to demonstrate decision-analytic modeling in support of Child Welfare policymakers considering implementing evidence-based interventions. Outcomes included permanency (e.g., adoptions) and stability (e.g., foster placement changes). Analyses of a randomized trial of KEEP -- a foster parenting intervention -- and NSCAW-1 estimated placement change rates and KEEP's effects. A microsimulation model generalized these findings to other Child Welfare systems. The model projected that KEEP could increase permanency and stability, identifying strategies targeting higher-risk children and geographical regions that achieve benefits efficiently. Decision-analytic models enable planners to gauge the value of potential implementations. PMID:21861204
Johnson, Timothy C.; Wellman, Dawn M.
2015-06-26
Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method is implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.
An Analytical Model of Tribocharging in Regolith
NASA Astrophysics Data System (ADS)
Carter, D. P.; Hartzell, C. M.
2015-12-01
Nongravitational forces, including electrostatic forces and cohesion, can drive the behavior of regolith in low gravity environments such as the Moon and asteroids. Regolith is the 'skin' of solid planetary bodies: it is the outer coating that is observed by orbiters and the first material contacted by landers. Triboelectric charging, the phenomenon by which electrical charge accumulates during the collision or rubbing of two surfaces, has been found to occur in initially electrically neutral granular mixtures. Although charge transfer is often attributed to chemical differences between the different materials, charge separation has also been found to occur in mixtures containing grains of a single material, but with a variety of grain sizes. In such cases, the charge always separates according to grain size; typically the smaller grains acquire a more negative charge than the larger grains. Triboelectric charging may occur in a variety of planetary phenomena (including mass wasting and dust storms) as well as during spacecraft-surface interactions (including sample collection and wheel motion). Interactions between charged grains or with the solar wind plasma could produce regolith motion. However, a validated, predictive model of triboelectric charging between dielectric grains has not yet been developed. A model for such size-dependent charge separation will be presented, demonstrating how random collisions between initially electrically neutral grains lead to net migration of electrons toward the smaller grains. The model is applicable to a wide range of single-material granular mixtures, including those with unusual or wildly varying size distributions, and suggests a possible mechanism for the reversal of the usual size-dependent charge polarity described above. This is a significant improvement over existing charge exchange models, which are restricted to two discrete grains sizes and provide severely limited estimates for charge magnitude. We will also
Accurate Analytic Potential Functions for the a ^3Π_1 and X ^1Σ^+ States of {IBr}
NASA Astrophysics Data System (ADS)
Yukiya, Tokio; Nishimiya, Nobuo; Suzuki, Masao; Le Roy, Robert
2014-06-01
Spectra of IBr in various wavelength regions have been measured by a number of researchers using traditional diffraction grating and microwave methods, as well as using high-resolution laser techniques combined with a Fourier transform spectrometer. In a previous paper at this meeting, we reported a preliminary determination of analytic potential energy functions for the A ^3Π_1 and X ^1Σ^+ states of IBr from a direct-potential-fit (DPF) analysis of all of the data available at that time. That study also confirmed the presence of anomalous fluctuations in the v--dependence of the first differences of the inertial rotational constant, Δ Bv=Bv+1-Bv in the A ^3Π_1 state for vibrational levels with v'(A) in the mid 20's. However, our previous experience in a recent study of the analogous A ^3Π_1-X ^1Σ_g^+ system of Br_2 suggested that the effect of such fluctuations may be overcome if sufficient data are available. The present work therefore reports new measurements of transitions to levels in the v'(A)=23-26 region, together with a new global DPF analysis that uses ``robust" least-squares fits to average properly over the effect of such fluctuations in order to provide an optimum delineation of the underlying potential energy curve(s). L.E.Selin,Ark. Fys. 21,479(1962) E. Tiemann and Th. Moeller, Z. Naturforsch. A 30,986 (1975) E.M. Weinstock and A. Preston, J. Mol. Spectrosc. 70, 188 (1978) D.R.T. Appadoo, P.F. Bernath, and R.J. Le Roy, Can. J. Phys. 72, 1265 (1994) N. Nishimiya, T. Yukiya and M. Suzuki, J. Mol. Spectrosc. 173, 8 (1995). T. Yukiya, N. Nishimiya, and R.J. Le Roy, Paper MF12 at the 65th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 20-24, 2011. T. Yukiya, N. Nishimiya, Y. Samajima, K. Yamaguchi, M. Suzuki, C.D. Boone, I. Ozier and R.J. Le Roy, J. Mol. Spectrosc. 283, 32 (2013) J.K.G. Watson, J. Mol. Spectrosc. 219, 326 (2003).
Analytical modelling of soil effects on electromagnetic induction sensor for humanitarian demining
NASA Astrophysics Data System (ADS)
Vasić, D.; Ambruš, D.; Bilas, V.
2013-06-01
Accurate compensation of the soil effect is essential for a new generation of sensitive classification-based electromagnetic induction landmine detectors. We present an analytical model for evaluation of the soil effect suitable for straightforward numerical implementation. The modelled soil consists of arbitrary number of conductive and magnetic layers. The solution region is truncated leading to the solution in form of a series rather than infinite integrals. Frequency-dependent permeability is inherent to the model, and time domain analysis can be made using DFT. In order to illustrate the model usage, we evaluate performances of three metal detector designs.
Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions
NASA Technical Reports Server (NTRS)
Balmes, Etienne
1993-01-01
An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.
NASA Astrophysics Data System (ADS)
Lachaume, Regis; Rabus, Markus; Jordan, Andres
2015-08-01
In stellar interferometry, the assumption that the observables can be seen as Gaussian, independent variables is the norm. In particular, neither the optical interferometry FITS (OIFITS) format nor the most popular fitting software in the field, LITpro, offer means to specify a covariance matrix or non-Gaussian uncertainties. Interferometric observables are correlated by construct, though. Also, the calibration by an instrumental transfer function ensures that the resulting observables are not Gaussian, even if uncalibrated ones happened to be so.While analytic frameworks have been published in the past, they are cumbersome and there is no generic implementation available. We propose here a relatively simple way of dealing with correlated errors without the need to extend the OIFITS specification or making some Gaussian assumptions. By repeatedly picking at random which interferograms, which calibrator stars, and which are the errors on their diameters, and performing the data processing on the bootstrapped data, we derive a sampling of p(O), the multivariate probability density function (PDF) of the observables O. The results can be stored in a normal OIFITS file. Then, given a model m with parameters P predicting observables O = m(P), we can estimate the PDF of the model parameters f(P) = p(m(P)) by using a density estimation of the observables' PDF p.With observations repeated over different baselines, on nights several days apart, and with a significant set of calibrators systematic errors are de facto taken into account. We apply the technique to a precise and accurate assessment of stellar diameters obtained at the Very Large Telescope Interferometer with PIONIER.
Analytical and numerical modeling for flexible pipes
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Geng
2011-12-01
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
Li, Xin; Li, Ye
2015-01-01
Regular respiratory signals (RRSs) acquired with physiological sensing systems (e.g., the life-detection radar system) can be used to locate survivors trapped in debris in disaster rescue, or predict the breathing motion to allow beam delivery under free breathing conditions in external beam radiotherapy. Among the existing analytical models for RRSs, the harmonic-based random model (HRM) is shown to be the most accurate, which, however, is found to be subject to considerable error if the RRS has a slowly descending end-of-exhale (EOE) phase. The defect of the HRM motivates us to construct a more accurate analytical model for the RRS. In this paper, we derive a new analytical RRS model from the probability density function of Rayleigh distribution. We evaluate the derived RRS model by using it to fit a real-life RRS in the sense of least squares, and the evaluation result shows that, our presented model exhibits lower error and fits the slowly descending EOE phases of the real-life RRS better than the HRM. PMID:26736208
Analytical model for screening potential CO2 repositories
Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.
2011-01-01
Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.
Accurate mask model implementation in optical proximity correction model for 14-nm nodes and beyond
NASA Astrophysics Data System (ADS)
Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle
2016-04-01
In a previous work, we demonstrated that the current optical proximity correction model assuming the mask pattern to be analogous to the designed data is no longer valid. An extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason, an accurate mask model has been calibrated for a 14-nm logic gate level. A model with a total RMS of 1.38 nm at mask level was obtained. Two-dimensional structures, such as line-end shortening and corner rounding, were well predicted using scanning electron microscopy pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects, and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular.
Accurate mask model implementation in OPC model for 14nm nodes and beyond
NASA Astrophysics Data System (ADS)
Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle
2015-10-01
In a previous work [1] we demonstrated that current OPC model assuming the mask pattern to be analogous to the designed data is no longer valid. Indeed as depicted in figure 1, an extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason an accurate mask model, for a 14nm logic gate level has been calibrated. A model with a total RMS of 1.38nm at mask level was obtained. 2D structures such as line-end shortening and corner rounding were well predicted using SEM pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular, as depicted in figure 2.
Analytical model for fast-shock ignition
NASA Astrophysics Data System (ADS)
Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.
2014-07-01
A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ˜4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ˜0.3 micron and the shock ignitor energy weight factor about 0.25.
Analytical model for fast-shock ignition
Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.
2014-07-15
A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3 micron and the shock ignitor energy weight factor about 0.25.
MONA: An accurate two-phase well flow model based on phase slippage
Asheim, H.
1984-10-01
In two phase flow, holdup and pressure loss are related to interfacial slippage. A model based on the slippage concept has been developed and tested using production well data from Forties, the Ekofisk area, and flowline data from Prudhoe Bay. The model developed turned out considerably more accurate than the standard models used for comparison.
Combined experimental/analytical modeling of shell/payload structures
Martinez, D.R.; Miller, A.K.; Carne, T.G.
1985-12-01
This study evaluates the accuracy of computed modal frequencies obtained from a combined experimental/analytical model of a shell/payload structure. A component mode synthesis technique was used which incorporated free modes and residual effects. The total structure is physically divided into the two subsystems which are connected through stiff joints. The payload was tested to obtain its free-free modes, while a finite element model of the shell was analyzed to obtain its modal description. Both the translational and rotational components of the experimental mode shapes at the payload interface were used in the coupling. Sensitivity studies were also performed to determine the effect of neglecting the residual terms of the payload. Results from a previous study of a combined experimental/analytical model for a beam structure are also given. The beam structure was used to examine the basic procedures and difficulties in experimentally measuring, and analytically accounting for the rotational and residual quantities.
Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images
NASA Technical Reports Server (NTRS)
Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.
1999-01-01
Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.
An analytical model of the HINT performance metric
Snell, Q.O.; Gustafson, J.L.
1996-10-01
The HINT benchmark was developed to provide a broad-spectrum metric for computers and to measure performance over the full range of memory sizes and time scales. We have extended our understanding of why HINT performance curves look the way they do and can now predict the curves using an analytical model based on simple hardware specifications as input parameters. Conversely, by fitting the experimental curves with the analytical model, hardware specifications such as memory performance can be inferred to provide insight into the nature of a given computer system.
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Walji, Sadru; Sentjens, Katherine
2013-06-01
Alkali hydride diatomic molecules have long been the object of spectroscopic studies. However, their small reduced mass makes them species for which the conventional semiclassical-based methods of analysis tend to have the largest errors. To date, the only quantum-mechanically accurate direct-potential-fit (DPF) analysis for one of these molecules was the one for LiH reported by Coxon and Dickinson. The present paper extends this level of analysis to NaH, and reports a DPF analysis of all available spectroscopic data for the A ^1Σ^+-X ^1Σ^+ system of NaH which yields analytic potential energy functions for these two states that account for those data (on average) to within the experimental uncertainties. W.C. Stwalley, W.T. Zemke and S.C. Yang, J. Phys. Chem. Ref. Data {20}, 153-187 (1991). J.A. Coxon and C.S. Dickinson, J. Chem. Phys. {121}, 8378 (2004).
NASA Astrophysics Data System (ADS)
Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M.
2016-10-01
A prolapse-free basis set for Eka-Actinium (E121, Z = 121), numerical atomic calculations on E121, spectroscopic constants and accurate analytical form for the potential energy curve of diatomic E121F obtained at 4-component all-electron CCSD(T) level including Gaunt interaction are presented. The results show a strong and polarized bond (≈181 kcal/mol in strength) between E121 and F, the outermost frontier molecular orbitals from E121F should be fairly similar to the ones from AcF and there is no evidence of break of periodic trends. Moreover, the Gaunt interaction, although small, is expected to influence considerably the overall rovibrational spectra.
Analytic models of the chemical evolution of galaxies
NASA Technical Reports Server (NTRS)
Clayton, Donald D.
1986-01-01
Techniques are described for constructing analytic models of the chemical evolution of galaxies subject to infall of metal-poor material onto a maturing disk. A class of linear models is discussed which takes the star-formation rate within a defined region to be proportional to the mass of interstellar gas within that region, and the instantaneous recycling approximation is adopted. The solutions are obtained by approximately matching the infall rate to parametrized familiies of functions for which the equations are exactly soluble. The masses, the primary and secondary metallicities, and the gas concentrations of radioactive chronometers can all then be analytically expressed. Surveys of galactic abundances in location and in time can be compared to the parameter spaces of the analytic representations.
Getting a Picture that Is Both Accurate and Stable: Situation Models and Epistemic Validation
ERIC Educational Resources Information Center
Schroeder, Sascha; Richter, Tobias; Hoever, Inga
2008-01-01
Text comprehension entails the construction of a situation model that prepares individuals for situated action. In order to meet this function, situation model representations are required to be both accurate and stable. We propose a framework according to which comprehenders rely on epistemic validation to prevent inaccurate information from…
Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence
2016-05-31
Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.
An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride
NASA Astrophysics Data System (ADS)
Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian
2014-03-01
This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered.
A new analytical model for wind farm power prediction
NASA Astrophysics Data System (ADS)
Niayifar, Amin; Porte-Agel, Fernando
2015-04-01
In this study, a new analytical approach is presented and validated to predict wind farm power production. The new model assumes a Gaussian distribution for the velocity deficit in the wake which has been recently proposed by Bastankhah and Porté-Agel (2014). To estimate the velocity deficit in the wake, this model needs the local wake growth rate parameter which is calculated based on the local turbulence intensity in the wind farm. The interaction of the wakes is modeled by use of the velocity deficit superposition principle. Finally, the power curve is used to estimate the power production from the wind turbines. The wind farm model is compared to large-eddy simulation (LES) data of Horns Rev wind farm for a wide range of wind directions. Reasonable agreement between the proposed analytical model and LES data is obtained. This prediction is substantially better than the one obtained with common wind farm softwares such as WAsP.
FACTOR ANALYTIC MODELS OF CLUSTERED MULTIVARIATE DATA WITH INFORMATIVE CENSORING
This paper describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster-level latent variables related to the primary outcomes and to the censorin...
Analytical modeling of printed metasurface cavities for computational imaging
NASA Astrophysics Data System (ADS)
F. Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N.; Smith, David R.
2016-10-01
We derive simple analytical expressions to model the electromagnetic response of an electrically large printed cavity. The analytical model is then used to develop printed cavities for microwave imaging purposes. The proposed cavity is excited by a cylindrical source and has boundaries formed by subwavelength metallic cylinders (vias) placed at subwavelength distances apart. Given their small size, the electric currents induced on the vias are assumed to have no angular dependence. Applying this approximation simplifies the electromagnetic problem to a matrix equation which can be solved to directly compute the electric current induced on each via. Once the induced currents are known, the electromagnetic field inside the cavity can be computed for every location. We verify the analytical model by comparing its prediction to full-wave simulations. To utilize this cavity in imaging settings, we perforate one side of the printed cavity with radiative slots such that they act as the physical layer of a computational imaging system. An analytical approximation for the slots is also developed, enabling us to obtain estimates of the cavity performance in imaging scenarios. This ability allows us to make informed decisions on the design of the printed metasurface cavity. The utility of the proposed model is further highlighted by demonstrating high-quality experimental imaging; performance metrics, which are consistent between theory and experiment, are also estimated.
Fitting Meta-Analytic Structural Equation Models with Complex Datasets
ERIC Educational Resources Information Center
Wilson, Sandra Jo; Polanin, Joshua R.; Lipsey, Mark W.
2016-01-01
A modification of the first stage of the standard procedure for two-stage meta-analytic structural equation modeling for use with large complex datasets is presented. This modification addresses two common problems that arise in such meta-analyses: (a) primary studies that provide multiple measures of the same construct and (b) the correlation…
Analytical Models of Legislative Texts for Muslim Scholars
ERIC Educational Resources Information Center
Alwan, Ammar Abdullah Naseh; Yusoff, Mohd Yakubzulkifli Bin Mohd; Al-Hami, Mohammad Said M.
2011-01-01
The significance of the analytical models in traditional Islamic studies is that they contribute in sharpening the intellectual capacity of the students of Islamic studies. Research literature in Islamic studies has descriptive side predominantly; the information is gathered and compiled and rarely analyzed properly. This weakness is because of…
Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue
Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William
2008-01-01
In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.
Yi, S. A.; Khudik, V.; Siemon, C.; Shvets, G.
2012-12-21
Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.
Analytical approach to quasiperiodic beam Coulomb field modeling
NASA Astrophysics Data System (ADS)
Rubtsova, I. D.
2016-09-01
The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.
Analytical model of plasma-chemical etching in planar reactor
NASA Astrophysics Data System (ADS)
Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.
2016-09-01
The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.
Improvements to the analytical linescan model for SEM metrology
NASA Astrophysics Data System (ADS)
Mack, Chris A.; Bunday, Benjamin D.
2016-03-01
Critical dimension scanning electron microscope (CD-SEM) metrology has long used empirical approaches to determine edge locations. While such solutions are very flexible, physics-based models offer the potential for improved accuracy and precision for specific applications. Here, Monte Carlo simulation is used to generate theoretical linescans from single step and line/space targets in order to build a physics-based analytical model, including the presence of bottom footing and top corner rounding. The resulting analytical linescan model fits the Monte Carlo simulation results for different feature heights, widths, pitches, sidewall angles, bottom footing, and top corner rounding. This model has also been successfully applied to asymetric features such as sidewall spacers encountered in self-aligned double patterning.
Analytical modeling of thermoluminescent albedo detectors for neutron dosimetry.
Glickstein, S S
1983-02-01
In order to gain an in-depth understanding of the neutron physics of a 6LiF TLD when used as an albedo neutron dosimeter, an analytical model was developed to simulate the response of a 6LiF chip. The analytical model was used to examine the sensitivity of the albedo TLD response to incident monoenergetic neutrons and to evaluate a multiple chip TLD neutron dosimeter. Contrary to initial experimental studies, which were hampered by statistical uncertainties, the analytical evaluation revealed that a three-energy-group detector could not reliably measure the dose equivalent to personnel exposed to multiple neutron spectra. The analysis clearly illustrates that there may be order of magnitude errors in the measured neutron dose if the dosimeter has not been calibrated for the same flux spectrum to which it is exposed. As a result of this analysis, it was concluded that, for personnel neutron monitoring, a present TLD badge must be calibrated for the neutron spectrum into which the badge is to be introduced. The analytical model used in this study can readily be adopted for evaluating other possible detectors and shield material that might be proposed in the future as suitable for use in neutron dosimetry applications. PMID:6826377
Analytic model of an IR radiation heat pipe
NASA Technical Reports Server (NTRS)
Hoffman, Pamela J.
1990-01-01
An IR radiation heat pipe made from multilayer insulation blankets and proposed to be used aboard spacecraft to transfer waste heat was modeled analytically. A circular cross section pipe 9-in. in diameter, 10-ft long, with a specular reflectivity of 0.94 was found to have an efficiency of 58.6 percent. Several key parameters were varied for the circular model to understand their significance. In addition, square and triangular cross section pipes were investigated.
On the Development of Parameterized Linear Analytical Longitudinal Airship Models
NASA Technical Reports Server (NTRS)
Kulczycki, Eric A.; Johnson, Joseph R.; Bayard, David S.; Elfes, Alberto; Quadrelli, Marco B.
2008-01-01
In order to explore Titan, a moon of Saturn, airships must be able to traverse the atmosphere autonomously. To achieve this, an accurate model and accurate control of the vehicle must be developed so that it is understood how the airship will react to specific sets of control inputs. This paper explains how longitudinal aircraft stability derivatives can be used with airship parameters to create a linear model of the airship solely by combining geometric and aerodynamic airship data. This method does not require system identification of the vehicle. All of the required data can be derived from computational fluid dynamics and wind tunnel testing. This alternate method of developing dynamic airship models will reduce time and cost. Results are compared to other stable airship dynamic models to validate the methods. Future work will address a lateral airship model using the same methods.
Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers
NASA Astrophysics Data System (ADS)
Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas
2016-10-01
A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement.
Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers
Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas
2016-01-01
A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496
Analytic model for assessing thermal performance of SCUBA divers
NASA Technical Reports Server (NTRS)
Montgomery, L. D.
1975-01-01
To assist design of adequate protective clothing, mathematical model of man's thermoregulatory system has been developed so that body thermal responses under immersed conditions can be predicted accurately. Experimental data encompassed wide range of water temperatures, protective clothing, breathing-gas mixtures, and durations of immersion.
Analytical network-averaging of the tube model:. Rubber elasticity
NASA Astrophysics Data System (ADS)
Khiêm, Vu Ngoc; Itskov, Mikhail
2016-10-01
In this paper, a micromechanical model for rubber elasticity is proposed on the basis of analytical network-averaging of the tube model and by applying a closed-form of the Rayleigh exact distribution function for non-Gaussian chains. This closed-form is derived by considering the polymer chain as a coarse-grained model on the basis of the quantum mechanical solution for finitely extensible dumbbells (Ilg et al., 2000). The proposed model includes very few physically motivated material constants and demonstrates good agreement with experimental data on biaxial tension as well as simple shear tests.
Analytical Expressions for the REM Model of Recognition Memory
Montenegro, Maximiliano; Myung, Jay I.; Pitt, Mark A.
2014-01-01
An inordinate amount of computation is required to evaluate predictions of simulation-based models. Following Myung et al (2007), we derived an analytic form expression of the REM model of recognition memory using a Fourier transform technique, which greatly reduces the time required to perform model simulations. The accuracy of the derivation is verified by showing a close correspondence between its predictions and those reported in Shiffrin and Steyvers (1997). The derivation also shows that REM’s predictions depend upon the vector length parameter, and that model parameters are not identifiable unless one of the parameters is fixed. PMID:25089060
Comprehensive analytical model to characterize randomness in optical waveguides.
Zhou, Junhe; Gallion, Philippe
2016-04-01
In this paper, the coupled mode theory (CMT) is used to derive the corresponding stochastic differential equations (SDEs) for the modal amplitude evolution inside optical waveguides with random refractive index variations. Based on the SDEs, the ordinary differential equations (ODEs) are derived to analyze the statistics of the modal amplitudes, such as the optical power and power variations as well as the power correlation coefficients between the different modal powers. These ODEs can be solved analytically and therefore, it greatly simplifies the analysis. It is demonstrated that the ODEs for the power evolution of the modes are in excellent agreement with the Marcuse' coupled power model. The higher order statistics, such as the power variations and power correlation coefficients, which are not exactly analyzed in the Marcuse' model, are discussed afterwards. Monte-Carlo simulations are performed to demonstrate the validity of the analytical model.
Analytical Modeling for the Grating Eddy Current Displacement Sensors
NASA Astrophysics Data System (ADS)
Lv, Chunfeng; Tao, Wei; Lei, Huaming; Jiang, Yingying; Zhao, Hui
2015-02-01
As a new type of displacement sensor, grating eddy current displacement sensor (GECDS) combines traditional eddy current sensors and grating structure in one. The GECDS performs a wide range displacement measurement without precision reduction. This paper proposes an analytical modeling approach for the GECDS. The solution model is established in the Cartesian coordinate system, and the solving domain is limited to finite extents by using the truncated region eigenfunction expansion method. Based on the second order vector potential, expressions for the electromagnetic field as well as coil impedance related to the displacement can be expressed in closed-form. Theoretical results are then confirmed by experiments, which prove the suitability and effectiveness of the analytical modeling approach.
An analytical pressure-transient model for complex reservoir scenarios
NASA Astrophysics Data System (ADS)
Gomes, Edmond; Ambastha, Anil K.
1994-10-01
Reservoir deposition occurs through long periods of time, thus most reservoirs are heterogeneous in nature. The presence of various zones and layers of different rock and fluid properties is the usual circumstance in petroleum reservoirs. A secondary recovery operation, such as steam-flooding, results in a composite reservoir situation because of the presence of zones of different fluid properties. Because of reservoir heterogeneity and gravity override effects, fluid boundaries separating two zones may have complicated or irregular shapes. The purpose of this paper is to develop a new analytical pressure-transient model which can accommodate complex reservoir scenarios resulting from reservoir heterogeneity and from thermal recovery or other fluid-injection operations. Mathematically, our analytical model considers such complex situations as a generalized eigenvalue system resulting in a system of linear equations. Computational difficulties faced, validation approach of the new model, and an application for complex reservoir scenarios are discussed.
Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective
Mench-Bressan, Nadja; McGregor, Carolyn; Pugh, James Edward
2015-01-01
The effective use of data within intensive care units (ICUs) has great potential to create new cloud-based health analytics solutions for disease prevention or earlier condition onset detection. The Artemis project aims to achieve the above goals in the area of neonatal ICUs (NICU). In this paper, we proposed an analytical model for the Artemis cloud project which will be deployed at McMaster Children’s Hospital in Hamilton. We collect not only physiological data but also the infusion pumps data that are attached to NICU beds. Using the proposed analytical model, we predict the amount of storage, memory, and computation power required for the system. Capacity planning and tradeoff analysis would be more accurate and systematic by applying the proposed analytical model in this paper. Numerical results are obtained using real inputs acquired from McMaster Children’s Hospital and a pilot deployment of the system at The Hospital for Sick Children (SickKids) in Toronto. PMID:27170907
Yang, Li; Tunega, Daniel; Xu, Lai; Govind, Niranjan; Sun, Rui; Taylor, Ramona; Lischka, Hans; De Jong, Wibe A.; Hase, William L.
2013-08-29
In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreement with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.
Roll levelling semi-analytical model for process optimization
NASA Astrophysics Data System (ADS)
Silvestre, E.; Garcia, D.; Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.
2016-08-01
Roll levelling is a primary manufacturing process used to remove residual stresses and imperfections of metal strips in order to make them suitable for subsequent forming operations. In the last years the importance of this process has been evidenced with the apparition of Ultra High Strength Steels with strength > 900 MPa. The optimal setting of the machine as well as a robust machine design has become critical for the correct processing of these materials. Finite Element Method (FEM) analysis is the widely used technique for both aspects. However, in this case, the FEM simulation times are above the admissible ones in both machine development and process optimization. In the present work, a semi-analytical model based on a discrete bending theory is presented. This model is able to calculate the critical levelling parameters i.e. force, plastification rate, residual stresses in a few seconds. First the semi-analytical model is presented. Next, some experimental industrial cases are analyzed by both the semi-analytical model and the conventional FEM model. Finally, results and computation times of both methods are compared.
Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials
Zhai, P. C.; Chen, G.; Liu, L. S.; Fang, C.; Zhang, Q. J.
2008-02-15
A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometries and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.
Built-in templates speed up process for making accurate models
NASA Technical Reports Server (NTRS)
1964-01-01
From accurate scale drawings of a model, photographic negatives of the cross sections are printed on thin sheets of aluminum. These cross-section images are cut out and mounted, and mahogany blocks placed between them. The wood can be worked down using the aluminum as a built-in template.
A New Analytical Model for Trans-Relativistic Particle Acceleration
NASA Astrophysics Data System (ADS)
Becker, Peter A.
2011-01-01
Most existing analytical models describing the second-order Fermi acceleration of relativistic particles due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the local thermal background, which is typically a non-relativistic gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the particles and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. Since the existing analytical models are not able to address this situation, workers have had to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. The results can be used to model the acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed.
Development of AN Automotive Joint Model Using AN Analytically Based Formulation
NASA Astrophysics Data System (ADS)
Moon, Y.-M.; Lee, T.-H.; Park, Y.-P.
1999-03-01
A FE model of an automotive structure consists of beam and shell elements. Generally, the pillars and rockers are modelled as beam elements and other parts as shell elements. Beam elements are used since they are more efficient than shell elements. A joint is defined as an intersection region of beam elements, and is generally modelled as coupled rotational springs. In this study, a joint modelling methodology is presented. First, the definition and assumptions of the joint are discussed. Second, the joint stiffness analytical model is proposed using static load test results. The proposed method is more efficient and accurate than existing evaluation methods. Third, the sensitivity analysis method (Nelson's method) and a joint stiffness updating algorithm are presented. To verify these methods, the FE analysis results of a half size structural model of an automobile with rigid joints and rotational spring joints are compared with experimental modal analysis results.
Human performance modeling for system of systems analytics.
Dixon, Kevin R.; Lawton, Craig R.; Basilico, Justin Derrick; Longsine, Dennis E.; Forsythe, James Chris; Gauthier, John Henry; Le, Hai D.
2008-10-01
A Laboratory-Directed Research and Development project was initiated in 2005 to investigate Human Performance Modeling in a System of Systems analytic environment. SAND2006-6569 and SAND2006-7911 document interim results from this effort; this report documents the final results. The problem is difficult because of the number of humans involved in a System of Systems environment and the generally poorly defined nature of the tasks that each human must perform. A two-pronged strategy was followed: one prong was to develop human models using a probability-based method similar to that first developed for relatively well-understood probability based performance modeling; another prong was to investigate more state-of-art human cognition models. The probability-based modeling resulted in a comprehensive addition of human-modeling capability to the existing SoSAT computer program. The cognitive modeling resulted in an increased understanding of what is necessary to incorporate cognition-based models to a System of Systems analytic environment.
Lee, Ping I
2011-10-10
The purpose of this review is to provide an overview of approximate analytical solutions to the general moving boundary diffusion problems encountered during the release of a dispersed drug from matrix systems. Starting from the theoretical basis of the Higuchi equation and its subsequent improvement and refinement, available approximate analytical solutions for the more complicated cases involving heterogeneous matrix, boundary layer effect, finite release medium, surface erosion, and finite dissolution rate are also discussed. Among various modeling approaches, the pseudo-steady state assumption employed in deriving the Higuchi equation and related approximate analytical solutions appears to yield reasonably accurate results in describing the early stage release of a dispersed drug from matrices of different geometries whenever the initial drug loading (A) is much larger than the drug solubility (C(s)) in the matrix (or A≫C(s)). However, when the drug loading is not in great excess of the drug solubility (i.e. low A/C(s) values) or when the drug loading approaches the drug solubility (A→C(s)) which occurs often with drugs of high aqueous solubility, approximate analytical solutions based on the pseudo-steady state assumption tend to fail, with the Higuchi equation for planar geometry exhibiting a 11.38% error as compared with the exact solution. In contrast, approximate analytical solutions to this problem without making the pseudo-steady state assumption, based on either the double-integration refinement of the heat balance integral method or the direct simplification of available exact analytical solutions, show close agreement with the exact solutions in different geometries, particularly in the case of low A/C(s) values or drug loading approaching the drug solubility (A→C(s)). However, the double-integration heat balance integral approach is generally more useful in obtaining approximate analytical solutions especially when exact solutions are not
NASA Astrophysics Data System (ADS)
Liang, Guanhao; Wang, Yancheng; Mei, Deqing; Xi, Kailun; Chen, Zichen
2015-03-01
This paper presents a modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array, which utilizes solid polydimethylsiloxane (PDMS) film as the dielectric layer. To predict the deformation of the sensing unit and capacitance changes, each sensing unit is simplified into a three-layer plate structure and divided into central, edge and corner regions. The plate structure and the three regions are studied by the general and modified models, respectively. For experimental validation, the capacitive tactile sensor array with 8 × 8 (= 64) sensing units is fabricated. Experiments are conducted by measuring the capacitance changes versus applied external forces and compared with the general and modified models’ predictions. For the developed tactile sensor array, the sensitivity predicted by the modified analytical model is 1.25%/N, only 0.8% discrepancy from the experimental measurement. Results demonstrate that the modified analytical model can accurately predict the sensing performance of the sensor array and could be utilized for model-based optimal capacitive tactile sensor array design.
Analytic solution of a five-direction radiation transport model
Cramer, S.N.
1988-01-01
In order to test certain spatial and angular dependent Monte Carlo biasing techniques, a one-dimensional, one energy, two-media, five-direction radiation transport model has been devised for which an analytic solution exists. Although this solution is too long to be conveniently expressed in an explicit form, it can be easily evaluated on the smallest of computers. This solution is discussed in this paper. 1 ref.
Progress on Analytical Modeling of Coherent Electron Cooling
Wang, G.; Blaskiewicz, M.; Litvinenko, V.; Webb, S.
2010-05-23
We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.
Residential Saudi load forecasting using analytical model and Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Al-Harbi, Ahmad Abdulaziz
In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.
AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES
Robinson, Tyler D.; Catling, David C.
2012-09-20
We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.
Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models.
Mereghetti, Paolo; Maccari, Giuseppe; Spampinato, Giulia Lia Beatrice; Tozzini, Valentina
2016-08-25
The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course. PMID:27150459
Development of modified cable models to simulate accurate neuronal active behaviors.
Elbasiouny, Sherif M
2014-12-01
In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted.
Cimpoesu, Dorin Stoleriu, Laurentiu; Stancu, Alexandru
2013-12-14
We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.
NASA Astrophysics Data System (ADS)
Hurlbatt, A.; O'Connell, D.; Gans, T.
2016-08-01
Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.
Fast, Accurate RF Propagation Modeling and Simulation Tool for Highly Cluttered Environments
Kuruganti, Phani Teja
2007-01-01
As network centric warfare and distributed operations paradigms unfold, there is a need for robust, fast wireless network deployment tools. These tools must take into consideration the terrain of the operating theater, and facilitate specific modeling of end to end network performance based on accurate RF propagation predictions. It is well known that empirical models can not provide accurate, site specific predictions of radio channel behavior. In this paper an event-driven wave propagation simulation is proposed as a computationally efficient technique for predicting critical propagation characteristics of RF signals in cluttered environments. Convincing validation and simulator performance studies confirm the suitability of this method for indoor and urban area RF channel modeling. By integrating our RF propagation prediction tool, RCSIM, with popular packetlevel network simulators, we are able to construct an end to end network analysis tool for wireless networks operated in built-up urban areas.
NASA Astrophysics Data System (ADS)
Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent
2013-11-01
The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.
Bai, O; Nakamura, M; Kanda, M; Nagamine, T; Shibasaki, H
2001-11-01
This study introduces a method for accurate identification of the waveform of the evoked potentials by decomposing the component responses. The decomposition was achieved by zero-pole modeling of the evoked potentials in the discrete cosine transform (DCT) domain. It was found that the DCT coefficients of a component response in the evoked potentials could be modeled sufficiently by a second order transfer function in the DCT domain. The decomposition of the component responses was approached by using partial expansion of the estimated model for the evoked potentials, and the effectiveness of the decomposition method was evaluated both qualitatively and quantitatively. Because of the overlap of the different component responses, the proposed method enables an accurate identification of the evoked potentials, which is useful for clinical and neurophysiological investigations.
A new analytical model for wind farm power prediction
NASA Astrophysics Data System (ADS)
Niayifar, Amin; Porté-Agel, Fernando
2015-06-01
In this study, a new analytical approach is presented and validated to predict wind farm power production. The new model is an extension of the recently proposed by Bastankhah and Porté-Agel for a single wake. It assumes a self-similar Gaussian shape of the velocity deficit and satisfies conservation of mass and momentum. To estimate the velocity deficit in the wake, this model needs the local wake growth rate parameter which is calculated based on the local turbulence intensity in the wind farm. The interaction of the wakes is modeled by use of the velocity deficit superposition principle. Finally, the power curve is used to estimate the power production from the wind turbines. The wind farm model is compared to large-eddy simulation (LES) data and measurments of Horns Rev wind farm for a wide range of wind directions. Reasonable agreement between the proposed analytical model, LES data and measurments is obtained. This prediction is also found to be substantially better than the one obtained with a commonly used wind farm wake model.
Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model.
Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming; Hu, Gengkai; Sun, Chin-Teh
2014-09-01
Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission/reflection. In this paper, an analytical vibroacoustic membrane model is developed to study sound transmission behavior of the MAM under a normal incidence. The MAM is composed of a prestretched elastic membrane with attached rigid masses. To accurately capture finite-dimension rigid mass effects on the membrane deformation, the point matching approach is adopted by applying a set of distributed point forces along the interfacial boundary between masses and the membrane. The accuracy and capability of the theoretical model is verified through the comparison with the finite element method. In particular, microstructure effects such as weight, size, and eccentricity of the attached mass, pretension, and thickness of the membrane on the resulting transmission peak and dip frequencies of the MAM are quantitatively investigated. New peak and dip frequencies are found for the MAM with one and multiple eccentric attached masses. The developed model can be served as an efficient tool for design of such membrane-type metamaterials. PMID:25190372
NASA Astrophysics Data System (ADS)
Malik, Arif Sultan
This work presents improved technology for attaining high-quality rolled metal strip. The new technology is based on an innovative method to model both the static and dynamic characteristics of rolling mill deflection, and it applies equally to both cluster-type and non cluster-type rolling mill configurations. By effectively combining numerical Finite Element Analysis (FEA) with analytical solid mechanics, the devised approach delivers a rapid, accurate, flexible, high-fidelity model useful for optimizing many important rolling parameters. The associated static deflection model enables computation of the thickness profile and corresponding flatness of the rolled strip. Accurate methods of predicting the strip thickness profile and strip flatness are important in rolling mill design, rolling schedule set-up, control of mill flatness actuators, and optimization of ground roll profiles. The corresponding dynamic deflection model enables solution of the standard eigenvalue problem to determine natural frequencies and modes of vibration. The presented method for solving the roll-stack deflection problem offers several important advantages over traditional methods. In particular, it includes continuity of elastic foundations, non-iterative solution when using pre-determined elastic foundation moduli, continuous third-order displacement fields, simple stress-field determination, the ability to calculate dynamic characteristics, and a comparatively faster solution time. Consistent with the most advanced existing methods, the presented method accommodates loading conditions that represent roll crowning, roll bending, roll shifting, and roll crossing mechanisms. Validation of the static model is provided by comparing results and solution time with large-scale, commercial finite element simulations. In addition to examples with the common 4-high vertical stand rolling mill, application of the presented method to the most complex of rolling mill configurations is demonstrated
Analytical properties of a three-compartmental dynamical demographic model
NASA Astrophysics Data System (ADS)
Postnikov, E. B.
2015-07-01
The three-compartmental demographic model by Korotaeyv-Malkov-Khaltourina, connecting population size, economic surplus, and education level, is considered from the point of view of dynamical systems theory. It is shown that there exist two integrals of motion, which enables the system to be reduced to one nonlinear ordinary differential equation. The study of its structure provides analytical criteria for the dominance ranges of the dynamics of Malthus and Kremer. Additionally, the particular ranges of parameters enable the derived general ordinary differential equations to be reduced to the models of Gompertz and Thoularis-Wallace.
An Analytical Thermal Model for Autonomous Soaring Research
NASA Technical Reports Server (NTRS)
Allen, Michael
2006-01-01
A viewgraph presentation describing an analytical thermal model used to enable research on autonomous soaring for a small UAV aircraft is given. The topics include: 1) Purpose; 2) Approach; 3) SURFRAD Data; 4) Convective Layer Thickness; 5) Surface Heat Budget; 6) Surface Virtual Potential Temperature Flux; 7) Convective Scaling Velocity; 8) Other Calculations; 9) Yearly trends; 10) Scale Factors; 11) Scale Factor Test Matrix; 12) Statistical Model; 13) Updraft Strength Calculation; 14) Updraft Diameter; 15) Updraft Shape; 16) Smoothed Updraft Shape; 17) Updraft Spacing; 18) Environment Sink; 19) Updraft Lifespan; 20) Autonomous Soaring Research; 21) Planned Flight Test; and 22) Mixing Ratio.
Peat pyrolysis and the analytical semi-empirical model
Feng, J.; Green, A.E.S.
2007-07-01
Pyrolysis of peat could convert this material into useful fuels and valuable hydrocarbons. A study of peat pyrolysis can also serve as a useful bridge between studies of coal pyrolysis and biomass pyrolysis. Using an analytical model of pyrolysis that has previously been applied to biomass and to coal, we present here the results of applications of this model to a representative peat. The analysis suggests means of organizing and processing rate and yield data that should be useful in applications of pyrolysis for the production of fuels and chemicals.
Model and Analytic Processes for Export License Assessments
Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry
2011-09-29
This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to
Analytical dynamics models for space missions around minor bodies
NASA Astrophysics Data System (ADS)
Cardoso dos Santos, Josué; dos Santos Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho; Bertachini de Almeida Prado, Antônio Fernando
2015-08-01
In recent years, the dynamics of orbits around minor bodies and icy moons in our solar system has become important in planning future missions that intend to visit dwarf planets, planetary moons, asteroids and comets. Due to their special characteristics, Europa, Ganymede, Callisto, Enceladus, Titan and Triton are among the group of objects with greater potential to receive missions in a near future. In order to provide a semi-analytical theory for tuture space exploration of these celestial bodies, this work aims to present two analytical models to describe and evaluate gravitational disturbances over a spacecrat's orbit around a minor body. A search for these less perturbed orbits is performed. An analytical model for the third-body perturbation is presented and consideres it in an eccentric-inclined orbit. Some harmonic terms due to the non-uniform distribuition of mass are considered according they are available in the literature. The dynamic of these orbits is explored by numerical simulations. The results are in accordance with the requirements for missions present in the literature.
Analytical probabilistic modeling for radiation therapy treatment planning
NASA Astrophysics Data System (ADS)
Bangert, Mark; Hennig, Philipp; Oelfke, Uwe
2013-08-01
This paper introduces the concept of analytical probabilistic modeling (APM) to quantify uncertainties in quality indicators of radiation therapy treatment plans. Assuming Gaussian probability densities over the input parameters of the treatment plan quality indicators, APM enables the calculation of the moments of the induced probability density over the treatment plan quality indicators by analytical integration. This paper focuses on analytical probabilistic dose calculation algorithms and the implications of APM regarding treatment planning. We derive closed-form expressions for the expectation value and the (co)variance of (1) intensity-modulated photon and proton dose distributions based on a pencil beam algorithm and (2) the standard quadratic objective function used in inverse planning. Complex correlation models of high dimensional uncertain input parameters and the different nature of random and systematic uncertainties in fractionated radiation therapy are explicitly incorporated into APM. APM variance calculations on phantom data sets show that the correlation assumptions and the difference of random and systematic uncertainties of the input parameters have a crucial impact on the uncertainty of the resulting dose. The derivations regarding the quadratic objective function show that APM has the potential to enable robust planning at almost the same computational cost like conventional inverse planning after a single probabilistic dose calculation. Beneficial applications of APM in the context of radiation therapy treatment planning are feasible.
An analytic model for buoyancy resonances in protoplanetary disks
Lubow, Stephen H.; Zhu, Zhaohuan E-mail: zhzhu@astro.princeton.edu
2014-04-10
Zhu et al. found in three-dimensional shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with the results of the Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k{sub y} > h {sup –1} (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to the corotation radius than the Lindblad resonance. Because the torque is localized to the region of excitation, it is potentially subject to the effects of nonlinear saturation. In addition, the torque can be reduced by the effects of radiative heat transfer between the resonant region and its surroundings. For each azimuthal wavenumber, the resonance establishes a large scale density wave pattern in a plane within the disk.
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other. PMID:19229307
NASA Astrophysics Data System (ADS)
Pop, Eric; Dutton, Robert W.; Goodson, Kenneth E.
2004-11-01
We describe the implementation of a Monte Carlo model for electron transport in silicon. The model uses analytic, nonparabolic electron energy bands, which are computationally efficient and sufficiently accurate for future low-voltage (<1V) nanoscale device applications. The electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model, which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches. We show that this approach avoids introducing unphysical thresholds in the electron distribution function, and that it has further applications in computing detailed phonon generation spectra from Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields and temperatures. The shear deformation potential is empirically determined at Ξu=6.8eV, and consequently, the isotropically averaged scattering potentials with longitudinal and transverse acoustic phonons are DLA=6.39eV and DTA=3.01eV, respectively, in reasonable agreement with previous studies. The room-temperature electron mobility in strained silicon is also computed and shown to be in better agreement with the most recent phonon-limited data available. As a result, we find that electron coupling with g-type phonons is about 40% lower, and the coupling with f-type phonons is almost twice as strong as previously reported.
Time Fractional Diffusion Equations and Analytical Solvable Models
NASA Astrophysics Data System (ADS)
Bakalis, Evangelos; Zerbetto, Francesco
2016-08-01
The anomalous diffusion of a particle that moves in complex environments is analytically studied by means of the time fractional diffusion equation. The influence on the dynamics of a random moving particle caused by a uniform external field is taken into account. We extract analytical solutions in terms either of the Mittag-Leffler functions or of the M- Wright function for the probability distribution, for the velocity autocorrelation function as well as for the mean and the mean square displacement. Discussion of the applicability of the model to real systems is made in order to provide new insight of the medium from the analysis of the motion of a particle embedded in it.
An investigation of helicopter dynamic coupling using an analytical model
NASA Technical Reports Server (NTRS)
Keller, Jeffrey D.
1995-01-01
Many attempts have been made in recent years to predict the off-axis response of a helicopter to control inputs, and most have had little success. Since physical insight is limited by the complexity of numerical simulation models, this paper examines the off-axis response problem using an analytical model, with the goal of understanding the mechanics of the coupling. A new induced velocity model is extended to include the effects of wake distortion from pitch rate. It is shown that the inclusion of these results in a significant change in the lateral flap response to a steady pitch rate. The proposed inflow model is coupled with the full rotor/body dynamics, and comparisons are made between the model and flight test data for a UH-60 in hover. Results show that inclusion of induced velocity variations due to shaft rate improves correlation in the pitch response to lateral cycle inputs.
Universal analytic model for tunnel FET circuit simulation
NASA Astrophysics Data System (ADS)
Lu, Hao; Esseni, David; Seabaugh, Alan
2015-06-01
A simple analytic model based on the Kane-Sze formula is used to describe the current-voltage characteristics of tunnel field-effect transistors (TFETs). This model captures the unique features of the TFET including the decrease in subthreshold swing with drain current and the superlinear onset of the output characteristic. The model also captures the ambipolar current characteristic at negative gate-source bias and the negative differential resistance for negative drain-source biases. A simple empirical capacitance model is also included to enable circuit simulation. The model has fairly general validity and is not specific to a particular TFET geometry. Good agreement is shown with published atomistic simulations of an InAs double-gate TFET with gate perpendicular to the tunnel junction and with numerical simulations of a broken-gap AlGaSb/InAs TFET with gate in parallel with the tunnel junction.
NASA Astrophysics Data System (ADS)
Yang, X. H.; Kuang, J. J.; Lu, T. J.; Han, F. S.; Kim, T.
2013-06-01
We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase.
Can phenological models predict tree phenology accurately under climate change conditions?
NASA Astrophysics Data System (ADS)
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2014-05-01
The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay
Analytical modeling of glucose biosensors based on carbon nanotubes
2014-01-01
In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors. PMID:24428818
Analytical model of reactive transport processes with spatially variable coefficients
Simpson, Matthew J.; Morrow, Liam C.
2015-01-01
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems. PMID:26064648
Seth A Veitzer
2008-10-21
Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.
Oksel, Ceyda; Winkler, David A; Ma, Cai Y; Wilkins, Terry; Wang, Xue Z
2016-09-01
The number of engineered nanomaterials (ENMs) being exploited commercially is growing rapidly, due to the novel properties they exhibit. Clearly, it is important to understand and minimize any risks to health or the environment posed by the presence of ENMs. Data-driven models that decode the relationships between the biological activities of ENMs and their physicochemical characteristics provide an attractive means of maximizing the value of scarce and expensive experimental data. Although such structure-activity relationship (SAR) methods have become very useful tools for modelling nanotoxicity endpoints (nanoSAR), they have limited robustness and predictivity and, most importantly, interpretation of the models they generate is often very difficult. New computational modelling tools or new ways of using existing tools are required to model the relatively sparse and sometimes lower quality data on the biological effects of ENMs. The most commonly used SAR modelling methods work best with large datasets, are not particularly good at feature selection, can be relatively opaque to interpretation, and may not account for nonlinearity in the structure-property relationships. To overcome these limitations, we describe the application of a novel algorithm, a genetic programming-based decision tree construction tool (GPTree) to nanoSAR modelling. We demonstrate the use of GPTree in the construction of accurate and interpretable nanoSAR models by applying it to four diverse literature datasets. We describe the algorithm and compare model results across the four studies. We show that GPTree generates models with accuracies equivalent to or superior to those of prior modelling studies on the same datasets. GPTree is a robust, automatic method for generation of accurate nanoSAR models with important advantages that it works with small datasets, automatically selects descriptors, and provides significantly improved interpretability of models.
Accurate and efficient halo-based galaxy clustering modelling with simulations
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Guo, Hong
2016-06-01
Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.
Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.
Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M
2014-12-01
Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration.
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2016-10-01
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. PMID:27272707
5D model for accurate representation and visualization of dynamic cardiac structures
NASA Astrophysics Data System (ADS)
Lin, Wei-te; Robb, Richard A.
2000-05-01
Accurate cardiac modeling is challenging due to the intricate structure and complex contraction patterns of myocardial tissues. Fast imaging techniques can provide 4D structural information acquired as a sequence of 3D images throughout the cardiac cycle. To mode. The beating heart, we created a physics-based surface model that deforms between successive time point in the cardiac cycle. 3D images of canine hearts were acquired during one complete cardiac cycle using the DSR and the EBCT. The left ventricle of the first time point is reconstructed as a triangular mesh. A mass-spring physics-based deformable mode,, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, is applied to the initial mesh and allows the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resulting 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto anatomic surfaces, producing a 5D model, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. The model faithfully represents structural changes throughout the cardiac cycle. Such models provide the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allow quantitative assessment of regional myocardial motion. The electrical activation mapping provides spatial and temporal correlation within the cardiac cycle. In procedures which as intra-cardiac catheter ablation, visualization of the dynamic model can be used to accurately localize the foci of myocardial arrhythmias and guide positioning of catheters for optimal ablation.
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2016-10-01
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.
Continuous-wave (F + H(2)) chemical lasers: a temperature-dependent analytical diffusion model.
Herbelin, J M
1976-01-01
The development of an analytical model for predicting the performance of HF lasers that result from the mixing of atomic fluorine with molecular hydrogen in continuously flowing systems is described. The model combines a temperature-dependent solution for a premixed laser system with laminar or turbulent flame-sheet mixing schemes to generate closed-form expressions for the two conditions of constant pressure (simulating a free jet) and constant density (simulating a partially confined flow). The various approximations, including a fully communicating cavity and characteristic reaction and deactivation lifetimes, are discussed. Scaling laws that relate power to the total pressure and nozzle parameters are developed. Comparison with exact numerical treatments for a wide range of conditions reveals that the model is consistently accurate to ~10%. Finally, the sensitivity of the predictions to the kinetic rate package and the utility of the model for performing parameter studies are indicated.
Constraining the last 7 billion years of galaxy evolution in semi-analytic models
NASA Astrophysics Data System (ADS)
Mutch, Simon J.; Poole, Gregory B.; Croton, Darren J.
2013-01-01
We investigate the ability of the Croton et al. semi-analytic model to reproduce the evolution of observed galaxies across the final 7 billion years of cosmic history. Using Monte Carlo Markov Chain techniques we explore the available parameter space to produce a model which attempts to achieve a statistically accurate fit to the observed stellar mass function at z = 0 and z ≈ 0.8, as well as the local black hole-bulge relation. We find that in order to be successful we are required to push supernova feedback efficiencies to extreme limits which are, in some cases, unjustified by current observations. This leads us to the conclusion that the current model may be incomplete. Using the posterior probability distributions provided by our fitting, as well as the qualitative details of our produced stellar mass functions, we suggest that any future model improvements must act to preferentially bolster star formation efficiency in the most massive haloes at high redshift.
Analytical model for contaminant mass removal by air sparging
Rabideau, A.J.; Blayden, J.M.
1998-12-31
An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.
Laser satellite constellations for strategic defense - an analytic model
Parmentola, J.A.; Milton, A.F.
1987-10-01
Using mainly geometric reasoning, an analytic model is constructed that predicts the required characteristics of an orbiting constellation of laser battle stations, each of which is designed to destroy ballistic missiles during their boost phase. The geometry of the constellation configuration and some general aspects of the coverage problem are discussed. The determination of the absentee ratio falls into two main categories that depend upon whether the Soviet ICBM threat is concentrated at a single location or whether it is distributed as it is now. A point-threat model and a distributive threat model are considered, the determination of the respective kill rates for these models is discussed, and the scaling properties of the laser constellation with respect to a change in the quantitative nature of the two types of ICBM threats are considered.
A semi-analytic model of magnetized liner inertial fusion
McBride, Ryan D.; Slutz, Stephen A.
2015-05-15
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.
A two-dimensional analytical model of petroleum vapor intrusion
NASA Astrophysics Data System (ADS)
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
A workflow learning model to improve geovisual analytics utility.
Roth, Robert E; Maceachren, Alan M; McCabe, Craig A
2009-01-01
INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
NASA Technical Reports Server (NTRS)
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Digital forensics: an analytical crime scene procedure model (ACSPM).
Bulbul, Halil Ibrahim; Yavuzcan, H Guclu; Ozel, Mesut
2013-12-10
In order to ensure that digital evidence is collected, preserved, examined, or transferred in a manner safeguarding the accuracy and reliability of the evidence, law enforcement and digital forensic units must establish and maintain an effective quality assurance system. The very first part of this system is standard operating procedures (SOP's) and/or models, conforming chain of custody requirements, those rely on digital forensics "process-phase-procedure-task-subtask" sequence. An acceptable and thorough Digital Forensics (DF) process depends on the sequential DF phases, and each phase depends on sequential DF procedures, respectively each procedure depends on tasks and subtasks. There are numerous amounts of DF Process Models that define DF phases in the literature, but no DF model that defines the phase-based sequential procedures for crime scene identified. An analytical crime scene procedure model (ACSPM) that we suggest in this paper is supposed to fill in this gap. The proposed analytical procedure model for digital investigations at a crime scene is developed and defined for crime scene practitioners; with main focus on crime scene digital forensic procedures, other than that of whole digital investigation process and phases that ends up in a court. When reviewing the relevant literature and interrogating with the law enforcement agencies, only device based charts specific to a particular device and/or more general perspective approaches to digital evidence management models from crime scene to courts are found. After analyzing the needs of law enforcement organizations and realizing the absence of crime scene digital investigation procedure model for crime scene activities we decided to inspect the relevant literature in an analytical way. The outcome of this inspection is our suggested model explained here, which is supposed to provide guidance for thorough and secure implementation of digital forensic procedures at a crime scene. In digital forensic
NASA Astrophysics Data System (ADS)
Mirkov, Mirko; Sherr, Evan A.; Sierra, Rafael A.; Lloyd, Jenifer R.; Tanghetti, Emil
2006-06-01
Detailed understanding of the thermal processes in biological targets undergoing laser irradiation continues to be a challenging problem. For example, the contemporary pulsed dye laser (PDL) delivers a complex pulse format which presents specific challenges for theoretical understanding and further development. Numerical methods allow for adequate description of the thermal processes, but are lacking for clarifying the effects of the laser parameters. The purpose of this work is to derive a simplified analytical model that can guide the development of future laser designs. A mathematical model of heating and cooling processes in tissue is developed. Exact analytical solutions of the model are found when applied to specific temporal and spatial profiles of heat sources. Solutions are reduced to simple algebraic expressions. An algorithm is presented for approximating realistic cases of laser heating of skin structures by heat sources of the type found to have exact solutions. The simple algebraic expressions are used to provide insight into realistic laser irradiation cases. The model is compared with experiments on purpura threshold radiant exposure for PDL. These include data from four independent groups over a period of 20 years. Two of the data sets are taken from previously published articles. Two more data sets were collected from two groups of patients that were treated with two PDLs (585 and 595 nm) on normal buttocks skin. Laser pulse durations were varied between 0.5 and 40 ms radiant exposures were varied between 3 and 20 J/cm2. Treatment sites were evaluated 0.5, 1, and 24 hours later to determine purpuric threshold. The analytical model is in excellent agreement with a wide range of experimental data for purpura threshold radiant exposure. The data collected by independent research groups over the last 20 years with PDLs with wavelengths ranged from 577 to 595 nm were described accurately by this model. The simple analytical model provides an accurate
Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis
NASA Astrophysics Data System (ADS)
Chua, Alvin J. K.; Gair, Jonathan R.
2015-12-01
The space-based gravitational-wave detector eLISA has been selected as the ESA L3 mission, and the mission design will be finalized by the end of this decade. To prepare for mission formulation over the next few years, several outstanding and urgent questions in data analysis will be addressed using mock data challenges, informed by instrument measurements from the LISA Pathfinder satellite launching at the end of 2015. These data challenges will require accurate and computationally affordable waveform models for anticipated sources such as the extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. Previous data challenges have made use of the well-known analytic EMRI waveforms of Barack and Cutler, which are extremely quick to generate but dephase relative to more accurate waveforms within hours, due to their mismatched radial, polar and azimuthal frequencies. In this paper, we describe an augmented Barack-Cutler model that uses a frequency map to the correct Kerr frequencies, along with updated evolution equations and a simple fit to a more accurate model. The augmented waveforms stay in phase for months and may be generated with virtually no additional computational cost.
"Violent Intent Modeling: Incorporating Cultural Knowledge into the Analytical Process
Sanfilippo, Antonio P.; Nibbs, Faith G.
2007-08-24
While culture has a significant effect on the appropriate interpretation of textual data, the incorporation of cultural considerations into data transformations has not been systematic. Recognizing that the successful prevention of terrorist activities could hinge on the knowledge of the subcultures, Anthropologist and DHS intern Faith Nibbs has been addressing the need to incorporate cultural knowledge into the analytical process. In this Brown Bag she will present how cultural ideology is being used to understand how the rhetoric of group leaders influences the likelihood of their constituents to engage in violent or radicalized behavior, and how violent intent modeling can benefit from understanding that process.
An analytical model of accretion onto white dwarfs
NASA Astrophysics Data System (ADS)
Ospina, N.; Hernanz, M.
2013-05-01
The analytical model of Frank et al. (2002) has been used to investigate the structure of the accretion stream onto white dwarfs (WD). In particular, the post-shock region (temperature, density and gas velocity distributions) and X-ray spectrum emitted by this region. We have obtained the temperature, density and gas velocity distributions of the emission region for different masses of white dwarfs and at different positions in the shock coordinate. Also, we calculated the emitted spectrum for different WD masses and at different positions of the shock with the principal objective of study the accretion at different points of the emission region.
Analytical performance models for geologic repositories. Volume 2
Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi, A.; Lung, H.; Ting, D.; Sato, Y.; Zavoshy, S.J.
1982-10-01
This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in this report are: solubility-limited transport with transverse dispersion (chapter 2); transport of a radionuclide chain with nonequilibrium chemical reactions (chapter 3); advective transport in a two-dimensional flow field (chapter 4); radionuclide transport in fractured media (chapter 5); a mathematical model for EPA's analysis of generic repositories (chapter 6); and dissolution of radionuclides from solid waste (chapter 7). Volume 2 contains chapters 5, 6, and 7.
Analytical model for the radio-frequency sheath
NASA Astrophysics Data System (ADS)
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary
Shear mechanical properties of the spleen: experiment and analytical modelling.
Nicolle, S; Noguer, L; Palierne, J-F
2012-05-01
This paper aims at providing the first shear mechanical properties of spleen tissue. Rheometric tests on porcine splenic tissues were performed in the linear and nonlinear regime, revealing a weak frequency dependence of the dynamic moduli in linear regime and a distinct strain-hardening effect in nonlinear regime. These behaviours are typical of soft tissues such as kidney and liver, with however a less pronounced strain-hardening for the spleen. An analytical model based on power laws is then proposed to describe the general shear viscoelastic behaviour of the spleen. PMID:22498291
An analytic model for flow reversal in divertor plasmas
Cooke, P.I.H.; Prinja, A.K.
1987-04-01
An analytic model is developed and used to study the phenomenon of flow reversal which is observed in two-dimensional simulations of divertor plasmas. The effect is shown to be caused by the radial spread of neutral particles emitted from the divertor target which can lead to a strong peaking of the ionization source at certain radial locations. The results indicate that flow reversal over a portion of the width of the scrape-off layer is inevitable in high recycling conditions. Implications for impurity transport and particle removal in reactors are discussed.
Analytical modeling of turbine wakes in yawed conditions
NASA Astrophysics Data System (ADS)
Bastankhah, Majid; Porté-Agel, Fernando
2016-04-01
Increasing wind energy production has become a unanimous plan for virtually all the developed countries. In addition to constructing new wind farms, this goal can be achieved by making wind farms more efficient. Control strategies in wind farms, such as manipulating the yaw angle of the turbines, have the potential to make wind farms more efficient. Costly numerical simulations or measurements cannot be, however, employed to assess the viability of this strategy in the numerous different scenarios happening in real wind farms. In this study, we aim to develop an inexpensive and simple analytical model that is able for the first time to predict the whole wake of a yawed turbine with an acceptable accuracy. The proposed analytical model is built upon the simplified version of the Reynolds-averaged Navier-Stokes equations. Apart from the ability of the model to predict wake flows in yawed conditions, it can provide a better understanding of turbine wakes in this complex situation. For example, it can give valuable insights on how the wake deflection varies by changing turbine and incoming flow characteristics, such as the thrust coefficient of the turbine or the ambient turbulence.
Experimental, numerical and analytical models of mantle starting plumes
NASA Astrophysics Data System (ADS)
Coulliette, D. L.; Loper, D. E.
1995-12-01
The results of a combined experimental, numerical and analytical investigation of starting thermal plumes are described, to obtain a better perspective on plumes within the Earth's mantle. Thermal plumes were generated experimentally in a tank of corn syrup by means of an electrical heater. Viscosity ratios of 400, 30 000, and 10 8 were generated by varying the temperature of the tank. Plumes for the smaller ratios had the traditional 'balloon-on-astring' shape, but that at the highest ratio had a novel morphology. The plume heads in the first two cases were observed to rise at roughly a constant speed, in contrast to most previous studies which found the plume heads to accelerate. Loss of buoyancy from the plume head owing to heat loss is believed to be responsible for this difference. Starting plumes were simulated numerically using an axisymmetric, finite-element code to solve the Boussinesq equations at finite Prandtl numbers. The constant rise speed observed experimentally was confirmed by the numerical simulation for the viscosity ratios of 400 and 30 000, but numerical instability prevented simulation of the case with a viscosity ratio of 10 8. There was very good agreement between the experimental and numerical rise speeds. An analytical model was developed which reduces to previous models in limiting cases. This parameterization gives better agreement with the experimental and numerical results than does any previous model.
A temporal model for Clinical Data Analytics language.
Safari, Leila; Patrick, Jon D
2013-01-01
The proposal of a special purpose language for Clinical Data Analytics (CliniDAL) is presented along with a general model for expressing temporal events in the language. The temporal dimension of clinical data needs to be addressed from at least five different points of view. Firstly, how to attach the knowledge of time based constraints to queries; secondly, how to mine temporal data in different CISs with various data models; thirdly, how to deal with both relative time and absolute time in the query language; fourthly, how to tackle internal time-event dependencies in queries, and finally, how to manage historical time events preserved in the patient's narrative. The temporal elements of the language are defined in Bachus Naur Form (BNF) along with a UML schema. Its use in a designed taxonomy of a five class hierarchy of data analytics tasks shows the solution to problems of time event dependencies in a highly complex cascade of queries needed to evaluate scientific experiments. The issues in using the model in a practical way are discussed as well.
NASA Astrophysics Data System (ADS)
McCullagh, Nuala; Jeong, Donghui; Szalay, Alexander S.
2016-01-01
Accurate modelling of non-linearities in the galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function, is essential to fully exploit it as a cosmological probe. In this paper, we present numerical and theoretical challenges in modelling the non-linear bispectrum. First, we test the robustness of the matter bispectrum measured from N-body simulations using different initial conditions generators. We run a suite of N-body simulations using the Zel'dovich approximation and second-order Lagrangian perturbation theory (2LPT) at different starting redshifts, and find that transients from initial decaying modes systematically reduce the non-linearities in the matter bispectrum. To achieve 1 per cent accuracy in the matter bispectrum at z ≤ 3 on scales k < 1 h Mpc-1, 2LPT initial conditions generator with initial redshift z ≳ 100 is required. We then compare various analytical formulas and empirical fitting functions for modelling the non-linear matter bispectrum, and discuss the regimes for which each is valid. We find that the next-to-leading order (one-loop) correction from standard perturbation theory matches with N-body results on quasi-linear scales for z ≥ 1. We find that the fitting formula in Gil-Marín et al. accurately predicts the matter bispectrum for z ≤ 1 on a wide range of scales, but at higher redshifts, the fitting formula given in Scoccimarro & Couchman gives the best agreement with measurements from N-body simulations.
Automated refinement and inference of analytical models for metabolic networks
Schmidt, Michael D; Vallabhajosyula, Ravishankar R; Jenkins, Jerry W; Hood, Jonathan E; Soni, Abhishek S; Wikswo, John P; Lipson, Hod
2013-01-01
The reverse engineering of metabolic networks from experimental data is traditionally a labor-intensive task requiring a priori systems knowledge. Using a proven model as a test system, we demonstrate an automated method to simplify this process by modifying an existing or related model – suggesting nonlinear terms and structural modifications – or even constructing a new model that agrees with the system’s time-series observations. In certain cases, this method can identify the full dynamical model from scratch without prior knowledge or structural assumptions. The algorithm selects between multiple candidate models by designing experiments to make their predictions disagree. We performed computational experiments to analyze a nonlinear seven-dimensional model of yeast glycolytic oscillations. This approach corrected mistakes reliably in both approximated and overspecified models. The method performed well to high levels of noise for most states, could identify the correct model de novo, and make better predictions than ordinary parametric regression and neural network models. We identified an invariant quantity in the model, which accurately derived kinetics and the numerical sensitivity coefficients of the system. Finally, we compared the system to dynamic flux estimation and discussed the scaling and application of this methodology to automated experiment design and control in biological systems in real-time. PMID:21832805
Analytical model of signal amplification in silicon waveguides
NASA Astrophysics Data System (ADS)
Meng, Fan; Yu, Chong-Xiu; Yuan, Jin-Hui
2012-07-01
In this paper, an analytical model to investigate the parametric amplification (PA) and the PA + stimulated Raman scattering (SRS) in silicon waveguides is put forward. When two pump signals are employed, the PA bandwidth of the probe signal is so large that the Raman contribution has to be considered. When Raman contribution fraction f is set to be 0, only the PA occurs to amplify the probe signal, and when f is set to be 0.043, the PA and the SRS amplify the probe signal at the same time. The signal amplifications of both single and dual pump schemes are investigated by using this model. With this model, three main affecting factors, i.e., zero dispersion wavelength (ZDWL), third-order dispersion (TOD), and fourth-order dispersion (FOD), are discussed in detail.
Urban stormwater management planning with analytical probabilistic models
Adams, B.J.
2000-07-01
Understanding how to properly manage urban stormwater is a critical concern to civil and environmental engineers the world over. Mismanagement of stormwater and urban runoff results in flooding, erosion, and water quality problems. In an effort to develop better management techniques, engineers have come to rely on computer simulation and advanced mathematical modeling techniques to help plan and predict water system performance. This important book outlines a new method that uses probability tools to model how stormwater behaves and interacts in a combined- or single-system municipal water system. Complete with sample problems and case studies illustrating how concepts really work, the book presents a cost-effective, easy-to-master approach to analytical modeling of stormwater management systems.
A Mechanistic Stochastic Ricker Model: Analytical and Numerical Investigations
NASA Astrophysics Data System (ADS)
Gadrich, Tamar; Katriel, Guy
The Ricker model is one of the simplest and most widely-used ecological models displaying complex nonlinear dynamics. We study a discrete-time population model, which is derived from simple assumptions concerning individual organisms’ behavior, using the “site-based” approach, developed by Brännström, Broomhead, Johansson and Sumpter. In the large-population limit the model converges to the Ricker model, and can thus be considered a mechanistic version of the Ricker model, derived from basic ecological principles, and taking into account the demographic stochasticity inherent to finite populations. We employ several analytical and precise numerical methods to study the model, showing how each approach contributes to understanding the model’s dynamics. Expressing the model as a Markov chain, we employ the concept of quasi-stationary distributions, which are computed numerically, and used to examine the interaction between complex deterministic dynamics and demographic stochasticity, as well as to calculate mean times to extinction. A Gaussian Markov chain approximation is used to obtain quantitative asymptotic approximations for the size of fluctuations of the stochastic model’s time series around the deterministic trajectory, and for the correlations between successive fluctuations. Results of these approximations are compared to results obtained from quasi-stationary distributions and from direct simulations, and are shown to be in good agreement.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.
2016-06-01
We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.
Three-dimensional magnetic optimization of accelerator magnets using an analytic strip model
Rochepault, Etienne Aubert, Guy; Vedrine, Pierre
2014-07-14
The end design is a critical step in the design of superconducting accelerator magnets. First, the strain energy of the conductors must be minimized, which can be achieved using differential geometry. The end design also requires an optimization of the magnetic field homogeneity. A mechanical and magnetic model for the conductors, using developable strips, is described in this paper. This model can be applied to superconducting Rutherford cables, and it is particularly suitable for High Temperature Superconducting tapes. The great advantage of this approach is analytic simplifications in the field computation, allowing for very fast and accurate computations, which save a considerable computational time during the optimization process. Some 3D designs for dipoles are finally proposed, and it is shown that the harmonic integrals can be easily optimized using this model.
Development of a Godunov-type model for the accurate simulation of dispersion dominated waves
NASA Astrophysics Data System (ADS)
Bradford, Scott F.
2016-10-01
A new numerical model based on the Navier-Stokes equations is presented for the simulation of dispersion dominated waves. The equations are solved by splitting the pressure into hydrostatic and non-hydrostatic components. The Godunov approach is utilized to solve the hydrostatic flow equations and the resulting velocity field is then corrected to be divergence free. Alternative techniques for the time integration of the non-hydrostatic pressure gradients are presented and investigated in order to improve the accuracy of dispersion dominated wave simulations. Numerical predictions are compared with analytical solutions and experimental data for test cases involving standing, shoaling, refracting, and breaking waves.
NASA Astrophysics Data System (ADS)
Starn, J. J.
2013-12-01
Particle tracking often is used to generate particle-age distributions that are used as impulse-response functions in convolution. A typical application is to produce groundwater solute breakthrough curves (BTC) at endpoint receptors such as pumping wells or streams. The commonly used semi-analytical particle-tracking algorithm based on the assumption of linear velocity gradients between opposing cell faces is computationally very fast when used in combination with finite-difference models. However, large gradients near pumping wells in regional-scale groundwater-flow models often are not well represented because of cell-size limitations. This leads to inaccurate velocity fields, especially at weak sinks. Accurate analytical solutions for velocity near a pumping well are available, and various boundary conditions can be imposed using image-well theory. Python can be used to embed these solutions into existing semi-analytical particle-tracking codes, thereby maintaining the integrity and quality-assurance of the existing code. Python (and associated scientific computational packages NumPy, SciPy, and Matplotlib) is an effective tool because of its wide ranging capability. Python text processing allows complex and database-like manipulation of model input and output files, including binary and HDF5 files. High-level functions in the language include ODE solvers to solve first-order particle-location ODEs, Gaussian kernel density estimation to compute smooth particle-age distributions, and convolution. The highly vectorized nature of NumPy arrays and functions minimizes the need for computationally expensive loops. A modular Python code base has been developed to compute BTCs using embedded analytical solutions at pumping wells based on an existing well-documented finite-difference groundwater-flow simulation code (MODFLOW) and a semi-analytical particle-tracking code (MODPATH). The Python code base is tested by comparing BTCs with highly discretized synthetic steady
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity. PMID:27530803
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u‑1 to 450 MeV u‑1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
NASA Astrophysics Data System (ADS)
Qiuyang, He; Yue, Xu; Feifei, Zhao
2013-10-01
An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate.
Accurate modeling of switched reluctance machine based on hybrid trained WNN
Song, Shoujun Ge, Lefei; Ma, Shaojie; Zhang, Man
2014-04-15
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.
Accurate modeling of switched reluctance machine based on hybrid trained WNN
NASA Astrophysics Data System (ADS)
Song, Shoujun; Ge, Lefei; Ma, Shaojie; Zhang, Man
2014-04-01
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.
An Accurate and Computationally Efficient Model for Membrane-Type Circular-Symmetric Micro-Hotplates
Khan, Usman; Falconi, Christian
2014-01-01
Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214
Beyond Ellipse(s): Accurately Modelling the Isophotal Structure of Galaxies with ISOFIT and CMODEL
NASA Astrophysics Data System (ADS)
Ciambur, B. C.
2015-09-01
This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.
Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model
NASA Technical Reports Server (NTRS)
Cao, Jichang; Garrett, Frederick, Jr.; Hoffman, Eric; Stalford, Harold
1990-01-01
A 6 DOF analytical aerodynamic model of a high alpha research vehicle is derived. The derivation is based on wind-tunnel model data valid in the altitude-Mach flight envelope centered at 15,000 ft altitude and 0.6 Mach number with Mach range between 0.3 and 0.9. The analytical models of the aerodynamics coefficients are nonlinear functions of alpha with all control variable and other states fixed. Interpolation is required between the parameterized nonlinear functions. The lift and pitching moment coefficients have unsteady flow parts due to the time range of change of angle-of-attack (alpha dot). The analytical models are plotted and compared with their corresponding wind-tunnel data. Piloted simulated maneuvers of the wind-tunnel model are used to evaluate the analytical model. The maneuvers considered are pitch-ups, 360 degree loaded and unloaded rolls, turn reversals, split S's, and level turns. The evaluation finds that (1) the analytical model is a good representation at Mach 0.6, (2) the longitudinal part is good for the Mach range 0.3 to 0.9, and (3) the lateral part is good for Mach numbers between 0.6 and 0.9. The computer simulations show that the storage requirement of the analytical model is about one tenth that of the wind-tunnel model and it runs twice as fast.
Towards more accurate numerical modeling of impedance based high frequency harmonic vibration
NASA Astrophysics Data System (ADS)
Lim, Yee Yan; Kiong Soh, Chee
2014-03-01
The application of smart materials in various fields of engineering has recently become increasingly popular. For instance, the high frequency based electromechanical impedance (EMI) technique employing smart piezoelectric materials is found to be versatile in structural health monitoring (SHM). Thus far, considerable efforts have been made to study and improve the technique. Various theoretical models of the EMI technique have been proposed in an attempt to better understand its behavior. So far, the three-dimensional (3D) coupled field finite element (FE) model has proved to be the most accurate. However, large discrepancies between the results of the FE model and experimental tests, especially in terms of the slope and magnitude of the admittance signatures, continue to exist and are yet to be resolved. This paper presents a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired. FE model updating is then performed by adjusting the parameters to match the experimental results. One of the main reasons for the lower accuracy, especially in terms of magnitude and slope, of previous FE models is the difficulty in determining the damping related coefficients and the stiffness of the bonding layer. In this study, using the hysteretic damping model in place of Rayleigh damping, which is used by most researchers in this field, and updated bonding stiffness, an improved and more accurate FE model is achieved. The results of this paper are expected to be useful for future study of the subject area in terms of research and application, such as modeling, design and optimization.
Stochastic analytical modeling of the biodegradation of steady plumes
NASA Astrophysics Data System (ADS)
Zarlenga, A.; Fiori, A.
2014-02-01
We present a stochastic analytical framework to assess the contaminant concentration of a steady plume undergoing biodegradation. The method is focused on heterogeneous formations, and it embeds both fringe and core degradation. The Lagrangian concentration approach of Fiori (2001) was employed, which is suited for describing the interplay between the large scale advection caused by heterogeneity and the local dispersion processes. The principal scope of the model is to provide a relatively simple tool for a quick assessment of the contamination level in aquifers, as function of a few relevant, physically based dimensionless parameters. The solution of the analytical model is relatively simple and generalizes previous approaches developed for homogeneous formations. It is found that heterogeneity generally enhances mixing and degradation; in fact, the plume shear and distortion operated by the complex, heterogeneous velocity field facilitates local dispersion in diluting the contaminant and mixing it with the electron acceptor. The decay of the electron donor concentration, and so the plume length, is proportional to the transverse pore-scale dispersivity, which is indeed the parameter ruling mixing and hence degradation. While the theoretical plume length is controlled by the fringe processes, the core degradation may determine a significant decay of concentration along the mean flow direction, thus affecting the length of the plume. The method is applied to the crude oil contamination event at the Bemijdi site, Minnesota (USA).
Analytical inverse model for multicomponent soil vapor extraction
Ho, C.K.
1998-06-01
In the past decade, soil vapor extraction has become a popular method for remediating sites contaminated with volatile organic chemicals (VOCs) and nonaqueous phase liquids (NAPLs). An analytical model has been developed to predict in-situ compositions and contaminant volumes from early monitoring of effluent gas concentrations of individual species during multicomponent soil vapor extraction. The model exploits the wave-like propagation of the evaporation fronts of individual species to present analytical expressions for the in-situ compositions, contaminant volumes, effluent concentrations, and recovery rates during discrete time intervals. The efficiency of soil vapor extraction systems also can be determined. Comparison of this theory to a previous experiment of through-flow venting of benzene, toluene, and o-xylene yielded excellent agreement. This suggests that if effluent concentrations of individual species are monitored in the field during soil vapor extraction operations, only minimal data are required at early times to yield predictions of in-situ compositions and contaminant volumes, as well as subsequent effluent concentrations and recovery rates.
Validated Analytical Model of a Pressure Compensation Drip Irrigation Emitter
NASA Astrophysics Data System (ADS)
Shamshery, Pulkit; Wang, Ruo-Qian; Taylor, Katherine; Tran, Davis; Winter, Amos
2015-11-01
This work is focused on analytically characterizing the behavior of pressure-compensating drip emitters in order to design low-cost, low-power irrigation solutions appropriate for off-grid communities in developing countries. There are 2.5 billion small acreage farmers worldwide who rely solely on their land for sustenance. Drip, compared to flood, irrigation leads to up to 70% reduction in water consumption while increasing yields by 90% - important in countries like India which are quickly running out of water. To design a low-power drip system, there is a need to decrease the pumping pressure requirement at the emitters, as pumping power is the product of pressure and flow rate. To efficiently design such an emitter, the relationship between the fluid-structure interactions that occur in an emitter need to be understood. In this study, a 2D analytical model that captures the behavior of a common drip emitter was developed and validated through experiments. The effects of independently changing the channel depth, channel width, channel length and land height on the performance were studied. The model and the key parametric insights presented have the potential to be optimized in order to guide the design of low-pressure, clog-resistant, pressure-compensating emitters.
An analytically tractable model for community ecology with many species
NASA Astrophysics Data System (ADS)
Dickens, Benjamin; Fisher, Charles; Mehta, Pankaj; Pankaj Mehta Biophysics Theory Group Team
A fundamental problem in community ecology is to understand how ecological processes such as selection, drift, and immigration yield observed patterns in species composition and diversity. Here, we present an analytically tractable, presence-absence (PA) model for community assembly and use it to ask how ecological traits such as the strength of competition, diversity in competition, and stochasticity affect species composition in a community. In our PA model, we treat species as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent work on large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (``critical'') point corresponding to Hubbell's neutral theory of biodiversity. Our results suggest that the concepts of ``phases'' and phase diagrams can provide a powerful framework for thinking about community ecology and that the PA model captures the essential ecological dynamics of community assembly. Pm was supported by a Simons Investigator in the Mathematical Modeling of Living Systems and a Sloan Research Fellowship.
Characterization of uniform scanning proton beams with analytical models
NASA Astrophysics Data System (ADS)
Demez, Nebi
Tissue equivalent phantoms have an important place in radiation therapy planning and delivery. They have been manufactured for use in conventional radiotherapy. Their tissue equivalency for proton beams is currently in active investigation. The Bragg-Kleeman rule was used to calculate water equivalent thickness (WET) for available tissue equivalent phantoms from CIRS (Norfolk, VA, USA). WET's of those phantoms were also measured using proton beams at Hampton University Proton Therapy Institute (HUPTI). WET measurements and calculations are in good agreement within ˜1% accuracy except for high Z phantoms. Proton beams were also characterized with an analytical proton dose calculation model, Proton Loss Model (PLM) [26], to investigate protons interactions in water and those phantoms. Depth-dose and lateral dose profiles of protons in water and in those phantoms were calculated, measured, and compared. Water Equivalent Spreadness (WES) was also investigated for those phantoms using the formula for scattering power ratio. Because WES is independent of incident energy of protons, it is possible to estimate spreadness of protons in different media by just knowing WES. Measurements are usually taken for configuration of the treatment planning system (TPS). This study attempted to achieve commissioning data for uniform scanning proton planning with analytical methods, PLM, which have been verified with published measurements and Monte Carlo calculations. Depth doses and lateral profiles calculated by PLM were compared with measurements via the gamma analysis method. While gamma analysis shows that depth doses are in >90% agreement with measured depth doses, the agreement falls to <80% for some lateral profiles. PLM data were imported into the TPS (PLM-TPS). PLM-TPS was tested with different patient cases. The PLM-TPS treatment plans for 5 prostate cases show acceptable agreement. The Planning Treatment Volume (PTV) coverage was 100 % with PLM-TPS except for one case in
Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel
2015-01-01
The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available.
Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel
2015-01-01
The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available. PMID:24472756
Streaming instability of slime mold amoebae: An analytical model
NASA Astrophysics Data System (ADS)
Höfer, Thomas; Maini, Philip K.
1997-08-01
During the aggregation of amoebae of the cellular slime mould Dictyostelium, the interaction of chemical waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming instability. A simple, analytically tractable, model of Dictyostelium aggregation is developed to test this idea. The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynamics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and dispersion relation for cell streaming with the previous findings of model simulations and numerical stability analyses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is proposed.
A Double Scattering Analytical Model For Elastic Recoil Detection Analysis
Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.
2011-06-01
We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.
Quantum quench dynamics in analytically solvable one-dimensional models
NASA Astrophysics Data System (ADS)
Iucci, Anibal; Cazalilla, Miguel A.; Giamarchi, Thierry
2008-03-01
In connection with experiments in cold atomic systems, we consider the non-equilibrium dynamics of some analytically solvable one-dimensional systems which undergo a quantum quench. In this quench one or several of the parameters of the Hamiltonian of an interacting quantum system are changed over a very short time scale. In particular, we concentrate on the Luttinger model and the sine-Gordon model in the Luther-Emery point. For the latter, we show that the order parameter and the two-point correlation function relax in the long time limit to the values determined by a generalized Gibbs ensemble first discussed by J. T. Jaynes [Phys. Rev. 106, 620 (1957); 108, 171 (1957)], and recently conjectured by M. Rigol et.al. [Phys. Rev. Lett. 98, 050405 (2007)] to apply to the non-equilibrium dynamics of integrable systems.
Visual analytics for model selection in time series analysis.
Bögl, Markus; Aigner, Wolfgang; Filzmoser, Peter; Lammarsch, Tim; Miksch, Silvia; Rind, Alexander
2013-12-01
Model selection in time series analysis is a challenging task for domain experts in many application areas such as epidemiology, economy, or environmental sciences. The methodology used for this task demands a close combination of human judgement and automated computation. However, statistical software tools do not adequately support this combination through interactive visual interfaces. We propose a Visual Analytics process to guide domain experts in this task. For this purpose, we developed the TiMoVA prototype that implements this process based on user stories and iterative expert feedback on user experience. The prototype was evaluated by usage scenarios with an example dataset from epidemiology and interviews with two external domain experts in statistics. The insights from the experts' feedback and the usage scenarios show that TiMoVA is able to support domain experts in model selection tasks through interactive visual interfaces with short feedback cycles.
Strong field coherent control of molecular torsions—Analytical models
Ashwell, Benjamin A.; Ramakrishna, S.; Seideman, Tamar
2015-08-14
We introduce analytical models of torsional alignment by moderately intense laser pulses that are applicable to the limiting cases of the torsional barrier heights. Using these models, we explore in detail the role that the laser intensity and pulse duration play in coherent torsional dynamics, addressing both experimental and theoretical concerns. Our results suggest strategies for minimizing the risk of off-resonant ionization, noting the qualitative differences between the case of torsional alignment subject to a field-free torsional barrier and that of torsional alignment of a barrier-less system (equivalent to a 2D rigid rotor). We also investigate several interesting torsional phenomena, including the onset of impulsive alignment of torsions, field-driven oscillations in quantum number space, and the disappearance of an alignment upper bound observed for a rigid rotor in the impulsive torsional alignment limit.
Mason, Philip E; Wernersson, Erik; Jungwirth, Pavel
2012-07-19
The carbonate ion plays a central role in the biochemical formation of the shells of aquatic life, which is an important path for carbon dioxide sequestration. Given the vital role of carbonate in this and other contexts, it is imperative to develop accurate models for such a high charge density ion. As a divalent ion, carbonate has a strong polarizing effect on surrounding water molecules. This raises the question whether it is possible to describe accurately such systems without including polarization. It has recently been suggested the lack of electronic polarization in nonpolarizable water models can be effectively compensated by introducing an electronic dielectric continuum, which is with respect to the forces between atoms equivalent to rescaling the ionic charges. Given how widely nonpolarizable models are used to model electrolyte solutions, establishing the experimental validity of this suggestion is imperative. Here, we examine a stringent test for such models: a comparison of the difference of the neutron scattering structure factors of K2CO3 vs KNO3 solutions and that predicted by molecular dynamics simulations for various models of the same systems. We compare standard nonpolarizable simulations in SPC/E water to analogous simulations with effective ion charges, as well as simulations in explicitly polarizable POL3 water (which, however, has only about half the experimental polarizability). It is found that the simulation with rescaled charges is in a very good agreement with the experimental data, which is significantly better than for the nonpolarizable simulation and even better than for the explicitly polarizable POL3 model.
Analytical modelling of regional radiotherapy dose response of lung
NASA Astrophysics Data System (ADS)
Lee, Sangkyu; Stroian, Gabriela; Kopek, Neil; AlBahhar, Mahmood; Seuntjens, Jan; El Naqa, Issam
2012-06-01
Knowledge of the dose-response of radiation-induced lung disease (RILD) is necessary for optimization of radiotherapy (RT) treatment plans involving thoracic cavity irradiation. This study models the time-dependent relationship between local radiation dose and post-treatment lung tissue damage measured by computed tomography (CT) imaging. Fifty-eight follow-up diagnostic CT scans from 21 non-small-cell lung cancer patients were examined. The extent of RILD was segmented on the follow-up CT images based on the increase of physical density relative to the pre-treatment CT image. The segmented RILD was locally correlated with dose distribution calculated by analytical anisotropic algorithm and the Monte Carlo method to generate the corresponding dose-response curves. The Lyman-Kutcher-Burman (LKB) model was fit to the dose-response curves at six post-RT time periods, and temporal change in the LKB parameters was recorded. In this study, we observed significant correlation between the probability of lung tissue damage and the local dose for 96% of the follow-up studies. Dose-injury correlation at the first three months after RT was significantly different from later follow-up periods in terms of steepness and threshold dose as estimated from the LKB model. Dependence of dose response on superior-inferior tumour position was also observed. The time-dependent analytical modelling of RILD might provide better understanding of the long-term behaviour of the disease and could potentially be applied to improve inverse treatment planning optimization.
Analytically tractable model for community ecology with many species.
Dickens, Benjamin; Fisher, Charles K; Mehta, Pankaj
2016-08-01
A fundamental problem in community ecology is understanding how ecological processes such as selection, drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic and environmental stochasticity affect species composition in a community. In the PA model, species are treated as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Building upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent studies of large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special ("critical") point corresponding to Hubbell's neutral theory of biodiversity. These results suggest that the concepts of ecological "phases" and phase diagrams can provide a powerful framework for thinking about community ecology, and that the PA model captures the essential ecological dynamics of community assembly. PMID:27627348
Analytically tractable model for community ecology with many species
NASA Astrophysics Data System (ADS)
Dickens, Benjamin; Fisher, Charles K.; Mehta, Pankaj
2016-08-01
A fundamental problem in community ecology is understanding how ecological processes such as selection, drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic and environmental stochasticity affect species composition in a community. In the PA model, species are treated as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Building upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent studies of large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special ("critical") point corresponding to Hubbell's neutral theory of biodiversity. These results suggest that the concepts of ecological "phases" and phase diagrams can provide a powerful framework for thinking about community ecology, and that the PA model captures the essential ecological dynamics of community assembly.
NASA Astrophysics Data System (ADS)
Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.
2012-11-01
A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.
Double cluster heads model for secure and accurate data fusion in wireless sensor networks.
Fu, Jun-Song; Liu, Yun
2015-01-19
Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
NASA Astrophysics Data System (ADS)
Stecca, Guglielmo; Siviglia, Annunziato; Blom, Astrid
2016-07-01
We present an accurate numerical approximation to the Saint-Venant-Hirano model for mixed-sediment morphodynamics in one space dimension. Our solution procedure originates from the fully-unsteady matrix-vector formulation developed in [54]. The principal part of the problem is solved by an explicit Finite Volume upwind method of the path-conservative type, by which all the variables are updated simultaneously in a coupled fashion. The solution to the principal part is embedded into a splitting procedure for the treatment of frictional source terms. The numerical scheme is extended to second-order accuracy and includes a bookkeeping procedure for handling the evolution of size stratification in the substrate. We develop a concept of balancedness for the vertical mass flux between the substrate and active layer under bed degradation, which prevents the occurrence of non-physical oscillations in the grainsize distribution of the substrate. We suitably modify the numerical scheme to respect this principle. We finally verify the accuracy in our solution to the equations, and its ability to reproduce one-dimensional morphodynamics due to streamwise and vertical sorting, using three test cases. In detail, (i) we empirically assess the balancedness of vertical mass fluxes under degradation; (ii) we study the convergence to the analytical linearised solution for the propagation of infinitesimal-amplitude waves [54], which is here employed for the first time to assess a mixed-sediment model; (iii) we reproduce Ribberink's E8-E9 flume experiment [46].
Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.
2013-01-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
Gröning, Flora; Jones, Marc E H; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J
2013-07-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
A hidden analytic structure of the Rabi model
Moroz, Alexander
2014-01-15
The Rabi model describes the simplest interaction between a cavity mode with a frequency ω{sub c} and a two-level system with a resonance frequency ω{sub 0}. It is shown here that the spectrum of the Rabi model coincides with the support of the discrete Stieltjes integral measure in the orthogonality relations of recently introduced orthogonal polynomials. The exactly solvable limit of the Rabi model corresponding to Δ=ω{sub 0}/(2ω{sub c})=0, which describes a displaced harmonic oscillator, is characterized by the discrete Charlier polynomials in normalized energy ϵ, which are orthogonal on an equidistant lattice. A non-zero value of Δ leads to non-classical discrete orthogonal polynomials ϕ{sub k}(ϵ) and induces a deformation of the underlying equidistant lattice. The results provide a basis for a novel analytic method of solving the Rabi model. The number of ca. 1350 calculable energy levels per parity subspace obtained in double precision (cca 16 digits) by an elementary stepping algorithm is up to two orders of magnitude higher than is possible to obtain by Braak’s solution. Any first n eigenvalues of the Rabi model arranged in increasing order can be determined as zeros of ϕ{sub N}(ϵ) of at least the degree N=n+n{sub t}. The value of n{sub t}>0, which is slowly increasing with n, depends on the required precision. For instance, n{sub t}≃26 for n=1000 and dimensionless interaction constant κ=0.2, if double precision is required. Given that the sequence of the lth zeros x{sub nl}’s of ϕ{sub n}(ϵ)’s defines a monotonically decreasing discrete flow with increasing n, the Rabi model is indistinguishable from an algebraically solvable model in any finite precision. Although we can rigorously prove our results only for dimensionless interaction constant κ<1, numerics and exactly solvable example suggest that the main conclusions remain to be valid also for κ≥1. -- Highlights: •A significantly simplified analytic solution of the Rabi model
Quinci, Federico; Dressler, Matthew; Strickland, Anthony M; Limbert, Georges
2014-04-01
Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities. It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation
Quinci, Federico; Dressler, Matthew; Strickland, Anthony M; Limbert, Georges
2014-04-01
Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities. It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation
An accurate two-phase approximate solution to the acute viral infection model
Perelson, Alan S
2009-01-01
During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.
Analytical model of peptide mass cluster centres with applications
Wolski, Witold E; Farrow, Malcolm; Emde, Anne-Katrin; Lehrach, Hans; Lalowski, Maciej; Reinert, Knut
2006-01-01
Background The elemental composition of peptides results in formation of distinct, equidistantly spaced clusters across the mass range. The property of peptide mass clustering is used to calibrate peptide mass lists, to identify and remove non-peptide peaks and for data reduction. Results We developed an analytical model of the peptide mass cluster centres. Inputs to the model included, the amino acid frequencies in the sequence database, the average length of the proteins in the database, the cleavage specificity of the proteolytic enzyme used and the cleavage probability. We examined the accuracy of our model by comparing it with the model based on an in silico sequence database digest. To identify the crucial parameters we analysed how the cluster centre location depends on the inputs. The distance to the nearest cluster was used to calibrate mass spectrometric peptide peak-lists and to identify non-peptide peaks. Conclusion The model introduced here enables us to predict the location of the peptide mass cluster centres. It explains how the location of the cluster centres depends on the input parameters. Fast and efficient calibration and filtering of non-peptide peaks is achieved by a distance measure suggested by Wool and Smilansky. PMID:16995952
A semi-analytic dynamical friction model for cored galaxies
NASA Astrophysics Data System (ADS)
Petts, J. A.; Read, J. I.; Gualandris, A.
2016-11-01
We present a dynamical friction model based on Chandrasekhar's formula that reproduces the fast inspiral and stalling experienced by satellites orbiting galaxies with a large constant density core. We show that the fast inspiral phase does not owe to resonance. Rather, it owes to the background velocity distribution function for the constant density core being dissimilar from the usually assumed Maxwellian distribution. Using the correct background velocity distribution function and our semi-analytic model from previous work, we are able to correctly reproduce the infall rate in both cored and cusped potentials. However, in the case of large cores, our model is no longer able to correctly capture core-stalling. We show that this stalling owes to the tidal radius of the satellite approaching the size of the core. By switching off dynamical friction when rt(r) = r (where rt is the tidal radius at the satellite's position), we arrive at a model which reproduces the N-body results remarkably well. Since the tidal radius can be very large for constant density background distributions, our model recovers the result that stalling can occur for Ms/Menc ≪ 1, where Ms and Menc are the mass of the satellite and the enclosed galaxy mass, respectively. Finally, we include the contribution to dynamical friction that comes from stars moving faster than the satellite. This next-to-leading order effect becomes the dominant driver of inspiral near the core region, prior to stalling.
Model choice considerations and information integration using analytical hierarchy process
Langenbrunner, James R; Hemez, Francois M; Booker, Jane M; Ross, Timothy J.
2010-10-15
Using the theory of information-gap for decision-making under severe uncertainty, it has been shown that model output compared to experimental data contains irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty and confidence-in-prediction. We illustrate a strategy for information integration by gathering and aggregating all available data, knowledge, theory, experience, similar applications. Such integration of information becomes important when the physics is difficult to model, when observational data are sparse or difficult to measure, or both. To aggregate the available information, we take an inference perspective. Models are not rejected, nor wasted, but can be integrated into a final result. We show an example of information integration using Saaty's Analytic Hierarchy Process (AHP), integrating theory, simulation output and experimental data. We used expert elicitation to determine weights for two models and two experimental data sets, by forming pair-wise comparisons between model output and experimental data. In this way we transform epistemic and/or statistical strength from one field of study into another branch of physical application. The price to pay for utilizing all available knowledge is that inferences drawn for the integrated information must be accounted for and the costs can be considerable. Focusing on inferences and inference uncertainty (IU) is one way to understand complex information.
A semi-analytic dynamical friction model for cored galaxies
NASA Astrophysics Data System (ADS)
Petts, J. A.; Read, J. I.; Gualandris, A.
2016-08-01
We present a dynamical friction model based on Chandrasekhar's formula that reproduces the fast inspiral and stalling experienced by satellites orbiting galaxies with a large constant density core. We show that the fast inspiral phase does not owe to resonance. Rather, it owes to the background velocity distribution function for the constant density core being dissimilar from the usually-assumed Maxwellian distribution. Using the correct background velocity distribution function and the semi-analytic model from Petts et al. (2015), we are able to correctly reproduce the infall rate in both cored and cusped potentials. However, in the case of large cores, our model is no longer able to correctly capture core-stalling. We show that this stalling owes to the tidal radius of the satellite approaching the size of the core. By switching off dynamical friction when rt(r) = r (where rt is the tidal radius at the satellite's position) we arrive at a model which reproduces the N-body results remarkably well. Since the tidal radius can be very large for constant density background distributions, our model recovers the result that stalling can occur for Ms/Menc ≪ 1, where Ms and Menc are the mass of the satellite and the enclosed galaxy mass, respectively. Finally, we include the contribution to dynamical friction that comes from stars moving faster than the satellite. This next-to-leading order effect becomes the dominant driver of inspiral near the core region, prior to stalling.
Analytical Modeling of Variable Density Multilayer Insulation for Cryogenic Storage
NASA Technical Reports Server (NTRS)
Hedayat, A.; Hastings, L. J.; Brown, T.; Cruit, Wendy (Technical Monitor)
2001-01-01
A unique foam/Multilayer Insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). The MLI was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or heat leak is reduced by about half in comparison with standard MLI. The focus of this paper is on analytical modeling of the Variable Density MLI (VD-MLI) on-orbit performance (i.e. vacuum/low pressure environment). The foam/VD-MLI combination model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three MLI segments with different layer densities. The last segment is considered to be a shroud that surrounds the last MLI layer. Two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the layer separator materials.
Star formation in Herschel's Monsters versus semi-analytic models
NASA Astrophysics Data System (ADS)
Gruppioni, C.; Calura, F.; Pozzi, F.; Delvecchio, I.; Berta, S.; De Lucia, G.; Fontanot, F.; Franceschini, A.; Marchetti, L.; Menci, N.; Monaco, P.; Vaccari, M.
2015-08-01
We present a direct comparison between the observed star formation rate functions (SFRFs) and the state-of-the-art predictions of semi-analytic models (SAMs) of galaxy formation and evolution. We use the PACS Evolutionary Probe Survey and Herschel Multi-tiered Extragalactic Survey data sets in the COSMOS and GOODS-South fields, combined with broad-band photometry from UV to sub-mm, to obtain total (IR+UV) instantaneous star formation rates (SFRs) for individual Herschel galaxies up to z ˜ 4, subtracted of possible active galactic nucleus (AGN) contamination. The comparison with model predictions shows that SAMs broadly reproduce the observed SFRFs up to z ˜ 2, when the observational errors on the SFR are taken into account. However, all the models seem to underpredict the bright end of the SFRF at z ≳ 2. The cause of this underprediction could lie in an improper modelling of several model ingredients, like too strong (AGN or stellar) feedback in the brighter objects or too low fallback of gas, caused by weak feedback and outflows at earlier epochs.
Analytic model for coaxial helicity injection in tokamak plasmas
Weening, R. H.
2011-12-15
Using a partial differential equation for the time evolution of the mean-field poloidal magnetic flux that incorporates resistivity {eta} and hyper-resistivity {Lambda} terms, an exact analytic solution is obtained for steady-state coaxial helicity injection (CHI) in force-free large aspect ratio tokamaks. The analytic mean-field Ohm's law model allows for calculation of the tokamak CHI current drive efficiency and the plasma inductances at arbitrary levels of magnetic fluctuations, or dynamo activity. The results of the mean-field model suggest that CHI approaching Ohmic efficiency is only possible in tokamaks when the size of the effective current drive boundary layer, {delta}{identical_to}({Lambda}/{eta}){sup 1/2}, becomes greater than half the size of the plasma, {delta}>a/2, with a the plasma minor radius. The electron thermal diffusivity due to magnetic fluctuation induced transport is obtained from the expression {chi}{sub e}={Lambda}/{mu}{sub 0}d{sub e}{sup 2}, with {mu}{sub 0} the permeability of free space and d{sub e} the electron skin depth, which for typical tokamak fusion plasma parameters is on the order of a millimeter. Thus, the ratio of the energy confinement time to the resistive diffusion time in a tokamak plasma driven by steady-state CHI approaching Ohmic efficiency is shown to be constrained by the relation {tau}{sub E}/{tau}{sub {eta}}<(d{sub e}/a){sup 2}{approx_equal}10{sup -6}. The mean-field model suggests that steady-state CHI can be viewed most simply as a boundary layer of stochastically wandering magnetic field lines.
Analytical modeling and vibration analysis of internally cracked rectangular plates
NASA Astrophysics Data System (ADS)
Joshi, P. V.; Jain, N. K.; Ramtekkar, G. D.
2014-10-01
This study proposes an analytical model for nonlinear vibrations in a cracked rectangular isotropic plate containing a single and two perpendicular internal cracks located at the center of the plate. The two cracks are in the form of continuous line with each parallel to one of the edges of the plate. The equation of motion for isotropic cracked plate, based on classical plate theory is modified to accommodate the effect of internal cracks using the Line Spring Model. Berger's formulation for in-plane forces makes the model nonlinear. Galerkin's method used with three different boundary conditions transforms the equation into time dependent modal functions. The natural frequencies of the cracked plate are calculated for various crack lengths in case of a single crack and for various crack length ratio for the two cracks. The effect of the location of the part through crack(s) along the thickness of the plate on natural frequencies is studied considering appropriate crack compliance coefficients. It is thus deduced that the natural frequencies are maximally affected when the crack(s) are internal crack(s) symmetric about the mid-plane of the plate and are minimally affected when the crack(s) are surface crack(s), for all the three boundary conditions considered. It is also shown that crack parallel to the longer side of the plate affect the vibration characteristics more as compared to crack parallel to the shorter side. Further the application of method of multiple scales gives the nonlinear amplitudes for different aspect ratios of the cracked plate. The analytical results obtained for surface crack(s) are also assessed with FEM results. The FEM formulation is carried out in ANSYS.
Hydrogeologic role of geologic structures. Part 2: analytical models
NASA Astrophysics Data System (ADS)
Levens, Russell L.; Williams, Roy E.; Ralston, Dale R.
1994-04-01
This paper is the second of two papers that address the influence of geologic structures on ground water flow at various scales in fractured rocks. The ultimate purpose of this research is to investigate the feasibility of grouting preferentially permeable zones as a strategy to minimize the production of acid mine drainage in underground hard rock mines in which the major permeability is structure and fracture controlled. The aim of grouting is to reduce permeability around mined-out openings, to minimize the rate of inflow of ground water into such openings via the structurally controlled preferentially permeable pathways. A series of hydraulic stress tests were conducted to help characterize the role of geologic structures in controlling the ground water flow system in the vicinity of the Bunker Hill Mine in north Idaho. The results of these tests indicate that most of the ground water that flows from the underground drillholes used for hydraulic stress testing is derived from a few discrete, structurally produced fracture zones that are more or less connected through smaller-scale fractures. Four types of analytical models are considered as a means of analyzing the results of multiple drillhole hydraulic stress tests, as follows: cross-hole equivalent porous media; double-porosity equivalent porous media; a solution to flow in and around a single vertical fracture; leaky equivalent porous media, partial penetration. The estimation of hydraulic coefficients in complex fractured rock environments involves the combined application of a number of deterministic analytical models. The models to be used are selected dependent on the location of the drawdown observations relative to the water-producing zone and the length of the test. The result of the tests can be related to the permeability hierarchy discussed in our first paper.
Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1997-01-01
The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various
Analytical Modeling of Squeeze Film Damping in Dual Axis Torsion Microactuators
NASA Astrophysics Data System (ADS)
Moeenfard, Hamid
2015-10-01
In this paper, problem of squeeze film damping in dual axis torsion microactuators is modeled and closed form expressions are provided for damping torques around tilting axes of the actuator. The Reynolds equation which governs the pressure distribution underneath the actuator is linearized. The resulting equation is then solved analytically. The obtained pressure distribution is used to calculate the normalized damping torques around tilting axes of the actuator. Dependence of the damping torques on the design parameters of the dual axis torsion actuator is studied. It is observed that with proper selection of the actuator's aspect ratio, damping torque along one of the tilting directions can be eliminated. It is shown that when the tilting angles of the actuator are small, squeeze film damping would act like a linear viscous damping. The results of this paper can be used for accurate dynamical modeling and control of torsion dual axis microactuators.
NASA Astrophysics Data System (ADS)
Meyer, Daniel W.; Jenny, Patrick
2013-08-01
Different simulation methods are applicable to study turbulent mixing. When applying probability density function (PDF) methods, turbulent transport, and chemical reactions appear in closed form, which is not the case in second moment closure methods (RANS). Moreover, PDF methods provide the entire joint velocity-scalar PDF instead of a limited set of moments. In PDF methods, however, a mixing model is required to account for molecular diffusion. In joint velocity-scalar PDF methods, mixing models should also account for the joint velocity-scalar statistics, which is often under appreciated in applications. The interaction by exchange with the conditional mean (IECM) model accounts for these joint statistics, but requires velocity-conditional scalar means that are expensive to compute in spatially three dimensional settings. In this work, two alternative mixing models are presented that provide more accurate PDF predictions at reduced computational cost compared to the IECM model, since no conditional moments have to be computed. All models are tested for different mixing benchmark cases and their computational efficiencies are inspected thoroughly. The benchmark cases involve statistically homogeneous and inhomogeneous settings dealing with three streams that are characterized by two passive scalars. The inhomogeneous case clearly illustrates the importance of accounting for joint velocity-scalar statistics in the mixing model. Failure to do so leads to significant errors in the resulting scalar means, variances and other statistics.
Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.
Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit
2015-05-01
A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies.
Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.
Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit
2015-05-01
A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920
NASA Technical Reports Server (NTRS)
Kopasakis, George
2014-01-01
The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.
O'Connor, James P B; Boult, Jessica K R; Jamin, Yann; Babur, Muhammad; Finegan, Katherine G; Williams, Kaye J; Little, Ross A; Jackson, Alan; Parker, Geoff J M; Reynolds, Andrew R; Waterton, John C; Robinson, Simon P
2016-02-15
There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.
Fu, Q.; Sun, W.B.; Yang, P.
1998-09-01
An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (D{sub ge}). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is {approximately}2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-01-01
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553
Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Yang, Ping; Sun, W. B.
1998-09-01
An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (Dge). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is 2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-01-01
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai
2016-04-01
A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%. PMID:26292335
An updated analytic model for attenuation by the intergalactic medium
NASA Astrophysics Data System (ADS)
Inoue, Akio K.; Shimizu, Ikkoh; Iwata, Ikuru; Tanaka, Masayuki
2014-08-01
We present an updated version of the so-called Madau model for attenuation of the radiation from distant objects by intergalactic neutral hydrogen. First, we derive the distribution function of intergalactic absorbers from the latest observational statistics of the Lyα forest, Lyman-limit systems and damped Lyα systems. The distribution function reproduces the observed redshift evolution of the Lyα depression and the mean-free path of the Lyman continuum excellently and simultaneously. We then derive a set of analytic functions describing the mean intergalactic attenuation curve for objects at z > 0.5. The new model predicts less (or more) Lyα attenuation for z ≃ 3-5 (z > 6) sources through the usual broad-band filters relative to the original Madau model. This may cause a systematic difference in the photometric redshift estimates, which is, however, still small: about 0.05. Finally, we find a more than 0.5 mag overestimation of Lyman-continuum attenuation in the original Madau model at z > 3, which causes a significant overcorrection against direct observations of the Lyman continuum of galaxies.
Estimating recharge rates with analytic element models and parameter estimation
Dripps, W.R.; Hunt, R.J.; Anderson, M.P.
2006-01-01
Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).
High-Performance data flows using analytical models and measurements
Rao, Nageswara S; Towlsey, D.; Vardoyan, G.; Kettimuthu, R.; Foster, I.; Settlemyer, Bradley
2016-01-01
The combination of analytical models and measurements provide practical configurations and parameters to achieve high data transport rates: (a) buffer sizes and number of parallel streams for improved memory and file transfer rates, (b) Hamilton and Scalable TCP congestion control modules for memory transfers in place of default CUBIC, and (c) direct IO mode for Lustre file systems for wide-area transfers. Conventional parameter selection using full sweeps is impractical in many cases since it takes months. By exploiting the unimodality of throughput profiles, we developed the d-w method that significantly reduces the number of measurements needed for parameter identification. This heuristic method was effective in practice in reducing the measurements by about 90% for Lustre and XFS file transfers.
Analytical model of a giant magnetostrictive resonance transducer
NASA Astrophysics Data System (ADS)
Sheykholeslami, M.; Hojjat, Y.; Ansari, S.; Cinquemani, S.; Ghodsi, M.
2016-04-01
Resonance transducers have been widely developed and studied, as they can be profitably used in many application such as liquid atomizing and sonar technology. The active element of these devices can be a giant magnetostrictive material (GMM) that is known to have significant energy density and good performance at high frequencies. The paper introduces an analytical model of GMM transducers to describe their dynamics in different working conditions and to predict any change in their performance. The knowledge of the transducer behavior, especially in operating conditions different from the ideal ones, is helpful in the design and fabrication of highly efficient devices. This transducer is design to properly work in its second mode of vibration and its working frequency is around 8000 Hz. Most interesting parameters of the device, such as quality factor, bandwidth and output strain are obtained from theoretical analysis.
Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials
NASA Astrophysics Data System (ADS)
Cornwall, John M.
1993-09-01
This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region, using the adiabatic auroral arc model. With certain simplifying assumptions, new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g., cross-tail potential) and ionospheric (e.g., recombination rate) parameters are found. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. Various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) are given which can be studied with existing data sets.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, J. A., Jr.
1998-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1998-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAxwell's equations by the Finite Integration Algorithm (MAFIA). Cold-test parameters have been calculated for several helical traveLing-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making It possible, for the first time, to design complete TWT via computer simulation.
Bornefalk, Hans; Persson, Mats; Danielsson, Mats
2015-03-01
Material basis decomposition in the sinogram domain requires accurate knowledge of the forward model in spectral computed tomography (CT). Misspecifications over a certain limit will result in biased estimates and make quantum limited (where statistical noise dominates) quantitative CT difficult. We present a method whereby users can determine the degree of allowed misspecification error in a spectral CT forward model and still have quantification errors that are limited by the inherent statistical uncertainty. For a particular silicon detector based spectral CT system, we conclude that threshold determination is the most critical factor and that the bin edges need to be known to within 0.15 keV in order to be able to perform quantum limited material basis decomposition. The method as such is general to all multibin systems.
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach.
Saa, Pedro A; Nielsen, Lars K
2016-01-01
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases). PMID:26430979
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285
Analytical Deriving of the Field Capacity through Soil Bundle Model
NASA Astrophysics Data System (ADS)
Arnone, E.; Viola, F.; Antinoro, C.; Noto, L. V.
2015-12-01
The concept of field capacity as soil hydraulic parameter is widely used in many hydrological applications. Althought its recurring usage, its definition is not univocal. Traditionally, field capacity has been related to the amount of water that remains in the soil after the excess water has drained away and the water downward movement experiences a significant decresase. Quantifying the drainage of excess of water may be vague and several definitions, often subjective, have been proposed. These definitions are based on fixed thresholds either of time, pressure, or flux to which the field capacity condition is associated. The flux-based definition identifies the field capacity as the soil moisture value corresponding to an arbitrary fixed threshold of free drainage flux. Recently, many works have investigated the flux-based definition by varying either the drainage threshold, the geometry setting and mainly the description of the drainage flux. Most of these methods are based on the simulation of the flux through a porous medium by using the Darcy's law or Richard's equation. Using the above-mentioned flux-based definition, in this work we propose an alternative analytical approach for deriving the field capacity based on a bundle-of-tubes model. The pore space of a porous medium is conceptualized as a bundle of capillary tubes of given length of different radii, derived from a known distribution. The drainage from a single capillary tube is given by the analytical solution of the differential equation describing the water height evolution within the capillary tube. This equation is based on the Poiseuille's law and describes the drainage flux with time as a function of tube radius. The drainage process is then integrated for any portion of soil taking into account the tube radius distribution which in turns depends on the soil type. This methodology allows to analytically derive the dynamics of drainage water flux for any soil type and consequently to define the
Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime
NASA Astrophysics Data System (ADS)
Reid, Beth A.; White, Martin
2011-11-01
Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for measuring the build-up of cosmological structure, which depends both on the expansion rate of the Universe and on our theory of gravity. The statistical precision with which redshift-space distortions can now be measured demands better control of our theoretical systematic errors. While many recent studies focus on understanding dark matter clustering in redshift space, galaxies occupy special places in the universe: dark matter haloes. In our detailed study of halo clustering and velocity statistics in 67.5 h-3 Gpc3 of N-body simulations, we uncover a complex dependence of redshift-space clustering on halo bias. We identify two distinct corrections which affect the halo redshift-space correlation function on quasi-linear scales (˜30-80 h-1 Mpc): the non-linear mapping between real-space and redshift-space positions, and the non-linear suppression of power in the velocity divergence field. We model the first non-perturbatively using the scale-dependent Gaussian streaming model, which we show is accurate at the <0.5 (2) per cent level in transforming real-space clustering and velocity statistics into redshift space on scales s > 10 (s > 25) h-1 Mpc for the monopole (quadrupole) halo correlation functions. The dominant correction to the Kaiser limit in this model scales like b3. We use standard perturbation theory to predict the real-space pairwise halo velocity statistics. Our fully analytic model is accurate at the 2 per cent level only on scales s > 40 h-1 Mpc for the range of halo masses we studied (with b= 1.4-2.8). We find that recent models of halo redshift-space clustering that neglect the corrections from the bispectrum and higher order terms from the non-linear real-space to redshift-space mapping will not have the accuracy required for current and future observational analyses. Finally, we note that our simulation results confirm the essential but non
Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D.; Ding, Xiaoyue
2014-10-28
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.
NASA Technical Reports Server (NTRS)
Groom, N. J.
1979-01-01
An analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator with permanent magnet fluxbiasing is presented. An AMCD consists of a spinning annular rim which is suspended by a noncontacting linear electromagnetic spin motor. The actuator is treated as a lumped-parameter electromechanical system in the development of the model.
Three-dimensional air flow model for soil venting: Superposition of analytical functions
Cho, J.S.
1993-01-01
A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate transforms allowed the adoption of the superposition of analytical functions to satisfy the differential equations and boundary conditions. A venting well was represented with a line source of a finite length in a infinite homogeneous medium. The boundary conditions at the soil surface and the water table were approximated by the superposition of a large number of mirror image wells on the opposite sides of boundaries. The numerical accuracy of the model was checked by the evaluation of one of the boundary conditions and the comparison of a simulation result with an available analytical solution from the literature. Simulations of various layouts of operating systems with multiple wells required minimal computational expenses. The model was very flexible and easy to use, and its numerical results proved to be sufficiently accurate.
Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?
Sengupta, Dola; Kar, Sandip
2015-01-01
Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature. PMID:26327626
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-02-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-01-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-02-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674
NASA Astrophysics Data System (ADS)
Gritsyk, P. A.; Somov, B. V.
2016-08-01
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.
Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish
2016-04-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina
Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish
2016-01-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143
Analytical modelling for ultrasonic surface mechanical attrition treatment
NASA Astrophysics Data System (ADS)
Huang, Guan-Rong; Tsai, W. Y.; Huang, J. C.; Hu, Chin-Kun
2015-07-01
The grain refinement, gradient structure, fatigue limit, hardness, and tensile strength of metallic materials can be effectively enhanced by ultrasonic surface mechanical attrition treatment (SMAT), however, never before has SMAT been treated with rigorous analytical modelling such as the connection among the input energy and power and resultant temperature of metallic materials subjected to SMAT. Therefore, a systematic SMAT model is actually needed. In this article, we have calculated the averaged speed, duration time of a cycle, kinetic energy and kinetic energy loss of flying balls in SMAT for structural metallic materials. The connection among the quantities such as the frequency and amplitude of attrition ultrasonic vibration motor, the diameter, mass and density of balls, the sample mass, and the height of chamber have been considered and modelled in details. And we have introduced the one-dimensional heat equation with heat source within uniform-distributed depth in estimating the temperature distribution and heat energy of sample. In this approach, there exists a condition for the frequency of flying balls reaching a steady speed. With these known quantities, we can estimate the strain rate, hardness, and grain size of sample.
Analytical thermal model validation for Cassini radioisotope thermoelectric generator
Lin, E.I.
1997-12-31
The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.
Machine learning and cosmological simulations - I. Semi-analytical models
NASA Astrophysics Data System (ADS)
Kamdar, Harshil M.; Turk, Matthew J.; Brunner, Robert J.
2016-01-01
We present a new exploratory framework to model galaxy formation and evolution in a hierarchical Universe by using machine learning (ML). Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively analysing the extent of the influence of dark matter halo properties on galaxies in the backdrop of semi-analytical models (SAMs). We use the influential Millennium Simulation and the corresponding Munich SAM to train and test various sophisticated ML algorithms (k-Nearest Neighbors, decision trees, random forests, and extremely randomized trees). By using only essential dark matter halo physical properties for haloes of M > 1012 M⊙ and a partial merger tree, our model predicts the hot gas mass, cold gas mass, bulge mass, total stellar mass, black hole mass and cooling radius at z = 0 for each central galaxy in a dark matter halo for the Millennium run. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon SAMs and demonstrably place ML as a promising and a computationally efficient tool to study small-scale structure formation.
Hodge, C.A.
1995-07-01
Managers are often required to quickly and accurately estimate resource needs. At times, additional work can be absorbed without additional resources. At other times, threshold resource boundaries are exceeded requiring an additional quantum of a specific resource. Cost savings` estimates, resulting from a reduction in efforts, are also increasingly becoming a requirement of today`s managers. The modeling effort described in this paper was designed to estimate instrumentation and manpower resource needs for an analytical laboratory. It was written using only simple spreadsheet software. Analysis can be readily performed with a minimum of input and results obtained in a matter of minutes. This model has been tuned with many years of empirical data yielding a high degree of capability. The model was expanded to meet other needs. It can be used to justify capital expenditure when the ultimate result is cost savings; to examine procedures and operations for efficiency increases; and for reporting and regulatory compliance. This paper demonstrates that accurate and credible estimates of resource needs can be readily obtained with a minimum of effort or specialized knowledge employing only tools that are readily available in today`s business environment.
Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation
NASA Astrophysics Data System (ADS)
Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.
2006-12-01
Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the
NASA Astrophysics Data System (ADS)
Huet, B.; Yamato, P.; Grasemann, B.
2014-04-01
Here we introduce the Minimized Power Geometric (MPG) model which predicts the viscosity of any polyphase rocks deformed during ductile flow. The volumetric fractions and power law parameters of the constituting phases are the only model inputs required. The model is based on a minimization of the mechanical power dissipated in the rock during deformation. In contrast to existing mixing models based on minimization, we use the Lagrange multipliers method and constraints of strain rate and stress geometric averaging. This allows us to determine analytical expressions for the polyphase rock viscosity, its power law parameters, and the partitioning of strain rate and stress between the phases. The power law bulk behavior is a consequence of our model and not an assumption. Comparison of model results with 15 published experimental data sets on two-phase aggregates shows that the MPG model reproduces accurately both experimental viscosities and creep parameters, even where large viscosity contrasts are present. In detail, the ratio between experimental and MPG-predicted viscosities averages 1.6. Deviations from the experimental values are likely to be due to microstructural processes (strain localization and coeval other deformation mechanisms) that are neglected by the model. Existing models that are not based on geometric averaging show a poorer fit with the experimental data. As long as the limitations of the mixing models are kept in mind, the MPG model offers great potential for applications in structural geology and numerical modeling.
Enabling analytical and Modeling Tools for Enhanced Disease Surveillance
Dawn K. Manley
2003-04-01
Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on and applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating between
Simple analytical model of evapotranspiration in the presence of roots.
Cejas, Cesare M; Hough, L A; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi
2014-10-01
Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant. PMID:25375532
Simple analytical model of evapotranspiration in the presence of roots
NASA Astrophysics Data System (ADS)
Cejas, Cesare M.; Hough, L. A.; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi
2014-10-01
Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.
Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L
2016-08-01
Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. PMID:27260782
Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges?
Searcy, Christopher A; Shaffer, H Bradley
2016-04-01
Defining species' niches is central to understanding their distributions and is thus fundamental to basic ecology and climate change projections. Ecological niche models (ENMs) are a key component of making accurate projections and include descriptions of the niche in terms of both response curves and rankings of variable importance. In this study, we evaluate Maxent's ranking of environmental variables based on their importance in delimiting species' range boundaries by asking whether these same variables also govern annual recruitment based on long-term demographic studies. We found that Maxent-based assessments of variable importance in setting range boundaries in the California tiger salamander (Ambystoma californiense; CTS) correlate very well with how important those variables are in governing ongoing recruitment of CTS at the population level. This strong correlation suggests that Maxent's ranking of variable importance captures biologically realistic assessments of factors governing population persistence. However, this result holds only when Maxent models are built using best-practice procedures and variables are ranked based on permutation importance. Our study highlights the need for building high-quality niche models and provides encouraging evidence that when such models are built, they can reflect important aspects of a species' ecology. PMID:27028071
Lito, Patrícia F; Magalhães, Ana L; Gomes, José R B; Silva, Carlos M
2013-05-17
In this work it is presented a new model for accurate calculation of binary diffusivities (D12) of solutes infinitely diluted in gas, liquid and supercritical solvents. It is based on a Lennard-Jones (LJ) model, and contains two parameters: the molecular diameter of the solvent and a diffusion activation energy. The model is universal since it is applicable to polar, weakly polar, and non-polar solutes and/or solvents, over wide ranges of temperature and density. Its validation was accomplished with the largest database ever compiled, namely 487 systems with 8293 points totally, covering polar (180 systems/2335 points) and non-polar or weakly polar (307 systems/5958 points) mixtures, for which the average errors were 2.65% and 2.97%, respectively. With regard to the physical states of the systems, the average deviations achieved were 1.56% for gaseous (73 systems/1036 points), 2.90% for supercritical (173 systems/4398 points), and 2.92% for liquid (241 systems/2859 points). Furthermore, the model exhibited excellent prediction ability. Ten expressions from the literature were adopted for comparison, but provided worse results or were not applicable to polar systems. A spreadsheet for D12 calculation is provided online for users in Supplementary Data.
An accurate and efficient Lagrangian sub-grid model for multi-particle dispersion
NASA Astrophysics Data System (ADS)
Toschi, Federico; Mazzitelli, Irene; Lanotte, Alessandra S.
2014-11-01
Many natural and industrial processes involve the dispersion of particle in turbulent flows. Despite recent theoretical progresses in the understanding of particle dynamics in simple turbulent flows, complex geometries often call for numerical approaches based on eulerian Large Eddy Simulation (LES). One important issue related to the Lagrangian integration of tracers in under-resolved velocity fields is connected to the lack of spatial correlations at unresolved scales. Here we propose a computationally efficient Lagrangian model for the sub-grid velocity of tracers dispersed in statistically homogeneous and isotropic turbulent flows. The model incorporates the multi-scale nature of turbulent temporal and spatial correlations that are essential to correctly reproduce the dynamics of multi-particle dispersion. The new model is able to describe the Lagrangian temporal and spatial correlations in clouds of particles. In particular we show that pairs and tetrads dispersion compare well with results from Direct Numerical Simulations of statistically isotropic and homogeneous 3d turbulence. This model may offer an accurate and efficient way to describe multi-particle dispersion in under resolved turbulent velocity fields such as the one employed in eulerian LES. This work is part of the research programmes FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). We acknowledge support from the EU COST Action MP0806.
Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data
NASA Astrophysics Data System (ADS)
Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej
2016-04-01
GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.
NASA Astrophysics Data System (ADS)
Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.
2016-03-01
SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.
Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models
NASA Astrophysics Data System (ADS)
Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel
2016-02-01
The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.
Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.
Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M
2016-06-21
We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.
A fast and accurate PCA based radiative transfer model: Extension to the broadband shortwave region
NASA Astrophysics Data System (ADS)
Kopparla, Pushkar; Natraj, Vijay; Spurr, Robert; Shia, Run-Lie; Crisp, David; Yung, Yuk L.
2016-04-01
Accurate radiative transfer (RT) calculations are necessary for many earth-atmosphere applications, from remote sensing retrieval to climate modeling. A Principal Component Analysis (PCA)-based spectral binning method has been shown to provide an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow spectral bands. In this paper, we have extended the PCA method for RT calculations over the entire shortwave region of the spectrum from 0.3 to 3 microns. The region is divided into 33 spectral fields covering all major gas absorption regimes. We find that the RT performance runtimes are shorter by factors between 10 and 100, while root mean square errors are of order 0.01%.
NASA Technical Reports Server (NTRS)
Livne, Eli
1989-01-01
A method is presented for generating mode shapes for model order reduction in a way that leads to accurate calculation of eigenvalue derivatives and eigenvalues for a class of control augmented structures. The method is based on treating degrees of freedom where control forces act or masses are changed in a manner analogous to that used for boundary degrees of freedom in component mode synthesis. It is especially suited for structures controlled by a small number of actuators and/or tuned by a small number of concentrated masses whose positions are predetermined. A control augmented multispan beam with closely spaced natural frequencies is used for numerical experimentation. A comparison with reduced-order eigenvalue sensitivity calculations based on the normal modes of the structure shows that the method presented produces significant improvements in accuracy.
NASA Astrophysics Data System (ADS)
Montes-Hugo, M.; Bouakba, H.; Arnone, R.
2014-06-01
The understanding of phytoplankton dynamics in the Gulf of the Saint Lawrence (GSL) is critical for managing major fisheries off the Canadian East coast. In this study, the accuracy of two atmospheric correction techniques (NASA standard algorithm, SA, and Kuchinke's spectral optimization, KU) and three ocean color inversion models (Carder's empirical for SeaWiFS (Sea-viewing Wide Field-of-View Sensor), EC, Lee's quasi-analytical, QAA, and Garver- Siegel-Maritorena semi-empirical, GSM) for estimating the phytoplankton absorption coefficient at 443 nm (aph(443)) and the chlorophyll concentration (chl) in the GSL is examined. Each model was validated based on SeaWiFS images and shipboard measurements obtained during May of 2000 and April 2001. In general, aph(443) estimates derived from coupling KU and QAA models presented the smallest differences with respect to in situ determinations as measured by High Pressure liquid Chromatography measurements (median absolute bias per cruise up to 0.005, RMSE up to 0.013). A change on the inversion approach used for estimating aph(443) values produced up to 43.4% increase on prediction error as inferred from the median relative bias per cruise. Likewise, the impact of applying different atmospheric correction schemes was secondary and represented an additive error of up to 24.3%. By using SeaDAS (SeaWiFS Data Analysis System) default values for the optical cross section of phytoplankton (i.e., aph(443) = aph(443)/chl = 0.056 m2mg-1), the median relative bias of our chl estimates as derived from the most accurate spaceborne aph(443) retrievals and with respect to in situ determinations increased up to 29%.
An Accurately Stable Thermo-Hydro-Mechanical Model for Geo-Environmental Simulations
NASA Astrophysics Data System (ADS)
Gambolati, G.; Castelletto, N.; Ferronato, M.
2011-12-01
In real-world applications involving complex 3D heterogeneous domains the use of advanced numerical algorithms is of paramount importance to stabily, accurately and efficiently solve the coupled system of partial differential equations governing the mass and the energy balance in deformable porous media. The present communication discusses a novel coupled 3-D numerical model based on a suitable combination of Finite Elements (FEs), Mixed FEs (MFEs), and Finite Volumes (FVs) developed with the aim at stabilizing the numerical solution. Elemental pressures and temperatures, nodal displacements and face normal Darcy and Fourier fluxes are the selected primary variables. Such an approach provides an element-wise conservative velocity field, with both pore pressure and stress having the same order of approximation, and allows for the accurate prediction of sharp temperature convective fronts. In particular, the flow-deformation problem is addressed jointly by FEs and MFEs and is coupled to the heat transfer equation using an ad hoc time splitting technique that separates the time temperature evolution into two partial differential equations, accounting for the convective and the diffusive contribution, respectively. The convective part is addressed by a FV scheme which proves effective in treating sharp convective fronts, while the diffusive part is solved by a MFE formulation. A staggered technique is then implemented for the global solution of the coupled thermo-hydro-mechanical problem, solving iteratively the flow-deformation and the heat transport at each time step. Finally, the model is successfully experimented with in realistic applications dealing with geothermal energy extraction and injection.
NASA Astrophysics Data System (ADS)
Nielsen, Jens; d'Avezac, Mayeul; Hetherington, James; Stamatakis, Michail
2013-12-01
Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.
The S-model: A highly accurate MOST model for CAD
NASA Astrophysics Data System (ADS)
Satter, J. H.
1986-09-01
A new MOST model which combines simplicity and a logical structure with a high accuracy of only 0.5-4.5% is presented. The model is suited for enhancement and depletion devices with either large or small dimensions. It includes the effects of scattering and carrier-velocity saturation as well as the influence of the intrinsic source and drain series resistance. The decrease of the drain current due to substrate bias is incorporated too. The model is in the first place intended for digital purposes. All necessary quantities are calculated in a straightforward manner without iteration. An almost entirely new way of determining the parameters is described and a new cluster parameter is introduced, which is responsible for the high accuracy of the model. The total number of parameters is 7. A still simpler β expression is derived, which is suitable for only one value of the substrate bias and contains only three parameters, while maintaining the accuracy. The way in which the parameters are determined is readily suited for automatic measurement. A simple linear regression procedure programmed in the computer, which controls the measurements, produces the parameter values.
A physically based analytical model of flood frequency curves
NASA Astrophysics Data System (ADS)
Basso, S.; Schirmer, M.; Botter, G.
2016-09-01
Predicting magnitude and frequency of floods is a key issue in hydrology, with implications in many fields ranging from river science and geomorphology to the insurance industry. In this paper, a novel physically based approach is proposed to estimate the recurrence intervals of seasonal flow maxima. The method links the extremal distribution of streamflows to the stochastic dynamics of daily discharge, providing an analytical expression of the seasonal flood frequency curve. The parameters involved in the formulation embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is linked to the antecedent wetness condition in the watershed, needs to be calibrated on the observed maxima. The performance of the method is discussed through a set of applications in four rivers featuring heterogeneous daily flow regimes. The model provides reliable estimates of seasonal maximum flows in different climatic settings and is able to capture diverse shapes of flood frequency curves emerging in erratic and persistent flow regimes. The proposed method exploits experimental information on the full range of discharges experienced by rivers. As a consequence, model performances do not deteriorate when the magnitude of events with return times longer than the available sample size is estimated. The approach provides a framework for the prediction of floods based on short data series of rainfall and daily streamflows that may be especially valuable in data scarce regions of the world.
Analytical model for flux saturation in sediment transport.
Pähtz, Thomas; Parteli, Eric J R; Kok, Jasper F; Herrmann, Hans J
2014-05-01
The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment, and a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out of equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and thus can be applied under different physical conditions.
New analytic solutions for modeling vertical gravity gradient anomalies
NASA Astrophysics Data System (ADS)
Kim, Seung-Sep; Wessel, Paul
2016-05-01
Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.
Analytic Modeling of Neural Tissue: I. A Spherical Bidomain.
Schwartz, Benjamin L; Chauhan, Munish; Sadleir, Rosalind J
2016-12-01
Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and sink points. The problem is solved in three spatial dimensions and defined in spherical coordinates [Formula: see text]. The system of coupled partial differential equations is solved by recasting the problem to be in terms of the membrane and a monodomain, interpreted as a weighted average of the intra and extracellular domains. The membrane and monodomain are defined by the scalar Helmholtz and Laplace equations, respectively, which are both separable in spherical coordinates. Product solutions are thus assumed and given through certain transcendental functions. From these electrical potentials, analytic expressions for current density are derived and from those fields the magnetic flux density is calculated. Numerical examples are considered wherein the interstitial conductivity is varied, as well as the limiting case of the problem simplifying to two dimensions due to azimuthal independence. Finally, future modeling work is discussed. PMID:27613652
INCAS: an analytical model to describe displacement cascades
NASA Astrophysics Data System (ADS)
Jumel, Stéphanie; Claude Van-Duysen, Jean
2004-07-01
REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.
Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials
NASA Technical Reports Server (NTRS)
Cornwall, J. M.
1994-01-01
This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.
NASA Astrophysics Data System (ADS)
Marano, I.; d'Alessandro, V.; Rinaldi, N.
2009-03-01
The thermal behavior of trench-isolated bipolar transistors is thoroughly investigated. Fully 3D numerical simulations are performed to analyze the impact of all technological parameters of interest. Based on numerical results, a novel strategy to analytically evaluate the temperature field is proposed, which accounts for the heat propagation through the trench and the nonuniform heat flux distribution over the interface between the silicon box surrounded by trench and the underlying substrate. The resulting model is proved to compare with numerical simulations more favorably than the other approaches available from the literature. As a consequence, it can be employed for an accurate, yet fast evaluation of the thermal resistance of a trench-isolated device as well as of the temperature gradients within the silicon box.
Analytical modeling and structural response of a stretched-membrane reflective module
Murphy, L.M.; Sallis, D.V.
1984-06-01
The optical and structural load deformation response behavior of a uniform pressure-loaded stretched-membrane reflective module subject to nonaxisymmetric support constraints is studied in this report. To aid in the understanding of this behavior, an idealized analytical model is developed and implemented and predictions are compared with predictions based on the detailed structural analysis code NASTRAN. Single structural membrane reflector modules are studied in this analysis. In particular, the interaction of the frame-membrane combination and variations in membrane pressure loading and tension are studied in detail. Variations in the resulting lateral shear load on the frame, frame lateral support, and frame twist as a function of distance between the supports are described as are the resulting optical effects. Results indicate the need to consider the coupled deformation problem as the lateral frame deformations are amplified by increasing the membrane tension. The importance of accurately considering the effects of different membrane attachment approaches is also demonstrated.
Analytical Solutions for Rumor Spreading Dynamical Model in a Social Network
NASA Astrophysics Data System (ADS)
Fallahpour, R.; Chakouvari, S.; Askari, H.
2015-03-01
In this paper, Laplace Adomian decomposition method is utilized for evaluating of spreading model of rumor. Firstly, a succinct review is constructed on the subject of using analytical methods such as Adomian decomposion method, Variational iteration method and Homotopy Analysis method for epidemic models and biomathematics. In continue a spreading model of rumor with consideration of forgetting mechanism is assumed and subsequently LADM is exerted for solving of it. By means of the aforementioned method, a general solution is achieved for this problem which can be readily employed for assessing of rumor model without exerting any computer program. In addition, obtained consequences for this problem are discussed for different cases and parameters. Furthermore, it is shown the method is so straightforward and fruitful for analyzing equations which have complicated terms same as rumor model. By employing numerical methods, it is revealed LADM is so powerful and accurate for eliciting solutions of this model. Eventually, it is concluded that this method is so appropriate for this problem and it can provide researchers a very powerful vehicle for scrutinizing rumor models in diverse kinds of social networks such as Facebook, YouTube, Flickr, LinkedIn and Tuitor.
Random generalized linear model: a highly accurate and interpretable ensemble predictor
2013-01-01
Background Ensemble predictors such as the random forest are known to have superior accuracy but their black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable especially when forward feature selection is used to construct the model. However, forward feature selection tends to overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling (interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found little attention in the literature. Results Comprehensive evaluations involving hundreds of genomic data sets, the UCI machine learning benchmark data, and simulations are used to give GLM based ensemble predictors a new and careful look. A novel bootstrap aggregated (bagged) GLM predictor that incorporates several elements of randomness and instability (random subspace method, optional interaction terms, forward variable selection) often outperforms a host of alternative prediction methods including random forests and penalized regression models (ridge regression, elastic net, lasso). This random generalized linear model (RGLM) predictor provides variable importance measures that can be used to define a “thinned” ensemble predictor (involving few features) that retains excellent predictive accuracy. Conclusion RGLM is a state of the art predictor that shares the advantages of a random forest (excellent predictive accuracy, feature importance measures, out-of-bag estimates of accuracy) with those of a forward selected generalized linear model (interpretability). These methods are implemented in the freely available R software package randomGLM. PMID:23323760
The use of analytical models in human-computer interface design
NASA Technical Reports Server (NTRS)
Gugerty, Leo
1991-01-01
Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations.
Model Misspecification and Invariance Testing Using Confirmatory Factor Analytic Procedures
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2011-01-01
Confirmatory factor analytic procedures are routinely implemented to provide evidence of measurement invariance. Current lines of research focus on the accuracy of common analytic steps used in confirmatory factor analysis for invariance testing. However, the few studies that have examined this procedure have done so with perfectly or near…
Franck, Christopher T; Koffarnus, Mikhail N; House, Leanna L; Bickel, Warren K
2015-01-01
The study of delay discounting, or valuation of future rewards as a function of delay, has contributed to understanding the behavioral economics of addiction. Accurate characterization of discounting can be furthered by statistical model selection given that many functions have been proposed to measure future valuation of rewards. The present study provides a convenient Bayesian model selection algorithm that selects the most probable discounting model among a set of candidate models chosen by the researcher. The approach assigns the most probable model for each individual subject. Importantly, effective delay 50 (ED50) functions as a suitable unifying measure that is computable for and comparable between a number of popular functions, including both one- and two-parameter models. The combined model selection/ED50 approach is illustrated using empirical discounting data collected from a sample of 111 undergraduate students with models proposed by Laibson (1997); Mazur (1987); Myerson & Green (1995); Rachlin (2006); and Samuelson (1937). Computer simulation suggests that the proposed Bayesian model selection approach outperforms the single model approach when data truly arise from multiple models. When a single model underlies all participant data, the simulation suggests that the proposed approach fares no worse than the single model approach.
NASA Astrophysics Data System (ADS)
Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.
2015-12-01
Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work
33 CFR 385.33 - Revisions to models and analytical tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... analytical tools. 385.33 Section 385.33 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE... Incorporating New Information Into the Plan § 385.33 Revisions to models and analytical tools. (a) In carrying... and other analytical tools for conducting analyses for the planning, design, construction,...
NASA Astrophysics Data System (ADS)
Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano
2015-11-01
Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended
Analytical models for total dose ionization effects in MOS devices.
Campbell, Phillip Montgomery; Bogdan, Carolyn W.
2008-08-01
MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.
Analytical description of scale-dependent topology. A toy model
NASA Astrophysics Data System (ADS)
Seriu, Masafumi
1993-12-01
Based on a (2+1)-dimensional toy model, we present one analytical description of the scale-dependent effective topology of the space-time foam. We describe it in terms of a scattering cross-section. We begin by preparing a two-dimensional space with one topological handle, regarding it as the most elementary building block for the foam-like structure. We then calculate the scattering cross-section of a scalar field on this space. We investigate, how the scattering cross-section changes depending on the variety of topologies as well as the incident energy scale. We also investigate how a twist of the handle affects the cross-section. We find out a systematic topology-dependence and a twist effect in the cross-section. We also try to sketch briefly some basic points of the topological approximation procedure in terms of the homology group. Present address: Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune 411007, India
Analytical model for minority games with evolutionary learning
NASA Astrophysics Data System (ADS)
Campos, Daniel; Méndez, Vicenç; Llebot, Josep E.; Hernández, Germán A.
2010-06-01
In a recent work [D. Campos, J.E. Llebot, V. Méndez, Theor. Popul. Biol. 74 (2009) 16] we have introduced a biological version of the Evolutionary Minority Game that tries to reproduce the intraspecific competition for limited resources in an ecosystem. In comparison with the complex decision-making mechanisms used in standard Minority Games, only two extremely simple strategies ( juveniles and adults) are accessible to the agents. Complexity is introduced instead through an evolutionary learning rule that allows younger agents to learn taking better decisions. We find that this game shows many of the typical properties found for Evolutionary Minority Games, like self-segregation behavior or the existence of an oscillation phase for a certain range of the parameter values. However, an analytical treatment becomes much easier in our case, taking advantage of the simple strategies considered. Using a model consisting of a simple dynamical system, the phase diagram of the game (which differentiates three phases: adults crowd, juveniles crowd and oscillations) is reproduced.
Analytical model of coincidence resolving time in TOF-PET
NASA Astrophysics Data System (ADS)
Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.
2016-06-01
The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.
An analytical study of various telecomminication networks using markov models
NASA Astrophysics Data System (ADS)
Ramakrishnan, M.; Jayamani, E.; Ezhumalai, P.
2015-04-01
The main aim of this paper is to examine issues relating to the performance of various Telecommunication networks, and applied queuing theory for better design and improved efficiency. Firstly, giving an analytical study of queues deals with quantifying the phenomenon of waiting lines using representative measures of performances, such as average queue length (on average number of customers in the queue), average waiting time in queue (on average time to wait) and average facility utilization (proportion of time the service facility is in use). In the second, using Matlab simulator, summarizes the finding of the investigations, from which and where we obtain results and describing methodology for a) compare the waiting time and average number of messages in the queue in M/M/1 and M/M/2 queues b) Compare the performance of M/M/1 and M/D/1 queues and study the effect of increasing the number of servers on the blocking probability M/M/k/k queue model.
NASA Astrophysics Data System (ADS)
Guerlet, Sandrine; Spiga, A.; Sylvestre, M.; Fouchet, T.; Millour, E.; Wordsworth, R.; Leconte, J.; Forget, F.
2013-10-01
Recent observations of Saturn’s stratospheric thermal structure and composition revealed new phenomena: an equatorial oscillation in temperature, reminiscent of the Earth's Quasi-Biennal Oscillation ; strong meridional contrasts of hydrocarbons ; a warm “beacon” associated with the powerful 2010 storm. Those signatures cannot be reproduced by 1D photochemical and radiative models and suggest that atmospheric dynamics plays a key role. This motivated us to develop a complete 3D General Circulation Model (GCM) for Saturn, based on the LMDz hydrodynamical core, to explore the circulation, seasonal variability, and wave activity in Saturn's atmosphere. In order to closely reproduce Saturn's radiative forcing, a particular emphasis was put in obtaining fast and accurate radiative transfer calculations. Our radiative model uses correlated-k distributions and spectral discretization tailored for Saturn's atmosphere. We include internal heat flux, ring shadowing and aerosols. We will report on the sensitivity of the model to spectral discretization, spectroscopic databases, and aerosol scenarios (varying particle sizes, opacities and vertical structures). We will also discuss the radiative effect of the ring shadowing on Saturn's atmosphere. We will present a comparison of temperature fields obtained with this new radiative equilibrium model to that inferred from Cassini/CIRS observations. In the troposphere, our model reproduces the observed temperature knee caused by heating at the top of the tropospheric aerosol layer. In the lower stratosphere (20mbar
modeled temperature is 5-10K too low compared to measurements. This suggests that processes other than radiative heating/cooling by trace
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2014-12-01
Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of
An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).
Bernhardt, Paul V; Bosch, Simone; Comba, Peter; Gahan, Lawrence R; Hanson, Graeme R; Mereacre, Valeriu; Noble, Christopher J; Powell, Annie K; Schenk, Gerhard; Wadepohl, Hubert
2015-08-01
The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system. PMID:26196255
Analysis of structural dynamic data from Skylab. Volume 2: Skylab analytical and test model data
NASA Technical Reports Server (NTRS)
Demchak, L.; Harcrow, H.
1976-01-01
The orbital configuration test modal data, analytical test correlation modal data, and analytical flight configuration modal data are presented. Tables showing the generalized mass contributions (GMCs) for each of the thirty tests modes are given along with the two dimensional mode shape plots and tables of GMCs for the test correlated analytical modes. The two dimensional mode shape plots for the analytical modes and uncoupled and coupled modes of the orbital flight configuration at three development phases of the model are included.
Numerical and Analytic Studies of Random-Walk Models.
NASA Astrophysics Data System (ADS)
Li, Bin
We begin by recapitulating the universality approach to problems associated with critical systems, and discussing the role that random-walk models play in the study of phase transitions and critical phenomena. As our first numerical simulation project, we perform high-precision Monte Carlo calculations for the exponents of the intersection probability of pairs and triplets of ordinary random walks in 2 dimensions, in order to test the conformal-invariance theory predictions. Our numerical results strongly support the theory. Our second numerical project aims to test the hyperscaling relation dnu = 2 Delta_4-gamma for self-avoiding walks in 2 and 3 dimensions. We apply the pivot method to generate pairs of self-avoiding walks, and then for each pair, using the Karp-Luby algorithm, perform an inner -loop Monte Carlo calculation of the number of different translates of one walk that makes at least one intersection with the other. Applying a least-squares fit to estimate the exponents, we have obtained strong numerical evidence that the hyperscaling relation is true in 3 dimensions. Our great amount of data for walks of unprecedented length(up to 80000 steps), yield a updated value for the end-to-end distance and radius of gyration exponent nu = 0.588 +/- 0.001 (95% confidence limit), which comes out in good agreement with the renormalization -group prediction. In an analytic study of random-walk models, we introduce multi-colored random-walk models and generalize the Symanzik and B.F.S. random-walk representations to the multi-colored case. We prove that the zero-component lambdavarphi^2psi^2 theory can be represented by a two-color mutually -repelling random-walk model, and it becomes the mutually -avoiding walk model in the limit lambda to infty. However, our main concern and major break-through lies in the study of the two-point correlation function for the lambda varphi^2psi^2 theory with N > 0 components. By representing it as a two-color random-walk expansion
Accurate Universal Models for the Mass Accretion Histories and Concentrations of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Börner, G.
2009-12-01
A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when
ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS
Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.
2009-12-10
A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass
CD-HPF: New habitability score via data analytic modeling
NASA Astrophysics Data System (ADS)
Bora, K.; Saha, S.; Agrawal, S.; Safonova, M.; Routh, S.; Narasimhamurthy, A.
2016-10-01
The search for life on the planets outside the Solar System can be broadly classified into the following: looking for Earth-like conditions or the planets similar to the Earth (Earth similarity), and looking for the possibility of life in a form known or unknown to us (habitability). The two frequently used indices, Earth Similarity Index (ESI) and Planetary Habitability Index (PHI), describe heuristic methods to score habitability in the efforts to categorize different exoplanets (or exomoons). ESI, in particular, considers Earth as the reference frame for habitability, and is a quick screening tool to categorize and measure physical similarity of any planetary body with the Earth. The PHI assesses the potential habitability of any given planet, and is based on the essential requirements of known life: presence of a stable and protected substrate, energy, appropriate chemistry and a liquid medium. We propose here a different metric, a Cobb-Douglas Habitability Score (CDHS), based on Cobb-Douglas habitability production function (CD-HPF), which computes the habitability score by using measured and estimated planetary input parameters. As an initial set, we used radius, density, escape velocity and surface temperature of a planet. The values of the input parameters are normalized to the Earth Units (EU). The proposed metric, with exponents accounting for metric elasticity, is endowed with analytical properties that ensure global optima, and scales up to accommodate finitely many input parameters. The model is elastic, and, as we discovered, the standard PHI turns out to be a special case of the CDHS. Computed CDHS scores are fed to K-NN (K-Nearest Neighbor) classification algorithm with probabilistic herding that facilitates the assignment of exoplanets to appropriate classes via supervised feature learning methods, producing granular clusters of habitability. The proposed work describes a decision-theoretical model using the power of convex optimization and
TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams
Gelover, E; Wang, D; Hill, P; Flynn, R; Hyer, D
2014-06-15
Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS. Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.
Analytical model of rotor wake aerodynamics in ground effect
NASA Technical Reports Server (NTRS)
Saberi, H. A.
1983-01-01
The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.
Analytical model of impact disruption of satellites and asteroids
NASA Astrophysics Data System (ADS)
Leliwa-Kopystyński, J.; Włodarczyk, I.; Burchell, M. J.
2016-04-01
A model of impact disruption of the bodies with sizes from the laboratory scale to that of an order of 100 km is developed. On the lowermost end of the target size the model is based on the numerous laboratory data related to the mass-velocity distribution of the impact produced fragments. On the minor-planets scale the model is supported by the data related to the largest observed craters on small icy satellites and on some asteroids (Leliwa-Kopystynski, J., Burchell, M.J., Lowen, D. [2008]. Icarus 195, 817-826). The model takes into account the target disruption and the dispersion of the impact produced fragments against the intermolecular forces acting on the surfaces of the contacts of the fragments and against self-gravitation of the target. The head-on collisions of non-rotating and non-porous targets and impactors are considered. The impactor delivers kinetic energy but its mass is neglected in comparison to mass of the target. For this simple case the analytical formulae for specific disruption energy as well as for specific energy of formation of the largest craters are found. They depend on a set of parameters. Of these the most important (i.e. with the greatest influence on the final result) are three rather weakly known parameters. They are: (i) The exponent γ in the distribution function of the fragments. (ii) The characteristic velocity v0 that appears in the velocity distribution of the ejected fragments. (iii) The exponent β in the mass-velocity distribution. The influence of the choice of the numerical values of these parameters on the final results has been studied. Another group of parameters contains the relevant material data. They are: (a) The energy σ of breaking of the intermolecular bonds of the target material per unit of the fragment surface and (b) the density ρ of the target. According to our calculations the transition between the strength regime and the gravitational regime is in the range of the target radius from ∼0.4 km to
Kemppainen, Erno; Halme, Janne; Lund, Peter D
2016-05-11
Our previous theoretical study on the performance limits of the platinum (Pt) nanoparticle catalyst for the hydrogen evolution reaction (HER) had shown that the mass transport losses at a partially catalyst-covered planar electrode are independent of the catalyst loading. This suggests that the two-dimensional (2D) numerical model used could be simplified to a one-dimensional (1D) model to provide an easier but equally accurate description of the operation of these HER electrodes. In this article, we derive an analytical 1D model and show that it indeed gives results that are practically identical to the 2D numerical simulations. We discuss the general principles of the model and how it can be used to extend the applicability of existing electrochemical models of planar electrodes to low catalyst loadings suitable for operating photoelectrochemical devices under unconcentrated sunlight. Since the mass transport losses of the HER are often very sensitive to the H2 concentration, we also discuss the limiting current density of the hydrogen oxidation reaction (HOR) and how it is not necessarily independent of the reaction kinetics. The results give insight into the interplay of kinetic and mass-transport limitations at HER/HOR electrodes with implications for the design of kinetic experiments and the optimization of catalyst loadings in the photoelectrochemical cells.
Accurate Modeling of the Terrestrial Gamma-Ray Background for Homeland Security Applications
Sandness, Gerald A.; Schweppe, John E.; Hensley, Walter K.; Borgardt, James D.; Mitchell, Allison L.
2009-10-24
Abstract–The Pacific Northwest National Laboratory has developed computer models to simulate the use of radiation portal monitors to screen vehicles and cargo for the presence of illicit radioactive material. The gamma radiation emitted by the vehicles or cargo containers must often be measured in the presence of a relatively large gamma-ray background mainly due to the presence of potassium, uranium, and thorium (and progeny isotopes) in the soil and surrounding building materials. This large background is often a significant limit to the detection sensitivity for items of interest and must be modeled accurately for analyzing homeland security situations. Calculations of the expected gamma-ray emission from a disk of soil and asphalt were made using the Monte Carlo transport code MCNP and were compared to measurements made at a seaport with a high-purity germanium detector. Analysis revealed that the energy spectrum of the measured background could not be reproduced unless the model included gamma rays coming from the ground out to distances of at least 300 m. The contribution from beyond about 50 m was primarily due to gamma rays that scattered in the air before entering the detectors rather than passing directly from the ground to the detectors. These skyshine gamma rays contribute tens of percent to the total gamma-ray spectrum, primarily at energies below a few hundred keV. The techniques that were developed to efficiently calculate the contributions from a large soil disk and a large air volume in a Monte Carlo simulation are described and the implications of skyshine in portal monitoring applications are discussed.
Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination
NASA Astrophysics Data System (ADS)
Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael
2014-05-01
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of
Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev; Kumaran, Viswanathan
2015-11-01
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O(1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter.
33 CFR 385.33 - Revisions to models and analytical tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... system-wide simulation models and analytical tools used in the evaluation and assessment of projects, and... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Revisions to models and... Incorporating New Information Into the Plan § 385.33 Revisions to models and analytical tools. (a) In...
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, Ni
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal, and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineers perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(sub x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, Ni
An analytical model for the amplitude of lee waves forming on the boundary layer inversion
NASA Astrophysics Data System (ADS)
Sachsperger, Johannes; Serafin, Stefano; Stiperski, Ivana; Grubišić, Vanda
2016-04-01
Lee waves are horizontally propagating gravity waves with a typical wavelength of 5-15 km that may be generated when stratified flow is lifted over a mountain. A frequently observed type of such waves is that of interfacial lee waves. Those develop, similar to surface waves on a free water surface, when the upstream flow features a density discontinuity. Such conditions are often present for example at the capping inversion in boundary layer flow. The dynamics of interfacial lee waves can be described concisely with linear interfacial gravity wave theory. However, while this theoretical framework accurately describes the wavelength, it fails to properly predict the amplitude of lee waves. It is well known that large amplitude lee waves may lead to low-level turbulence, which poses a potential hazard for aviation. Therefore, this property of interfacial lee waves deserves further attention. In this study, we develop a simple analytical model for the amplitude of lee waves forming on the boundary layer inversion. This model is based on the energetics of two-layer flow. We obtain an expression for the wave amplitude by equating the energy loss across an internal jump with the energy radiation through lee waves. The verification of the result with water tank experiments of density-stratified two-layer flow over two-dimensional topography from the HYDRALAB campaign shows good agreement between theory and observations. This new analytical model may be useful in determining potential hazards of interfacial lee waves with negligible computational cost as compared to numerical weather prediction models.
Dai, Daoxin; He, Sailing
2004-12-01
An accurate two-dimensional (2D) model is introduced for the simulation of an arrayed-waveguide grating (AWG) demultiplexer by integrating the field distribution along the vertical direction. The equivalent 2D model has almost the same accuracy as the original three-dimensional model and is more accurate for the AWG considered here than the conventional 2D model based on the effective-index method. To further improve the computational efficiency, the reciprocity theory is applied to the optimal design of a flat-top AWG demultiplexer with a special input structure.
Stable, accurate and efficient computation of normal modes for horizontal stratified models
NASA Astrophysics Data System (ADS)
Wu, Bo; Chen, Xiaofei
2016-06-01
We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of "family of secular functions" that we herein call "adaptive mode observers", is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of "turning point", our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.
Stable, accurate and efficient computation of normal modes for horizontal stratified models
NASA Astrophysics Data System (ADS)
Wu, Bo; Chen, Xiaofei
2016-08-01
We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of `family of secular functions' that we herein call `adaptive mode observers' is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of `turning point', our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.
Analytical modeling of wetting states and simulation of drop shape on microstructured surfaces
NASA Astrophysics Data System (ADS)
Alen, Saif Khan; Farhat, Nazia; Rahman, Md. Ashiqur
2016-07-01
Understanding the relationship between surface roughness and wetting state is essential in designing microstructured surfaces with tunable wetting properties. In this work, an analytical model for predicting the wetting state on microgroove geometry is developed and applied to intrinsically hydrophilic brass surfaces with a wide range of groove geometry. To enhance the scope and applicability of the developed model, it is implemented on a number of other aluminum microgrooved surfaces. Before applying any surface minimization algorithm to obtain equilibrium droplet shape, the stable wetting state is determined by comparing the total surface energy of the liquid droplet in Cassie and Wenzel wetting state. It is found that hybridization of the microgrooved surface (PDMS coating on the groove base) reduces the critical microgroove dimensions for exhibiting a Cassie wetting state. The unusual spreading of water droplets, observed experimentally on certain microgrooved surfaces, is predicted more accurately when slightly inclined pillars (with a 7° inclination from vertical) instead of vertical wall are assumed. These results corroborate our earlier claim that the shape and the slope of the pillar edge are responsible for the unusual spreading exhibited by certain surfaces. Moreover, implementation of the experimentally obtained values of droplet elongation ratio in the numerical model further enhances the accuracy of the obtained results. The present mathematical model offers an excellent tool for predicting the wetting state of the rough hydrophilic surface using its roughness geometry, and the numerical approach of implementing inclined pillar and droplet elongation ratio can improve the accuracy of drop shape simulation while predicting the wetting states accurately.
Towards more accurate wind and solar power prediction by improving NWP model physics
NASA Astrophysics Data System (ADS)
Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo
2014-05-01
nighttime to well mixed conditions during the day presents a big challenge to NWP models. Fast decrease and successive increase in hub-height wind speed after sunrise, and the formation of nocturnal low level jets will be discussed. For PV, the life cycle of low stratus clouds and fog is crucial. Capturing these processes correctly depends on the accurate simulation of diffusion or vertical momentum transport and the interaction with other atmospheric and soil processes within the numerical weather model. Results from Single Column Model simulations and 3d case studies will be presented. Emphasis is placed on wind forecasts; however, some references to highlights concerning the PV-developments will also be given. *) ORKA: Optimierung von Ensembleprognosen regenerativer Einspeisung für den Kürzestfristbereich am Anwendungsbeispiel der Netzsicherheitsrechnungen **) EWeLiNE: Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger, www.projekt-eweline.de
Lanman, Richard B; Mortimer, Stefanie A; Zill, Oliver A; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A; Divers, Stephen G; Hoon, Dave S B; Kopetz, E Scott; Lee, Jeeyun; Nikolinakos, Petros G; Baca, Arthur M; Kermani, Bahram G; Eltoukhy, Helmy; Talasaz, AmirAli
2015-01-01
Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.
Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli
2015-01-01
Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073
Toward accurate tooth segmentation from computed tomography images using a hybrid level set model
Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang E-mail: jing.xiong@siat.ac.cn; Hu, Ying; Xiong, Jing E-mail: jing.xiong@siat.ac.cn; Zhang, Jianwei
2015-01-15
Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0
Watson, Charles M; Francis, Gamal R
2015-07-01
Hollow copper models painted to match the reflectance of the animal subject are standard in thermal ecology research. While the copper electroplating process results in accurate models, it is relatively time consuming, uses caustic chemicals, and the models are often anatomically imprecise. Although the decreasing cost of 3D printing can potentially allow the reproduction of highly accurate models, the thermal performance of 3D printed models has not been evaluated. We compared the cost, accuracy, and performance of both copper and 3D printed lizard models and found that the performance of the models were statistically identical in both open and closed habitats. We also find that 3D models are more standard, lighter, durable, and inexpensive, than the copper electroformed models. PMID:25965016
Liquid contact resonance AFM: analytical models, experiments, and limitations
NASA Astrophysics Data System (ADS)
Parlak, Zehra; Tu, Qing; Zauscher, Stefan
2014-11-01
Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.
Towards accurate kinetic modeling of prompt NO formation in hydrocarbon flames via the NCN pathway
Sutton, Jeffrey A.; Fleming, James W.
2008-08-15
A basic kinetic mechanism that can predict the appropriate prompt-NO precursor NCN, as shown by experiment, with relative accuracy while still producing postflame NO results that can be calculated as accurately as or more accurately than through the former HCN pathway is presented for the first time. The basic NCN submechanism should be a starting point for future NCN kinetic and prompt NO formation refinement.
Analytical model for electromagnetic cascades in rotating electric field
Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.
2011-08-15
Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.
Kostanyan, Artak E
2015-08-01
In closed-loop recycling (CLR) chromatography, the effluent from the outlet of a column is directly returned into the column through the sample feed line and continuously recycled until the required separation is reached. To select optimal operating conditions for the separation of a given feed mixture, an appropriate mathematical description of the process is required. This work is concerned with the analysis of models for the CLR separations. Due to the effect of counteracting mechanisms on separation of solutes, analytical solutions of the models could be helpful to understand and optimize chromatographic processes. The objective of this work was to develop analytical expressions to describe the CLR counter-current (liquid-liquid) chromatography (CCC). The equilibrium dispersion and cell models were used to describe the transport and separation of solutes inside a CLR CCC column. The Laplace transformation is applied to solve the model equations. Several possible CLR chromatography methods for the binary and complex mixture separations are simulated.
Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes
NASA Astrophysics Data System (ADS)
Kiani, Mohammad Javad; Ahmadi, Mohammad Taghi; Karimi Feiz Abadi, Hediyeh; Rahmani, Meisam; Hashim, Amin; Che harun, Fauzan Khairi
2013-04-01
Graphene has attracted great interest because of unique properties such as high sensitivity, high mobility, and biocompatibility. It is also known as a superior candidate for pH sensing. Graphene-based ion-sensitive field-effect transistor (ISFET) is currently getting much attention as a novel material with organic nature and ionic liquid gate that is intrinsically sensitive to pH changes. pH is an important factor in enzyme stabilities which can affect the enzymatic reaction and broaden the number of enzyme applications. More accurate and consistent results of enzymes must be optimized to realize their full potential as catalysts accordingly. In this paper, a monolayer graphene-based ISFET pH sensor is studied by simulating its electrical measurement of buffer solutions for different pH values. Electrical detection model of each pH value is suggested by conductance modelling of monolayer graphene. Hydrogen ion (H+) concentration as a function of carrier concentration is proposed, and the control parameter ( Ƥ) is defined based on the electro-active ions absorbed by the surface of the graphene with different pH values. Finally, the proposed new analytical model is compared with experimental data and shows good overall agreement.
Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes
2013-01-01
Graphene has attracted great interest because of unique properties such as high sensitivity, high mobility, and biocompatibility. It is also known as a superior candidate for pH sensing. Graphene-based ion-sensitive field-effect transistor (ISFET) is currently getting much attention as a novel material with organic nature and ionic liquid gate that is intrinsically sensitive to pH changes. pH is an important factor in enzyme stabilities which can affect the enzymatic reaction and broaden the number of enzyme applications. More accurate and consistent results of enzymes must be optimized to realize their full potential as catalysts accordingly. In this paper, a monolayer graphene-based ISFET pH sensor is studied by simulating its electrical measurement of buffer solutions for different pH values. Electrical detection model of each pH value is suggested by conductance modelling of monolayer graphene. Hydrogen ion (H+) concentration as a function of carrier concentration is proposed, and the control parameter (Ƥ) is defined based on the electro-active ions absorbed by the surface of the graphene with different pH values. Finally, the proposed new analytical model is compared with experimental data and shows good overall agreement. PMID:23590751
Bicanic, Dane; Swarts, Jan; Luterotti, Svjetlana; Pietraperzia, Giangaetano; Dóka, Otto; de Rooij, Hans
2004-09-01
The concept of the optothermal window (OW) is proposed as a reliable analytical tool to rapidly determine the concentration of lycopene in a large variety of commercial tomato products in an extremely simple way (the determination is achieved without the need for pretreatment of the sample). The OW is a relative technique as the information is deduced from the calibration curve that relates the OW data (i.e., the product of the absorption coefficient beta and the thermal diffusion length micro) with the lycopene concentration obtained from spectrophotometric measurements. The accuracy of the method has been ascertained with a high correlation coefficient (R = 0.98) between the OW data and results acquired from the same samples by means of the conventional extraction spectrophotometric method. The intrinsic precision of the OW method is quite high (better than 1%), whereas the repeatability of the determination (RSD = 0.4-9.5%, n= 3-10) is comparable to that of spectrophotometry.
Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain
2012-05-15
We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.
Modelling a flows in supply chain with analytical models: Case of a chemical industry
NASA Astrophysics Data System (ADS)
Benhida, Khalid; Azougagh, Yassine; Elfezazi, Said
2016-02-01
This study is interested on the modelling of the logistics flows in a supply chain composed on a production sites and a logistics platform. The contribution of this research is to develop an analytical model (integrated linear programming model), based on a case study of a real company operating in the phosphate field, considering a various constraints in this supply chain to resolve the planning problems for a better decision-making. The objectives of this model is to determine and define the optimal quantities of different products to route, to and from the various entities in the supply chain studied.
Analytical Model of Water Flow in Coal with Active Matrix
NASA Astrophysics Data System (ADS)
Siemek, Jakub; Stopa, Jerzy
2014-12-01
This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-10-21
dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-10-21
dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model. PMID:26418216
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur; Sherrill, C. David
2013-08-01
Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal
Bozkaya, Uğur; Sherrill, C David
2013-08-01
Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N(6)) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm(-1)) is fortuitously even better than that of CCSD(T) (50 cm(-1)), while the MAEs of CEPA(0) (184 cm(-1)) and CCSD (84 cm(-1)) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol(-1), which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol(-1)), and comparing to MP2 (7.7 kcal mol(-1)) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is
A model for analytical performance prediction of hypervapotron
Baxi, C.B.; Falter, H.
1992-07-01
A hypervapotron is a water-cooled device which combines the advantages of finned surfaces with the large heat transfer rates possible during boiling heat transfer. Hypervapotrons have been used as beam dumps in the past and plans are under way to use them for divertor cooling in the Joint European Torus (JET). Experiments at JET have shows that a surface heat flux of 25 MW/m{sup 2} can be achieved in hypervapotrons. This performance makes such a device very attractive for cooling of divertor of the International Thermonuclear Experimental Reactor (ITER). This paper presents an analytical method to predict the thermal performance of the hypervapotrons. Preliminary results show an excellent agreement between experimental results and analytical prediction over a wide range of flow velocities, pressures, subcooling temperatures and heat fluxes. This paper also presents the predicted performance of hypervapotron made of materials other than copper. After further development and verification, the analytical method could be used for optimizing designs and performance prediction.
A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept
NASA Astrophysics Data System (ADS)
Pamadi, Bandu N.
1994-10-01
A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.
A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.
1994-01-01
A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.
NASA Astrophysics Data System (ADS)
Astashev, M. G.; Novikov, M. A.; Panfilov, D. I.; Rashitov, P. A.; Fedorova, M. I.
2015-12-01
In this paper, an approach to the development of a simplified analytical model for the analysis of electromagnetic processes of a thyristor-controlled phase angle regulator with an individual phase-controlled thyristor switch is considered. The analytical expressions for the calculation of electrical parameters in symmetrical and open-phase operating mode are obtained. With a concrete example, the verification of the developed analytical model is carried out. It is accomplished by means of comparison between current and voltage calculation results when the thyristor-controlled phase angle regulator is in an open-phase operating mode with the simulation results in the MatLab software environment. Adequacy check of the obtained analytical model is carried out by comparison between the analytical calculation and experimental data received from the actual physical model.
Analytical models of steady-state plumes undergoing sequential first-order degradation.
Burnell, Daniel K; Mercer, James W; Sims, Lawrence S
2012-01-01
An exact, closed-form analytical solution is derived for one-dimensional (1D), coupled, steady-state advection-dispersion equations with sequential first-order degradation of three dissolved species in groundwater. Dimensionless and mathematical analyses are used to examine the sensitivity of longitudinal dispersivity in the parent and daughter analytical solutions. The results indicate that the relative error decreases to less than 15% for the 1D advection-dominated and advection-dispersion analytical solutions of the parent and daughter when the Damköhler number of the parent decreases to less than 1 (slow degradation rate) and the Peclet number increases to greater than 6 (advection-dominated). To estimate first-order daughter product rate constants in advection-dominated zones, 1D, two-dimensional (2D), and three-dimensional (3D) steady-state analytical solutions with zero longitudinal dispersivity are also derived for three first-order sequentially degrading compounds. The closed form of these exact analytical solutions has the advantage of having (1) no numerical integration or evaluation of complex-valued error function arguments, (2) computational efficiency compared to problems with long times to reach steady state, and (3) minimal effort for incorporation into spreadsheets. These multispecies analytical solutions indicate that BIOCHLOR produces accurate results for 1D steady-state, applications with longitudinal dispersion. Although BIOCHLOR is inaccurate in multidimensional applications with longitudinal dispersion, these multidimensional multispecies analytical solutions indicate that BIOCHLOR produces accurate steady-state results when the longitudinal dispersion is zero. As an application, the 1D advection-dominated analytical solution is applied to estimate field-scale rate constants of 0.81, 0.74, and 0.69/year for trichloroethene, cis-1,2-dichloroethene, and vinyl chloride, respectively, at the Harris Palm Bay, FL, CERCLA site. PMID:21883193
The use of analytical models in human-computer interface design
NASA Technical Reports Server (NTRS)
Gugerty, Leo
1993-01-01
Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.
NASA Astrophysics Data System (ADS)
Jin, Li; Hongxia, Liu; Bin, Li; Lei, Cao; Bo, Yuan
2010-08-01
For the first time, a simple and accurate two-dimensional analytical model for the surface potential variation along the channel in fully depleted dual-material gate strained-Si-on-insulator (DMG SSOI) MOSFETs is developed. We investigate the improved short channel effect (SCE), hot carrier effect (HCE), drain-induced barrier-lowering (DIBL) and carrier transport efficiency for the novel structure MOSFET. The analytical model takes into account the effects of different metal gate lengths, work functions, the drain bias and Ge mole fraction in the relaxed SiGe buffer. The surface potential in the channel region exhibits a step potential, which can suppress SCE, HCE and DIBL. Also, strained-Si and SOI structure can improve the carrier transport efficiency, with strained-Si being particularly effective. Further, the threshold voltage model correctly predicts a “rollup" in threshold voltage with decreasing channel length ratios or Ge mole fraction in the relaxed SiGe buffer. The validity of the two-dimensional analytical model is verified using numerical simulations.
NASA Astrophysics Data System (ADS)
Liang, Guanhao; Wang, Yancheng; Mei, Deqing; Xi, Kailun; Chen, Zichen
2016-04-01
This paper presents an analytical model to study the structural effects of a capacitive tactile sensor array on its capacitance changes and sensitivities. The tactile sensor array has 8 × 8 sensor units, and each unit utilizes the truncated polydimethylsiloxane (PDMS) pyramid array structure as the dielectric layer to enhance the sensing performance. To predict the capacitance changes of the sensor unit, it is simplified into a two-layered structure: upper polyethylene terephthalate (PET) film and bottom truncated PDMS pyramid array. The upper PET is modeled by a displacement field function, while each of the truncated pyramids is analyzed to obtain its stress-strain relation. Using the Ritz method, the displacement field functions are solved. The deformation of the upper electrodes and the capacitance changes of the sensor unit can then be calculated. Using the developed model, the structural effects of the truncated PDMS pyramid array and the PDMS bump on the capacitance changes and sensitivities are studied. To achieve the largest capacitance changes, the dimensions have been optimized for the sensor unit. To verify the developed model, we have fabricated the sensor array, and the average sensitivities of the sensor unit to the x-, y-, and z-axes force are 0.49, 0.50, and 0.32% mN-1, respectively, while the model predicted values are 0.54, 0.54, and 0.35% mN-1. Results demonstrate that the developed model can accurately predict the sensing performance of the sensor array and could be utilized for structural optimization.
Innovations in hip arthroplasty three-dimensional modeling and analytical technology (SOMA).
Banerjee, Samik; Faizan, Ahmad; Nevelos, Jim; Kreuzer, Stefan; Burgkart, Rainer; Harwin, Steven F; Mont, Michael A
2014-03-01
The modern generations of cementless hip arthroplasty implant designs are based on precise fit and fill of components within the native bony geometry of the proximal femur and the acetabulum for enhanced implant longevity. Variations exist based on a number of population demographics such as age, gender, body mass index, and ethnicity. Recently, establishment of comprehensive electronic computerized tomographic databases from a diverse population worldwide have been key innovations in the field of implant development. This technology provides a potential improvement compared to historical techniques of implant design and manufacturing which involved limited trials on cadavers. Segmentation of the computerized data to generate three-dimensional models allows precise and accurate measurements of anatomical structures and may provide better understanding of anthropometric variations that occur among individuals. Evidence-and population-based computational analyses may provide a better tool for designing orthopaedic implants that deliver an enhanced fit for a more diverse patient population. Moreover, these population-based databases can also verify new designs by means of virtual implantation and analysis on specific or large groups of bones within the database. The aim of this paper is to describe a three dimensional modeling and analytical technology and to review the various applications of this technology in relation to hip arthroplasty.
Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models.
Kumar, Niraj; Singh, Abhyudai; Kulkarni, Rahul V
2015-10-01
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Such bursting has important consequences for cell-fate decisions in diverse processes ranging from HIV-1 viral infections to stem-cell differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for complex burst arrival processes, highlighting the need for analysis of more general stochastic models. To address this issue, we invoke a mapping between general stochastic models of gene expression and systems studied in queueing theory to derive exact analytical expressions for the moments associated with mRNA/protein steady-state distributions. These results are then used to derive noise signatures, i.e. explicit conditions based entirely on experimentally measurable quantities, that determine if the burst distributions deviate from the geometric distribution or if burst arrival deviates from a Poisson process. For non-Poisson arrivals, we develop approaches for accurate estimation of burst parameters. The proposed approaches can lead to new insights into transcriptional bursting based on measurements of steady-state mRNA/protein distributions. PMID:26474290
A transformed analytical model for thermal noise of FinFET based on fringing field approximation
NASA Astrophysics Data System (ADS)
Madhulika Sharma, Savitesh; Dasgupta, S.; Kartikeyant, M. V.
2016-09-01
This paper delineates the effect of nonplanar structure of FinFETs on noise performance. We demonstrate the thermal noise analytical model that has been inferred by taking into account the presence of an additional inverted region in the extended (underlap) S/D region due to finite gate electrode thickness. Noise investigation includes the effects of source drain resistances which become significant as channel length becomes shorter. In this paper, we evaluate the additional noise caused by three dimensional (3-D) structure of the single fin device and then extended analysis of the multi-fin and multi-fingers structure. The addition of fringe field increases its minimum noise figure and noise resistance of approximately 1 dB and 100 Ω respectively and optimum admittance increases to 5.45 mƱ at 20 GHz for a device operating under saturation region. Hence, our transformed model plays a significant function in evaluation of accurate noise performance at circuit level. Project supported in part by the All India Council for Technical Education (AICTE).
NASA Astrophysics Data System (ADS)
Tiwari, Purushottam; Wang, Xuewen; Darici, Yesim; He, Jin; Uren, Aykut
Surface plasmon resonance (SPR) is a biophysical technique for the quantitative analysis of bimolecular interactions. Correct identification of the binding model is crucial for the interpretation of SPR data. Bivalent SPR model is governed by non-linear differential equations, which, in general, have no analytical solutions. Therefore, an analytical based approach cannot be employed in order to identify this particular model. There exists a unique signature in the bivalent analyte model, existence of an `optimal analyte concentration', which can distinguish this model from other biphasic models. The unambiguous identification and related analysis of the bivalent analyte model is demonstrated by using theoretical simulations and experimentally measured SPR sensorgrams. Experimental SPR sensorgrams were measured by using Biacore T200 instrument available in Biacore Molecular Interaction Shared Resource facility, supported by NIH Grant P30CA51008, at Georgetown University.
IT vendor selection model by using structural equation model & analytical hierarchy process
NASA Astrophysics Data System (ADS)
Maitra, Sarit; Dominic, P. D. D.
2012-11-01
Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.
Analytical models of helical wind-type astrophysical flows
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Vlastou-Tsinganos, G.
1988-01-01
Three classes of analytic solutions of the basic hydrodynamic equations assumed to govern plasma flow in the atmosphere of a rotating astrophysical object are presented. Attention is focused on the balance of the inertial and gravitational forces with suitable pressure gradients in the presence of rotation. The solutions are written in terms of dimensionless physical parameters in order to facilitate their direct application to specific astrophysical flows, such as winds from massive premain sequence objects and T Tauri stars, and bipolar flows in young stellar objects.
ERIC Educational Resources Information Center
Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya
2015-01-01
The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…
An Analytic Hierarchy Process for School Quality and Inspection: Model Development and Application
ERIC Educational Resources Information Center
Al Qubaisi, Amal; Badri, Masood; Mohaidat, Jihad; Al Dhaheri, Hamad; Yang, Guang; Al Rashedi, Asma; Greer, Kenneth
2016-01-01
Purpose: The purpose of this paper is to develop an analytic hierarchy planning-based framework to establish criteria weights and to develop a school performance system commonly called school inspections. Design/methodology/approach: The analytic hierarchy process (AHP) model uses pairwise comparisons and a measurement scale to generate the…
Promoting Active Learning by Practicing the "Self-Assembly" of Model Analytical Instruments
ERIC Educational Resources Information Center
Algar, W. Russ; Krull, Ulrich J.
2010-01-01
In our upper-year instrumental analytical chemistry course, we have developed "cut-and-paste" exercises where students "build" models of analytical instruments from individual schematic images of components. These exercises encourage active learning by students. Instead of trying to memorize diagrams, students are required to think deeply about…
Evaluation of Analytical Modeling Functions for the Phonation Onset Process.
Petermann, Simon; Kniesburges, Stefan; Ziethe, Anke; Schützenberger, Anne; Döllinger, Michael
2016-01-01
The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO), called the voice onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process
Petermann, Simon; Kniesburges, Stefan; Ziethe, Anke; Schützenberger, Anne; Döllinger, Michael
2016-01-01
The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO), called the voice onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW. PMID:27066108
Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint
Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.
2015-02-01
Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.
An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.
Jeong, Jaehak; Charbeneau, Randall J
2014-01-01
An analytical model was developed for estimating the distribution and recovery of light nonaqueous phase liquids (LNAPL) in heterogeneous aquifers. Various scenarios of LNAPL recovery may be simulated using LDRM for LNAPL recovery systems such as skimmer wells, water-enhanced wells, air-enhanced wells, and trenches from heterogeneous aquifers. LDRM uses multiple horizontal soil layers to model a heterogeneous aquifer. Up to three soil layers may be configured with unique soil properties for each layer. Simulation results suggest that LNAPL distribution and its recovery volume are highly affected by soil properties. In sandy soils LNAPL can be highly mobile and the recovery efficiency can be high. In contrast, even at high LNAPL saturations, LNAPL mobility is typically low in fine-grained soils. This characteristic of LNAPL with respect to soil texture has to be carefully accounted for in the model to better predict the recovery of LNAPL from heterogeneous soils. The impact of vertical hydraulic gradient in fine grain zone was assessed. A sensitivity analysis suggests that the formation LNAPL volume can be significantly affected by a downward vertical hydraulic gradient if the magnitude is near a critical amount (=ρr-1). Sensitivity of input parameters with respect to LNAPL formation in soils and LNAPL recovery volume were identified through a sensitivity analysis. The performance of LDRM on predicting the distribution and recovery of LNAP was reasonably accurate for a short-term analysis as demonstrated in a case study. However, further validation is needed to ascertain the model's performance in long-term simulations. PMID:24262305
An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.
Jeong, Jaehak; Charbeneau, Randall J
2014-01-01
An analytical model was developed for estimating the distribution and recovery of light nonaqueous phase liquids (LNAPL) in heterogeneous aquifers. Various scenarios of LNAPL recovery may be simulated using LDRM for LNAPL recovery systems such as skimmer wells, water-enhanced wells, air-enhanced wells, and trenches from heterogeneous aquifers. LDRM uses multiple horizontal soil layers to model a heterogeneous aquifer. Up to three soil layers may be configured with unique soil properties for each layer. Simulation results suggest that LNAPL distribution and its recovery volume are highly affected by soil properties. In sandy soils LNAPL can be highly mobile and the recovery efficiency can be high. In contrast, even at high LNAPL saturations, LNAPL mobility is typically low in fine-grained soils. This characteristic of LNAPL with respect to soil texture has to be carefully accounted for in the model to better predict the recovery of LNAPL from heterogeneous soils. The impact of vertical hydraulic gradient in fine grain zone was assessed. A sensitivity analysis suggests that the formation LNAPL volume can be significantly affected by a downward vertical hydraulic gradient if the magnitude is near a critical amount (=ρr-1). Sensitivity of input parameters with respect to LNAPL formation in soils and LNAPL recovery volume were identified through a sensitivity analysis. The performance of LDRM on predicting the distribution and recovery of LNAP was reasonably accurate for a short-term analysis as demonstrated in a case study. However, further validation is needed to ascertain the model's performance in long-term simulations.
Hunt, R.J.; Anderson, M.P.; Kelson, V.A.
1998-01-01
This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.
Dunn, Nicholas J. H.; Noid, W. G.
2015-12-28
The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.
NASA Astrophysics Data System (ADS)
Dunn, Nicholas J. H.; Noid, W. G.
2015-12-01
The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed "pressure-matching" variational principle to determine a volume-dependent contribution to the potential, UV(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing UV, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that UV accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the "simplicity" of the model.
Analytic Expressions for the BCDMEM Model of Recognition Memory
Myung, Jay I.; Montenegro, Maximiliano; Pitt, Mark A.
2007-01-01
We introduce a Fourier Transformation technique that enables one to derive closed-form expressions of performance measures (e.g., hit and false alarm rates) of simulation-based models of recognition memory. Application of the technique is demonstrated using the bind cue decide model of episodic memory (BCDMEM; Dennis & Humphreys, 2001). In addition to reducing the time required to test the model, which for models like BCDMEM can be excessive, asymptotic expressions of the measures reveal heretofore unknown properties of the model, such as model predictions being dependent on vector length. PMID:18516213
Inferring an analytical model from Cassini-CIRS data to predict Saturn's Rings temperature
NASA Astrophysics Data System (ADS)
Altobelli, N.; Lopez Paz, D.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Brooks, S. M.
2012-12-01
's response. We consider this aspect by performing tests on the available data set using a Neural Network (NN) based technique. We show that indeed, the measurements performed in the past years are sufficient to predict the behavior of the ring temperature, as accurate predictions can be obtained by 'training' the NN only with a (well-chosen) fraction of the measurements taken. In a second step, we propose a general parameterized analytical description of the ring temperature for different radial distances. We show that the B and A ring can, from a thermal response point of view, be modeled as a surface parameterized by its albedo, emissivity and thermal relaxation time, combined with a function quantifying the anisotropy of the perceived temperature by an observer, itself most likely linked to the 'granularity' of the surface that translates into shadowing. We then discuss the quality of our fits and their implications for the ring physical properties, and we use our analytical model to predict future temperature measurements of the rings as planned for the coming years of the Cassini mission.
NASA Astrophysics Data System (ADS)
Wang, Xin; Gao, Jun; Fan, Zhiguo; Roberts, Nicholas W.
2016-06-01
We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Berry et al (2004 New J. Phys. 6 162) and the intensity model of Perez et al (1993 Sol. Energy 50 235-245) such that our single model describes three key sets of data: (1) the overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; (2) the change in sky polarization as a function of the turbidity of the atmosphere; and (3) sky polarization patterns as a function of wavelength, calculated in this work from the ultra-violet to the near infra-red. To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.
Analytical model and finite element computation of braking torque in electromagnetic retarder
NASA Astrophysics Data System (ADS)
Ye, Lezhi; Yang, Guangzhao; Li, Desheng
2014-12-01
An analytical model has been developed for analyzing the braking torque in electromagnetic retarder by flux tube and armature reaction method. The magnetic field distribution in air gap, the eddy current induced in the rotor and the braking torque are calculated by the developed model. Two-dimensional and three-dimensional finite element models for retarder have also been developed. Results from the analytical model are compared with those from finite element models. The validity of these three models is checked by the comparison of the theoretical predictions and the measurements from an experimental prototype. The influencing factors of braking torque have been studied.
Surface electron density models for accurate ab initio molecular dynamics with electronic friction
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.
2016-06-01
Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.
Ustinov, E A
2014-10-01
Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system.
Accurate cortical tissue classification on MRI by modeling cortical folding patterns.
Kim, Hosung; Caldairou, Benoit; Hwang, Ji-Wook; Mansi, Tommaso; Hong, Seok-Jun; Bernasconi, Neda; Bernasconi, Andrea
2015-09-01
Accurate tissue classification is a crucial prerequisite to MRI morphometry. Automated methods based on intensity histograms constructed from the entire volume are challenged by regional intensity variations due to local radiofrequency artifacts as well as disparities in tissue composition, laminar architecture and folding patterns. Current work proposes a novel anatomy-driven method in which parcels conforming cortical folding were regionally extracted from the brain. Each parcel is subsequently classified using nonparametric mean shift clustering. Evaluation was carried out on manually labeled images from two datasets acquired at 3.0 Tesla (n = 15) and 1.5 Tesla (n = 20). In both datasets, we observed high tissue classification accuracy of the proposed method (Dice index >97.6% at 3.0 Tesla, and >89.2% at 1.5 Tesla). Moreover, our method consistently outperformed state-of-the-art classification routines available in SPM8 and FSL-FAST, as well as a recently proposed local classifier that partitions the brain into cubes. Contour-based analyses localized more accurate white matter-gray matter (GM) interface classification of the proposed framework compared to the other algorithms, particularly in central and occipital cortices that generally display bright GM due to their highly degree of myelination. Excellent accuracy was maintained, even in the absence of correction for intensity inhomogeneity. The presented anatomy-driven local classification algorithm may significantly improve cortical boundary definition, with possible benefits for morphometric inference and biomarker discovery.
Ustinov, E. A.
2014-10-07
Commensurate–incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs–Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton–graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton–carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas–solid and solid–solid system.
Ustinov, E A
2014-10-01
Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system. PMID:25296827
Accurate cortical tissue classification on MRI by modeling cortical folding patterns.
Kim, Hosung; Caldairou, Benoit; Hwang, Ji-Wook; Mansi, Tommaso; Hong, Seok-Jun; Bernasconi, Neda; Bernasconi, Andrea
2015-09-01
Accurate tissue classification is a crucial prerequisite to MRI morphometry. Automated methods based on intensity histograms constructed from the entire volume are challenged by regional intensity variations due to local radiofrequency artifacts as well as disparities in tissue composition, laminar architecture and folding patterns. Current work proposes a novel anatomy-driven method in which parcels conforming cortical folding were regionally extracted from the brain. Each parcel is subsequently classified using nonparametric mean shift clustering. Evaluation was carried out on manually labeled images from two datasets acquired at 3.0 Tesla (n = 15) and 1.5 Tesla (n = 20). In both datasets, we observed high tissue classification accuracy of the proposed method (Dice index >97.6% at 3.0 Tesla, and >89.2% at 1.5 Tesla). Moreover, our method consistently outperformed state-of-the-art classification routines available in SPM8 and FSL-FAST, as well as a recently proposed local classifier that partitions the brain into cubes. Contour-based analyses localized more accurate white matter-gray matter (GM) interface classification of the proposed framework compared to the other algorithms, particularly in central and occipital cortices that generally display bright GM due to their highly degree of myelination. Excellent accuracy was maintained, even in the absence of correction for intensity inhomogeneity. The presented anatomy-driven local classification algorithm may significantly improve cortical boundary definition, with possible benefits for morphometric inference and biomarker discovery. PMID:26037453
A two-dimensional analytical model for short channel junctionless double-gate MOSFETs
NASA Astrophysics Data System (ADS)
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-05-01
A physics-based analytical model of electrostatic potential for short-channel junctionless double-gate MOSFETs (JLDGMTs) operated in the subthreshold regime is proposed, in which the full two-dimensional (2-D) Poisson's equation is solved in channel region by a method of series expansion similar to Green's function. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this expression, analytical models of threshold voltage, subthreshold swing, and subthreshold drain current for JLDGMTs were derived. Subthreshold behavior was studied in detail by changing different device parameters and bias conditions, including doping concentration, channel thickness, gate length, gate oxide thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the 2-D simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLDGMTs and to optimize their device performance.
Team mental models: techniques, methods, and analytic approaches.
Langan-Fox, J; Code, S; Langfield-Smith, K
2000-01-01
Effective team functioning requires the existence of a shared or team mental model among members of a team. However, the best method for measuring team mental models is unclear. Methods reported vary in terms of how mental model content is elicited and analyzed or represented. We review the strengths and weaknesses of vatrious methods that have been used to elicit, represent, and analyze individual and team mental models and provide recommendations for method selection and development. We describe the nature of mental models and review techniques that have been used to elicit and represent them. We focus on a case study on selecting a method to examine team mental models in industry. The processes involved in the selection and development of an appropriate method for eliciting, representing, and analyzing team mental models are described. The criteria for method selection were (a) applicability to the problem under investigation; (b) practical considerations - suitability for collecting data from the targeted research sample; and (c) theoretical rationale - the assumption that associative networks in memory are a basis for the development of mental models. We provide an evaluation of the method matched to the research problem and make recommendations for future research. The practical applications of this research include the provision of a technique for analyzing team mental models in organizations, the development of methods and processes for eliciting a mental model from research participants in their normal work environment, and a survey of available methodologies for mental model research.
Process models: analytical tools for managing industrial energy systems
Howe, S O; Pilati, D A; Balzer, C; Sparrow, F T
1980-01-01
How the process models developed at BNL are used to analyze industrial energy systems is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for managing industrial energy systems.
Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B
2012-07-01
We present a novel analytical approach to describe biofilm processes considering continuum variation of both biofilm density and substrate effective diffusivity. A simple perturbation and matching technique was used to quantify biofilm activity using the steady-state diffusion-reaction equation with continuum variable substrate effective diffusivity and biofilm density, along the coordinate normal to the biofilm surface. The procedure allows prediction of an effectiveness factor, η, defined as the ratio between the observed rate of substrate utilization (reaction rate with diffusion resistance) and the rate of substrate utilization without diffusion limitation. Main assumptions are that (i) the biofilm is a continuum, (ii) substrate is transferred by diffusion only and is consumed only by microorganisms at a rate according to Monod kinetics, (iii) biofilm density and substrate effective diffusivity change in the x direction, (iv) the substrate concentration above the biofilm surface is known, and (v) the substratum is impermeable. With this approach one can evaluate, in a fast and efficient way, the effect of different parameters that characterize a heterogeneous biofilm and the kinetics of the rate of substrate consumption on the behavior of the biological system. Based on a comparison of η profiles the activity of a homogeneous biofilm could be as much as 47.8% higher than that of a heterogeneous biofilm, under the given conditions. A comparison of η values estimated for first order kinetics and η values obtained by numerical techniques showed a maximum deviation of 1.75% in a narrow range of modified Thiele modulus values. When external mass transfer resistance, is also considered, a global effectiveness factor, η(0) , can be calculated. The main advantage of the approach lies in the analytical expression for the calculation of the intrinsic effectiveness factor η and its implementation in a computer program. For the test cases studied convergence was
Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B
2012-07-01
We present a novel analytical approach to describe biofilm processes considering continuum variation of both biofilm density and substrate effective diffusivity. A simple perturbation and matching technique was used to quantify biofilm activity using the steady-state diffusion-reaction equation with continuum variable substrate effective diffusivity and biofilm density, along the coordinate normal to the biofilm surface. The procedure allows prediction of an effectiveness factor, η, defined as the ratio between the observed rate of substrate utilization (reaction rate with diffusion resistance) and the rate of substrate utilization without diffusion limitation. Main assumptions are that (i) the biofilm is a continuum, (ii) substrate is transferred by diffusion only and is consumed only by microorganisms at a rate according to Monod kinetics, (iii) biofilm density and substrate effective diffusivity change in the x direction, (iv) the substrate concentration above the biofilm surface is known, and (v) the substratum is impermeable. With this approach one can evaluate, in a fast and efficient way, the effect of different parameters that characterize a heterogeneous biofilm and the kinetics of the rate of substrate consumption on the behavior of the biological system. Based on a comparison of η profiles the activity of a homogeneous biofilm could be as much as 47.8% higher than that of a heterogeneous biofilm, under the given conditions. A comparison of η values estimated for first order kinetics and η values obtained by numerical techniques showed a maximum deviation of 1.75% in a narrow range of modified Thiele modulus values. When external mass transfer resistance, is also considered, a global effectiveness factor, η(0) , can be calculated. The main advantage of the approach lies in the analytical expression for the calculation of the intrinsic effectiveness factor η and its implementation in a computer program. For the test cases studied convergence was
Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1997-01-01
A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.
Lu, Yu; Wechsler, Risa H.; Somerville, Rachel S.; Croton, Darren; Porter, Lauren; Primack, Joel; Moody, Chris; Behroozi, Peter S.; Ferguson, Henry C.; Koo, David C.; Guo, Yicheng; Finlator, Kristian; Castellano, Marco; Sommariva, Veronica E-mail: rwechsler@stanford.edu
2014-11-10
We compare the predictions of three independently developed semi-analytic galaxy formation models (SAMs) that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the 'Bolshoi' high-resolution cosmological N-body simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with Markov Chain Monte Carlo or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. Comparing SAM predictions with existing estimates of the stellar mass function from z = 0-8, we show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present-day stellar mass function, as is the present common wisdom. However, all of the models considered produce predictions for the star formation rates (SFRs) and metallicities of low-mass galaxies that are inconsistent with existing data. The predictions for metallicity-stellar mass relations and their evolution clearly diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor produced by feedback. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1 < z < 5 will discriminate between models, the discrepancies between the constrained models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs of mock
Multi Sensor Data Integration for AN Accurate 3d Model Generation
NASA Astrophysics Data System (ADS)
Chhatkuli, S.; Satoh, T.; Tachibana, K.
2015-05-01
The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.
Models in biology: ‘accurate descriptions of our pathetic thinking’
2014-01-01
In this essay I will sketch some ideas for how to think about models in biology. I will begin by trying to dispel the myth that quantitative modeling is somehow foreign to biology. I will then point out the distinction between forward and reverse modeling and focus thereafter on the former. Instead of going into mathematical technicalities about different varieties of models, I will focus on their logical structure, in terms of assumptions and conclusions. A model is a logical machine for deducing the latter from the former. If the model is correct, then, if you believe its assumptions, you must, as a matter of logic, also believe its conclusions. This leads to consideration of the assumptions underlying models. If these are based on fundamental physical laws, then it may be reasonable to treat the model as ‘predictive’, in the sense that it is not subject to falsification and we can rely on its conclusions. However, at the molecular level, models are more often derived from phenomenology and guesswork. In this case, the model is a test of its assumptions and must be falsifiable. I will discuss three models from this perspective, each of which yields biological insights, and this will lead to some guidelines for prospective model builders. PMID:24886484
ERIC Educational Resources Information Center
Gong, Yue; Beck, Joseph E.; Heffernan, Neil T.
2011-01-01
Student modeling is a fundamental concept applicable to a variety of intelligent tutoring systems (ITS). However, there is not a lot of practical guidance on how to construct and train such models. This paper compares two approaches for student modeling, Knowledge Tracing (KT) and Performance Factors Analysis (PFA), by evaluating their predictive…
NASA Astrophysics Data System (ADS)
West, J. B.; Ehleringer, J. R.; Cerling, T.
2006-12-01
Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across
Energy demand analytics using coupled technological and economic models
Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...
An Analytical Model for University Identity and Reputation Strategy Work
ERIC Educational Resources Information Center
Steiner, Lars; Sundstrom, Agneta C.; Sammalisto, Kaisu
2013-01-01
Universities face increasing global competition, pressuring them to restructure and find new identities. A multidimensional model: identity, image and reputation of strategic university identity and reputation work is developed. The model includes: organizational identity; employee and student attitudes; symbolic identity; influence from…
NASA Astrophysics Data System (ADS)
Toyokuni, Genti; Takenaka, Hiroshi
2012-06-01
We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic
Rozet, E; Rudaz, S; Marini, R D; Ziémons, E; Boulanger, B; Hubert, Ph
2011-09-30
Evaluation of analytical results reliability is of core importance as crucial decisions are taken with them. From the various methodologies to evaluate the fitness of purpose of analytical methods, overall measurement uncertainty estimation is more and more applied. Overall measurement uncertainty allows to combine simultaneously the remaining systematic influences to the random sources of uncertainty and allows assessing the reliability of results generated by analytical methods. However there are various interpretations on how to estimate overall measurement uncertainty, and thus various models for estimating it. Each model together with its assumptions has great impacts on the risks to abusively declare that analytical methods are suitable for their intended purpose. This review paper aims at (i) summarizing the various models used to estimate overall measurement uncertainty, (ii) provide their pros and cons, (iii) review the main areas of application and (iv) as a conclusion provide some recommendations when evaluating overall measurement uncertainty.
Analytical modeling of irrigation and land use effects on streamflow in semi-arid conditions
NASA Astrophysics Data System (ADS)
Traylor, Jonathan P.; Zlotnik, Vitaly A.
2016-02-01
Availability and uncertainty in input data are the primary constraints of groundwater modeling. Analytical models assimilate the key and important data, but capture the major traits of the watershed. We study a baseflow-dominated stream, Frenchman Creek in southwestern Nebraska, USA, which has experienced large streamflow reductions since the 1960s and is a subject of various actions on water rights appropriation. The new element of the model is simultaneous analytical consideration of groundwater pumping and land use change effects. Analytical stream depletion rate calculations by various methods show that pumping from the 462 irrigation wells in the basin consumed a large amount of baseflow. The simulated streamflow at the outlet of Frenchman Creek with minimal calibration compares favorably with observed streamflow and indicates the viability of an analytical approach to watersheds with limited hydrogeologic data.
An analytical model for porous single crystals with ellipsoidal voids
NASA Astrophysics Data System (ADS)
Mbiakop, A.; Constantinescu, A.; Danas, K.
2015-11-01
A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.
Analytical model and performance data for a cylindrical parabolic collector
Ford, F.M.; Stewart, W.E. Jr.
1980-01-01
Concentrating solar collectors provide higher fluid temperatures than flat-plate, an important advantage in many applications. The parabolic cylinder is one of the most popular types of concentrating collectors because of its relatively simple construction and tracking configuration. A mathematical model was developed for one such collector in order to predict thermal efficiency as a function of solar insolation. An experiment was then devised in an attempt to verify this model. Discrepancies between predicted and observed values are discussed, and suggestions are made for improving the model and the experimental procedure.
Analytical model of the combustion of multicomponent solid propellants
NASA Technical Reports Server (NTRS)
Cohen, N. S.; Price, C. F.; Strand, L. D.
1977-01-01
Multiple flame models derived for simple composite propellants are extended to describe the combustion of propellants containing multimodal particle sizes, mixed oxidizers and monopropellant binders. Models combining the component contributions to propellant surface structure, flame structure and energy distribution are based in part upon experimental observations and in part upon hypotheses constrained to provide reasonable agreement with measured burning rate characteristics. The methods employed consist of superposition, interaction and iteration. The computerized model is applied to explain the effects of multiple ingredients and to discuss burning rate tailoring problems of current interest.
Analytic toy model for the innermost stable circular orbit shift
NASA Astrophysics Data System (ADS)
Hod, Shahar
2013-01-01
A simple black-hole-ring system is proposed as a toy model for the two-body problem in general relativity. This toy-model yields the fractional shift ΔΩisco/Ωisco=(29)/(812)η in the Schwarzschild ISCO (innermost stable circular orbit) frequency, where η≡m/Mir≪1 is the dimensionless ratio between the mass of the particle and the irreducible mass of the black hole. Our model suggests that the second-order spin-orbit interaction between the black hole and the orbiting particle (the dragging of inertial frames) is the main element determining the observed value of the ISCO shift.
Formal analytical modeling of blog content as personal narrative
NASA Astrophysics Data System (ADS)
Coombs, Michael J.; Jaenisch, Holger M.; Handley, James W.
2008-04-01
This paper contrasts two techniques for analyzing blog content and making use of this information to model blog content. One method uses classical text content and analysis presented for human interpretation. The second method relies on a data mined list of descriptive words characterizing the blogs. We examine the use of different data mining tools, Kryltech's "Subject Search Summarizer", Leximancer, and QUEST, to provide orthogonal and independently generated key word lists. These lists are then converted into Data Models, enabling mathematical modeling of blog content.
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper
2016-04-01
Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.
An analytic solution to the Monod-Wyman-Changeux model and all parameters in this model.
Zhou, G; Ho, P S; van Holde, K E
1989-01-01
Starting from the Monod-Wyman-Changeux (MWC) model (Monod, J., J. Wyman, and J. P. Changeux. 1965. J. Mol. Biol. 12:88-118), we obtain an analytical expression for the slope of the Hill plot at any ligand concentration. Furthermore, we derive an equation satisfied by the ligand concentration at the position of maximum slope. From these results, we derive a set of formulas which allow determination of the parameters of the MWC model (kR, C, and L) from the value of the Hill coefficient, nH, the ligand concentration at the position of maximum slope [( A]0), and the value of nu/(n-nu) at this point. We then outline procedures for utilizing these equations to provide a "best fit" of the MWC model to the experimental data, and to obtain a refined set of the parameters. Finally, we demonstrate the applicability of the technique by analysis of oxygen binding data for Octopus hemocyanin. PMID:2713440
Recent Analytical and Numerical Results for The Navier-Stokes-Voigt Model and Related Models
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss; Petersen, Mark; Wingate, Beth
2010-11-01
The equations which govern the motions of fluids are notoriously difficult to handle both mathematically and computationally. Recently, a new approach to these equations, known as the Voigt-regularization, has been investigated as both a numerical and analytical regularization for the 3D Navier-Stokes equations, the Euler equations, and related fluid models. This inviscid regularization is related to the alpha-models of turbulent flow; however, it overcomes many of the problems present in those models. I will discuss recent work on the Voigt-regularization, as well as a new criterion for the finite-time blow-up of the Euler equations based on their Voigt-regularization. Time permitting, I will discuss some numerical results, as well as applications of this technique to the Magnetohydrodynamic (MHD) equations and various equations of ocean dynamics.
Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3
NASA Astrophysics Data System (ADS)
Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.
2016-04-01
Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.