Science.gov

Sample records for accurate chemical analysis

  1. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  2. Accurate ab initio energy gradients in chemical compound space.

    PubMed

    Anatole von Lilienfeld, O

    2009-10-28

    Analytical potential energy derivatives, based on the Hellmann-Feynman theorem, are presented for any pair of isoelectronic compounds. Since energies are not necessarily monotonic functions between compounds, these derivatives can fail to predict the right trends of the effect of alchemical mutation. However, quantitative estimates without additional self-consistency calculations can be made when the Hellmann-Feynman derivative is multiplied with a linearization coefficient that is obtained from a reference pair of compounds. These results suggest that accurate predictions can be made regarding any molecule's energetic properties as long as energies and gradients of three other molecules have been provided. The linearization coefficent can be interpreted as a quantitative measure of chemical similarity. Presented numerical evidence includes predictions of electronic eigenvalues of saturated and aromatic molecular hydrocarbons. PMID:19894922

  3. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  4. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  5. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  6. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGESBeta

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  7. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  8. Chemical process hazards analysis

    SciTech Connect

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  9. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  10. Accurate analysis of EBSD data for phase identification

    NASA Astrophysics Data System (ADS)

    Palizdar, Y.; Cochrane, R. C.; Brydson, R.; Leary, R.; Scott, A. J.

    2010-07-01

    This paper aims to investigate the reliability of software default settings in the analysis of EBSD results. To study the effect of software settings on the EBSD results, the presence of different phases in high Al steel has been investigated by EBSD. The results show the importance of appropriate automated analysis parameters for valid and reliable phase discrimination. Specifically, the importance of the minimum number of indexed bands and the maximum solution error have been investigated with values of 7-9 and 1.0-1.5° respectively, found to be needed for accurate analysis.

  11. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  12. Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings.

    PubMed

    Hjertenæs, Eirik; Trinh, Thuat T; Koch, Henrik

    2016-07-21

    We present chemically accurate potential energy curves of CH4, CO2 and H2 moving through hexagonal water rings, calculated by CCSD(T)/aug-cc-pVTZ with counterpoise correction. The barriers are extracted from a potential energy surface obtained by allowing the water ring to expand while the gas molecule diffuses through. State-of-the-art XC-functionals are evaluated against the CCSD(T) potential energy surface. PMID:27345929

  13. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    PubMed Central

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  14. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  15. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  16. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGESBeta

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  17. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  18. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  19. Chemically accurate description of aromatic rings interaction using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Azadi, Sam

    We present an accurate study of interactions between benzene molecules using wave function based quantum Monte Carlo (QMC) methods. We compare our QMC results with density functional theory (DFT) using various van der Waals (vdW) functionals. This comparison enables us to tune vdW functionals. We show that highly optimizing the wave function and introducing more dynamical correlation into the wave function are crucial to calculate the weak chemical binding energy between benzene molecules. The good agreement among our results, experiments and quantum chemistry methods, is an important sign of the capability of the wave function based QMC methods to provide accurate description of very weak intermolecular interactions based on vdW dispersive forces.

  20. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  1. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  2. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.

    PubMed

    Neal, Stephen; Nip, Alex M; Zhang, Haiyan; Wishart, David S

    2003-07-01

    A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts--RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 A) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of approximately 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (<1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Halpha), 0.980 (13Calpha), 0.996 (13Cbeta), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http

  3. In-Situ Planetary Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kounaves, S. P.; Buehler, M. G.; Grannan, S. M.; Hecht, M. H.; Kuhlman, K. R.

    2000-01-01

    Both, the search for evidence of life on Mars and the assessment of the Martian environment in respect to its compatibility with human explorers, will require the ability to measure and understand the aqueous chemistry of the Martian regolith. Direct in-situ chemical analysis is the only method by which chemical biosignatures can be reliably recognized and the toxicity of the regolith accurately assessed. Qualitative and quantitative determination of the aqueous ionic constituents and their concentrations is critical in developing kinetic and thermodynamic models that can be used to accurately predict the potential of the past or present Martian geochemical environment to have either generated or still sustain life. In-situ chemical characterization could provide evidence as to whether the chemical composition of the regolith or evaporates in suspected ancient water bodies have been biologically influenced.

  4. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation.

    PubMed

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space

  5. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space

  6. Assessment of the extended Koopmans' theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and electrophilicity indices.

    PubMed

    Yildiz, Dilan; Bozkaya, Uğur

    2016-01-30

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials and electron affinities from any level of theory. Although it is widely applied to ionization potentials, the EKT approach has not been applied to evaluation of the chemical reactivity. We present the first benchmarking study to investigate the performance of the EKT methods for predictions of chemical potentials (μ) (hence electronegativities), chemical hardnesses (η), and electrophilicity indices (ω). We assess the performance of the EKT approaches for post-Hartree-Fock methods, such as Møller-Plesset perturbation theory, the coupled-electron pair theory, and their orbital-optimized counterparts for the evaluation of the chemical reactivity. Especially, results of the orbital-optimized coupled-electron pair theory method (with the aug-cc-pVQZ basis set) for predictions of the chemical reactivity are very promising; the corresponding mean absolute errors are 0.16, 0.28, and 0.09 eV for μ, η, and ω, respectively. PMID:26458329

  7. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  8. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips

    PubMed Central

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J.; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin “CJ”; van Dam, R. Michael

    2015-01-01

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of < 90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [18F]FDG reliably. PMID:22825699

  9. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips.

    PubMed

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin C J; van Dam, R Michael

    2012-09-21

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of <90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [(18)F]FDG reliably. PMID:22825699

  10. Chemical Sensing in Process Analysis.

    ERIC Educational Resources Information Center

    Hirschfeld, T.; And Others

    1984-01-01

    Discusses: (1) rationale for chemical sensors in process analysis; (2) existing types of process chemical sensors; (3) sensor limitations, considering lessons of chemometrics; (4) trends in process control sensors; and (5) future prospects. (JN)

  11. Accurate analysis of multicomponent fuel spray evaporation in turbulent flow

    NASA Astrophysics Data System (ADS)

    Rauch, Bastian; Calabria, Raffaela; Chiariello, Fabio; Le Clercq, Patrick; Massoli, Patrizio; Rachner, Michael

    2012-04-01

    The aim of this paper is to perform an accurate analysis of the evaporation of single component and binary mixture fuels sprays in a hot weakly turbulent pipe flow by means of experimental measurement and numerical simulation. This gives a deeper insight into the relationship between fuel composition and spray evaporation. The turbulence intensity in the test section is equal to 10%, and the integral length scale is three orders of magnitude larger than the droplet size while the turbulence microscale (Kolmogorov scales) is of same order as the droplet diameter. The spray produced by means of a calibrated droplet generator was injected in a gas flow electrically preheated. N-nonane, isopropanol, and their mixtures were used in the tests. The generalized scattering imaging technique was applied to simultaneously determine size, velocity, and spatial location of the droplets carried by the turbulent flow in the quartz tube. The spray evaporation was computed using a Lagrangian particle solver coupled to a gas-phase solver. Computations of spray mean diameter and droplet size distributions at different locations along the pipe compare very favorably with the measurement results. This combined research tool enabled further investigation concerning the influencing parameters upon the evaporation process such as the turbulence, droplet internal mixing, and liquid-phase thermophysical properties.

  12. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  13. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction.

    PubMed

    Nattino, Francesco; Migliorini, Davide; Kroes, Geert-Jan; Dombrowski, Eric; High, Eric A; Killelea, Daniel R; Utz, Arthur L

    2016-07-01

    Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals. PMID:27284787

  14. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction

    PubMed Central

    2016-01-01

    Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals. PMID:27284787

  15. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems. PMID:26651397

  16. Identification of "Known Unknowns" Utilizing Accurate Mass Data and Chemical Abstracts Service Databases

    NASA Astrophysics Data System (ADS)

    Little, James L.; Cleven, Curtis D.; Brown, Stacy D.

    2011-02-01

    In many cases, an unknown to an investigator is actually known in the chemical literature. We refer to these types of compounds as "known unknowns." Chemical Abstracts Service (CAS) Registry is a particularly good source of these substances as it contains over 54 million entries. Accurate mass measurements can be used to query the CAS Registry by either molecular formulae or average molecular weights. Searching the database by the web-based version of SciFinder is the preferred approach when molecular formulae are available. However, if a definitive molecular formula cannot be ascertained, searching the database with STN Express by average molecular weights is a viable alternative. The results from either approach are refined by employing the number of associated references or minimal sample history as orthogonal filters. These approaches were shown to be successful in identifying "known unknowns" noted in LC-MS and even GC-MS analyses in our laboratory. In addition, they were demonstrated in the identification of a variety of compounds of interest to others.

  17. Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.

    PubMed

    Argudo, David; Bethel, Neville P; Marcoline, Frank V; Grabe, Michael

    2016-07-01

    Biological membranes deform in response to resident proteins leading to a coupling between membrane shape and protein localization. Additionally, the membrane influences the function of membrane proteins. Here we review contributions to this field from continuum elastic membrane models focusing on the class of models that couple the protein to the membrane. While it has been argued that continuum models cannot reproduce the distortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be overcome by using chemically accurate representations of the protein. We outline our recent advances along these lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes, such as membrane morphological changes, that are currently beyond the scope of other computational approaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26853937

  18. Chemical substructure analysis in toxicology

    SciTech Connect

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  19. Laser Chemical Analysis.

    ERIC Educational Resources Information Center

    Zare, Richard N.

    1984-01-01

    Reviews applications of laser methods to analytical problems, selecting examples from multiphoton ionization and fluorescence analysis. Indicates that laser methodologies promise to improve dramatically the detection of trace substances embedded in "real" matrices, giving the analyst a most powerful means for determining the composition of…

  20. TOXICOGENOMIC STUDY OF TRIAZOLE FUNGICIDES AND PERFLUOROALKYL ACIDS IN RAT LIVERS ACCURATELY CATEGORIZES CHEMICALS AND IDENTIFIES MECHANISMS OF TOXICITY

    EPA Science Inventory

    Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluori...

  1. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  2. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  3. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  4. Improvements in Accurate GPS Positioning Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    Although the Global Positioning System (GPS) is used widely in car navigation systems, cell phones, surveying, and other areas, several issues still exist. We focus on the continuous data received in public use of GPS, and propose a new positioning algorithm that uses time series analysis. By fitting an autoregressive model to the time series model of the pseudorange, we propose an appropriate state-space model. We apply the Kalman filter to the state-space model and use the pseudorange estimated by the filter in our positioning calculations. The results of the authors' positioning experiment show that the accuracy of the proposed method is much better than that of the standard method. In addition, as we can obtain valid values estimated by time series analysis using the state-space model, the proposed state-space model can be applied to several other fields.

  5. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  6. Reduction procedures for accurate analysis of MSX surveillance experiment data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. Mike; Lane, Mark T.; Abbot, Rick I.

    1994-01-01

    Technical challenges of the Midcourse Space Experiment (MSX) science instruments require careful characterization and calibration of these sensors for analysis of surveillance experiment data. Procedures for reduction of Resident Space Object (RSO) detections will be presented which include refinement and calibration of the metric and radiometric (and photometric) data and calculation of a precise MSX ephemeris. Examples will be given which support the reduction, and these are taken from ground-test data similar in characteristics to the MSX sensors and from the IRAS satellite RSO detections. Examples to demonstrate the calculation of a precise ephemeris will be provided from satellites in similar orbits which are equipped with S-band transponders.

  7. Response to “Accurate Risk-Based Chemical Screening Relies on Robust Exposure Estimates”

    EPA Science Inventory

    This is a correspondence (letter to the editor) with reference to comments by Rudel and Perovich on the article "Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment". Article Reference: SI # 238882

  8. Chemical Analysis of Single Cells

    NASA Astrophysics Data System (ADS)

    Borland, Laura M.; Kottegoda, Sumith; Phillips, K. Scott; Allbritton, Nancy L.

    2008-07-01

    Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.

  9. Small pores in soils: Is the physico-chemical environment accurately reflected in biogeochemical models ?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Riedel, Thomas

    2015-04-01

    Free water is a prerequesite to chemical reactions and biological activity in earth's upper crust essential to life. The void volume between the solid compounds provides space for water, air, and organisms that thrive on the consumption of minerals and organic matter thereby regulating soil carbon turnover. However, not all water in the pore space in soils and sediments is in its liquid state. This is a result of the adhesive forces which reduce the water activity in small pores and charged mineral surfaces. This water has a lower tendency to react chemically in solution as this additional binding energy lowers its activity. In this work, we estimated the amount of soil pore water that is thermodynamically different from a simple aqueous solution. The quantity of soil pore water with properties different to liquid water was found to systematically increase with increasing clay content. The significance of this is that the grain size and surface area apparently affects the thermodynamic state of water. This implies that current methods to determine the amount of water content, traditionally determined from bulk density or gravimetric water content after drying at 105°C overestimates the amount of free water in a soil especially at higher clay content. Our findings have consequences for biogeochemical processes in soils, e.g. nutrients may be contained in water which is not free which could enhance preservation. From water activity measurements on a set of various soils with 0 to 100 wt-% clay, we can show that 5 to 130 mg H2O per g of soil can generally be considered as unsuitable for microbial respiration. These results may therefore provide a unifying explanation for the grain size dependency of organic matter preservation in sedimentary environments and call for a revised view on the biogeochemical environment in soils and sediments. This could allow a different type of process oriented modelling.

  10. An accurate modeling, simulation, and analysis tool for predicting and estimating Raman LIDAR system performance

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.

    2007-09-01

    BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.

  11. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  12. Does a More Precise Chemical Description of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?

    PubMed Central

    2014-01-01

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein–ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein–ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data. PMID:24528282

  13. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  14. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    SciTech Connect

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  15. How Iron-Containing Proteins Control Dioxygen Chemistry: A Detailed Atomic Level Description Via Accurate Quantum Chemical and Mixed Quantum Mechanics/Molecular Mechanics Calculations.

    SciTech Connect

    Friesner, Richard A.; Baik, Mu-Hyun; Gherman, Benjamin F.; Guallar, Victor; Wirstam, Maria E.; Murphy, Robert B.; Lippard, Stephen J.

    2003-03-01

    Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.

  16. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  17. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  18. Chemical abundance analysis of 19 barium stars

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  19. Accurate near-field calculation in the rigorous coupled-wave analysis method

    NASA Astrophysics Data System (ADS)

    Weismann, Martin; Gallagher, Dominic F. G.; Panoiu, Nicolae C.

    2015-12-01

    The rigorous coupled-wave analysis (RCWA) is one of the most successful and widely used methods for modeling periodic optical structures. It yields fast convergence of the electromagnetic far-field and has been adapted to model various optical devices and wave configurations. In this article, we investigate the accuracy with which the electromagnetic near-field can be calculated by using RCWA and explain the observed slow convergence and numerical artifacts from which it suffers, namely unphysical oscillations at material boundaries due to the Gibbs phenomenon. In order to alleviate these shortcomings, we also introduce a mathematical formulation for accurate near-field calculation in RCWA, for one- and two-dimensional straight and slanted diffraction gratings. This accurate near-field computational approach is tested and evaluated for several representative test-structures and configurations in order to illustrate the advantages provided by the proposed modified formulation of the RCWA.

  20. Nature and Analysis of Chemical Species.

    ERIC Educational Resources Information Center

    Shuman, Mark S.; Fogleman, Wavell W.

    1978-01-01

    Presents a literature review of the nature and analysis of chemical species in water, covering publications of 1976-77. This review is concerned with inorganics, and it covers: (1) electrochemical analysis; (2) spectroscopy; (3) neutron activation, radiochemical analysis, and isotope dilution. A list of 262 references is also presented. (HM)

  1. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis of embryos culture medium Accurate and noninvasive embryos screening during IVF

    NASA Astrophysics Data System (ADS)

    Shen, A. G.; Peng, J.; Zhao, Q. H.; Su, L.; Wang, X. H.; Hu, J. M.; Yang, J.

    2012-04-01

    In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF.

  2. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples

    PubMed Central

    Mackie, David M.; Jahnke, Justin P.; Benyamin, Marcus S.; Sumner, James J.

    2016-01-01

    The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users’ purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells. PMID:26977411

  3. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.

    PubMed

    Geng, Hao; Jiang, Fan; Wu, Yun-Dong

    2016-05-19

    Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5-12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins. PMID:27128113

  4. Nonlinear Aeroelastic Analysis Using a Time-Accurate Navier-Stokes Equations Solver

    NASA Technical Reports Server (NTRS)

    Kuruvila, Geojoe; Bartels, Robert E.; Hong, Moeljo S.; Bhatia, G.

    2007-01-01

    A method to simulate limit cycle oscillation (LCO) due to control surface freeplay using a modified CFL3D, a time-accurate Navier-Stokes computational fluid dynamics (CFD) analysis code with structural modeling capability, is presented. This approach can be used to analyze aeroelastic response of aircraft with structural behavior characterized by nonlinearity in the force verses displacement curve. A limited validation of the method, using very low Mach number experimental data for a three-degrees-of-freedom (pitch/plunge/flap deflection) airfoil model with flap freeplay, is also presented.

  5. Sample processor for chemical analysis

    NASA Technical Reports Server (NTRS)

    Boettger, Heinz G. (Inventor)

    1980-01-01

    An apparatus is provided which can process numerous samples that must be chemically analyzed by the application of fluids such as liquid reagents, solvents and purge gases, as well as the application of dumps for receiving the applied fluid after they pass across the sample, in a manner that permits numerous samples to be processed in a relatively short time and with minimal manpower. The processor includes a rotor which can hold numerous cartridges containing inert or adsorbent material for holding samples, and a pair of stators on opposite sides of the rotor. The stators form stations spaced along the path of the cartridges which lie in the rotor, and each station can include an aperture in one stator through which a fluid can be applied to a cartridge resting at that station, and an aperture in the other stator which can receive the fluid which has passed through the cartridge. The stators are sealed to the ends of the cartridges lying on the rotor, to thereby isolate the stations from one another.

  6. Accurate Analysis and Computer Aided Design of Microstrip Dual Mode Resonators and Filters.

    NASA Astrophysics Data System (ADS)

    Grounds, Preston Whitfield, III

    1995-01-01

    Microstrip structures are of interest due to their many applications in microwave circuit design. Their small size and ease of connection to both passive and active components make them well suited for use in systems where size and space is at a premium. These include satellite communication systems, radar systems, satellite navigation systems, cellular phones and many others. In general, space is always a premium for any mobile system. Microstrip resonators find particular application in oscillators and filters. In typical filters each microstrip patch corresponds to one resonator. However, when dual mode patches are employed, each patch acts as two resonators and therefore reduces the amount of space required to build the filter. This dissertation focuses on the accurate electromagnetic analysis of the components of planar dual mode filters. Highly accurate analyses are required so that the resonator to resonator coupling and the resonator to input/output can be predicted with precision. Hence, filters can be built with a minimum of design iterations and tuning. The analysis used herein is an integral equation formulation in the spectral domain. The analysis is done in the spectral domain since the Green's function can be derived in closed form, and the spatial domain convolution becomes a simple product. The resulting set of equations is solved using the Method of Moments with Galerkin's procedure. The electromagnetic analysis is applied to range of problems including unloaded dual mode patches, dual mode patches coupled to microstrip feedlines, and complete filter structures. At each step calculated results are compared to measured results and good agreement is found. The calculated results are also compared to results from the circuit analysis program HP EESOF^{ rm TM} and again good agreement is found. A dual mode elliptic filter is built and good performance is obtained.

  7. Accurate variational calculations and analysis of the HOCl vibrational energy spectrum

    SciTech Connect

    Skokov, S.; Qi, J.; Bowman, J.M.; Yang, C.; Gray, S.K.; Peterson, K.A. |; Mandelshtam, V.A.

    1998-12-01

    Large scale variational calculations for the vibrational states of HOCl are performed using a recently developed, accurate {ital ab initio} potential energy surface. Three different approaches for obtaining vibrational states are employed and contrasted; a truncation/recoupling scheme with direct diagonalization, the Lanczos method, and Chebyshev iteration with filter diagonalization. The complete spectrum of bound states for nonrotating HOCl is computed and analyzed within a random matrix theory framework. This analysis indicates almost entirely regular dynamics with only a small degree of chaos. The nearly regular spectral structure allows us to make assignments for the most significant part of the spectrum, based on analysis of coordinate expectation values and eigenfunctions. Ground state dipole moments and dipole transition probabilities are also calculated using accurate {ital ab initio} data. Computed values are in good agreement with available experimental data. Some exact rovibrational calculations for J=1, including Coriolis coupling, are performed. The exact results are nearly identical with those obtained from the adiabatic rotation approximation and very close to those from the centrifugal sudden approximation, thus indicating a very small degree of asymmetry and Coriolis coupling for the HOCl molecule. {copyright} {ital 1998 American Institute of Physics.}

  8. 40 CFR 761.253 - Chemical analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical analysis. 761.253 Section 761.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... analysis. (a) Extract PCBs from the standard wipe sample collection medium and clean-up the extracted...

  9. 40 CFR 761.253 - Chemical analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical analysis. 761.253 Section 761.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... analysis. (a) Extract PCBs from the standard wipe sample collection medium and clean-up the extracted...

  10. Chemical Analysis Of Beryllium Shells

    SciTech Connect

    Gunther, J; Cook, R

    2005-11-17

    There is a need to understand the level of high-Z impurities in Beryllium shells prepared by sputter coating. The Ignition Point Design Requirements state the following: ''Except for allowed ingredients, as listed in the ablator composition entries, the ablator material in all layers shall contain sufficiently low impurity levels that the sum over all impurities of atom fraction*Z{sup 2} shall be less than or equal to 0.2''. This is a tight specification that requires careful materials analysis. Early in the first quarter of FY06, we undertook a study of Be shell impurities via ICP-MS{sup 2} and determined that the impurity levels in the sputtered shells are very close to the specification.

  11. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  12. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    NASA Astrophysics Data System (ADS)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  13. Accurate rotor loads prediction using the FLAP (Force and Loads Analysis Program) dynamics code

    SciTech Connect

    Wright, A.D.; Thresher, R.W.

    1987-10-01

    Accurately predicting wind turbine blade loads and response is very important in predicting the fatigue life of wind turbines. There is a clear need in the wind turbine community for validated and user-friendly structural dynamics codes for predicting blade loads and response. At the Solar Energy Research Institute (SERI), a Force and Loads Analysis Program (FLAP) has been refined and validated and is ready for general use. Currently, FLAP is operational on an IBM-PC compatible computer and can be used to analyze both rigid- and teetering-hub configurations. The results of this paper show that FLAP can be used to accurately predict the deterministic loads for rigid-hub rotors. This paper compares analytical predictions to field test measurements for a three-bladed, upwind turbine with a rigid-hub configuration. The deterministic loads predicted by FLAP are compared with 10-min azimuth averages of blade root flapwise bending moments for different wind speeds. 6 refs., 12 figs., 3 tabs.

  14. Fast and accurate sensitivity analysis of IMPT treatment plans using Polynomial Chaos Expansion

    NASA Astrophysics Data System (ADS)

    Perkó, Zoltán; van der Voort, Sebastian R.; van de Water, Steven; Hartman, Charlotte M. H.; Hoogeman, Mischa; Lathouwers, Danny

    2016-06-01

    The highly conformal planned dose distribution achievable in intensity modulated proton therapy (IMPT) can severely be compromised by uncertainties in patient setup and proton range. While several robust optimization approaches have been presented to address this issue, appropriate methods to accurately estimate the robustness of treatment plans are still lacking. To fill this gap we present Polynomial Chaos Expansion (PCE) techniques which are easily applicable and create a meta-model of the dose engine by approximating the dose in every voxel with multidimensional polynomials. This Polynomial Chaos (PC) model can be built in an automated fashion relatively cheaply and subsequently it can be used to perform comprehensive robustness analysis. We adapted PC to provide among others the expected dose, the dose variance, accurate probability distribution of dose-volume histogram (DVH) metrics (e.g. minimum tumor or maximum organ dose), exact bandwidths of DVHs, and to separate the effects of random and systematic errors. We present the outcome of our verification experiments based on 6 head-and-neck (HN) patients, and exemplify the usefulness of PCE by comparing a robust and a non-robust treatment plan for a selected HN case. The results suggest that PCE is highly valuable for both research and clinical applications.

  15. Fast and accurate sensitivity analysis of IMPT treatment plans using Polynomial Chaos Expansion.

    PubMed

    Perkó, Zoltán; van der Voort, Sebastian R; van de Water, Steven; Hartman, Charlotte M H; Hoogeman, Mischa; Lathouwers, Danny

    2016-06-21

    The highly conformal planned dose distribution achievable in intensity modulated proton therapy (IMPT) can severely be compromised by uncertainties in patient setup and proton range. While several robust optimization approaches have been presented to address this issue, appropriate methods to accurately estimate the robustness of treatment plans are still lacking. To fill this gap we present Polynomial Chaos Expansion (PCE) techniques which are easily applicable and create a meta-model of the dose engine by approximating the dose in every voxel with multidimensional polynomials. This Polynomial Chaos (PC) model can be built in an automated fashion relatively cheaply and subsequently it can be used to perform comprehensive robustness analysis. We adapted PC to provide among others the expected dose, the dose variance, accurate probability distribution of dose-volume histogram (DVH) metrics (e.g. minimum tumor or maximum organ dose), exact bandwidths of DVHs, and to separate the effects of random and systematic errors. We present the outcome of our verification experiments based on 6 head-and-neck (HN) patients, and exemplify the usefulness of PCE by comparing a robust and a non-robust treatment plan for a selected HN case. The results suggest that PCE is highly valuable for both research and clinical applications. PMID:27227661

  16. Apparatus for use in rapid and accurate controlled-potential coulometric analysis

    DOEpatents

    Frazzini, Thomas L.; Holland, Michael K.; Pietri, Charles E.; Weiss, Jon R.

    1981-01-01

    An apparatus for controlled-potential coulometric analysis of a solution includes a cell to contain the solution to be analyzed and a plurality of electrodes to contact the solution in the cell. Means are provided to stir the solution and to control the atmosphere above it. A potentiostat connected to the electrodes controls potential differences among the electrodes. An electronic circuit connected to the potentiostat provides analog-to-digital conversion and displays a precise count of charge transfer during a desired chemical process. This count provides a measure of the amount of an unknown substance in the solution.

  17. Novel methods for accurate identification, isolation, and genomic analysis of symptomatic microenvironments in atherosclerotic arteries.

    PubMed

    Slevin, Mark; Baldellou, Maribel; Hill, Elspeth; Alexander, Yvonne; McDowell, Garry; Murgatroyd, Christopher; Carroll, Michael; Degens, Hans; Krupinski, Jerzy; Rovira, Norma; Chowdhury, Mohammad; Serracino-Inglott, Ferdinand; Badimon, Lina

    2014-01-01

    A challenge facing surgeons is identification and selection of patients for carotid endarterectomy or coronary artery bypass/surgical intervention. While some patients with atherosclerosis develop unstable plaques liable to undergo thrombosis, others form more stable plaques and are asymptomatic. Identification of the cellular signaling mechanisms associated with production of the inflammatory, hemorrhagic lesions of mature heterogenic plaques will help significantly in our understanding of the differences in microenvironment associated with development of regions susceptible to rupture and thrombosis and may help to predict the risk of plaque rupture and guide surgical intervention to patients who will most benefit. Here, we demonstrate detailed and novel methodologies for successful and, more importantly, accurate and reproducible extraction, sampling, and analysis of micro-regions in stable and unstable coronary/carotid arteries. This information can be applied to samples from other origins and so should be useful for scientists working with micro-isolation techniques in all fields of biomedical science. PMID:24510873

  18. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags

    PubMed Central

    Lipton, Mary S.; Paša-Tolić, Ljiljana; Anderson, Gordon A.; Anderson, David J.; Auberry, Deanna L.; Battista, John R.; Daly, Michael J.; Fredrickson, Jim; Hixson, Kim K.; Kostandarithes, Heather; Masselon, Christophe; Markillie, Lye Meng; Moore, Ronald J.; Romine, Margaret F.; Shen, Yufeng; Stritmatter, Eric; Tolić, Nikola; Udseth, Harold R.; Venkateswaran, Amudhan; Wong, Kwong-Kwok; Zhao, Rui; Smith, Richard D.

    2002-01-01

    Understanding biological systems and the roles of their constituents is facilitated by the ability to make quantitative, sensitive, and comprehensive measurements of how their proteome changes, e.g., in response to environmental perturbations. To this end, we have developed a high-throughput methodology to characterize an organism's dynamic proteome based on the combination of global enzymatic digestion, high-resolution liquid chromatographic separations, and analysis by Fourier transform ion cyclotron resonance mass spectrometry. The peptides produced serve as accurate mass tags for the proteins and have been used to identify with high confidence >61% of the predicted proteome for the ionizing radiation-resistant bacterium Deinococcus radiodurans. This fraction represents the broadest proteome coverage for any organism to date and includes 715 proteins previously annotated as either hypothetical or conserved hypothetical. PMID:12177431

  19. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications. PMID:27472008

  20. Probabilistic Exposure Analysis for Chemical Risk Characterization

    PubMed Central

    Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.

    2009-01-01

    This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660

  1. Demonstration of Fast and Accurate Discrimination and Quantification of Chemically Similar Species Utilizing a Single Cross-Selective Chemiresistor

    PubMed Central

    2015-01-01

    Performance characteristics of gas-phase microsensors will determine the ultimate utility of these devices for a wide range of chemical monitoring applications. Commonly employed chemiresistor elements are quite sensitive to selected analytes, and relatively new methods have increased the selectivity to specific compounds, even in the presence of interfering species. Here, we have focused on determining whether purposefully driven temperature modulation can produce faster sensor-response characteristics, which could enable measurements for a broader range of applications involving dynamic compositional analysis. We investigated the response speed of a single chemiresitive In2O3 microhotplate sensor to four analytes (methanol, ethanol, acetone, 2-butanone) by systematically varying the oscillating frequency (semicycle periods of 20–120 ms) of a bilevel temperature cycle applied to the sensing element. It was determined that the fastest response (≈ 9 s), as indicated by a 98% signal-change metric, occurred for a period of 30 ms and that responses under such modulation were dramatically faster than for isothermal operation of the same device (>300 s). Rapid modulation between 150 and 450 °C exerts kinetic control over transient processes, including adsorption, desorption, diffusion, and reaction phenomena, which are important for charge transfer occurring in transduction processes and the observed response times. We also demonstrate that the fastest operation is accompanied by excellent discrimination within a challenging 16-category recognition problem (consisting of the four analytes at four separate concentrations). This critical finding demonstrates that both speed and high discriminatory capabilities can be realized through temperature modulation. PMID:24931319

  2. Toward Sensitive and Accurate Analysis of Antibody Biotherapeutics by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    An, Bo; Zhang, Ming

    2014-01-01

    Remarkable methodological advances in the past decade have expanded the application of liquid chromatography coupled with mass spectrometry (LC/MS) analysis of biotherapeutics. Currently, LC/MS represents a promising alternative or supplement to the traditional ligand binding assay (LBA) in the pharmacokinetic, pharmacodynamic, and toxicokinetic studies of protein drugs, owing to the rapid and cost-effective method development, high specificity and reproducibility, low sample consumption, the capacity of analyzing multiple targets in one analysis, and the fact that a validated method can be readily adapted across various matrices and species. While promising, technical challenges associated with sensitivity, sample preparation, method development, and quantitative accuracy need to be addressed to enable full utilization of LC/MS. This article introduces the rationale and technical challenges of LC/MS techniques in biotherapeutics analysis and summarizes recently developed strategies to alleviate these challenges. Applications of LC/MS techniques on quantification and characterization of antibody biotherapeutics are also discussed. We speculate that despite the highly attractive features of LC/MS, it will not fully replace traditional assays such as LBA in the foreseeable future; instead, the forthcoming trend is likely the conjunction of biochemical techniques with versatile LC/MS approaches to achieve accurate, sensitive, and unbiased characterization of biotherapeutics in highly complex pharmaceutical/biologic matrices. Such combinations will constitute powerful tools to tackle the challenges posed by the rapidly growing needs for biotherapeutics development. PMID:25185260

  3. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry

    PubMed Central

    Tost, Jörg; Schatz, Philipp; Schuster, Matthias; Berlin, Kurt; Gut, Ivo Glynne

    2003-01-01

    As the DNA sequence of the human genome is now nearly finished, the main task of genome research is to elucidate gene function and regulation. DNA methylation is of particular importance for gene regulation and is strongly implicated in the development of cancer. Even minor changes in the degree of methylation can have severe consequences. An accurate quantification of the methylation status at any given position of the genome is a powerful diagnostic indicator. Here we present the first assay for the analysis and precise quantification of methylation on CpG positions in simplex and multiplex reactions based on matrix-assisted laser desorption/ ionisation mass spectrometry detection. Calibration curves for CpGs in two genes were established and an algorithm was developed to account for systematic fluctuations. Regression analysis gave R2 ≥ 0.99 and standard deviation around 2% for the different positions. The limit of detection was ∼5% for the minor isomer. Calibrations showed no significant differences when carried out as simplex or multiplex analyses. All variable parameters were thoroughly investigated, several paraffin-embedded tissue biopsies were analysed and results were verified by established methods like analysis of cloned material. Mass spectrometric results were also compared to chip hybridisation. PMID:12711695

  4. Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS.

    PubMed

    Ferrer, Imma; Thurman, E Michael; Fernández-Alba, Amadeo R

    2005-05-01

    A quantitative method consisting of solvent extraction followed by liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) analysis was developed for the identification and quantitation of three chloronicotinyl pesticides (imidacloprid, acetamiprid, thiacloprid) commonly used on salad vegetables. Accurate mass measurements within 3 ppm error were obtained for all the pesticides studied in various vegetable matrixes (cucumber, tomato, lettuce, pepper), which allowed an unequivocal identification of the target pesticides. Calibration curves covering 2 orders of magnitude were linear over the concentration range studied, thus showing the quantitative ability of TOF-MS as a monitoring tool for pesticides in vegetables. Matrix effects were also evaluated using matrix-matched standards showing no significant interferences between matrixes and clean extracts. Intraday reproducibility was 2-3% relative standard deviation (RSD) and interday values were 5% RSD. The precision (standard deviation) of the mass measurements was evaluated and it was less than 0.23 mDa between days. Detection limits of the chloronicotinyl insecticides in salad vegetables ranged from 0.002 to 0.01 mg/kg. These concentrations are equal to or better than the EU directives for controlled pesticides in vegetables showing that LC/TOF-MS analysis is a powerful tool for identification of pesticides in vegetables. Robustness and applicability of the method was validated for the analysis of market vegetable samples. Concentrations found in these samples were in the range of 0.02-0.17 mg/kg of vegetable. PMID:15859598

  5. Accurate optical analysis of single-molecule entrapment in nanoscale vesicles.

    PubMed

    Reiner, Joseph E; Jahn, Andreas; Stavis, Samuel M; Culbertson, Michael J; Vreeland, Wyatt N; Burden, Daniel L; Geist, Jon; Gaitan, Michael

    2010-01-01

    We present a nondestructive method to accurately characterize low analyte concentrations (0-10 molecules) in nanometer-scale lipid vesicles. Our approach is based on the application of fluorescence fluctuation analysis (FFA) and multiangle laser light scattering (MALLS) in conjunction with asymmetric field flow fractionation (AFFF) to measure the entrapment efficiency (the ratio of the concentration of encapsulated dye to the initial bulk concentration) of an ensemble of liposomes with an average diameter less than 100 nm. Water-soluble sulforhodamine B (SRB) was loaded into the aqueous interior of nanoscale liposomes synthesized in a microfluidic device. A confocal microscope was used to detect a laser-induced fluorescence signal resulting from both encapsulated and unencapsulated SRB molecules. The first two cumulants of this signal along with the autocorrelation function (ACF) were used to quantify liposome entrapment efficiency. Our analysis moves beyond typical, nonphysical assumptions of equal liposome size and brightness. These advances are essential for characterizing liposomes in the single-molecule encapsulation regime. Our work has further analytical impact because it could increase the interrogation time of free-solution molecular analysis by an order of magnitude and form the basis for the development of liposome standard reference materials. PMID:19950933

  6. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?

    PubMed

    Edwards, G E; Baker, N R

    1993-08-01

    Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ([Formula: see text]) in maize over a wide range of conditions. The[Formula: see text] ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize. PMID:24317706

  7. Accurate abundance analysis of late-type stars: advances in atomic physics

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-05-01

    The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.

  8. 40 CFR 761.253 - Chemical analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical analysis. 761.253 Section 761.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.253...

  9. 40 CFR 761.253 - Chemical analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Chemical analysis. 761.253 Section 761.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.253...

  10. 40 CFR 761.253 - Chemical analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Chemical analysis. 761.253 Section 761.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.253...

  11. Chemical analysis of some standard carbonate rocks

    USGS Publications Warehouse

    Galle, O.K.

    1969-01-01

    Twenty limestone, dolomite and limestone-dolomite blends were analyzed. The samples, which are available from the G. Fredrick Smith Chemical Company of Columbus, Ohio, were issued with an analysis certificate listing values for SiO2, Fe2O3, CaO and MgO. Additional analyses are reported and results compared with certificate values. ?? 1969.

  12. A virtual environment for the accurate geologic analysis of Martian terrain

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Paar, Gerhard; Gupta, Sanjeev; Hesina, Gerd; Sander, Kathrin; Barnes, Rob; Nauschnegg, Bernhard; Muller, Jan-Peter; Tao, Yu

    2015-04-01

    Remote geology on planetary surfaces requires immersive presentation of the environment to be investigated. Three-dimensional (3D) processing of images from rovers and satellites enables to reconstruct terrain in virtual space on Earth for scientific analysis. In this paper we present a virtual environment that allows to interactively explore 3D-reconstructed Martian terrain and perform accurate measurements on the surface. Geologists do not only require line-of-sight measurements between two points but much more the projected line-of-sight on the surface between two such points. Furthermore the tool supports to define paths of several points. It is also important for geologists to annotate the terrain they explore, especially when collaborating with colleagues. The path tool can also be used to separate geological layers or surround areas of interest. They can be linked with a text label directly positioned in 3D space and always oriented towards the viewing direction. All measurements and annotations can be maintained by a graphical user interface and used as landmarks, i.e. it is possible to fly to the corresponding locations. The virtual environment is fed with 3D vision products from rover cameras, placed in the 3D context gained from satellite images (digital elevations models and corresponding ortho images). This allows investigations in various scales from planet to microscopic level in a seamless manner. The modes of exploitation and added value of such an interactive means are manifold. The visualisation products enable us to map geological surfaces and rock layers over large areas in a quantitative framework. Accurate geometrical relationships of rock bodies especially for sedimentary layers can be reconstructed and the relationships between superposed layers can be established. Within sedimentary layers, we can delineate sedimentary faces and other characteristics. In particular, inclination of beds which may help ascertain flow directions can be

  13. Accurate Quantification of High Density Lipoprotein Particle Concentration by Calibrated Ion Mobility Analysis

    PubMed Central

    Hutchins, Patrick M.; Ronsein, Graziella E.; Monette, Jeffrey S.; Pamir, Nathalie; Wimberger, Jake; He, Yi; Anantharamaiah, G.M.; Kim, Daniel Seung; Ranchalis, Jane E.; Jarvik, Gail P.; Vaisar, Tomas; Heinecke, Jay W.

    2015-01-01

    Background It is critical to develop new metrics to determine whether high density lipoprotein (HDL) is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P) – the size and concentration of HDL in plasma or serum. However, the two methods currently used to determine HDL-P yield concentrations that differ more than 5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA). Methods HDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. A calibration curve constructed with purified proteins was used to correct for the ionization efficiency of HDL particles. Results The concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n=40) and cerebrovascular disease (n=40) subjects, three subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.4±2.4 µM (mean±SD). HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in subjects with cerebrovascular disease, and this difference remained significant after adjustment for HDL cholesterol levels. Conclusions Calibrated IMA accurately and reproducibly determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting the method could accurately quantify HDL particle concentration. Importantly, the estimated stoichiometry of apoA-I determined by calibrated IMA was 3–4 per HDL particle, in excellent agreement with current structural models. Furthermore, HDL-P associated with cardiovascular disease status in a clinical population independently of HDL cholesterol. PMID:25225166

  14. Electron spectroscopy for chemical analysis: Sample analysis

    NASA Technical Reports Server (NTRS)

    Carter, W. B.

    1989-01-01

    Exposure conditions in atomic oxygen (ESCA) was performed on an SSL-100/206 Small Spot Spectrometer. All data were taken with the use of a low voltage electron flood gun and a charge neutralization screen to minimize charging effects on the data. The X-ray spot size and electron flood gun voltage used are recorded on the individual spectra as are the instrumental resolutions. Two types of spectra were obtained for each specimen: (1) general surveys, and (2) high resolution spectra. The two types of data reduction performed are: (1) semiquantitative compositional analysis, and (2) peak fitting. The materials analyzed are: (1) kapton 4, 5, and 6, (2) HDPE 19, 20, and 21, and (3) PVDF 4, 5, and 6.

  15. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: New Thermodynamic Measurements and Model Applications

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham

    2003-03-27

    Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.

  16. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data. PMID:24420979

  17. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  18. Phase-function normalization for accurate analysis of ultrafast collimated radiative transfer.

    PubMed

    Hunter, Brian; Guo, Zhixiong

    2012-04-20

    The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which conserves a phase-function asymmetry factor as well as scattered energy for the Henyey-Greenstein phase function in steady-state diffuse radiative transfer analysis, is applied to the general Legendre scattering phase function in ultrafast collimated radiative transfer. Heat flux profiles in a model tissue cylinder are generated for various phase functions and compared to those generated when normalization of the collimated phase function is neglected. Energy deposition in the medium is also investigated. Lack of conservation of scattered energy and the asymmetry factor for the collimated scattering phase function causes overpredictions in both heat flux and energy deposition for highly anisotropic scattering media. In addition, a discussion is presented to clarify the time-dependent formulation of divergence of radiative heat flux. PMID:22534933

  19. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  20. Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Nakai, Hiromi

    2016-04-01

    Gibbs free energy of hydration of a proton and standard hydrogen electrode potential were evaluated using high-level quantum chemical calculations. The solvent effect was included using the cluster-continuum model, which treated short-range effects by quantum chemical calculations of proton-water complexes, and the long-range effects by a conductor-like polarizable continuum model. The harmonic solvation model (HSM) was employed to estimate enthalpy and entropy contributions due to nuclear motions of the clusters by including the cavity-cluster interactions. Compared to the commonly used ideal gas model, HSM treatment significantly improved the contribution of entropy, showing a systematic convergence toward the experimental data.

  1. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    ERIC Educational Resources Information Center

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  2. Identification and quantitative analysis of chemical compounds based on multiscale linear fitting of terahertz spectra

    NASA Astrophysics Data System (ADS)

    Qiao, Lingbo; Wang, Yingxin; Zhao, Ziran; Chen, Zhiqiang

    2014-07-01

    Terahertz (THz) time-domain spectroscopy is considered as an attractive tool for the analysis of chemical composition. The traditional methods for identification and quantitative analysis of chemical compounds by THz spectroscopy are all based on full-spectrum data. However, intrinsic features of the THz spectrum only lie in absorption peaks due to existence of disturbances, such as unexpected components, scattering effects, and barrier materials. We propose a strategy that utilizes Lorentzian parameters of THz absorption peaks, extracted by a multiscale linear fitting method, for both identification of pure chemicals and quantitative analysis of mixtures. The multiscale linear fitting method can automatically remove background content and accurately determine Lorentzian parameters of the absorption peaks. The high recognition rate for 16 pure chemical compounds and the accurate predicted concentrations for theophylline-lactose mixtures demonstrate the practicability of our approach.

  3. Phosphorylation-Specific MS/MS Scoring for Rapid and Accurate Phosphoproteome Analysis

    PubMed Central

    Payne, Samuel H.; Yau, Margaret; Smolka, Marcus B.; Tanner, Stephen; Zhou, Huilin; Bafna, Vineet

    2008-01-01

    The promise of mass spectrometry as a tool for probing signal-transduction is predicated on reliable identification of post-translational modifications. Phosphorylations are key mediators of cellular signaling, yet are hard to detect, partly because of unusual fragmentation patterns of phosphopeptides. In addition to being accurate, MS/MS identification software must be robust and efficient to deal with increasingly large spectral data sets. Here, we present a new scoring function for the Inspect software for phosphorylated peptide tandem mass spectra for ion-trap instruments, without the need for manual validation. The scoring function was modeled by learning fragmentation patterns from 7677 validated phosphopeptide spectra. We compare our algorithm against SEQUEST and X!Tandem on testing and training data sets. At a 1% false positive rate, Inspect identified the greatest total number of phosphorylated spectra, 13% more than SEQUEST and 39% more than X!Tandem. Spectra identified by Inspect tended to score better in several spectral quality measures. Furthermore, Inspect runs much faster than either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. Finally, we used our new models to reanalyze a corpus of 423 000 LTQ spectra acquired for a phosphoproteome analysis of Saccharomyces cerevisiae DNA damage and repair pathways and discovered 43% more phosphopeptides than the previous study. PMID:18563926

  4. Accurate mass tag retention time database for urine proteome analysis by chromatography--mass spectrometry.

    PubMed

    Agron, I A; Avtonomov, D M; Kononikhin, A S; Popov, I A; Moshkovskii, S A; Nikolaev, E N

    2010-05-01

    Information about peptides and proteins in urine can be used to search for biomarkers of early stages of various diseases. The main technology currently used for identification of peptides and proteins is tandem mass spectrometry, in which peptides are identified by mass spectra of their fragmentation products. However, the presence of the fragmentation stage decreases sensitivity of analysis and increases its duration. We have developed a method for identification of human urinary proteins and peptides. This method based on the accurate mass and time tag (AMT) method does not use tandem mass spectrometry. The database of AMT tags containing more than 1381 AMT tags of peptides has been constructed. The software for database filling with AMT tags, normalizing the chromatograms, database application for identification of proteins and peptides, and their quantitative estimation has been developed. The new procedures for peptide identification by tandem mass spectra and the AMT tag database are proposed. The paper also lists novel proteins that have been identified in human urine for the first time. PMID:20632944

  5. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    SciTech Connect

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  6. Highly accurate retrieval method of Japanese document images through a combination of morphological analysis and OCR

    NASA Astrophysics Data System (ADS)

    Katsuyama, Yutaka; Takebe, Hiroaki; Kurokawa, Koji; Saitoh, Takahiro; Naoi, Satoshi

    2001-12-01

    We have developed a method that allows Japanese document images to be retrieved more accurately by using OCR character candidate information and a conventional plain text search engine. In this method, the document image is first recognized by normal OCR to produce text. Keyword areas are then estimated from the normal OCR produced text through morphological analysis. A lattice of candidate- character codes is extracted from these areas, and then character strings are extracted from the lattice using a word-matching method in noun areas and a K-th DP-matching method in undefined word areas. Finally, these extracted character strings are added to the normal OCR produced text to improve document retrieval accuracy when u sing a conventional plain text search engine. Experimental results from searches of 49 OHP sheet images revealed that our method has a high recall rate of 98.2%, compared to 90.3% with a conventional method using only normal OCR produced text, while requiring about the same processing time as normal OCR.

  7. Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device

    NASA Astrophysics Data System (ADS)

    Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-03-01

    Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.

  8. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for Climate Modeling

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Spurr, R. J. D.; Shia, R. L.; Yung, Y. L.

    2014-12-01

    Radiative transfer (RT) computations are an essential component of energy budget calculations in climate models. However, full treatment of RT processes is computationally expensive, prompting usage of 2-stream approximations in operational climate models. This simplification introduces errors of the order of 10% in the top of the atmosphere (TOA) fluxes [Randles et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT simulations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those (few) optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Here, we extend the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Comparisons between the new model, called Universal Principal Component Analysis model for Radiative Transfer (UPCART), 2-stream models (such as those used in climate applications) and line-by-line RT models are performed, in order for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the TOA for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and solar and viewing geometries. We demonstrate that very accurate radiative forcing estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases as compared to an exact line-by-line RT model. The model is comparable in speeds to 2-stream models, potentially rendering UPCART useful for operational General Circulation Models (GCMs). The operational speed and accuracy of UPCART can be further

  9. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    SciTech Connect

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.; O'Connell, J.W.; Pacheco-Alvarez, J.A.; Scheinman, M.; Hattner, R.S.; Morady, F.; Faulkner, D.B.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex and then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.

  10. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  11. Chemical analysis of Panax quinquefolius (North American ginseng): A review.

    PubMed

    Wang, Yaping; Choi, Hyung-Kyoon; Brinckmann, Josef A; Jiang, Xue; Huang, Linfang

    2015-12-24

    Panax quinquefolius (PQ) is one of the best-selling natural health products due to its proposed beneficial anti-aging, anti-cancer, anti-stress, anti-fatigue, and anxiolytic effects. In recent years, the quality of PQ has received considerable attention. Sensitive and accurate methods for qualitative and quantitative analyses of chemical constituents are necessary for the comprehensive quality control to ensure the safety and efficacy of PQ. This article reviews recent progress in the chemical analysis of PQ and its preparations. Numerous analytical techniques, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), high-speed centrifugal partition chromatography (HSCPC), high-performance counter-current chromatography (HPCCC), nuclear magnetic resonance spectroscopy (NMR), and immunoassay, are described. Among these techniques, HPLC coupled with mass spectrometry (MS) is the most promising method for quality control. The challenges encountered in the chemical analysis of PQ are also briefly discussed, and the remaining questions regarding the quality control of PQ that require further investigation are highlighted. PMID:26643719

  12. Updated Chemical Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    2005-01-01

    An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.

  13. FAST ANALYSIS OF BEVERAGES USING A MASS SPECTRAL BASED CHEMICAL SENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of adulteration, contamination or inconsistencies in food and flavor samples should be accurate and fast. Chemical sensors are ideal for these types of applications because they provide fast measurement times (2-6 minutes). While analysis times are crucial, accuracy and precision of the ...

  14. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  15. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    EPA Science Inventory

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  16. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1994-01-01

    LSENS has been developed for solving complex, homogeneous, gas-phase, chemical kinetics problems. The motivation for the development of this program is the continuing interest in developing detailed chemical reaction mechanisms for complex reactions such as the combustion of fuels and pollutant formation and destruction. A reaction mechanism is the set of all elementary chemical reactions that are required to describe the process of interest. Mathematical descriptions of chemical kinetics problems constitute sets of coupled, nonlinear, first-order ordinary differential equations (ODEs). The number of ODEs can be very large because of the numerous chemical species involved in the reaction mechanism. Further complicating the situation are the many simultaneous reactions needed to describe the chemical kinetics of practical fuels. For example, the mechanism describing the oxidation of the simplest hydrocarbon fuel, methane, involves over 25 species participating in nearly 100 elementary reaction steps. Validating a chemical reaction mechanism requires repetitive solutions of the governing ODEs for a variety of reaction conditions. Analytical solutions to the systems of ODEs describing chemistry are not possible, except for the simplest cases, which are of little or no practical value. Consequently, there is a need for fast and reliable numerical solution techniques for chemical kinetics problems. In addition to solving the ODEs describing chemical kinetics, it is often necessary to know what effects variations in either initial condition values or chemical reaction mechanism parameters have on the solution. Such a need arises in the development of reaction mechanisms from experimental data. The rate coefficients are often not known with great precision and in general, the experimental data are not sufficiently detailed to accurately estimate the rate coefficient parameters. The development of a reaction mechanism is facilitated by a systematic sensitivity analysis

  17. Synthesis and analysis in chemical evolution.

    NASA Astrophysics Data System (ADS)

    Ponnamperuma, C.

    In the first part the author examines the synthesis of the fundamental complex molecules of life (aminoacids and their polymerization to proteins, lipids, sugars, purines and pyrimidines, and nucleic acids) from simple molecules (H2O, CH4, NH3, HCN, CO2, etc.) under a variety of natural and laboratory conditions and sources of energy. In the second part the author examines the analysis of the data that confirm the early appearance of life on Earth and the presence of complex organic compounds in a variety of environments (carbonaceous chondritic meteorites, the atmospheres of Jupiter and Titan, interstellar space, etc.). All these results confirm the universal effectiveness of chemical evolution.

  18. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    PubMed Central

    Xu, Guan; Meng, Zhuo-xian; Lin, Jian-die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-01-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver. PMID:26842459

  19. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  20. Stochastic flux analysis of chemical reaction networks

    PubMed Central

    2013-01-01

    Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153

  1. Application of ultrasonics to chemical analysis

    SciTech Connect

    Chmilenko, F.A.; Baklanov, A.N.; Sidorova, L.P.; Piskun, Yu.M.

    1994-06-01

    Ultrasonics has found a wide utility in chemistry, making available energy densities of the order of 10{sup 3} to 10{sup 6} W/cm{sup 3}, which is 3-5 orders of magnitude greater than the energy densities used in some physical methods like radiolysis and photolysis. The paper overviews several techniques of ultrasound to chemical analysis with the greatest effect obtained by using a wide range of ultrasound frequencies. The methods described include: using different ultrasound properties like velocity of propagation, decay rate, acoustic resistance, and relaxational absorption as analytical signals; the use of sonoluminescence; applications for oxidation, coagulating, and dispersion by ultrasound methods; use of ultrasound for sample preparation; and the use of ultrasound for widening the scope of the atomic spectroscopy and electrochemcial methods of analysis.

  2. Comprehensive two-dimensional liquid chromatography tandem diode array detector (DAD) and accurate mass QTOF-MS for the analysis of flavonoids and iridoid glycosides in Hedyotis diffusa.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2015-01-01

    The analysis of chemical constituents in Chinese herbal medicines (CHMs) is a challenge because of numerous compounds with various polarities and functional groups. Liquid chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (LC/MS) is of particular interest in the analysis of herbal components. One of the main attributes of QTOF that makes it an attractive analytical technique is its accurate mass measurement for both precursor and product ions. For the separation of CHMs, comprehensive two-dimensional chromatography (LCxLC) provides much higher resolving power than traditional one-dimensional separation. Therefore, a LCxLC-QTOF-MS system was developed and applied to the analysis of flavonoids and iridoid glycosides in aqueous extracts of Hedyotis diffusa (Rubiaceae). Shift gradient was applied in the two-dimensional separation in the LCxLC system to increase the orthogonality and effective peak distribution area of the analysis. Tentative identification of compounds was done by accurate mass interpretation and validation by UV spectrum. A clear classification of flavonol glycosides (FGs), acylated FGs, and iridoid glycosides (IGs) was shown in different regions of the LCxLC contour plot. In total, five FGs, four acylated FGs, and three IGs were tentatively identified. In addition, several novel flavonoids were found, which demonstrates that LCxLC-QTOF-MS detection also has great potential in herbal medicine analysis. PMID:25171829

  3. Accurate and semi-automated analysis of bacterial association with mammalian cells.

    PubMed

    Murphy, C M; Paré, S; Galea, G; Simpson, J C; Smith, S G J

    2016-03-01

    To efficiently and accurately quantify the interactions of bacteria with mammalian cells, a reliable fluorescence microscopy assay was developed. Bacteria were engineered to become rapidly and stably fluorescent using Green Fluorescent Protein (GFP) expressed from an inducible Tet promoter. Upon application of the fluorescent bacteria onto a monolayer, extracellular bacteria could be discriminated from intracellular bacteria by antibody staining and microscopy. All bacteria could be detected by GFP expression. External bacteria stained orange, whereas internalised bacteria did not. Internalised bacteria could thus be discriminated from external bacteria by virtue of being green but not orange fluorescent. Image acquisition and counting of various fluorophore-stained entities were accomplished with a high-content screening platform. This allowed for semi-automated and accurate counting of intracellular and extracellular bacteria. PMID:26769557

  4. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    SciTech Connect

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.

    2005-08-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.

  5. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  6. Systems analysis of past, present, and future chemical terrorism scenarios.

    SciTech Connect

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  7. SALI chemical analysis of provided samples

    NASA Technical Reports Server (NTRS)

    Becker, Christopher H.

    1993-01-01

    SRI has completed the chemical analysis of all the samples supplied by NASA. The final batch of four samples consisted of: one inch diameter MgF2 mirror, control 1200-ID-FL3; one inch diameter neat resin, PMR-15, AO171-IV-55, half exposed and half unexposed; one inch diameter chromic acid anodized, EOIM-3 120-47 aluminum disc; and AO-exposed and unexposed samples of fullerene extract material in powdered form, pressed into In foil for analysis. Chemical analyses of the surfaces were performed by the surface analysis by laser ionization (SALI) method. The analyses emphasize surface contamination or general organic composition. SALI uses nonselective photoionization of sputtered or desorbed atoms and molecules above but close (approximately one mm) to the surface, followed by time-of-flight (TOF) mass spectrometry. In these studies, we used laser-induced desorption by 5-ns pulse-width 355-nm light (10-100 mJ/sq cm) and single-photon ionization (SPI) by coherent 118-nm radiation (at approximately 5 x 10(exp 5) W/sq cm). SPI was chosen primarily for its ability to obtain molecular information, whereas multiphoton ionization (not used in the present studies) is intended primarily for elemental and small molecule information. In addition to these four samples, the Au mirror (EOIM-3 200-11, sample four) was depth profiled again. Argon ion sputtering was used together with photoionization with intense 355-nm radiation (35-ps pulsewidths). Depth profiles are similar to those reported earlier, showing reproducibility. No chromium was found in the sample above noise level; its presence could at most be at the trace level. Somewhat more Ni appears to be present in the Au layer in the unexposed side, indicating thermal diffusion without chemical enhancement. The result of the presence of oxygen is apparently to tie-up/draw out the Ni as an oxide at the surface. The exposed region has a brownish tint appearance to the naked eye.

  8. Chemical analysis of LARC-160 polyimide

    NASA Technical Reports Server (NTRS)

    Dynes, P. J.

    1980-01-01

    As part of a detailed NASA-sponsored study of chemical composition/property sensitivity of the LARC-160 polymerization of monomeric reactants (PMR) polyimide system, a number of liquid chromatographic techniques have been employed. The ester monomers in this system are characterized by a reverse-phase ion-suppression method. Mono, di, and triesters of the 3,3',4,4'-benzophenonetetracarboxylic acid ingredient are identified and their isomeric forms resolved. The 5-norbornene-2,3-dicarboxylic acid ester (nadic ester) endcapper is detected by low wavelength ultraviolet sensing. A second method, reverse-phase ion-pair chromatography, is employed for determining unreacted amines. The extent of resin B-staging is monitored through analysis of the ester/amine oligomers.

  9. Advanced development in chemical analysis of Cordyceps.

    PubMed

    Zhao, J; Xie, J; Wang, L Y; Li, S P

    2014-01-01

    Cordyceps sinensis, also called DongChongXiaCao (winter worm summer grass) in Chinese, is a well-known and valued traditional Chinese medicine. In 2006, we wrote a review for discussing the markers and analytical methods in quality control of Cordyceps (J. Pharm. Biomed. Anal. 41 (2006) 1571-1584). Since then this review has been cited by others for more than 60 times, which suggested that scientists have great interest in this special herbal material. Actually, the number of publications related to Cordyceps after 2006 is about 2-fold of that in two decades before 2006 according to the data from Web of Science. Therefore, it is necessary to review and discuss the advanced development in chemical analysis of Cordyceps since then. PMID:23688494

  10. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear-Layer. Part 2

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Lockard, David P.

    2002-01-01

    Unsteady computational simulations of a multi-element, high-lift configuration are performed. Emphasis is placed on accurate spatiotemporal resolution of the free shear layer in the slat-cove region. The excessive dissipative effects of the turbulence model, so prevalent in previous simulations, are circumvented by switching off the turbulence-production term in the slat cove region. The justifications and physical arguments for taking such a step are explained in detail. The removal of this excess damping allows the shear layer to amplify large-scale structures, to achieve a proper non-linear saturation state, and to permit vortex merging. The large-scale disturbances are self-excited, and unlike our prior fully turbulent simulations, no external forcing of the shear layer is required. To obtain the farfield acoustics, the Ffowcs Williams and Hawkings equation is evaluated numerically using the simulated time-accurate flow data. The present comparison between the computed and measured farfield acoustic spectra shows much better agreement for the amplitude and frequency content than past calculations. The effect of the angle-of-attack on the slat's flow features radiated acoustic field are also simulated presented.

  11. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-01

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing. PMID:25164376

  12. Black tea: chemical analysis and stability.

    PubMed

    Li, Shiming; Lo, Chih-Yu; Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2013-01-01

    Tea is the most popular flavored and functional drink worldwide. The nutritional value of tea is mostly from the tea polyphenols that are reported to possess a broad spectrum of biological activities, including anti-oxidant properties, reduction of various cancers, inhibition of inflammation, and protective effects against diabetes, hyperlipidemia and obesity. Tea polyphenols include catechins and gallic acid in green and white teas, and theaflavins and thearubigins as well as other catechin polymers in black and oolong teas. Accurate analysis of black tea polyphenols plays a significant role in the identification of black tea contents, quality control of commercial tea beverages and extracts, differentiation of various contents of theaflavins and catechins and correlations of black tea identity and quality with biological activity, and most importantly, the establishment of the relationship between quantitative tea polyphenol content and its efficacy in animal or human studies. Global research in tea polyphenols has generated much in vitro and in vivo data rationally correlating tea polyphenols with their preventive and therapeutic properties in human diseases such as cancer, and metabolic and cardiovascular diseases etc. Based on these scientific findings, numerous tea products have been developed including flavored tea drinks, tea-based functional drinks, tea extracts and concentrates, and dietary supplements and food ingredients, demonstrating the broad applications of tea and its extracts, particularly in the field of functional food. PMID:23037977

  13. Effect of chemical fixatives on accurate preservation of Escherichia coli and Bacillus subtilis structure in cells prepared by freeze-substitution

    SciTech Connect

    Graham, L.L.; Beveridge, T.J. )

    1990-04-01

    Five chemical fixatives were evaluated for their ability to accurately preserve bacterial ultrastructure during freeze-substitution of select Escherichia coli and Bacillus subtilis strains. Radioisotopes were specifically incorporated into the peptidoglycan, lipopolysaccharide, and nucleic acids of E. coli SFK11 and W7 and into the peptidoglycan and RNA of B. subtilis 168 and W23. The ease of extraction of radiolabels, as assessed by liquid scintillation counting during all stages of processing for freeze-substitution, was used as an indicator of cell structural integrity and retention of cellular chemical composition. Subsequent visual examination by electron microscopy was used to confirm ultrastructural conformation. The fixatives used were: 2% (wt/vol) osmium tetroxide and 2% (wt/vol) uranyl acetate; 2% (vol/vol) glutaraldehyde and 2% (wt/vol) uranyl acetate; 2% (vol/vol) acrolein and 2% (wt/vol) uranyl acetate; 2% (wt/vol) gallic acid; and 2% (wt/vol) uranyl acetate. All fixatives were prepared in a substitution solvent of anhydrous acetone. Extraction of cellular constituents depended on the chemical fixative used. A combination of 2% osmium tetroxide-2% uranyl acetate or 2% gallic acid alone resulted in optimum fixation as ascertained by least extraction of radiolabels. In both gram-positive and gram-negative organisms, high levels of radiolabel were detected in the processing fluids in which 2% acrolein-2% uranyl acetate, 2% glutaraldehyde-2% uranyl acetate, or 2% uranyl acetate alone were used as fixatives. Ultrastructural variations were observed in cells freeze-substituted in the presence of different chemical fixatives. We recommend the use of osmium tetroxide and uranyl acetate in acetone for routine freeze-substitution of eubacteria, while gallic acid is recommended for use when microanalytical processing necessitates the omission of osmium.

  14. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    NASA Astrophysics Data System (ADS)

    Xu, Zhongnan; Joshi, Yogesh V.; Raman, Sumathy; Kitchin, John R.

    2015-04-01

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  15. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  16. Achieving accurate nuetron-multiplicity analysis of metals and oxides with weighted point model equations.

    SciTech Connect

    Burward-Hoy, J. M.; Geist, W. H.; Krick, M. S.; Mayo, D. R.

    2004-01-01

    Neutron multiplicity counting is a technique for the rapid, nondestructive measurement of plutonium mass in pure and impure materials. This technique is very powerful because it uses the measured coincidence count rates to determine the sample mass without requiring a set of representative standards for calibration. Interpreting measured singles, doubles, and triples count rates using the three-parameter standard point model accurately determines plutonium mass, neutron multiplication, and the ratio of ({alpha},n) to spontaneous-fission neutrons (alpha) for oxides of moderate mass. However, underlying standard point model assumptions - including constant neutron energy and constant multiplication throughout the sample - cause significant biases for the mass, multiplication, and alpha in measurements of metal and large, dense oxides.

  17. Collection and chemical analysis of lichens for biomonitoring. Book chapter

    SciTech Connect

    Jackson, L.L.; Ford, J.; Schwartzman, D.

    1991-01-01

    The chapter discusses the interrelated aspects of biomonitoring using chemical analysis of lichens. Many unique aspects of study objectives, study design (including design tasks, considerations, and sampling schemes), sample collection, sample preparation, and sample analysis that are required for a successful biomonitoring program using chemical analysis are emphasized. The advantages and disadvantages of common analytical methods suitable for chemical analysis of lichens are briefly discussed. Aspects of a quality assurance program and final contract reports are highlighted. In addition, some examples of studies using chemical analysis of lichens are discussed.

  18. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses

  19. Is the Meta-Analysis of Correlation Coefficients Accurate When Population Correlations Vary?

    ERIC Educational Resources Information Center

    Field, Andy P.

    2005-01-01

    One conceptualization of meta-analysis is that studies within the meta-analysis are sampled from populations with mean effect sizes that vary (random-effects models). The consequences of not applying such models and the comparison of different methods have been hotly debated. A Monte Carlo study compared the efficacy of Hedges and Vevea's…

  20. TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2006-07-01

    The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA

  1. The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

  2. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  3. TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Lancellotti, V.; Meneghini, O.; Maggiora, R.; Vecchi, G.; Bilato, R.

    2007-09-01

    Auxiliary ICRF heating systems in tokamaks often involve large complex antennas, made up of several conducting straps hosted in distinct cavities that open towards the plasma. The same holds especially true in the LH regime, wherein the antennas are comprised of arrays of many phased waveguides. Upon observing that the various cavities or waveguides couple to each other only through the EM fields existing over the plasma-facing apertures, we self-consistently formulated the EM problem by a convenient set of multiple coupled integral equations. Subsequent application of the Method of Moments yields a highly sparse algebraic system; therefore formal inversion of the system matrix happens to be not so memory demanding, despite the number of unknowns may be quite large (typically 105 or so). The overall strategy has been implemented in an enhanced version of TOPICA (Torino Polytechnic Ion Cyclotron Antenna) and in a newly developed code named TOPLHA (Torino Polytechnic Lower Hybrid Antenna). Both are simulation and prediction tools for plasma facing antennas that incorporate commercial-grade 3D graphic interfaces along with an accurate description of the plasma. In this work we present the new proposed formulation along with examples of application to real life large LH antenna systems.

  4. Mechanical Analysis and Hierarchies of Multi-digit Synergies during Accurate Object Rotation

    PubMed Central

    Zhang, Wei; Olafsdottir, Halla B.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2009-01-01

    We studied the mechanical variables (the grip force and the total moment of force) and multi-digit synergies at two levels (the virtual finger-thumb level, VF-TH, and the individual finger level, IMRL) of a hypothetical control hierarchy during accurate rotation of a hand-held instrumented handle. Synergies were defined as co-varied changes in elemental variables (forces and moments of force) that stabilize the output at a particular level. Indices of multi-digit synergies showed higher values at the hierarchically higher level (VF-TH) for both normal and tangential forces. The moment of force was stabilized at both hierarchical levels during the steady-state phases but not during the movement. The results support the principles of superposition and of mechanical advantage. They also support an earlier hypothesis on an inherent trade-off between synergies at the two hierarchical levels, although the controller showed more subtle and versatile synergic control than the one hypothesized earlier. PMID:19799165

  5. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis.

    PubMed

    Qiu, Wentao; Ndao, Abdoulaye; Lu, Huihui; Bernal, Maria-Pilar; Baida, Fadi Issam

    2016-09-01

    We present a theoretical study of guided resonances (GR) on a thin film lithium niobate rectangular lattice photonic crystal by band diagram calculations and 3D Finite Difference Time Domain (FDTD) transmission investigations which cover a broad range of parameters. A photonic crystal with an active zone as small as 13μm×13μm×0.7μm can be easily designed to obtain a resonance Q value in the order of 1000. These resonances are then employed in electric field (E-field) sensing applications exploiting the electro optic (EO) effect of lithium niobate. A local field factor that is calculated locally for each FDTD cell is proposed to accurately estimate the sensitivity of GR based E-field sensor. The local field factor allows well agreement between simulations and reported experimental data therefore providing a valuable method in optimizing the GR structure to obtain high sensitivities. When these resonances are associated with sub-picometer optical spectrum analyzer and high field enhancement antenna design, an E-field probe with a sensitivity of 50 μV/m could be achieved. The results of our simulations could be also exploited in other EO based applications such as EEG (Electroencephalography) or ECG (Electrocardiography) probe and E-field frequency detector with an 'invisible' probe to the field being detected etc. PMID:27607627

  6. An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data.

    PubMed

    Wang, Yi; Lu, James; Yu, Jin; Gibbs, Richard A; Yu, Fuli

    2013-05-01

    Next-generation sequencing is a powerful approach for discovering genetic variation. Sensitive variant calling and haplotype inference from population sequencing data remain challenging. We describe methods for high-quality discovery, genotyping, and phasing of SNPs for low-coverage (approximately 5×) sequencing of populations, implemented in a pipeline called SNPTools. Our pipeline contains several innovations that specifically address challenges caused by low-coverage population sequencing: (1) effective base depth (EBD), a nonparametric statistic that enables more accurate statistical modeling of sequencing data; (2) variance ratio scoring, a variance-based statistic that discovers polymorphic loci with high sensitivity and specificity; and (3) BAM-specific binomial mixture modeling (BBMM), a clustering algorithm that generates robust genotype likelihoods from heterogeneous sequencing data. Last, we develop an imputation engine that refines raw genotype likelihoods to produce high-quality phased genotypes/haplotypes. Designed for large population studies, SNPTools' input/output (I/O) and storage aware design leads to improved computing performance on large sequencing data sets. We apply SNPTools to the International 1000 Genomes Project (1000G) Phase 1 low-coverage data set and obtain genotyping accuracy comparable to that of SNP microarray. PMID:23296920

  7. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts.

    PubMed

    Ntranos, Vasilis; Kamath, Govinda M; Zhang, Jesse M; Pachter, Lior; Tse, David N

    2016-01-01

    Current approaches to single-cell transcriptomic analysis are computationally intensive and require assay-specific modeling, which limits their scope and generality. We propose a novel method that compares and clusters cells based on their transcript-compatibility read counts rather than on the transcript or gene quantifications used in standard analysis pipelines. In the reanalysis of two landmark yet disparate single-cell RNA-seq datasets, we show that our method is up to two orders of magnitude faster than previous approaches, provides accurate and in some cases improved results, and is directly applicable to data from a wide variety of assays. PMID:27230763

  8. Zeeman laser interferometry for detection and chemical analysis

    SciTech Connect

    Johnston, R.G.

    1993-12-01

    Zeeman interferometry has a number of applications for ultrasensitive detection and chemical analysis, including refractive index detection, micro-thermometry, thermooptic spectroscopy, and light scattering.

  9. An accurate nonlinear finite element analysis and test correlation of a stiffened composite wing panel

    NASA Technical Reports Server (NTRS)

    Davis, D. D., Jr.; Krishnamurthy, T.; Stroud, W. J.; Mccleary, S. L.

    1991-01-01

    State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.

  10. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    SciTech Connect

    Zimmer, Jennifer S.; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.

    2006-01-20

    Proteomics, and the larger field of systems biology, have recently demonstrated utility in both the understanding of cellular processes on the molecular level and the identification of potential biomarkers of various disease states. The large amount of data generated by utilizing high mass accuracy mass spectrometry for high-throughput proteomics analyses presents a challenge in data processing, analysis and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics analysis and the accompanying data processing tools that have been developed in order to interpret and display the large volumes of data produced.

  11. NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet)

    SciTech Connect

    None, None

    2012-02-01

    This fact sheet discusses NREL's work to develop a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The objective of this project is to create a robust empirical data source to support the research goals of the Department of Energy's Building America program, which is to improve the efficiency of existing U.S. homes by 30% to 50%. Researchers can use this data source to test the accuracy of building energy simulation software and energy audit procedures, ultimately leading to more credible and less expensive energy analysis.

  12. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach

    PubMed Central

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    Background: As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. Materials and Methods: In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Results: Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. Conclusion: The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. SUMMARY Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion

  13. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  14. Can Raters with Reduced Job Descriptive Information Provide Accurate Position Analysis Questionnaire (PAQ) Ratings?

    ERIC Educational Resources Information Center

    Friedman, Lee; Harvey, Robert J.

    1986-01-01

    Job-naive raters provided with job descriptive information made Position Analysis Questionnaire (PAQ) ratings which were validated against ratings of job analysts who were also job content experts. None of the reduced job descriptive information conditions enabled job-naive raters to obtain either acceptable levels of convergent validity with…

  15. How to Construct More Accurate Student Models: Comparing and Optimizing Knowledge Tracing and Performance Factor Analysis

    ERIC Educational Resources Information Center

    Gong, Yue; Beck, Joseph E.; Heffernan, Neil T.

    2011-01-01

    Student modeling is a fundamental concept applicable to a variety of intelligent tutoring systems (ITS). However, there is not a lot of practical guidance on how to construct and train such models. This paper compares two approaches for student modeling, Knowledge Tracing (KT) and Performance Factors Analysis (PFA), by evaluating their predictive…

  16. Morphometric analysis of Russian Plain's small lakes on the base of accurate digital bathymetric models

    NASA Astrophysics Data System (ADS)

    Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana

    2016-04-01

    Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.

  17. TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Meneghini, O.; Maggiora, R.; Guadamuz, S.; Hillairet, J.; Lancellotti, V.; Vecchi, G.

    2012-01-01

    This paper presents a self-consistent, integral-equation approach for the analysis of plasma-facing lower hybrid (LH) launchers; the geometry of the waveguide grill structure can be completely arbitrary, including the non-planar mouth of the grill. This work is based on the theoretical approach and code implementation of the TOPICA code, of which it shares the modular structure and constitutes the extension into the LH range. Code results are validated against the literature results and simulations from similar codes.

  18. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  19. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects.

    PubMed

    Bakker, Chris J G; de Leeuw, Hendrik; van de Maat, Gerrit H; van Gorp, Jetse S; Bouwman, Job G; Seevinck, Peter R

    2013-01-01

    Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates. Experiments were done on a clinical system with standard facilities for imaging and spectroscopy. Images were acquired with a regular spin echo sequence and a corresponding spectroscopic imaging sequence. In the latter, successive samples of the acquired echo were used for the reconstruction of a series of evenly spaced images in the time and frequency domain. Experiments were done with a spatial linearity phantom and a series of test objects representing a wide range of susceptibility- and chemical-shift-induced off-resonance conditions. In contrast to regular spin echo imaging, spectroscopic imaging was shown to be immune to off-resonance effects, such as those caused by field inhomogeneity, susceptibility, chemical shift, f(0) offset and field drift, and to yield geometrically accurate images and parameter maps that allowed object structures to be localized in world coordinates. From these illustrative examples and a discussion of the limitations of purely phase-encoded imaging techniques, it is concluded that spectroscopic imaging offers a fundamental solution to the geometric deficiencies of MRI which may evolve toward a practical solution when full advantage will be taken of current developments with regard to scan time reduction. This perspective is backed up by a demonstration of the significant scan time reduction that may be achieved by the use of compressed sensing for a simple phantom. PMID:22898694

  20. Automated system for fast and accurate analysis of SF6 injected in the surface ocean.

    PubMed

    Koo, Chul-Min; Lee, Kitack; Kim, Miok; Kim, Dae-Ok

    2005-11-01

    This paper describes an automated sampling and analysis system for the shipboard measurement of dissolved sulfur hexafluoride (SF6) in surface marine environments into which SF6 has been deliberately released. This underway system includes a gas chromatograph associated with an electron capture detector, a fast and highly efficient SF6-extraction device, a global positioning system, and a data acquisition system based on Visual Basic 6.0/C 6.0. This work is distinct from previous studies in that it quantifies the efficiency of the SF6-extraction device and its carryover effect and examines the effect of surfactant on the SF6-extraction efficiency. Measurements can be continuously performed on seawater samples taken from a seawater line installed onboard a research vessel. The system runs on an hourly cycle during which one set of four SF6 standards is measured and SF6 derived from the seawater stream is subsequently analyzed for the rest of each 1 h period. This state-of-art system was successfully used to trace a water mass carrying Cochlodinium polykrikoides, which causes harmful algal blooms (HAB) in the coastal waters of southern Korea. The successful application of this analysis system in tracing the HAB-infected water mass suggests that the SF6 detection method described in this paper will improve the quality of the future study of biogeochemical processes in the marine environment. PMID:16294883

  1. COLLECTION AND CHEMICAL ANALYSIS OF LICHENS FOR BIOMONITORING

    EPA Science Inventory

    This chapter discusses the interrelated aspects of biomonitoring using chemical analysis of lichens. Many unique aspects of study objectives, study design (including design tasks, considerations, and sampling schemes), sample collection, sample preparation, and sample analysis th...

  2. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  3. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  4. Reducing the matrix effects in chemical analysis: fusion of isotope dilution and standard addition methods

    NASA Astrophysics Data System (ADS)

    Pagliano, Enea; Meija, Juris

    2016-04-01

    The combination of isotope dilution and mass spectrometry has become an ubiquitous tool of chemical analysis. Often perceived as one of the most accurate methods of chemical analysis, it is not without shortcomings. Current isotope dilution equations are not capable of fully addressing one of the key problems encountered in chemical analysis: the possible effect of sample matrix on measured isotope ratios. The method of standard addition does compensate for the effect of sample matrix by making sure that all measured solutions have identical composition. While it is impossible to attain such condition in traditional isotope dilution, we present equations which allow for matrix-matching between all measured solutions by fusion of isotope dilution and standard addition methods.

  5. Spectrally-accurate algorithm for the analysis of flows in two-dimensional vibrating channels

    NASA Astrophysics Data System (ADS)

    Zandi, S.; Mohammadi, A.; Floryan, J. M.

    2015-11-01

    A spectral algorithm based on the immersed boundary conditions (IBC) concept has been developed for the analysis of flows in channels bounded by vibrating walls. The vibrations take the form of travelling waves of arbitrary profile. The algorithm uses a fixed computational domain with the flow domain immersed in its interior. Boundary conditions enter the algorithm in the form of constraints. The spatial discretization uses a Fourier expansion in the stream-wise direction and a Chebyshev expansion in the wall-normal direction. Use of the Galileo transformation converts the unsteady problem into a steady one. An efficient solver which takes advantage of the structure of the coefficient matrix has been used. It is demonstrated that the method can be extended to more extreme geometries using the overdetermined formulation. Various tests confirm the spectral accuracy of the algorithm.

  6. Simulating Expert Clinical Comprehension: Adapting Latent Semantic Analysis to Accurately Extract Clinical Concepts from Psychiatric Narrative

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2008-01-01

    Cognitive studies reveal that less-than-expert clinicians are less able to recognize meaningful patterns of data in clinical narratives. Accordingly, psychiatric residents early in training fail to attend to information that is relevant to diagnosis and the assessment of dangerousness. This manuscript presents cognitively motivated methodology for the simulation of expert ability to organize relevant findings supporting intermediate diagnostic hypotheses. Latent Semantic Analysis is used to generate a semantic space from which meaningful associations between psychiatric terms are derived. Diagnostically meaningful clusters are modeled as geometric structures within this space and compared to elements of psychiatric narrative text using semantic distance measures. A learning algorithm is defined that alters components of these geometric structures in response to labeled training data. Extraction and classification of relevant text segments is evaluated against expert annotation, with system-rater agreement approximating rater-rater agreement. A range of biomedical informatics applications for these methods are suggested. PMID:18455483

  7. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  8. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  9. Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays

    PubMed Central

    2010-01-01

    High-throughput genotype data can be used to identify genes important for local adaptation in wild populations, phenotypes in lab stocks, or disease-related traits in human medicine. Here we advance microarray-based genotyping for population genomics with Restriction Site Tiling Analysis. The approach simultaneously discovers polymorphisms and provides quantitative genotype data at 10,000s of loci. It is highly accurate and free from ascertainment bias. We apply the approach to uncover genomic differentiation in the purple sea urchin. PMID:20403197

  10. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  11. Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes.

    PubMed

    Zhao, Li; Chen, Yiyun; Bajaj, Amol Onkar; Eblimit, Aiden; Xu, Mingchu; Soens, Zachry T; Wang, Feng; Ge, Zhongqi; Jung, Sung Yun; He, Feng; Li, Yumei; Wensel, Theodore G; Qin, Jun; Chen, Rui

    2016-05-01

    Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases. PMID:26912414

  12. Borehole flowmeter logging for the accurate design and analysis of tracer tests.

    PubMed

    Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto

    2015-04-01

    Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. PMID:25417730

  13. SMRT Sequencing for Parallel Analysis of Multiple Targets and Accurate SNP Phasing.

    PubMed

    Guo, Xiaoge; Lehner, Kevin; O'Connell, Karen; Zhang, Jenny; Dave, Sandeep S; Jinks-Robertson, Sue

    2015-12-01

    Single-molecule real-time (SMRT) sequencing generates much longer reads than other widely used next-generation (next-gen) sequencing methods, but its application to whole genome/exome analysis has been limited. Here, we describe the use of SMRT sequencing coupled with barcoding to simultaneously analyze one or a small number of genomic targets derived from multiple sources. In the budding yeast system, SMRT sequencing was used to analyze strand-exchange intermediates generated during mitotic recombination and to analyze genetic changes in a forward mutation assay. The general barcoding-SMRT approach was then extended to diffuse large B-cell lymphoma primary tumors and cell lines, where detected changes agreed with prior Illumina exome sequencing. A distinct advantage afforded by SMRT sequencing over other next-gen methods is that it immediately provides the linkage relationships between SNPs in the target segment sequenced. The strength of our approach for mutation/recombination studies (as well as linkage identification) derives from its inherent computational simplicity coupled with a lack of reliance on sophisticated statistical analyses. PMID:26497143

  14. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain. PMID:25607375

  15. Parents were accurate proxy reporters of urgent pediatric asthma health services—a retrospective agreement analysis

    PubMed Central

    Ungar, Wendy J.; Davidson-Grimwood, Sara R.; Cousins, Martha

    2016-01-01

    Objective To assess agreement between parents’ proxy reports of children’s respiratory-related health service use and administrative data. Study Design and Setting A retrospective analysis of statistical agreement between clinical and claims data for reports of physician visits, emergency department (ED) visits, and hospitalizations in 545 asthmatic children recruited from sites in the greater Toronto area was conducted. Health services use data were extracted from the Ontario Health Insurance Plan and Canadian Institute for Health Information databases for each child for the interval coinciding with the proxy report for each health service type. Results Agreement between administrative data and respondent reports (n =545) was substantial for hospitalizations in the past year (κ =0.80 [0.74, 0.86]), moderate for ED visits in the past year (κ =0.60 [0.53, 0.67]), and slight for physician visits (κ =0.13 [0.00, 0.27]) in the past 6 months. Income, parent’s education, and child quality-of-life symptom scores did not affect agreement. Agreement for ED visits was significantly higher (P <0.05) for children who had an asthma attack in the past 6 months (κ =0.61 [0.54, 0.68]) compared to children who did not (κ =0.25 [0.00, 0.59]). Conclusion Parents of asthmatic children are reliable reporters of their child’s respiratory-related urgent health services utilization. PMID:17938060

  16. [An Accurate Diagnosis is Possible with a Systematic Analysis of Routine Laboratory Data].

    PubMed

    Yonekawa, Osamu

    2015-09-01

    Routine laboratory tests are ordered for almost all in- and outpatients. A systematic analysis of routine laboratory data can give doctors valuable clinical information about patients. In some cases, a correct diag- nosis can be made using laboratory data alone. In our laboratory, we use five processes to evaluate routine laboratory data. Firstly, we estimate the patient's general condition based on A/G, Hb, TP, Alb, ChE, and platelet (PLT) levels. Secondly, we look for inflammation and malignancy based on WBC, CRP, PLT, fibrinogen, and ESR levels and the protein electrophoresis pattern. Thirdly, we examine the major organs, especially the liver and kidney. We check the liver for hepatocyte damage, obstruction, hepatic synthetic function, infection, and malignancy. We estimate GFR and check the kidney for any localized damage. We then check the chemistry, hematology, and immunology. Finally, we form a conclusion after a comprehensive interpretation of the above four processes. With this systematic approach, any members of the laboratory unit can easily estimate the exact pathological status of the patient. In this case study, marked change of TP indicated non-selective loss from the skin; namely a burn. Tissue injury and infections due to different focuses were the most likely causes of severe inflammation. Neither the liver nor kidney was severely damaged. Continual bleeding and hemolysis through the clinical course probably caused anemia. Hypooxygenic respiratory failure and metabolic alkalosis were confirmed by blood gasses. Multiple organ failure was suggested. PMID:26731896

  17. Accurate analysis of taurine, anserine, carnosine and free amino acids in a cattle muscle biopsy sample.

    PubMed

    Imanari, Mai; Higuchi, Mikito; Shiba, Nobuya; Watanabe, Akira

    2010-06-01

    We have established an analysis method for some free amino acids (FAAs), as well as taurine (Tau), anserine (Ans) and carnosine (Car), in a fresh biopsy sample from cattle muscle. A series of model biopsy samples, corresponding to the mixtures of lean meat, fat and connective tissue, was prepared and showed high correlation coefficients between the compound concentration and the 3-methylhistidine (3-MeHis) content derived from hydrolysis of the biopsy sample (r = 0.74-0.95, P < 0.01). Interference from blood contamination could not be neglected, because the concentration of some FAAs in blood was comparable to that in muscle. However, it was possible to control the contamination of Tau, Ans, Car, glutamic acid, glutamine, asparatic acid and alanine to less than 5.0% when the blood contamination was controlled to less than 23%.These results suggest the necessity of measuring 3-MeHis as an index of lean meat and hemoglobin as an index of blood contamination when compounds in muscle biopsy samples are evaluated. We have carried out a series of these analyses using one biopsy sample and reveal differences in Tau, Ans, Car and some FAAs in beef muscle after different feeding regimes. PMID:20597895

  18. SMRT Sequencing for Parallel Analysis of Multiple Targets and Accurate SNP Phasing

    PubMed Central

    Guo, Xiaoge; Lehner, Kevin; O’Connell, Karen; Zhang, Jenny; Dave, Sandeep S.; Jinks-Robertson, Sue

    2015-01-01

    Single-molecule real-time (SMRT) sequencing generates much longer reads than other widely used next-generation (next-gen) sequencing methods, but its application to whole genome/exome analysis has been limited. Here, we describe the use of SMRT sequencing coupled with barcoding to simultaneously analyze one or a small number of genomic targets derived from multiple sources. In the budding yeast system, SMRT sequencing was used to analyze strand-exchange intermediates generated during mitotic recombination and to analyze genetic changes in a forward mutation assay. The general barcoding-SMRT approach was then extended to diffuse large B-cell lymphoma primary tumors and cell lines, where detected changes agreed with prior Illumina exome sequencing. A distinct advantage afforded by SMRT sequencing over other next-gen methods is that it immediately provides the linkage relationships between SNPs in the target segment sequenced. The strength of our approach for mutation/recombination studies (as well as linkage identification) derives from its inherent computational simplicity coupled with a lack of reliance on sophisticated statistical analyses. PMID:26497143

  19. EDXRF quantitative analysis of chromophore chemical elements in corundum samples.

    PubMed

    Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V

    2009-12-01

    Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis. PMID:19821113

  20. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  1. An automated method for analysis of microcirculation videos for accurate assessment of tissue perfusion

    PubMed Central

    2012-01-01

    Background Imaging of the human microcirculation in real-time has the potential to detect injuries and illnesses that disturb the microcirculation at earlier stages and may improve the efficacy of resuscitation. Despite advanced imaging techniques to monitor the microcirculation, there are currently no tools for the near real-time analysis of the videos produced by these imaging systems. An automated system tool that can extract microvasculature information and monitor changes in tissue perfusion quantitatively might be invaluable as a diagnostic and therapeutic endpoint for resuscitation. Methods The experimental algorithm automatically extracts microvascular network and quantitatively measures changes in the microcirculation. There are two main parts in the algorithm: video processing and vessel segmentation. Microcirculatory videos are first stabilized in a video processing step to remove motion artifacts. In the vessel segmentation process, the microvascular network is extracted using multiple level thresholding and pixel verification techniques. Threshold levels are selected using histogram information of a set of training video recordings. Pixel-by-pixel differences are calculated throughout the frames to identify active blood vessels and capillaries with flow. Results Sublingual microcirculatory videos are recorded from anesthetized swine at baseline and during hemorrhage using a hand-held Side-stream Dark Field (SDF) imaging device to track changes in the microvasculature during hemorrhage. Automatically segmented vessels in the recordings are analyzed visually and the functional capillary density (FCD) values calculated by the algorithm are compared for both health baseline and hemorrhagic conditions. These results were compared to independently made FCD measurements using a well-known semi-automated method. Results of the fully automated algorithm demonstrated a significant decrease of FCD values. Similar, but more variable FCD values were calculated

  2. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy

    NASA Astrophysics Data System (ADS)

    Guirguis, Laila A.; Farag, Nagdy M.; Salim, Adham K.

    2015-03-01

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St4 (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO4+H2SO4+NH4OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6.

  3. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    PubMed

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  4. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  5. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    PubMed

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J

    2016-03-01

    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study. PMID:26820234

  6. DRILLING MUD ASSESSMENT CHEMICAL ANALYSIS REFERENCE VOLUME

    EPA Science Inventory

    This report presents concentrations of specific metals and hydrocarbons in eleven drilling fluids (muds) taken from operating gas and oil rigs in the Gulf of Mexico. Each drilling fluid was analyzed chemically for heavy metal and hydrocarbon content in three distinct phases: (1) ...

  7. Theory, Image Simulation, and Data Analysis of Chemical Release Experiments

    NASA Technical Reports Server (NTRS)

    Wescott, Eugene M.

    1994-01-01

    The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments.

  8. Environmental analysis of the chemical release module. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Dubin, M.

    1980-01-01

    The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.

  9. Multiphase chemical analysis of terpene oxidation products

    NASA Astrophysics Data System (ADS)

    Herrmann, F.; Williams, J.; Röckmann, T.; Winterhalter, R.; Holzinger, R.

    2009-04-01

    A new technique was developed for multiphase monitoring of organic species in the gasphase and on aerosols with a Proton Transfer Reaction Mass Spectrometer (PTRMS) as the detector. An advantage of the soft ionization technique of the PTRMS, is that it is possible to see the ozonolysis products with little fragmentation. When fragmentation does occur, it is limited to the loss of water from a hydroxyl or carboxyl group, thus facilitating identification. This new system gives detailed information on the chemical composition of organic aerosols, and allows the chemical evolution of condensed organics to be monitored. With this new system it is possible to identify specific chemical compounds in both gas and aerosol phases, instead of the "total organics" which have been reported previously. A series of reactions of ozone with terpenes, beta-caryophyllene and isoprene were preformed in a smog chamber. The secondary organic aerosol and VOCs in the gas phase were measured. Due to the high aerosol concentrations in the smog chamber experiments, air samples could be collected at high time resolution, and it is possible to observe the aging of the aerosol and the gas phase.

  10. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.

    PubMed

    Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  11. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    PubMed Central

    Ross, Charles W.; Simonsick, William J.; Bogusky, Michael J.; Celikay, Recep W.; Guare, James P.; Newton, Randall C.

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  12. Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses.

    PubMed

    Constapel, Marc; Schellenträger, Marc; Marzinkowski, Joachim Michael; Gäb, Siegmar

    2009-02-01

    The present work describes the use of ozone to degrade selected reactive dyes from the textile industry and the analysis of the resulting complex mixture by liquid chromatography/mass spectrometry (LC-MS). To allow certain identification of the substances detected in the wastewater, the original dyes were also investigated either separately or in a synthetic mixture of three dyes (trichromie). Since the reactive dyes are hydrolyzed during the dyeing process, procedures for the hydrolysis were worked out first for the individual dyes. The ozonated solutions were concentrated by solid-phase extraction, which separated very polar or ionic substances from moderately polar degradation products. The latter, which are the primary degradation products, were investigated by liquid chromatography/mass spectrometry with a tandem quadrupole time-of-flight mass analyzer. Accurate masses, which in most cases could be determined with a deviation of accurate masses, UV-vis spectra and, of course, knowledge of the structures of the original dyes, plausible structures could be proposed for most of the components of the moderately polar fraction. These structures were confirmed by 1H NMR in cases where it was practical to isolate the degradation products by preparative HPLC. PMID:19110293

  13. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.

    PubMed

    Ullah, Saleem; Skidmore, Andrew K; Naeem, Mohammad; Schlerf, Martin

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. PMID:22940042

  14. A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals

    NASA Astrophysics Data System (ADS)

    Gu, F.; Wang, T.; Alwodai, A.; Tian, X.; Shao, Y.; Ball, A. D.

    2015-01-01

    Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has motivated many studies into improving this method. In this paper a modulation signal bispectrum (MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the amplitude at (1 ± 2 s)fs (s is the rotor slip and fs is the fundamental supply frequency) with high accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces more accurate results in predicting the number of BRB, compared with conventional power spectrum analysis. Moreover, the paper has also developed an improved model for motor current signals under rotor fault conditions and an effective method to decouple the BRB current which interferes with that of speed oscillations associated with BRB. These provide theoretical supports for the new estimators and clarify the issues in using conventional bispectrum analysis.

  15. How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins?

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward P.; Morrison, Greg; Brooks, Bernard R.; Thirumalai, D.

    2009-03-01

    Single molecule Förster resonance energy transfer (FRET) experiments are used to infer the properties of the denatured state ensemble (DSE) of proteins. From the measured average FRET efficiency, ⟨E⟩, the distance distribution P(R ) is inferred by assuming that the DSE can be described as a polymer. The single parameter in the appropriate polymer model (Gaussian chain, wormlike chain, or self-avoiding walk) for P(R ) is determined by equating the calculated and measured ⟨E⟩. In order to assess the accuracy of this "standard procedure," we consider the generalized Rouse model (GRM), whose properties [⟨E⟩ and P(R )] can be analytically computed, and the Molecular Transfer Model for protein L for which accurate simulations can be carried out as a function of guanadinium hydrochloride (GdmCl) concentration. Using the precisely computed ⟨E⟩ for the GRM and protein L, we infer P(R ) using the standard procedure. We find that the mean end-to-end distance can be accurately inferred (less than 10% relative error) using ⟨E⟩ and polymer models for P(R ). However, the value extracted for the radius of gyration (Rg) and the persistence length (lp) are less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration increases for all polymer models. The relative error in the inferred Rg and lp, with respect to the exact values, can be as large as 25% at the highest GdmCl concentration. We propose a self-consistency test, requiring measurements of ⟨E⟩ by attaching dyes to different residues in the protein, to assess the validity of describing DSE using the Gaussian model. Application of the self-consistency test to the GRM shows that even for this simple model, which exhibits an order→disorder transition, the Gaussian P(R ) is inadequate. Analysis of experimental data of FRET efficiencies with dyes at several locations for the cold shock protein, and simulations results for protein L, for which accurate FRET

  16. Chemical properties and methods of analysis of refractory compounds

    NASA Technical Reports Server (NTRS)

    Samsonov, G. V. (Editor); Frantsevich, I. N. (Editor); Yeremenko, V. N. (Editor); Nazarchuk, T. N. (Editor); Popova, O. I. (Editor)

    1978-01-01

    Reactions involving refractory metals and the alloys based on them are discussed. Chemical, electrochemical, photometric, spectrophotometric, and X-ray analysis are among the methods described for analyzing the results of the reactions and for determining the chemical properties of these materials.

  17. Alpha particle backscattering measurements used for chemical analysis of surfaces

    NASA Technical Reports Server (NTRS)

    Patterson, J. H.

    1967-01-01

    Alpha particle backscattering performs a chemical analysis of surfaces. The apparatus uses a curium source and a semiconductor detector to determine the energy spectrum of the particles. This in turn determines the chemical composition of the surface after calibration to known samples.

  18. Scaffold topologies. 2. Analysis of chemical databases.

    PubMed

    Wester, Michael J; Pollock, Sara N; Coutsias, Evangelos A; Allu, Tharun Kumar; Muresan, Sorel; Oprea, Tudor I

    2008-07-01

    We have systematically enumerated graph representations of scaffold topologies for up to eight-ring molecules and four-valence atoms, thus providing coverage of the lower portion of the chemical space of small molecules (Pollock et al. J. Chem. Inf. Model., this issue). Here, we examine scaffold topology distributions for several databases: ChemNavigator and PubChem for commercially available chemicals, the Dictionary of Natural Products, a set of 2742 launched drugs, WOMBAT, a database of medicinal chemistry compounds, and two subsets of PubChem, "actives" and DSSTox comprising toxic substances. We also examined a virtual database of exhaustively enumerated small organic molecules, GDB (Fink et al. Angew. Chem., Int. Ed. 2005, 44, 1504-1508), and we contrast the scaffold topology distribution from these collections to the complete coverage of up to eight-ring molecules. For reasons related, perhaps, to synthetic accessibility and complexity, scaffolds exhibiting six rings or more are poorly represented. Among all collections examined, PubChem has the greatest scaffold topological diversity, whereas GDB is the most limited. More than 50% of all entries (13 000 000+ actual and 13 000 000+ virtual compounds) exhibit only eight distinct topologies, one of which is the nonscaffold topology that represents all treelike structures. However, most of the topologies are represented by a single or very small number of examples. Within topologies, we found that three-way scaffold connections (3-nodes) are much more frequent compared to four-way (4-node) connections. Fused rings have a slightly higher frequency in biologically oriented databases. Scaffold topologies can be the first step toward an efficient coarse-grained classification scheme of the molecules found in chemical databases. PMID:18605681

  19. Scanning-electron-microscope image processing for accurate analysis of line-edge and line-width roughness

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Nishida, Akio

    2012-03-01

    The control of line-edge or line-width roughness (LER/LWR) is a challenge especially for future devices that are fabricated using extreme-ultraviolet lithography. Accurate analysis of the LER/LWR plays an essential role in this challenge and requires the noise involved in scanning-electron-microscope (SEM) images to be reduced by appropriate image processing prior to analyses. In order to achieve this, the authors simulated SEM images using the Monte-Carlo method and detected line edges in experimental and these theoretical images after noise filtering using new imageanalysis software. The validity of these simulation and software was confirmed by a good agreement between the experimental and theoretical results. In the case when the image pixels aligned perpendicular (crosswise) to line edges were averaged, the variance var(φ) that was additionally induced by the image noise decreased with the number NPIX,X of averaged pixels but turned to increase for relatively large NPIX,X's. Real LER/LWR, however, remained unaffected. On the other hand, averaging image pixels aligned parallel (longitudinal) to line edges not only reduced var(φ) but smoothed the real LER/LWR. As a result, the nominal variance of the real LWR, obtained using simple arithmetic, monotonically decreased with the number NPIX,L of averaged pixels. Artifactual oscillations were additionally observed in power spectral densities. var(φ) in this case decreased in an inverse proportion to the square root of NPIX,L according to the statistical mechanism clarified here. In this way, image processing has a marked effect on the LER/LWR analysis and needs to be much more cared and appropriately applied. All the aforementioned results not only constitute a solid basis of but improve previous empirical instructions for accurate analyses. The most important instruction is to avoid the longitudinal averaging and to crosswise average an optimized number of image pixels consulting the equation derived in this

  20. Standard methods for chemical analysis of special brasses and bronzes

    SciTech Connect

    Not Available

    1980-01-01

    These methods cover procedures for the chemical analysis of the commercial alloys known as copper-base alloy ingots for sand castings, forging rods, bars, and shapes; aluminum brass; manganese bronze; phosphor bronze; copper-silicon alloys; and similar alloys.

  1. BIOASSAY-DIRECTED CHEMICAL ANALYSIS IN ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology 'bioassay directed chemical analysis' to best describe this marriage of analy...

  2. Chemical Diversity, Origin, and Analysis of Phycotoxins.

    PubMed

    Rasmussen, Silas Anselm; Andersen, Aaron John Christian; Andersen, Nikolaj Gedsted; Nielsen, Kristian Fog; Hansen, Per Juel; Larsen, Thomas Ostenfeld

    2016-03-25

    Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds that are toxic to fish, the so-called ichthyotoxins. Despite numerous reports of algal blooms causing massive fish kills worldwide, only a few types of compounds, such as the karlotoxins, have been proven to be true ichthyotoxins. This review will highlight marine microalgae as the source of some of the most complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized. PMID:26901085

  3. SYSTEMS CHEMICAL ANALYSIS OF PETROLEUM POLLUTANTS

    EPA Science Inventory

    The application of an established mathematical treatment useful for the characterization and identification of petroleum pollutants is described. Using discriminant analysis of relevant infrared spectrophotometric data, 99% of numerous known and unknown oil samples have been corr...

  4. Noise filtering of scanning-electron-microscope images for accurate analysis of line-edge and line-width roughness

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Nishida, Akio

    2012-10-01

    The control of line-edge or line-width roughness (LER/LWR) is a challenge, especially for future devices that are fabricated using extreme-ultraviolet (EUV) lithography. Accurate analysis of the LER/LWR plays an essential role in this challenge and requires the noise involved in scanning-electron-microscope (SEM) images to be reduced by appropriate noise filtering prior to analysis. To achieve this, we simulated the SEM images using a Monte Carlo method, and detected line edges in both experimental and theoretical images after noise filtering using new image-analysis software. The validity of this software and these simulations was confirmed by a good agreement between the experimental and theoretical results. In the case when the image pixels aligned perpendicular (crosswise) to line edges were averaged, the variance var(φ) that was additionally induced by the image noise decreased with a number N of averaged pixels, with exceptions when N was relatively large, whereupon the variance increased. The optimal N to minimize var(φ) was formulated based on a statistical mechanism of this change. LER/LWR statistics estimated using the crosswise filtering remained unaffected when N was smaller than the aforementioned optimal value, but monotonically changed when N was larger contrary to expectations. This change was possibly caused by an asymmetric scan-signal profile at edges. On the other hand, averaging image pixels aligned parallel (longitudinal) to line edges not only reduced var(φ) but smoothed real LER/LWR. As a result, the nominal variance of real LWR, obtained using simple arithmetic, monotonically decreased with a number N of averaged pixels. Artifactual oscillations were additionally observed in power spectral densities. Var(φ) in this case decreased in inverse proportion to the square root of N according to the statistical mechanism clarified here. In this way, the noise filtering has a marked effect on the LER/LWR analysis and needs to be appropriately

  5. Accurate Analysis of the Change in Volume, Location, and Shape of Metastatic Cervical Lymph Nodes During Radiotherapy

    SciTech Connect

    Takao, Seishin; Tadano, Shigeru; Taguchi, Hiroshi; Yasuda, Koichi; Onimaru, Rikiya; Ishikawa, Masayori; Bengua, Gerard; Suzuki, Ryusuke; Shirato, Hiroki

    2011-11-01

    Purpose: To establish a method for the accurate acquisition and analysis of the variations in tumor volume, location, and three-dimensional (3D) shape of tumors during radiotherapy in the era of image-guided radiotherapy. Methods and Materials: Finite element models of lymph nodes were developed based on computed tomography (CT) images taken before the start of treatment and every week during the treatment period. A surface geometry map with a volumetric scale was adopted and used for the analysis. Six metastatic cervical lymph nodes, 3.5 to 55.1 cm{sup 3} before treatment, in 6 patients with head and neck carcinomas were analyzed in this study. Three fiducial markers implanted in mouthpieces were used for the fusion of CT images. Changes in the location of the lymph nodes were measured on the basis of these fiducial markers. Results: The surface geometry maps showed convex regions in red and concave regions in blue to ensure that the characteristics of the 3D tumor geometries are simply understood visually. After the irradiation of 66 to 70 Gy in 2 Gy daily doses, the patterns of the colors had not changed significantly, and the maps before and during treatment were strongly correlated (average correlation coefficient was 0.808), suggesting that the tumors shrank uniformly, maintaining the original characteristics of the shapes in all 6 patients. The movement of the gravitational center of the lymph nodes during the treatment period was everywhere less than {+-}5 mm except in 1 patient, in whom the change reached nearly 10 mm. Conclusions: The surface geometry map was useful for an accurate evaluation of the changes in volume and 3D shapes of metastatic lymph nodes. The fusion of the initial and follow-up CT images based on fiducial markers enabled an analysis of changes in the location of the targets. Metastatic cervical lymph nodes in patients were suggested to decrease in size without significant changes in the 3D shape during radiotherapy. The movements of the

  6. Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C–1H HSQC Spectra

    PubMed Central

    2015-01-01

    A new metabolomics database and query algorithm for the analysis of 13C–1H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) 13C–1H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from 13C–1H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  7. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  8. Methods for Chemical Analysis of Fresh Waters.

    ERIC Educational Resources Information Center

    Golterman, H. L.

    This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…

  9. Electron Spectroscopy: Applications for Chemical Analysis

    ERIC Educational Resources Information Center

    Heercules, David M.

    2004-01-01

    The development of XPS as an effective method for surface analysis during the period 1964-1977 is presented. The study shows that unlike other surface methods, XPS data can be obtained for both conductors and insulators and a variety of samples can be handled effectively, which is one of the major reasons for the popularity of the technique.

  10. Pretest uncertainty analysis for chemical rocket engine tests

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.

  11. Applications of immobilized biocatalysts in chemical analysis

    SciTech Connect

    Bowers, L.D.

    1986-04-01

    In 1974, Weetall published a report in Analytical Chemistry documenting the increasing interest in a relatively new concept in catalysis involving enzymes physically or covalently bound to a solid support. Very few reports of a new immobilization chemistry can stir enthusiasm, and the descriptions of new analysis systems have become less and less frequent. With these advances in mind, it seems appropriate to evaluate the use of immobilized enzymes as routine laboratory tools, a prediction made in 1976 (2), and the reasons for the success or failure of the technique. 20 references, 5 figures, 2 tables.

  12. Wavelet prism decomposition analysis applied to CARS spectroscopy: a tool for accurate and quantitative extraction of resonant vibrational responses.

    PubMed

    Kan, Yelena; Lensu, Lasse; Hehl, Gregor; Volkmer, Andreas; Vartiainen, Erik M

    2016-05-30

    We propose an approach, based on wavelet prism decomposition analysis, for correcting experimental artefacts in a coherent anti-Stokes Raman scattering (CARS) spectrum. This method allows estimating and eliminating a slowly varying modulation error function in the measured normalized CARS spectrum and yields a corrected CARS line-shape. The main advantage of the approach is that the spectral phase and amplitude corrections are avoided in the retrieved Raman line-shape spectrum, thus significantly simplifying the quantitative reconstruction of the sample's Raman response from a normalized CARS spectrum in the presence of experimental artefacts. Moreover, the approach obviates the need for assumptions about the modulation error distribution and the chemical composition of the specimens under study. The method is quantitatively validated on normalized CARS spectra recorded for equimolar aqueous solutions of D-fructose, D-glucose, and their disaccharide combination sucrose. PMID:27410113

  13. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and Specificity analysis.

    SciTech Connect

    Kapp, Eugene; Schutz, Frederick; Connolly, Lisa M.; Chakel, John A.; Meza, Jose E.; Miller, Christine A.; Fenyo, David; Eng, Jimmy K.; Adkins, Joshua N.; Omenn, Gilbert; Simpson, Richard

    2005-08-01

    MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X-Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, Peptide Prophet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X-Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of ''consensus scoring'', i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs. complement.

  14. Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS

    PubMed Central

    van der Wagt, B.; Koornneef, J. M.; Davies, G. R.

    2007-01-01

    This paper reviews the problems encountered in eleven studies of Sr isotope analysis using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) in the period 1995–2006. This technique has been shown to have great potential, but the accuracy and precision are limited by: (1) large instrumental mass discrimination, (2) laser-induced isotopic and elemental fractionations and (3) molecular interferences. The most important isobaric interferences are Kr and Rb, whereas Ca dimer/argides and doubly charged rare earth elements (REE) are limited to sample materials which contain substantial amounts of these elements. With modern laser (193 nm) and MC-ICPMS equipment, minerals with >500 ppm Sr content can be analysed with a precision of better than 100 ppm and a spatial resolution (spot size) of approximately 100 μm. The LA MC-ICPMS analysis of 87Sr/86Sr of both carbonate material and plagioclase is successful in all reported studies, although the higher 84Sr/86Sr ratios do suggest in some cases an influence of Ca dimer and/or argides. High Rb/Sr (>0.01) materials have been successfully analysed by carefully measuring the 85Rb/87Rb in standard material and by applying the standard-sample bracketing method for accurate Rb corrections. However, published LA-MC-ICPMS data on clinopyroxene, apatite and sphene records differences when compared with 87Sr/86Sr measured by thermal ionisation mass spectrometry (TIMS) and solution MC-ICPMS. This suggests that further studies are required to ensure that the most optimal correction methods are applied for all isobaric interferences. PMID:18080118

  15. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  16. Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment

    PubMed Central

    2008-01-01

    Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (Φ), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol−water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, Φ and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497

  17. Appendix C. Collection of Samples for Chemical Agent Analysis

    SciTech Connect

    Koester, C; Thompson, C; Doerr, T; Scripsick, R

    2005-09-23

    This chapter describes procedures for the collection and analysis of samples of various matrices for the purpose of determining the presence of chemical agents in a civilian setting. This appendix is intended to provide the reader with sufficient information to make informed decisions about the sampling and analysis process and to suggest analytical strategies that might be implemented by the scientists performing sampling and analysis. This appendix is not intended to be used as a standard operating procedure to provide detailed instructions as to how trained scientists should handle samples. Chemical agents can be classified by their physical and chemical properties. Table 1 lists the chemical agents considered by this report. In selecting sampling and analysis methods, we have considered procedures proposed by the Organization for Prohibition of Chemical Weapons (OPCW), the U. S. Environmental Protection Agency (EPA), and peer-reviewed scientific literature. EPA analytical methods are good resources describing issues of quality assurance with respect to chain-of-custody, sample handling, and quality control requirements.

  18. A new chemical analysis system using a photocathode RF gun

    NASA Astrophysics Data System (ADS)

    Aoki, Yasushi; Yang, Jinfeng; Hirose, Masafumi; Sakai, Fumio; Tsunemi, Akira; Yorozu, Masafumi; Okada, Yasuhiro; Endo, Akira; Wang, Xijie; Ben-Zvi, Ilan

    2000-11-01

    A compact chemical analysis (pulse radiolysis) apparatus using a BNL-type s-band photocathode RF gun (GUN-IV) is now under development at Sumitomo Heavy Industries (SHI). Using the apparatus, fast chemical reactions induced by 3.5 ps pulse of electron beam can be analyzed by means of time-resolved photo-absorption spectroscopy with 10 ps laser pulses in the wavelength range of 210-2000 nm. The high-precision control of RF phase makes 10 ps of time-resolution possible for the analysis.

  19. Terahertz Chemical Analysis of Exhaled Human Breath - Broad Essay of Chemicals

    NASA Astrophysics Data System (ADS)

    Branco, Daniela R.; Fosnight, Alyssa M.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    Approximately 3000 chemicals are thought to be present in human breath. Of these chemicals, many are considered typical of exhaled air. Yet, others can allude to different disease pathologies. The detection of chemicals in breath could have many practical purposes in medicine and provide a noninvasive means of diagnostics. We have previously reported on detection of ethanol, methanol, and acetone in exhaled human breath using a novel sub-millimeter/THz spectroscopic approach. This paper reports on our most recent study. A tentative list has been made of approximately 20 chemicals previously found in breath using other methods. Though many of these chemicals are only expressed in samples from donors with certain pathologies, at the time of this submission we are able to detect and quantitatively measure acetaldehyde and dimethyl sulfide in the breath of several healthy donors. Additional tentatively identified chemicals have been seen using this approach. This presentation will explain our experimental procedures and present our most recent results in THz breath analysis. Prospects, challenges and future plans will be outlined and discussed.

  20. Non-targeted screening for contaminants in paper and board food-contact materials using effect-directed analysis and accurate mass spectrometry.

    PubMed

    Bengtström, Linda; Rosenmai, Anna Kjerstine; Trier, Xenia; Jensen, Lisbeth Krüger; Granby, Kit; Vinggaard, Anne Marie; Driffield, Malcolm; Højslev Petersen, Jens

    2016-06-01

    Due to large knowledge gaps in chemical composition and toxicological data for substances involved, paper and board food-contact materials (P&B FCM) have been emerging as a FCM type of particular concern for consumer safety. This study describes the development of a step-by-step strategy, including extraction, high-performance liquid chromatography (HPLC) fractionation, tentative identification of relevant substances and in vitro testing of selected tentatively identified substances. As a case study, we used two fractions from a recycled pizza box sample which exhibited aryl hydrocarbon receptor (AhR) activity. These fractions were analysed by gas chromatography (GC) and ultra-HPLC (UHPLC) coupled to quadrupole time-of-flight mass spectrometers (QTOF MS) in order tentatively to identify substances. The elemental composition was determined for peaks above a threshold, and compared with entries in a commercial mass spectral library for GC-MS (GC-EI-QTOF MS) analysis and an in-house built library of accurate masses for substances known to be used in P&B packaging for UHPLC-QTOF analysis. Of 75 tentatively identified substances, 15 were initially selected for further testing in vitro; however, only seven were commercially available and subsequently tested in vitro and quantified. Of these seven, the identities of three pigments found in printing inks were confirmed by UHPLC tandem mass spectrometry (QqQ MS/MS). Two pigments had entries in the database, meaning that a material relevant accurate mass database can provide a fast tentative identification. Pure standards of the seven tentatively identified substances were tested in vitro but could not explain a significant proportion of the AhR-response in the extract. Targeted analyses of dioxins and PCBs, both well-known AhR agonists, was performed. However, the dioxins could explain approximately 3% of the activity observed in the pizza box extract indicating that some very AhR active substance(s) still remain to be

  1. Surface chemical composition analysis of heat-treated bamboo

    NASA Astrophysics Data System (ADS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  2. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOEpatents

    Mowry, Curtis D.; Morgan, Catherine H.; Manginell, Ronald P.; Frye-Mason, Gregory C.

    2006-07-18

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  3. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured

  4. Molecular-genetic analysis is essential for accurate classification of renal carcinoma resembling Xp11.2 translocation carcinoma.

    PubMed

    Hayes, Malcolm; Peckova, Kvetoslava; Martinek, Petr; Hora, Milan; Kalusova, Kristyna; Straka, Lubomir; Daum, Ondrej; Kokoskova, Bohuslava; Rotterova, Pavla; Pivovarčikova, Kristyna; Branzovsky, Jindrich; Dubova, Magdalena; Vesela, Pavla; Michal, Michal; Hes, Ondrej

    2015-03-01

    tumours can only be sub-classified accurately by multi-parameter molecular-genetic analysis. PMID:25544614

  5. Microfabricated devices for performing chemical and biochemical analysis

    SciTech Connect

    Ramsey, J.M.; Jacobson, S.C.; Foote, R.S.

    1997-05-01

    There is growing interest in microfabricated devices that perform chemical and biochemical analysis. The general goal is to use microfabrication tools to construct miniature devices that can perform a complete analysis starting with an unprocessed sample. Such devices have been referred to as lab-on-a-chip devices. Initial efforts on microfluidic laboratory-on-a-chip devices focused on chemical separations. There are many potential applications of these fluidic microchip devices. Some applications such as chemical process control or environmental monitoring would require that a chip be used over an extended period of time or for many analyses. Other applications such as forensics, clinical diagnostics, and genetic diagnostics would employ the chip devices as single use disposable devices.

  6. Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles

    NASA Technical Reports Server (NTRS)

    Dillard, J. G.; Seals, R. D.; Wightman, J. P.

    1979-01-01

    The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

  7. METHOD OF CHEMICAL ANALYSIS FOR OIL SHALE WASTES

    EPA Science Inventory

    Several methods of chemical analysis are described for oil shale wastewaters and retort gases. These methods are designed to support the field testing of various pollution control systems. As such, emphasis has been placed on methods which are rapid and sufficiently rugged to per...

  8. LEVEL 2 CHEMICAL ANALYSIS OF FLUIDIZED-BED COMBUSTOR SAMPLES

    EPA Science Inventory

    The report gives results of a Level 1 data evaluation and prioritization and the Level 2 environmental assessment (EA) chemical data acquired on a set of fluidized-bed combustor (FBC) particulate samples. The Level 2 analysis followed the approach described in 'Approach to Level ...

  9. Methods of chemical analysis used to characterize battery materials

    SciTech Connect

    Jensen, K. J.; Streets, W. E.

    1980-05-01

    Procedures are given for the chemical analysis of a variety of materials of interest in battery development and research. These materials include LiCl-KCl eutectic, Li-Al alloys, lithium sulfide, lithium aluminum chloride, calcium sulfide, titanium sulfide, and various sulfides of iron, nickel, copper, and cobalt. 8 tables.

  10. Improved centroid moment tensor analyses in the NIED AQUA (Accurate and QUick Analysis system for source parameters)

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Asano, Y.; Matsumoto, T.

    2012-12-01

    The rapid determination of hypocentral parameters and their transmission to the public are valuable components of disaster mitigation. We have operated an automatic system for this purpose—termed the Accurate and QUick Analysis system for source parameters (AQUA)—since 2005 (Matsumura et al., 2006). In this system, the initial hypocenter, the moment tensor (MT), and the centroid moment tensor (CMT) solutions are automatically determined and posted on the NIED Hi-net Web site (www.hinet.bosai.go.jp). This paper describes improvements made to the AQUA to overcome limitations that became apparent after the 2011 Tohoku Earthquake (05:46:17, March 11, 2011 in UTC). The improvements included the processing of NIED F-net velocity-type strong motion records, because NIED F-net broadband seismographs are saturated for great earthquakes such as the 2011 Tohoku Earthquake. These velocity-type strong motion seismographs provide unsaturated records not only for the 2011 Tohoku Earthquake, but also for recording stations located close to the epicenters of M>7 earthquakes. We used 0.005-0.020 Hz records for M>7.5 earthquakes, in contrast to the 0.01-0.05 Hz records employed in the original system. The initial hypocenters determined based on arrival times picked by using seismograms recorded by NIED Hi-net stations can have large errors in terms of magnitude and hypocenter location, especially for great earthquakes or earthquakes located far from the onland Hi-net network. The size of the 2011 Tohoku Earthquake was initially underestimated in the AQUA to be around M5 at the initial stage of rupture. Numerous aftershocks occurred at the outer rise east of the Japan trench, where a great earthquake is anticipated to occur. Hence, we modified the system to repeat the MT analyses assuming a larger size, for all earthquakes for which the magnitude was initially underestimated. We also broadened the search range of centroid depth for earthquakes located far from the onland Hi

  11. Qualitative and quantitative analysis of uroliths in dogs: definitive determination of chemical type.

    PubMed

    Bovee, K C; McGuire, T

    1984-11-01

    Effective treatment and prevention of urolithiasis depends on accurate determination of the chemical nature of the uroliths. A widely used qualitative chemical procedure was compared with quantitative crystallographic analysis of 272 canine uroliths. Agreement between the 2 methods was 78%. Qualitative analysis failed to detect 62% of calcium-containing uroliths and 83% of carbonate apatite uroliths. Qualitative analysis gave false-positive results for urates in 55% of cystine uroliths. Mixed uroliths comprising 6% of the total could not be classified without quantitative analysis. Silicate, cystine, and urate uroliths generally were of pure composition. Crystallographic analysis indicated the following distribution of major types: struvite, 69%; calcium oxalate, 10%; urate, 7%; silicate, 3.5%; cystine, 3.2%; calcium phosphate, 1%; and mixed, 6%. Among dogs with struvite uroliths, 66% had positive results of bacterial culturing from the urinary bladder. Six breeds (Miniature Schnauzer, Welsh Corgi, Lhasa Apso, Yorkshire Terrier, Pekingese, and Pug) had a significantly higher risk for urolithiasis, compared with other breeds. The German Shepherd Dog had a significantly lowered risk, compared with other breeds. Two breeds had significant relationship to a specific type of urolith: Miniature Schnauzer for oxalate, and Dalmatian for urate (P less than 0.001). It was concluded that quantitative analysis, using crystallography, was superior for the detection of calcium oxalate, carbonate apatite, cystine, urate, and mixed uroliths. PMID:6511641

  12. Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis

    NASA Astrophysics Data System (ADS)

    da Silva, R.; Porto de Mello, G. F.; Milone, A. C.; da Silva, L.; Ribeiro, L. S.; Rocha-Pinto, H. J.

    2012-06-01

    Aims: We report the derivation of abundances of C, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Sm in a sample of 25 solar-type stars of the solar neighbourhood, correlating the abundances with the stellar ages, kinematics, and orbital parameters. Methods: The spectroscopic analysis, based on data of high resolution and high signal-to-noise ratio, was differential to the Sun and applied to atomic line equivalent widths supplemented by the spectral synthesis of C and C2 features. We also performed a statistical study by using the method of tree clustering analysis, searching for groups of stars sharing similar elemental abundance patterns. We derived the stellar parameters from various criteria, with average errors of 30 K, 0.13 dex, and 0.05 dex, respectively, for Teff, log g, and [Fe/H]. The average error of the [X/Fe] abundance ratios is 0.06 dex. Ages were derived from theoretical HR diagrams and membership of the stars in known kinematical moving groups. Results: We identified four stellar groups: one having, on average, over-solar abundances (⟨[X/H]⟩ = +0.26 dex), another with under-solar abundances (⟨ [X/H] ⟩ = -0.24 dex), and two with intermediate values (⟨ [X/H] ⟩ = -0.06 and +0.06 dex) but with distinct chemical patterns. Stars sharing solar metallicity, age, and Galactic orbit possibly have non-solar abundance ratios, a possible effect either of chemical heterogeneity in their natal clouds or migration. A trend of [Cu/Fe] with [Ba/Fe] seems to exist, in agreement with previous claims in the literature, and maybe also of [Sm/Fe] with [Ba/Fe]. No such correlation involving C, Na, Mn, and Zn is observed. The [X/Fe] ratios of various elements show significant correlations with age. [Mg/Fe], [Sc/Fe], and [Ti/Fe] increase with age. [Mn/Fe] and [Cu/Fe] display a more complex behaviour, first increasing towards younger stars up to the solar age, and then decreasing, a result we interpret as possibly related to time

  13. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  14. Component pattern analysis of chemicals using multispectral THz imaging system

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki

    2004-04-01

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  15. Chemical Cytometry: Fluorescence-Based Single-Cell Analysis

    NASA Astrophysics Data System (ADS)

    Cohen, Daniella; Dickerson, Jane A.; Whitmore, Colin D.; Turner, Emily H.; Palcic, Monica M.; Hindsgaul, Ole; Dovichi, Norman J.

    2008-07-01

    Cytometry deals with the analysis of the composition of single cells. Flow and image cytometry employ antibody-based stains to characterize a handful of components in single cells. Chemical cytometry, in contrast, employs a suite of powerful analytical tools to characterize a large number of components. Tools have been developed to characterize nucleic acids, proteins, and metabolites in single cells. Whereas nucleic acid analysis employs powerful polymerase chain reaction-based amplification techniques, protein and metabolite analysis tends to employ capillary electrophoresis separation and ultrasensitive laser-induced fluorescence detection. It is now possible to detect yoctomole amounts of many analytes in single cells.

  16. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2014-01-01

    Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.

  17. NEOCAM: The Near Earth Object Chemical Analysis Mission

    NASA Astrophysics Data System (ADS)

    Nuth, Joseph A.; Lowrance, John L.; Carruthers, George R.

    2008-06-01

    The prime measurement objective of the Near Earth Object Chemical Analysis Mission (NEOCAM) is to obtain the ultraviolet spectra of meteors entering the terrestrial atmosphere from ˜125 to 300 nm in meteor showers. All of the spectra will be collected using a slitless ultraviolet spectrometer in Earth orbit. Analysis of these spectra will reveal the degree of chemical diversity in the meteors, as observed in a single meteor shower. Such meteors are traceable to a specific parent body and we know exactly when the meteoroids in a particular shower were released from that parent body (Asher, in: Arlt (ed.) Proc. International Meteor Conference, 2000; Lyytinen and van Flandern, Earth Moon Planets 82-83:149-166, 2000). By observing multiple apparitions of meteor showers we can therefore obtain quasi-stratigraphic information on an individual comet or asteroid. We might also be able to measure systematic effects of chemical weathering in meteoroids from specific parent bodies by looking for correlations in the depletions of the more volatile elements as a function of space exposure (Borovička et al., Icarus 174:15-30, 2005). By observing the relation between meteor entry characteristics (such as the rate of deceleration or breakup) and chemistry we can determine if our meteorite collection is deficient in the most volatile-rich samples. Finally, we can obtain a direct measurement of metal deposition into the terrestrial stratosphere that may act to catalyze atmospheric chemical reactions.

  18. Automating the analytical laboratory via the Chemical Analysis Automation paradigm

    SciTech Connect

    Hollen, R.; Rzeszutko, C.

    1997-10-01

    To address the need for standardization within the analytical chemistry laboratories of the nation, the Chemical Analysis Automation (CAA) program within the US Department of Energy, Office of Science and Technology`s Robotic Technology Development Program is developing laboratory sample analysis systems that will automate the environmental chemical laboratories. The current laboratory automation paradigm consists of islands-of-automation that do not integrate into a system architecture. Thus, today the chemist must perform most aspects of environmental analysis manually using instrumentation that generally cannot communicate with other devices in the laboratory. CAA is working towards a standardized and modular approach to laboratory automation based upon the Standard Analysis Method (SAM) architecture. Each SAM system automates a complete chemical method. The building block of a SAM is known as the Standard Laboratory Module (SLM). The SLM, either hardware or software, automates a subprotocol of an analysis method and can operate as a standalone or as a unit within a SAM. The CAA concept allows the chemist to easily assemble an automated analysis system, from sample extraction through data interpretation, using standardized SLMs without the worry of hardware or software incompatibility or the necessity of generating complicated control programs. A Task Sequence Controller (TSC) software program schedules and monitors the individual tasks to be performed by each SLM configured within a SAM. The chemist interfaces with the operation of the TSC through the Human Computer Interface (HCI), a logical, icon-driven graphical user interface. The CAA paradigm has successfully been applied in automating EPA SW-846 Methods 3541/3620/8081 for the analysis of PCBs in a soil matrix utilizing commercially available equipment in tandem with SLMs constructed by CAA.

  19. Exploring Chemical Analysis, 1st Edition (by Daniel C. Harris)

    NASA Astrophysics Data System (ADS)

    Wright, John C.

    1998-01-01

    W. H. Freeman: New York, 1997. ISBN: 0716730421. $80.00. Daniel Harris's book Quantitative Chemical Analysis is one of the 1000-pound gorillas for introductory analytical chemistry, both because of its dominance in the field and its size and information content. Students find the writing informal, interesting, and clear. Faculty like the completeness of the book and its sound treatment of the subject matter. It contains everything that an introductory analytical course could possibly want. Daniel Harris's recent book, Exploring Chemical Analysis, is a tamed version of the 1000-pound gorilla for nonchemistry majors. Students will find the same informality, interest, and clarity as in the earlier text but they will also find the book a comfortable companion. Faculty will find an abbreviated but excellent treatment of the subject matter. It contains most of the things that an introductory nonmajors analytical course should want.

  20. Bioassay-directed chemical analysis in environmental research

    SciTech Connect

    Schuetzle, D.; Lewtas, J.

    1986-01-01

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology bioassay directed chemical analysis to best describe this marriage of analytical chemistry and biology. The objective of this methodology is to identify key compounds in various types of air-pollutant samples. Once that task is completed, studies on metabolism, sources, environmental exposure and atmospheric chemistry can be undertaken. The principles and methodologies for bioassay directed chemical analysis are presented and illustrated in this paper. Most of this work has been directed toward the characterization of ambient air and diesel particulates, which are used as examples in this report to illustrate the analytical logic used for identifying the bio-active components of complex mixtures.

  1. Device for high spatial resolution chemical analysis of a sample and method of high spatial resolution chemical analysis

    SciTech Connect

    Van Berkel, Gary J.

    2015-10-06

    A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.

  2. Analysis of the stochastic excitability in the flow chemical reactor

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  3. Toward Accurate Modelling of Enzymatic Reactions: All Electron Quantum Chemical Analysis combined with QM/MM Calculation of Chorismate Mutase

    SciTech Connect

    Ishida, Toyokazu

    2008-09-17

    To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.

  4. Electrochemical approaches for chemical and biological analysis on Mars

    NASA Technical Reports Server (NTRS)

    Kounaves, Samuel P.

    2003-01-01

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and

  5. Electrochemical approaches for chemical and biological analysis on Mars.

    PubMed

    Kounaves, Samuel P

    2003-02-17

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and

  6. Application of Surface Chemical Analysis Tools for Characterization of Nanoparticles

    SciTech Connect

    Baer, Donald R.; Gaspar, Daniel J.; Nachimuthu, Ponnusamy; Techane, Sirnegeda D.; Castner, David G.

    2010-02-01

    The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES); X-ray photoelectron spectroscopy (XPS); time of flight secondary ion mass spectrometry (TOF-SIMS); low energy ion scattering (LEIS); and scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface analysis methods for the characterization of nanoparticles are discussed and summarized, along with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties.

  7. Application of Surface Chemical Analysis Tools for Characterization of Nanoparticles

    PubMed Central

    Baer, DR; Gaspar, DJ; Nachimuthu, P; Techane, SD; Castner, DG

    2010-01-01

    The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES); X-ray photoelectron spectroscopy (XPS); time of flight secondary ion mass spectrometry (TOF-SIMS); low energy ion scattering (LEIS); and scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface analysis methods for the characterization of nanoparticles are discussed and summarized, along with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties. PMID:20052578

  8. Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.

    PubMed

    Ergül, Özgür; Gürel, Levent

    2013-03-01

    Accurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these challenges and to achieve rigorous and efficient electromagnetic modeling of three-dimensional optical composite structures, we have developed a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Precise formulation of composite structures is achieved with the so-called "electric and magnetic current combined-field integral equation." Surface integral equations are carefully discretized with piecewise linear basis functions, and the ensuing dense matrix equations are solved iteratively with parallel MLFMA. The hierarchical strategy is used for the efficient parallelization of MLFMA on distributed-memory architectures. In this paper, fast and accurate solutions of large-scale canonical and complicated real-life problems, such as optical metamaterials, discretized with tens of millions of unknowns are presented in order to demonstrate the capabilities of the proposed electromagnetic solver. PMID:23456127

  9. Kojak: Efficient analysis of chemically cross-linked protein complexes

    PubMed Central

    Hoopmann, Michael R.; Zelter, Alex; Johnson, Richard S.; Riffle, Michael; MacCoss, Michael J.; Davis, Trisha N.; Moritz, Robert L.

    2015-01-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods. PMID:25812159

  10. VHH antibodies: emerging reagents for the analysis of environmental chemicals.

    PubMed

    Bever, Candace S; Dong, Jie-Xian; Vasylieva, Natalia; Barnych, Bogdan; Cui, Yongliang; Xu, Zhen-Lin; Hammock, Bruce D; Gee, Shirley J

    2016-09-01

    A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to detect small environmental chemicals (MW < 1500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets. Graphical Abstract Overview of the production of VHHs to small environmental chemicals and highlights of the utility of these new emerging reagents. PMID:27209591

  11. Tip enhanced Raman scattering: plasmonic enhancements for nanoscale chemical analysis

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Marr, James M.; Wang, Hao

    2014-04-01

    Tip enhanced Raman scattering (TERS) is an emerging technique that uses a metalized scanning probe microscope tip to spatially localize electric fields that enhances Raman scattering enabling chemical imaging on nanometer dimensions. Arising from the same principles as surface enhanced Raman scattering (SERS), TERS offers unique advantages associated with controling the size, shape, and location of the enhancing nanostructure. In this article we discuss the correlations between current understanding of SERS and how this relates to TERS, as well as how TERS provides new understanding and insights. The relationship between plasmon resonances and Raman enhancements is emphasized as the key to obtaining optimal TERS results. Applications of TERS, including chemical analysis of carbon nanotubes, organic molecules, inorganic crystals, nucleic acids, proteins, cells and organisms, are used to illustrate the information that can be gained. Under ideal conditions TERS is capable of single molecule sensitivity and sub-nanometer spatial resolution. The ability to control plasmonic enhancements for chemical analysis suggests new experiments and opportunities to understand molecular composition and interactions on the nanoscale.

  12. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.

    PubMed

    Hong, Mei; Mishanina, Tatiana V; Cady, Sarah D

    2009-06-10

    The use of side chain methyl (13)C chemical shifts for the determination of the rotameric conformation of Val and Leu residues in proteins by solid-state NMR spectroscopy is described. Examination of the solution NMR stereospecifically assigned methyl groups shows significant correlation between the difference in the two methyl carbons' chemical shifts and the side chain conformation. It is found that alpha-helical and beta-sheet backbones cause different side chain methyl chemical shift trends. In alpha-helical Leu's, a relatively large absolute methyl (13)C shift difference of 2.89 ppm is found for the most populated mt rotamer (chi(1) = -60 degrees, chi(2) = 180 degrees), while a much smaller value of 0.73 ppm is found for the next populated tp rotamer (chi(1) = 180 degrees, chi(2) = 60 degrees). For alpha-helical Val residues, the dominant t rotamer (chi(1) = 180 degrees) has more downfield Cgamma2 chemical shifts than Cgamma1 by 1.71 ppm, while the next populated m rotamer (chi(1) = -60 degrees) shows the opposite trend of more downfield Cgamma1 chemical shift by 1.23 ppm. These significantly different methyl (13)C chemical shifts exist despite the likelihood of partial rotameric averaging at ambient temperature. We show that these conformation-dependent methyl (13)C chemical shifts can be utilized for side chain structure determination once the methyl (13)C resonances are accurately measured by double-quantum (DQ) filtered 2D correlation experiments, most notably the dipolar DQ to single-quantum (SQ) correlation technique. The advantage of the DQ-SQ correlation experiment over simple 2D SQ-SQ correlation experiments is demonstrated on the transmembrane peptide of the influenza A M2 proton channel. The methyl chemical shifts led to predictions of the side chain rotameric states for several Val and Leu residues in this tetrameric helical bundle. The predicted Val rotamers were further verified by dipolar correlation experiments that directly measure the chi(1

  13. ISS Expeditions 16 & 17: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2009-01-01

    During the twelve month span of Expeditions 16 and 17 beginning October of 2007, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principle sources of potable water and for the first time, European groundsupplied water was also available. Although water was transferred from Shuttle to ISS during Expeditions 16 and 17, no Shuttle potable water was consumed during this timeframe. A total of 12 potable water samples were collected using U.S. hardware during Expeditions 16 and 17 and returned on Shuttle flights 1E (STS122), 1JA (STS123), and 1J (STS124). The average sample volume was sufficient for complete chemical characterization to be performed. The results of JSC chemical analyses of these potable water samples are presented in this paper. The WAFAL also received potable water samples for analysis from the Russian side collected inflight with Russian hardware, as well as preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 30. Analytical results for these additional potable water samples are also reported and discussed herein. Although the potable water supplies available during Expeditions 16 and 17 were judged safe for crew consumption, a recent trending of elevated silver levels in the SVOZV water is a concern for longterm consumption and efforts are being made to lower these levels.

  14. Analysis of continuous oxygen saturation data for accurate representation of retinal exposure to oxygen in the preterm infant.

    PubMed

    Cirelli, Josie; McGregor, Carolyn; Graydon, Brenda; James, Andrew

    2013-01-01

    Maintaining blood oxygen saturation within the intended target range for preterm infants receiving neonatal intensive care is challenging. Supplemental oxygen is believed to lead to increased risk of retinopathy of prematurity and hence managing the level of oxygen within this population is important within their care. Current quality improvement activities use coarse hourly spot readings to measure supplemental oxygen levels as associated with targeted ranges that vary based on gestational age. In this research we use Artemis, a real-time online healthcare analytics platform to ascertain if the collection of second by second data provides a better representation of retinal exposure to oxygen than an infrequent, intermittent spot reading. We show that Artemis is capable of producing more accurate information from the higher frequency data, as it includes all the episodic events in the activity of the hour, which provides a better understanding of oxygen fluctuation ranges which affect the physiological status of the infant. PMID:23388268

  15. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  16. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    EPA Science Inventory

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  17. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    NASA Technical Reports Server (NTRS)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; Gellert, R.; Achilles, C. N.; Rampe, E. B.; Bristow, T. F.; Crisp, J. A.; Sarrazin, P. C.; DesMarais, D. J.; Morookian, J. M.; Anderson, R. C.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  18. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharti, Amardeep; Singh, Suman; Singla, M. L.; Goyal, Navdeep

    2015-08-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM).

  19. Interlaboratory comparison of chemical analysis of uranium mononitride

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Davis, W. F.; Halloran, J. T.; Graab, J. W.

    1974-01-01

    Analytical methods were established in which the critical variables were controlled, with the result that acceptable interlaboratory agreement was demonstrated for the chemical analysis of uranium mononitride. This was accomplished by using equipment readily available to laboratories performing metallurgical analyses. Agreement among three laboratories was shown to be very good for uranium and nitrogen. Interlaboratory precision of + or - 0.04 percent was achieved for both of these elements. Oxygen was determined to + or - 15 parts per million (ppm) at the 170-ppm level. The carbon determination gave an interlaboratory precision of + or - 46 ppm at the 320-ppm level.

  20. Chemical pathway analysis of Titan's upper atmosphere: Oxygen species

    NASA Astrophysics Data System (ADS)

    Stock, J. W.; Lara, L. M.; Lehmann, R.

    2014-04-01

    CO, CO2, and H2O are the only oxygen bearing species in Titan's atmosphere which have been clearly detected so far. Their abundances are controlled by the interaction of external and internal sources, photochemistry and condensation. In this contribution, we determine all significant chemical pathways responsible for the production and consumption of CO, CO2, and H2O. Furthermore, we investigate the effects of different oxygen sources on the efficiencies of the pathways. In order to achieve this, we apply a unique algorithm, called the Pathway Analysis Program - PAP to the results of a 1D photochemical model of Titan's atmosphere.

  1. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    SciTech Connect

    Bharti, Amardeep Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  2. Fixation and chemical analysis of single fog and rain droplets

    NASA Astrophysics Data System (ADS)

    Kasahara, M.; Akashi, S.; Ma, C.-J.; Tohno, S.

    Last decade, the importance of global environmental problems has been recognized worldwide. Acid rain is one of the most important global environmental problems as well as the global warming. The grasp of physical and chemical properties of fog and rain droplets is essential to make clear the physical and chemical processes of acid rain and also their effects on forests, materials and ecosystems. We examined the physical and chemical properties of single fog and raindrops by applying fixation technique. The sampling method and treatment procedure to fix the liquid droplets as a solid particle were investigated. Small liquid particles like fog droplet could be easily fixed within few minutes by exposure to cyanoacrylate vapor. The large liquid particles like raindrops were also fixed successively, but some of them were not perfect. Freezing method was applied to fix the large raindrops. Frozen liquid particles existed stably by exposure to cyanoacrylate vapor after freezing. The particle size measurement and the elemental analysis of the fixed particle were performed in individual base using microscope, and SEX-EDX, particle-induced X-ray emission (PIXE) and micro-PIXE analyses, respectively. The concentration in raindrops was dependent upon the droplet size and the elapsed time from the beginning of rainfall.

  3. Analysis and accurate numerical solutions of the integral equation derived from the linearized BGKW equation for the steady Couette flow

    NASA Astrophysics Data System (ADS)

    Jiang, Shidong; Luo, Li-Shi

    2016-07-01

    The integral equation for the flow velocity u (x ; k) in the steady Couette flow derived from the linearized Bhatnagar-Gross-Krook-Welander kinetic equation is studied in detail both theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 100.0. First, it is shown that the integral equation is a Fredholm equation of the second kind in which the norm of the compact integral operator is less than 1 on Lp for any 1 ≤ p ≤ ∞ and thus there exists a unique solution to the integral equation via the Neumann series. Second, it is shown that the solution is logarithmically singular at the endpoints. More precisely, if x = 0 is an endpoint, then the solution can be expanded as a double power series of the form ∑n=0∞∑m=0∞cn,mxn(xln ⁡ x) m about x = 0 on a small interval x ∈ (0 , a) for some a > 0. And third, a high-order adaptive numerical algorithm is designed to compute the solution numerically to high precision. The solutions for the flow velocity u (x ; k), the stress Pxy (k), and the half-channel mass flow rate Q (k) are obtained in a wide range of the Knudsen number 0.003 ≤ k ≤ 100.0; and these solutions are accurate for at least twelve significant digits or better, thus they can be used as benchmark solutions.

  4. Fibre Diffraction Analysis of Skin Offers a Very Early and Extremely Accurate Diagnostic Test for Prostate Cancer

    DOE PAGESBeta

    James, Veronica J.; O’Malley Ford, Judith M.

    2014-01-01

    Double blind analysis of a batch of thirty skin tissue samples from potential prostate cancer sufferers correctly identified all “control” patients, patients with high and low grade prostate cancers, the presence of benign prostate hyperplasia (BPH), perineural invasions, and the one lymphatic invasion. Identification was by analysis of fibre diffraction patterns interpreted using a schema developed from observations in nine previous studies. The method, schema, and specific experiment results are reported in this paper, with some implications then drawn.

  5. Chemical analysis of human blood for assessment of environmental exposure to semivolatile organochlorine chemical contaminants.

    PubMed

    Bristol, D W; Crist, H L; Lewis, R G; MacLeod, K E; Sovocool, G W

    1982-01-01

    A chemical method for the quantitative analysis of organochlorine pesticide residues present in human blood was scaled-up to provide increased sensitivity and extended to include organochlorine industrial chemicals. Whole blood samples were extracted with hexane, concentrated, and analyzed without further cleanup by gas chromatography with electron capture detection. The methodology used was validated by conducting recovery studies at 1 and 10 ng/g (ppb) levels. Screening and confirmational analyses were performed by gas chromatography/mass spectrometry on samples collected from potentially exposed residents of the Love Canal area of Niagara Falls, New York and from volunteers in the Research Triangle Park area of North Carolina for 25 specific semivolatile organochlorine contaminants including chlorobenzene and chlorotoluene congeners, hexachloro-1,3-butadiene, pesticides, and polychlorinated biphenyls as Aroclor 1260. Dichlorobenzene, hexachlorobenzene, and beta-hexachlorocyclohexane residues fell in the range of 0.1 to 26 ppb in a high percentage of both the field and volunteer blood samples analyzed. Levels of other organochlorine compounds were either non-detectable or present in sub-ppb ranges. PMID:6819409

  6. A modular approach for automated sample preparation and chemical analysis

    NASA Technical Reports Server (NTRS)

    Clark, Michael L.; Turner, Terry D.; Klingler, Kerry M.; Pacetti, Randolph

    1994-01-01

    Changes in international relations, especially within the past several years, have dramatically affected the programmatic thrusts of the U.S. Department of Energy (DOE). The DOE now is addressing the environmental cleanup required as a result of 50 years of nuclear arms research and production. One major obstacle in the remediation of these areas is the chemical determination of potentially contaminated material using currently acceptable practices. Process bottlenecks and exposure to hazardous conditions pose problems for the DOE. One proposed solution is the application of modular automated chemistry using Standard Laboratory Modules (SLM) to perform Standard Analysis Methods (SAM). The Contaminant Analysis Automation (CAA) Program has developed standards and prototype equipment that will accelerate the development of modular chemistry technology and is transferring this technology to private industry.

  7. A method for quantitative wet chemical analysis of urinary calculi.

    PubMed

    Larsson, L; Sörbo, B; Tiselius, H G; Ohman, S

    1984-06-27

    We describe a simple method for quantitative chemical analysis of urinary calculi requiring no specialized equipment. Pulverized calculi are dried over silica gel at room temperature and dissolved in nitric acid, which was the only effective agent for complete dissolution. Calcium, magnesium, ammonium, and phosphate are then determined by conventional methods. Oxalate is determined by a method based on the quenching action of oxalate on the fluorescence of a zirconium-flavonol complex. Uric acid, when treated with nitric acid, is stoichiometrically converted to alloxan, which is determined fluorimetrically with 1,2-phenylenediamine. Similarly, cystine is oxidized by nitric acid to sulfate, which is determined turbidimetrically as barium sulfate. Protein is determined spectrophotometrically as xanthoprotein. The total mass recovery of authentic calculi was 92.2 +/- 6.7 (SD) per cent. The method permits analysis of calculi as small as 1.0 mg. Internal quality control is performed with specially designed control samples. PMID:6086179

  8. Sewage sludge toxicity assessment using earthworm Eisenia fetida: can biochemical and histopathological analysis provide fast and accurate insight?

    PubMed

    Babić, S; Barišić, J; Malev, O; Klobučar, G; Popović, N Topić; Strunjak-Perović, I; Krasnići, N; Čož-Rakovac, R; Klobučar, R Sauerborn

    2016-06-01

    Sewage sludge (SS) is a complex organic by-product of wastewater treatment plants. Deposition of large amounts of SS can increase the risk of soil contamination. Therefore, there is an increasing need for fast and accurate assessment of SS toxic potential. Toxic effects of SS were tested on earthworm Eisenia fetida tissue, at the subcellular and biochemical level. Earthworms were exposed to depot sludge (DS) concentration ratio of 30 or 70 %, to undiluted and to 100 and 10 times diluted active sludge (AS). The exposure to DS lasted for 24/48 h (acute exposure), 96 h (semi-acute exposure) and 7/14/28 days (sub-chronic exposure) and 48 h for AS. Toxic effects were tested by the measurements of multixenobiotic resistance mechanism (MXR) activity and lipid peroxidation levels, as well as the observation of morphological alterations and behavioural changes. Biochemical markers confirmed the presence of MXR inhibitors in the tested AS and DS and highlighted the presence of SS-induced oxidative stress. The MXR inhibition and thiobarbituric acid reactive substance (TBARS) concentration in the whole earthworm's body were higher after the exposition to lower concentration of the DS. Furthermore, histopathological changes revealed damage to earthworm body wall tissue layers as well as to the epithelial and chloragogen cells in the typhlosole region. These changes were proportional to SS concentration in tested soils and to exposure duration. Obtained results may contribute to the understanding of SS-induced toxic effects on terrestrial invertebrates exposed through soil contact and to identify defence mechanisms of earthworms. PMID:26971513

  9. Combined analysis of sMRI and fMRI imaging data provides accurate disease markers for hearing impairment.

    PubMed

    Tan, Lirong; Chen, Ye; Maloney, Thomas C; Caré, Marguerite M; Holland, Scott K; Lu, Long J

    2013-01-01

    In this research, we developed a robust two-layer classifier that can accurately classify normal hearing (NH) from hearing impaired (HI) infants with congenital sensori-neural hearing loss (SNHL) based on their Magnetic Resonance (MR) images. Unlike traditional methods that examine the intensity of each single voxel, we extracted high-level features to characterize the structural MR images (sMRI) and functional MR images (fMRI). The Scale Invariant Feature Transform (SIFT) algorithm was employed to detect and describe the local features in sMRI. For fMRI, we constructed contrast maps and detected the most activated/de-activated regions in each individual. Based on those salient regions occurring across individuals, the bag-of-words strategy was introduced to vectorize the contrast maps. We then used a two-layer model to integrate these two types of features together. With the leave-one-out cross-validation approach, this integrated model achieved an AUC score of 0.90. Additionally, our algorithm highlighted several important brain regions that differentiated between NH and HI children. Some of these regions, e.g. planum temporale and angular gyrus, were well known auditory and visual language association regions. Others, e.g. the anterior cingulate cortex (ACC), were not necessarily expected to play a role in differentiating HI from NH children and provided a new understanding of brain function and of the disorder itself. These important brain regions provided clues about neuroimaging markers that may be relevant to the future use of functional neuroimaging to guide predictions about speech and language outcomes in HI infants who receive a cochlear implant. This type of prognostic information could be extremely useful and is currently not available to clinicians by any other means. PMID:24363991

  10. How accurately does the public perceive differences in transport risks? An exploratory analysis of scales representing perceived risk.

    PubMed

    Elvik, Rune; Bjørnskau, Torkel

    2005-11-01

    This paper probes the extent to which the public accurately perceives differences in transport risks. The paper is based on a survey of a random sample of the Norwegian population, conducted in September 2003. In the survey, respondents were asked: "How safe do you think it is to travel by means of (bus, train, etc.)?" Answers were given as: very safe, safe, a little unsafe, and very unsafe. A cursory examination of the answers suggested that the Norwegian public was quite well informed about differences in the risk of accident between different modes of transport, as well as between groups formed according to age and gender for each mode of transport. This paper probes the relationship between statistical estimates of risk and summary representations of perceived risk more systematically. It is found that the differences in fatality rate between different modes of transport are quite well perceived by the Norwegian public, irrespective of the way in which perceived risk is represented numerically. The relationship between statistical estimates of risk and numerical representations of perceived risk for each mode of transport is more sensitive to the choice of a numerical representation of perceived risk. A scale in which the answer "very safe" is assigned the value of 0.01 and the answer "very unsafe" is assigned the value of 10 is found to perform quite well. When the perception of risk is represented numerically according to this scale, a positive correlation between statistically estimated risk and perceived risk is found in seven of the eight comparisons that were made to determine how well variation in accident rates according to age and gender for car occupants, car drivers, cyclists and pedestrians are perceived. PMID:16054102

  11. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: The System Na-Ca-Sr-OH-CO3-NO3-EDTA-HEDTA-H2O from 25 to 75°C

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin J.; Qafoku, Odeta; Dixon, David A.

    2005-04-19

    This symposium manuscript describes the development of an accurate aqueous thermodynamic model for predicting the speciation of Sr in the waste tanks at the Hanford site. A systematic approach is described that details the studies performed to define the most important inorganic and organic complexation reactions as well as the effects of other important metal ions that compete with Sr for complexation reactions with the chelates. By using this approach we were able to define a reduced set of inorganic complexation, organic complexation, and competing metal reactions that best represent the much more complex waste tank chemical system. A summary is presented of the final thermodynamic model for the system Na-Ca-Sr-OH-CO3-NO3-EDTA-HEDTA-H2O from 25 to 75 ºC that was previously published in a variety of sources. Previously unpublished experimental data are also given for the competing metal Ni as well for certain chemical systems, Na-Sr-CO3-PO4-H2O, and for the solubility of amorphous iron hydroxide in the presence of several organic chelating agents. These data were not used in model development but were key to the final selection of the specific chemical systems prioritized for detailed study.

  12. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 3: Illustrative test problems

    NASA Technical Reports Server (NTRS)

    Bittker, David A.; Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  13. Real-time chemical analysis of aerosol particles

    SciTech Connect

    Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1995-04-01

    An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

  14. Physical and Chemical Analytical Analysis: A key component of Bioforensics

    SciTech Connect

    Velsko, S P

    2005-02-15

    The anthrax letters event of 2001 has raised our awareness of the potential importance of non-biological measurements on samples of biological agents used in a terrorism incident. Such measurements include a variety of mass spectral, spectroscopic, and other instrumental techniques that are part of the current armamentarium of the modern materials analysis or analytical chemistry laboratory. They can provide morphological, trace element, isotopic, and other molecular ''fingerprints'' of the agent that may be key pieces of evidence, supplementing that obtained from genetic analysis or other biological properties. The generation and interpretation of such data represents a new domain of forensic science, closely aligned with other areas of ''microbial forensics''. This paper describes some major elements of the R&D agenda that will define this sub-field in the immediate future and provide the foundations for a coherent national capability. Data from chemical and physical analysis of BW materials can be useful to an investigation of a bio-terror event in two ways. First, it can be used to compare evidence samples collected at different locations where such incidents have occurred (e.g. between the powders in the New York and Washington letters in the Amerithrax investigation) or between the attack samples and those seized during the investigation of sites where it is suspected the material was manufactured (if such samples exist). Matching of sample properties can help establish the relatedness of disparate incidents, and mis-matches might exclude certain scenarios, or signify a more complex etiology of the events under investigation. Chemical and morphological analysis for sample matching has a long history in forensics, and is likely to be acceptable in principle in court, assuming that match criteria are well defined and derived from known limits of precision of the measurement techniques in question. Thus, apart from certain operational issues (such as how to

  15. How accurate are interpretations of curriculum-based measurement progress monitoring data? Visual analysis versus decision rules.

    PubMed

    Van Norman, Ethan R; Christ, Theodore J

    2016-10-01

    Curriculum based measurement of oral reading (CBM-R) is used to monitor the effects of academic interventions for individual students. Decisions to continue, modify, or terminate these interventions are made by interpreting time series CBM-R data. Such interpretation is founded upon visual analysis or the application of decision rules. The purpose of this study was to compare the accuracy of visual analysis and decision rules. Visual analysts interpreted 108 CBM-R progress monitoring graphs one of three ways: (a) without graphic aids, (b) with a goal line, or (c) with a goal line and a trend line. Graphs differed along three dimensions, including trend magnitude, variability of observations, and duration of data collection. Automated trend line and data point decision rules were also applied to each graph. Inferential analyses permitted the estimation of the probability of a correct decision (i.e., the student is improving - continue the intervention, or the student is not improving - discontinue the intervention) for each evaluation method as a function of trend magnitude, variability of observations, and duration of data collection. All evaluation methods performed better when students made adequate progress. Visual analysis and decision rules performed similarly when observations were less variable. Results suggest that educators should collect data for more than six weeks, take steps to control measurement error, and visually analyze graphs when data are variable. Implications for practice and research are discussed. PMID:27586069

  16. Accurate analysis of prevalence of coccidiosis in individually identified wild cranes in inhabiting and migrating populations in Japan.

    PubMed

    Honma, Hajime; Suyama, Yoshihisa; Watanabe, Yuki; Matsumoto, Fumio; Nakai, Yutaka

    2011-11-01

    Eimeria gruis and E. reichenowi cause coccidiosis, a major parasitic disease of cranes. By non-invasive molecular approaches, we investigated the prevalence and genetic characterization of pathogens in two Japanese crane habitats; one is Hokkaido inhabited by the endangered red-crowned crane, and the other is Izumi in Kyushu where populations that consist mainly of vulnerable hooded and white-naped cranes migrate in winter. The non-invasively collected faecal samples from each wintering population were first subjected to host genomic DNA-targeted analyses to determine the sample origin and avoid sample redundancy. Extremely high prevalence was observed in the Izumi populations (> 90%) compared with the Hokkaido population (18-30%) by examining 470 specimens by microscopy and PCR-based capillary electrophoresis (PCR-CE), using genetic markers in the second internal transcribed spacer (ITS2). Correspondence analysis of PCR-CE data revealed differences in community composition of coccidia between hooded and white-naped cranes. 18S rRNA and ITS2 sequences were determined from single oocysts excreted by red-crowned and hooded cranes. Phylogenetic analysis of 18S rRNA suggested that E. reichenowi was polyphyletic while E. gruis was monophyletic. Together with PCR-CE data, these results indicate different host specificity among the E. reichenowi type. Our data suggest that E. reichenowi comprises multiple species. PMID:21895916

  17. Quantitative Proteome Analysis of Human Plasma Following in vivo Lipopolysaccharide Administration using 16O/18O Labeling and the Accurate Mass and Time Tag Approach

    PubMed Central

    Qian, Wei-Jun; Monroe, Matthew E.; Liu, Tao; Jacobs, Jon M.; Anderson, Gordon A.; Shen, Yufeng; Moore, Ronald J.; Anderson, David J.; Zhang, Rui; Calvano, Steve E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2007-01-01

    SUMMARY Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes post-digestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional liquid chromatography (LC)-Fourier transform ion cyclotron resonance ((FTICR) mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC-elution time AMT tag database was initially generated using tandem mass spectrometry (MS/MS) following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag database contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion for high abundant proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration. PMID:15753121

  18. Accurate mass and nuclear magnetic resonance identification of bisphenolic can coating migrants and their interference with liquid chromatography/tandem mass spectrometric analysis of bisphenol A.

    PubMed

    Ackerman, Luke K; Noonan, Gregory O; Begley, Timothy H; Mazzola, Eugene P

    2011-05-15

    Two unknown compounds were previously determined to be potential interferences in liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of bisphenol A (BPA) in canned infant formula. Both yielded two identical MS/MS transitions to BPA. The identities of the unknowns were investigated using accurate mass LC/MS, LC/MS/MS, and elemental formula and structures proposed. Exact identities were confirmed through purification or synthesis followed by (1)H and (13)C nuclear magnetic resonance (NMR) experiments, as well as comparisons of one unknown with commercial standards. Comparisons of negative ion electrospray ionization (ESI) MS/MS and accurate mass spectra suggested both unknowns to be structurally identical (to BPA and each other). Positive ion ESI spectra confirmed both were larger molecules, suggesting that in the negative mode they likely fragmented to the deprotonated BPA ion in the source [corrected]. Elemental composition of positive ion accurate mass spectra and NMR analysis concluded the unknowns were oxidized forms of the known epoxy can coating monomer, bisphenol A diglycidyl ether (BADGE). One of the unknowns, 2,2-[bis-4-(2,3-dihydroxypropoxy)phenyl]propane, commonly known as BADGE*2H(2)O, is widely reported as an epoxy-phenolic can coating migrant, but has not been suggested to interfere with the MS/MS analysis of BPA. The other unknown, 2-[4-(2,3-dihydroxypropoxy)phenyl]-2-[4'-hydroxyphenyl]propane, or the oxidized form of bisphenol A monoglycidyl ether (BAMGE*H(2)O), has not been previously reported in food or packaging. PMID:21488128

  19. Optical instrumentation for on-line analysis of chemical processes

    SciTech Connect

    Hartford, A. Jr.; Cremers, D.A.; Loree, T.R.; Quigley, G.P.

    1983-01-01

    Optical diagnostics provide the capability for nonintrusive, on-line, real time analysis of chemical process streams. Several laser-based methods for monitoring fossil energy processes have been evaluated. Among the instrumentation techniques which appear quite promising are coherent anti-Stokes Raman spectroscopy (CARS), laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). A CARS diagnostic was implemented on a coal gasifier and was successfully employed to measure species concentrations and temperatures within the process stream. The LIBS approach has been used to identify total trace impurities (e.g., Na, K, and S) within a gasifier. Recently, individual components in mixtures of aromatics hydrocarbons have been resolved via the synchronous detection of laser-induced fluorescence. 9 figures.

  20. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  1. Bacterial mixture analysis with Raman chemical imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashish; Jabbour, Rabih E.; Guicheteau, Jason A.; Christesen, Steven D.; Emge, Darren K.; Jensen, Janet L.; Snyder, A. Peter

    2009-05-01

    Raman chemical imaging microspectroscopy (RCIM) is being evaluated as a technology for waterborne pathogen detection. Binary and ternary mixtures including combinations of polystyrene beads, Grampositive Bacillus anthracis and B. atrophaeus spores, B. cereus vegetative cells, and Gram-negative E. coli cells were investigated by RCIM for differentiation and characterization purposes. We have demonstrated the ability of RCIM, in combination with Pearson's cross correlation and multivariate principal components analysis data reduction techniques, to differentiate these components in the same field of view (FOV). Conventional applications of RCIM consist of differentiating relatively broad areas in a FOV. Here, RCIM is expanded in its capabilities to differentiate and distinguish between different micron size species in single particles and clusters of mixed species.

  2. Accurate discrimination of Alzheimer's disease from other dementia and/or normal subjects using SPECT specific volume analysis

    NASA Astrophysics Data System (ADS)

    Iyatomi, Hitoshi; Hashimoto, Jun; Yoshii, Fumuhito; Kazama, Toshiki; Kawada, Shuichi; Imai, Yutaka

    2014-03-01

    Discrimination between Alzheimer's disease and other dementia is clinically significant, however it is often difficult. In this study, we developed classification models among Alzheimer's disease (AD), other dementia (OD) and/or normal subjects (NC) using patient factors and indices obtained by brain perfusion SPECT. SPECT is commonly used to assess cerebral blood flow (CBF) and allows the evaluation of the severity of hypoperfusion by introducing statistical parametric mapping (SPM). We investigated a total of 150 cases (50 cases each for AD, OD, and NC) from Tokai University Hospital, Japan. In each case, we obtained a total of 127 candidate parameters from: (A) 2 patient factors (age and sex), (B) 12 CBF parameters and 113 SPM parameters including (C) 3 from specific volume analysis (SVA), and (D) 110 from voxel-based analysis stereotactic extraction estimation (vbSEE). We built linear classifiers with a statistical stepwise feature selection and evaluated the performance with the leave-one-out cross validation strategy. Our classifiers achieved very high classification performances with reasonable number of selected parameters. In the most significant discrimination in clinical, namely those of AD from OD, our classifier achieved both sensitivity (SE) and specificity (SP) of 96%. In a similar way, our classifiers achieved a SE of 90% and a SP of 98% in AD from NC, as well as a SE of 88% and a SP of 86% in AD from OD and NC cases. Introducing SPM indices such as SVA and vbSEE, classification performances improved around 7-15%. We confirmed that these SPM factors are quite important for diagnosing Alzheimer's disease.

  3. Purification of pharmaceutical preparations using thin-layer chromatography to obtain mass spectra with Direct Analysis in Real Time and accurate mass spectrometry.

    PubMed

    Wood, Jessica L; Steiner, Robert R

    2011-06-01

    Forensic analysis of pharmaceutical preparations requires a comparative analysis with a standard of the suspected drug in order to identify the active ingredient. Purchasing analytical standards can be expensive or unattainable from the drug manufacturers. Direct Analysis in Real Time (DART™) is a novel, ambient ionization technique, typically coupled with a JEOL AccuTOF™ (accurate mass) mass spectrometer. While a fast and easy technique to perform, a drawback of using DART™ is the lack of component separation of mixtures prior to ionization. Various in-house pharmaceutical preparations were purified using thin-layer chromatography (TLC) and mass spectra were subsequently obtained using the AccuTOF™- DART™ technique. Utilizing TLC prior to sample introduction provides a simple, low-cost solution to acquiring mass spectra of the purified preparation. Each spectrum was compared against an in-house molecular formula list to confirm the accurate mass elemental compositions. Spectra of purified ingredients of known pharmaceuticals were added to an in-house library for use as comparators for casework samples. Resolving isomers from one another can be accomplished using collision-induced dissociation after ionization. Challenges arose when the pharmaceutical preparation required an optimized TLC solvent to achieve proper separation and purity of the standard. Purified spectra were obtained for 91 preparations and included in an in-house drug standard library. Primary standards would only need to be purchased when pharmaceutical preparations not previously encountered are submitted for comparative analysis. TLC prior to DART™ analysis demonstrates a time efficient and cost saving technique for the forensic drug analysis community. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21548141

  4. Microarray Technology for Major Chemical Contaminants Analysis in Food: Current Status and Prospects

    PubMed Central

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed. PMID:23012541

  5. Combination of micro-dialysis and infrared spectroscopy: a multianalyte assay for accurate biofluid analysis and patient monitoring

    NASA Astrophysics Data System (ADS)

    Vahlsing, Thorsten; Delbeck, Sven; Budde, Janpeter; Ihrig, Dieter; Heise, H. Michael

    2016-03-01

    Micro-dialysis can be used for continuously harvesting body fluids, while a multi-component analysis of the dialysates by infrared spectrometry offers splendid opportunities for monitoring substrates and metabolites such as glucose, lactate and others small enough to penetrate the semi-permeable dialysis membranes. However, a drawback of this process are variable recovery rates, which can be observed especially for subcutaneously implanted catheters in human subjects. Isotonic perfusates were investigated with acetate and mannitol as recovery markers for the dialysis of human serum at 37°C to mimic in vivo patient monitoring. The latter non-ionic substance has been suggested for application when other ionic substances such as bicarbonate or pH are also to be determined. Simultaneously for acetate and mannitol, the depletion of the marker substances from the perfusates using different micro-dialysis devices was investigated under various flow-rates. Relationships between relative dialysate marker concentrations and glucose recovery rates were determined based on multivariate calibrations. For quantification, classical least squares with reference spectra for modelling the serum dialysates was used, rendering a basis for reliable blood glucose and lactate measurements.

  6. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank

  7. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  8. Real-Time Cellular Analysis Coupled with a Specimen Enrichment Accurately Detects and Quantifies Clostridium difficile Toxins in Stool

    PubMed Central

    Huang, Bin; Jin, Dazhi; Zhang, Jing; Sun, Janet Y.; Wang, Xiaobo; Stiles, Jeffrey; Xu, Xiao; Kamboj, Mini; Babady, N. Esther

    2014-01-01

    We describe here the use of an immunomagnetic separation enrichment process coupled with a modified real-time cellular analysis (RTCA) system (RTCA version 2) for the detection of C. difficile toxin (CDT) in stool. The limit of CDT detection by RTCA version 2 was 0.12 ng/ml. Among the consecutively collected 401 diarrheal stool specimens, 53 (13.2%) were toxin-producing C. difficile strains by quantitative toxigenic culture (qTC); bacterial loads ranged from 3.00 × 101 to 3.69 × 106 CFU/ml. The RTCA version 2 method detected CDT in 51 samples, resulting in a sensitivity of 96.2%, a specificity of 99.7%, and positive and negative predictive values of 98.1% and 99.4%, respectively. The positive step time ranged from 1.43 to 35.85 h, with <24 h for 80% of the samples. The CDT concentrations in stool samples determined by RTCA version 2 correlated with toxigenic C. difficile bacterial load (R2 = 0.554, P = 0.00002) by qTC as well as the threshold cycle (R2 = 0.343, P = 0.014) by real-time PCR. A statistically significant correlation between the CDT concentrations and the clinical severity of CDI was observed (P = 0.015). The sensitivity of the RTCA version 2 assay for the detection of functional toxins in stool specimens was significantly improved when the immunomagnetic separation enrichment process was incorporated. More than 80% positive results can be obtained within 24 h. The stool specimen CDT concentration derived using the RTCA version 2 assay correlates with clinical severity and may be used as a marker for monitoring the status of CDI. PMID:24452160

  9. Real-time cellular analysis coupled with a specimen enrichment accurately detects and quantifies Clostridium difficile toxins in stool.

    PubMed

    Huang, Bin; Jin, Dazhi; Zhang, Jing; Sun, Janet Y; Wang, Xiaobo; Stiles, Jeffrey; Xu, Xiao; Kamboj, Mini; Babady, N Esther; Tang, Yi-Wei

    2014-04-01

    We describe here the use of an immunomagnetic separation enrichment process coupled with a modified real-time cellular analysis (RTCA) system (RTCA version 2) for the detection of C. difficile toxin (CDT) in stool. The limit of CDT detection by RTCA version 2 was 0.12 ng/ml. Among the consecutively collected 401 diarrheal stool specimens, 53 (13.2%) were toxin-producing C. difficile strains by quantitative toxigenic culture (qTC); bacterial loads ranged from 3.00 × 10(1) to 3.69 × 10(6) CFU/ml. The RTCA version 2 method detected CDT in 51 samples, resulting in a sensitivity of 96.2%, a specificity of 99.7%, and positive and negative predictive values of 98.1% and 99.4%, respectively. The positive step time ranged from 1.43 to 35.85 h, with <24 h for 80% of the samples. The CDT concentrations in stool samples determined by RTCA version 2 correlated with toxigenic C. difficile bacterial load (R(2) = 0.554, P = 0.00002) by qTC as well as the threshold cycle (R(2) = 0.343, P = 0.014) by real-time PCR. A statistically significant correlation between the CDT concentrations and the clinical severity of CDI was observed (P = 0.015). The sensitivity of the RTCA version 2 assay for the detection of functional toxins in stool specimens was significantly improved when the immunomagnetic separation enrichment process was incorporated. More than 80% positive results can be obtained within 24 h. The stool specimen CDT concentration derived using the RTCA version 2 assay correlates with clinical severity and may be used as a marker for monitoring the status of CDI. PMID:24452160

  10. Accurate analysis of trace earthy-musty odorants in water by headspace solid phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Ma, Kang; Zhang, Jin Na; Zhao, Min; He, Ya Juan

    2012-06-01

    A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources. PMID:22740259

  11. Chemical hazards analysis of resilient flooring for healthcare.

    PubMed

    Lent, Tom; Silas, Julie; Vallette, Jim

    2010-01-01

    This article addresses resilient flooring, evaluating the potential health effects of vinyl flooring and the leading alternatives-synthetic rubber, polyolefin, and linoleum-currently used in the healthcare marketplace. The study inventories chemicals incorporated as components of each of the four material types or involved in their life cycle as feedstocks, intermediary chemicals, or emissions. It then characterizes those chemicals using a chemical hazard-based framework that addresses persistence and bioaccumulation, human toxicity, and human exposures. PMID:21165873

  12. Chemical analysis and potential health risks of hookah charcoal.

    PubMed

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. PMID:27343945

  13. Chemical analysis of Argonne premium coal samples. Bulletin

    SciTech Connect

    Palmer, C.A.

    1997-11-01

    Contents: The Chemical Analysis of Argonne Premium Coal Samples: An Introduction; Rehydration of Desiccated Argonne Premium Coal Samples; Determination of 62 Elements in 8 Argonne Premium Coal Ash Samples by Automated Semiquantitative Direct-Current Arc Atomic Emission Spectrography; Determination of 18 Elements in 5 Whole Argonne Premium Coal Samples by Quantitative Direct-Current Arc Atomic Emission Spectrography; Determination of Major and Trace Elements in Eight Argonne Premium Coal Samples (Ash and Whole Coal) by X-Ray Fluorescence Spectrometry; Determination of 29 Elements in 8 Argonne Premium Coal Samples by Instrumental Neutron Activation Analysis; Determination of Selected Elements in Coal Ash from Eight Argonne Premium Coal Samples by Atomic Absorption Spectrometry and Atomic Emission Spectrometry; Determination of 25 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Atomic Emission Spectrometry; Determination of 33 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Mass Spectrometry; Determination of Mercury and Selenium in Eight Argonne Premium Coal Samples by Cold-Vapor and Hydride-Generation Atomic Absorption Spectrometry; Determinaton of Carbon, Hydrogen, and Nitrogen in Eight Argonne Premium Coal Samples by Using a Gas Chromatographic Analyzer with a Thermal Conductivity Detector; and Compilation of Multitechnique Determinations of 51 Elements in 8 Argonne Premium Coal Samples.

  14. Structural analysis of photosystem I polypeptides using chemical crosslinking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Thylakoid membranes, obtained from leaves of 14 d soybean (Glycine max L. cv. Williams) plants, were treated with the chemical crosslinkers glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to investigate the structural organization of photosystem I. Polypeptides were resolved using lithium dodecyl sulfate polyacrylamide gel electrophoresis, and were identified by western blot analysis using a library of polyclonal antibodies specific for photosystem I subunits. An electrophoretic examination of crosslinked thylakoids revealed numerous crosslinked products, using either glutaraldehyde or EDC. However, only a few of these could be identified by western blot analysis using subunit-specific polyclonal antibodies. Several glutaraldehyde dependent crosslinked species were identified. A single band was identified minimally composed of PsaC and PsaD, documenting the close interaction between these two subunits. The most interesting aspect of these studies was a crosslinked species composed of the PsaB subunit observed following EDC treatment of thylakoids. This is either an internally crosslinked species, which will provide structural information concerning the topology of the complex PsaB protein, a linkage with a polypeptide for which we do not yet have an immunological probe, or a masking of epitopes by the EDC linkage at critical locations in the peptide which is linked to PsaB.

  15. Flow Injection Analysis and Liquid Chromatography for Multifunctional Chemical Analysis (MCA) Systems

    ERIC Educational Resources Information Center

    Mayo, Ana V.; Loegel, Thomas N.; Bretz, Stacey Lowery; Danielson, Neil D.

    2013-01-01

    The large class sizes of first-year chemistry labs makes it challenging to provide students with hands-on access to instrumentation because the number of students typically far exceeds the number of research-grade instruments available to collect data. Multifunctional chemical analysis (MCA) systems provide a viable alternative for large-scale…

  16. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  17. Chemical abuse in the elderly: evidence from hair analysis.

    PubMed

    Kintz, Pascal; Villain, Marion; Cirimele, Vincent

    2008-04-01

    The use of a drug to modify a person's behavior for criminal gain is not a recent phenomenon. However, the recent increase in reports of drug-facilitated crimes (sexual assault, robbery) has caused some alarm in the general public. Drugs involved can be pharmaceuticals such as benzodiazepines (flunitrazepam, lorazepam, clonazepam), hypnotics (zopiclone, zolpidem), sedatives (neuroleptics, some antihistamines), or anesthetics (GHB, ketamine); drugs of abuse such as cannabis, ecstasy, or LSD; or, more often, ethanol. Mistreatment of older people, whether it is abuse or neglect, can be classified as physical, psychologic, or financial/material. Several types of mistreatment may occur simultaneously. Very few data are available in the international literature. It seems that mental abuse and neglect are more frequent, but physical abuse such as beating, pushing, kicking, and possibly sexual abuse have also been reported. Drugs used to facilitate sexual assaults can be difficult to detect (active products at low dosages, chemical instability), can possess amnesic properties, and can be rapidly cleared from the body (short half-life). In these situations, blood, or even urine, can be inadequate. This is the reason why some laboratories have developed an original approach based on hair testing. Hair was suggested as a valuable specimen in situations in which, as a result of a delay in reporting the crime, natural processes have eliminated the drug from typical biologic specimens. Hair analysis may be a useful adjunct to conventional drug testing in sexual assault. It should not be considered as an alternative to blood and urine analyses, but as a complement. Mass spectrometry/mass spectrometry technologies appear to be required for analyses in drug-facilitated cases. The experience of the authors is presented in cases involving the elderly and chemical poisoning. PMID:18367982

  18. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity

    EPA Science Inventory

    Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stres...

  19. Biosensors for the analysis of microbiological and chemical contaminants in food.

    PubMed

    McGrath, T F; Elliott, C T; Fodey, T L

    2012-04-01

    Increases in food production and the ever-present threat of food contamination from microbiological and chemical sources have led the food industry and regulators to pursue rapid, inexpensive methods of analysis to safeguard the health and safety of the consumer. Although sophisticated techniques such as chromatography and spectrometry provide more accurate and conclusive results, screening tests allow a much higher throughput of samples at a lower cost and with less operator training, so larger numbers of samples can be analysed. Biosensors combine a biological recognition element (enzyme, antibody, receptor) with a transducer to produce a measurable signal proportional to the extent of interaction between the recognition element and the analyte. The different uses of the biosensing instrumentation available today are extremely varied, with food analysis as an emerging and growing application. The advantages offered by biosensors over other screening methods such as radioimmunoassay, enzyme-linked immunosorbent assay, fluorescence immunoassay and luminescence immunoassay, with respect to food analysis, include automation, improved reproducibility, speed of analysis and real-time analysis. This article will provide a brief footing in history before reviewing the latest developments in biosensor applications for analysis of food contaminants (January 2007 to December 2010), focusing on the detection of pathogens, toxins, pesticides and veterinary drug residues by biosensors, with emphasis on articles showing data in food matrices. The main areas of development common to these groups of contaminants include multiplexing, the ability to simultaneously analyse a sample for more than one contaminant and portability. Biosensors currently have an important role in food safety; further advances in the technology, reagents and sample handling will surely reinforce this position. PMID:22278073

  20. Quantification of Absolute Fat Mass by Magnetic Resonance Imaging: a Validation Study against Chemical Analysis

    PubMed Central

    Hu, Houchun H.; Li, Yan; Nagy, Tim R.; Goran, Michael I.; Nayak, Krishna S.

    2011-01-01

    Objective To develop a magnetic resonance imaging (MRI)-based approach for quantifying absolute fat mass in organs, muscles, and adipose tissues, and to validate its accuracy against reference chemical analysis (CA). Methods Chemical-shift imaging can accurately decompose water and fat signals from the acquired MRI data. A proton density fat fraction (PDFF) can be computed from the separated images, and reflects the relative fat content on a voxel-by-voxel basis. The PDFF is mathematically closely related to the fat mass fraction and can be converted to absolute fat mass in grams by multiplying by the voxel volume and the mass density of fat. In this validation study, 97 freshly excised and unique samples from four pigs, comprising of organs, muscles, and adipose and lean tissues were imaged by MRI and then analyzed independently by CA. Linear regression was used to assess correlation, agreement, and measurement differences between MRI and CA. Results Considering all 97 samples, a strong correlation and agreement was obtained between MRI and CA-derived fat mass (slope = 1.01, intercept = 1.99g, r2 = 0.98, p < 0.01). The mean difference d between MRI and CA was 2.17±3.40g. MRI did not exhibit any tendency to under or overestimate CA (p > 0.05). When considering samples from each pig separately, the results were (slope = 1.05, intercept = 1.11g, r2 = 0.98, d = 2.66±4.36g), (slope = 0.99, intercept = 2.33g, r2 = 0.99, d = 1.88±2.68g), (slope = 1.07, intercept = 1.52g, r2 = 0.96, d = 2.73±2.50g), and (slope=0.92, intercept=2.84g, r2 = 0.97, d = 1.18±3.90g), respectively. Conclusion Chemical-shift MRI and PDFF provides an accurate means of determining absolute fat mass in organs, muscles, and adipose and lean tissues. PMID:23204926

  1. Laser-induced destination of hazardous chemicals: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Morrison, P. F.; Wolf, K. A.

    1982-10-01

    Technical methods that might prove effective in destroying dangerous chemicals before they leave the plant environment and become subject to regulation are studied. Laser infrared multiphoton dissociation, for decomposing deleterious chemical gases is evaluated. The chlorinated ethylenes and the chlorinated ethanes are emphasized. A detailed method for decomposing chlorinated chemicals in the workplace using a relatively inexpensive CO2 laser is discussed. Results show that CO2 laser photodegradation of vinyl chloride, a chlorinated ethylene, is promising.

  2. Quantitative Proteome Analysis of Human Plasma Following in vivo Lipopolysaccharide Administration using O-16/O-18 Labeling and the Accurate Mass and Time Tag Approach

    SciTech Connect

    Qian, Weijun; Monroe, Matthew E.; Liu, Tao; Jacobs, Jon M.; Anderson, Gordon A.; Shen, Yufeng; Moore, Ronald J.; Anderson, David J.; Zhang, Rui; Calvano, Steven E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2005-05-01

    Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. We describe here an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes post-digestion trypsin-catalyzed 16O/18O labeling, two-dimensional liquid chromatography (LC)-Fourier transform ion cyclotron resonance ((FTICR) mass spectrometry, and the accurate mass and time (AMT) tag strategy for identification and quantification of peptides/proteins from complex samples. A peptide mass and time tag database was initially generated using tandem mass spectrometry (MS/MS) following extensive multidimensional LC separations and the database serves as a ‘look-up’ table for peptide identification. The mass and time tag database contains >8,000 putative identified peptides, which yielded 938 confident plasma protein identifications. The quantitative approach was applied to the comparative analyses of plasma samples from an individual prior to and 9 hours after lipopolysaccharide (LPS) administration without depletion of high abundant proteins. Accurate quantification of changes in protein abundance was demonstrated with both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses and the protein abundances for 28 proteins were observed to be significantly changed following LPS administration, including several known inflammatory response mediators.

  3. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  4. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis

    PubMed Central

    Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  5. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays.

    PubMed

    Lee, Chi-Ying; Harbers, Gregory M; Grainger, David W; Gamble, Lara J; Castner, David G

    2007-08-01

    Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity. PMID:17625851

  6. Polycyclic Aromatic Aerosol Components: Chemical Analysis and Reactivity

    NASA Astrophysics Data System (ADS)

    Schauer, C.; Niessner, R.; Pöschl, U.

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants in the atmosphere and originate primarily from incomplete combustion of organic matter and fossil fuels. Their main sources are anthropogenic (e.g. vehicle emissions, domes- tic heating or tobacco smoke), and PAHs consisting of more than four fused aromatic rings reside mostly on combustion aerosol particles, where they can react with atmo- spheric trace gases like O3, NOx or OH radicals leading to a wide variety of partially oxidized and nitrated derivatives. Such chemical transformations can strongly affect the activity of the aerosol particles as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. Moreover some poly- cyclic aromatic compounds (PACs = PAHs + derivatives) are known to have a high carcinogenic, mutagenic and allergenic potential, and are thus of major importance in air pollution control. Furthermore PACs can be used as well defined soot model sub- stances, since the basic structure of soot can be regarded as an agglomerate of highly polymerized PAC-layers. For the chemical analysis of polycyclic aromatic aerosol components a new analyti- cal method based on LC-APCI-MS has been developed, and a data base comprising PAHs, Oxy-PAHs and Nitro-PAHs has been established. Together with a GC-HRMS method it will be applied to identify and quantify PAHs and Nitro-PAHs in atmo- spheric aerosol samples, diesel exhaust particle samples and model soot samples from laboratory reaction kinetics and product studies. As reported before, the adsorption and surface reaction rate of ozone on soot and PAH-like particle surfaces is reduced by competitive adsorption of water vapor at low relative humidity (< 25 %). Recent results at higher relative humidities (ca. 50 %), however, indicate re-enhanced gas phase ozone loss, which may be due to absorbtion of ozone into an aqueous surface layer. The interaction of ozone and nitrogen

  7. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    NASA Astrophysics Data System (ADS)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and

  8. Finite element analysis of the effect of electrodes placement on accurate resistivity measurement in a diamond anvil cell with van der Pauw technique

    SciTech Connect

    Wu Baojia; Huang Xiaowei; Han Yonghao; Gao Chunxiao; Peng Gang; Liu Cailong; Wang Yue; Cui Xiaoyan; Zou Guangtian

    2010-05-15

    The van der Pauw technique is widely used to determine resistivity of materials. In diamond anvil cell the compressed sample will make the contact placement change under high pressure. Using finite element analysis, we study the effect of contact placement error induced by pressure on the resistivity measurement accuracy of van der Pauw method. The results show the contact placement has a significant effect on determination accuracy. This method can provide accurate determination of sample resistivity when the spacing b between the contact center and sample periphery is less than D/9 (sample diameter). And the effect of contact placement error on accuracy rapidly increases as the contact location is closing to the sample center. For the same contact placement, the contact size error has a more obvious effect on the semiconductor sample.

  9. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    SciTech Connect

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest`s Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values.

  10. Flow injection combined with ICP-MS for accurate high throughput analysis of elemental impurities in pharmaceutical products according to USP <232>/<233>.

    PubMed

    Fischer, Lisa; Zipfel, Barbara; Koellensperger, Gunda; Kovac, Jessica; Bilz, Susanne; Kunkel, Andrea; Venzago, Cornel; Hann, Stephan

    2014-07-01

    New guidelines of the United States Pharmacopeia (USP), European Pharmacopeia (EP) and international organization (ICH, International Conference on Harmonization) regulating elemental impurity limits in pharmaceuticals seal the end of unspecific analysis of metal(oid)s as outlined in USP <231> and EP 2.4.8. Chapter USP <232> and EP 5.20 as well as drafts from ICH Q3D specify both daily doses and concentration limits of metallic impurities in pharmaceutical final products and in active pharmaceutical ingredients (API) and excipients. In chapters USP <233> and EP 2.4.20 method implementation, validation and quality control during the analytical process are described. By contrast with the--by now--applied methods, substance specific quantitative analysis features new basic requirements, further, significantly lower detection limits ask for the necessity of a general changeover of the methodology toward sensitive multi element analysis by ICP-AES and ICP-MS, respectively. A novel methodological approach based on flow injection analysis and ICP-SFMS/ICP-QMS for the quick and accurate analysis of Cd, Pb, As, Hg, Ir, Os, Pd, Pt, Rh, Ru, Cr, Mo, Ni, V, Cu, Mn, Fe and Zn in drug products by prior dilution, dissolution or microwave assisted closed vessel digestion according to the regulations is presented. In comparison to the acquisition of continuous signals, this method is advantageous with respect to the unprecedented high sample throughput due to a total analysis time of approximately 30s and the low sample consumption of below 50 μL, while meeting the strict USP demands on detection/quantification limits, precision and accuracy. PMID:24667566

  11. Chemical components determination via terahertz spectroscopic statistical analysis using microgenetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ma, Yong; Lu, Zheng; Xia, Zhi-Ning; Cheng, Hong

    2011-03-01

    In public security related applications, many suspicious samples may be a mixture of various chemical components that makes the usual spectral analysis difficult. In this paper, a terahertz spectroscopic statistical analysis method using a microgenetic algorithm (Micro-GA) has been proposed. Various chemical components in the mixture can be identified and the concentration of each component can be estimated based on the known spectral data of the pure chemical components. Five chemical mixtures have been tested using Micro-GA. The simulation results have shown agreement with other analytical methods. It is suggested that Micro-GA has potential applications for terahertz spectral identifications of chemical mixtures.

  12. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    NASA Technical Reports Server (NTRS)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    Hydrogen and chemical heat pipes were proposed as methods of transporting energy from a primary energy source (nuclear, solar) to the user. In the chemical heat pipe system, primary energy is transformed into the energy of a reversible chemical reaction; the chemical species are then transmitted or stored until the energy is required. Analysis of thermochemical hydrogen schemes and chemical heat pipe systems on a second law efficiency or available work basis show that hydrogen is superior especially if the end use of the chemical heat pipe is electrical power.

  13. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  14. The control of chemical weapons: A strategic analysis

    SciTech Connect

    Stern, J.E.

    1992-01-01

    This thesis develops an analytical framework for optimal design of a ban on chemical weapons (CW). The thesis addresses two principal questions: first, could it be in the interest of individual states to adopt a CW ban, even if compliance by adversaries cannot be presupposed Second, how can designers of the treaty maximize incentives to accede and comply, but simultaneously minimize the threat to national sovereignty, including the risk of giving up a deterrent stockpile, and the risk that sensitive information would be revealed during inspections Three problems can plague any disarmament agreement. The first danger is that the agreement will be so minimalist that although all countries may adhere to it, it will have little effect on international behavior. The second danger is that the treaty will have such a weak enforcement mechanism that although nations may accede, they may not comply under conditions of international stress. The third danger is that the terms of the arrangement will be so onerous that few nations will agree to adopt it in the first place. This thesis develops a framework for thinking about how to strike the proper balance between these competing concerns. A salient characteristic of CW is the relative ease with which they can be produced in secret. The dissertation analyzes the effectiveness of inspection procedures of varying intrusiveness, and investigates the risks to sensitive government and industrial facilities. The thesis concludes with an analysis of the extent to which a ban on a single weapon could enhance the stability of the [open quotes]balance of terror.[close quotes] The author makes specific policy recommendations about how to set the optimal level of enforcement so that the ban is likely to succeed, and thus become more than a symbolic gesture.

  15. Fuzzy clustering analysis of the first 10 MEIC chemicals.

    PubMed

    Sârbu, C; Pop, H F

    2000-03-01

    In this paper, we discuss the classification results of the toxicological responses of 32 in vivo and in vitro test systems to the first 10 MEIC chemicals. In this order we have used different fuzzy clustering algorithms, namely hierarchical fuzzy clustering, hierarchical and horizontal fuzzy characteristics clustering and a new clustering technique, namely fuzzy hierarchical cross-classification. The characteristics clustering technique produces fuzzy partitions of the characteristics (chemicals) involved and thus it is a useful tool for studying the (dis)similarities between different chemicals and for essential chemicals selection. The cross-classification algorithm produces not only a fuzzy partition of the test systems analyzed, but also a fuzzy partition of the considered 10 MEIC (multicentre evaluation of in vitro cytotoxicity) chemicals. In this way it is possible to identify which chemicals are responsible for the similarities or differences observed between different groups of test systems. In another way, there is a specific sensitivity of a chemical for one or more toxicological tests. PMID:10665388

  16. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques

    PubMed Central

    D’Arco, Annalisa; Brancati, Nadia; Ferrara, Maria Antonietta; Indolfi, Maurizio; Frucci, Maria; Sirleto, Luigi

    2016-01-01

    The visualization of heterogeneous morphology, segmentation and quantification of image features is a crucial point for nonlinear optics microscopy applications, spanning from imaging of living cells or tissues to biomedical diagnostic. In this paper, a methodology combining stimulated Raman scattering microscopy and image analysis technique is presented. The basic idea is to join the potential of vibrational contrast of stimulated Raman scattering and the strength of imaging analysis technique in order to delineate subcellular morphology with chemical specificity. Validation tests on label free imaging of polystyrene-beads and of adipocyte cells are reported and discussed. PMID:27231626

  17. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques.

    PubMed

    D'Arco, Annalisa; Brancati, Nadia; Ferrara, Maria Antonietta; Indolfi, Maurizio; Frucci, Maria; Sirleto, Luigi

    2016-05-01

    The visualization of heterogeneous morphology, segmentation and quantification of image features is a crucial point for nonlinear optics microscopy applications, spanning from imaging of living cells or tissues to biomedical diagnostic. In this paper, a methodology combining stimulated Raman scattering microscopy and image analysis technique is presented. The basic idea is to join the potential of vibrational contrast of stimulated Raman scattering and the strength of imaging analysis technique in order to delineate subcellular morphology with chemical specificity. Validation tests on label free imaging of polystyrene-beads and of adipocyte cells are reported and discussed. PMID:27231626

  18. Spectral analysis of four meteors. [chemical compositions and spectral emissions

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    Four meteor spectra are analyzed for chemical composition and radiative processes. The chemical compositions of the Taurid, Geminid, and Perseid meteors were found to be similar to that of a typical stony meteorite. The chemical composition of the sporadic meteor was found to be similar to that of a nickel iron meteorite. The radiation from optical meteors was found to be similar to that of a low temperature gas, except that strong, anomalous ionic radiation is superposed on the neutral radiation in bright, fast meteors.

  19. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity?

    EPA Science Inventory

    Background: Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-ch...

  20. SIMULATION MODELS FOR ENVIRONMENTAL MULTIMEDIA ANALYSIS OF TOXIC CHEMICALS

    EPA Science Inventory

    Multimedia understanding of pollutant behavior in the environment is of particular concern for chemicals that are toxic and are subject to accumulation in the environmental media (air, soil, water, vegetation) where biota and human exposure is significant. Multimedia simulation ...

  1. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level. PMID:23552653

  2. 40 CFR 761.272 - Chemical extraction and analysis of samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical extraction and analysis of... Accordance with § 761.61(a)(2) § 761.272 Chemical extraction and analysis of samples. Use either Method... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under...

  3. An Accurate, Flexible and Small Optical Fiber Sensor: A Novel Technological Breakthrough for Real-Time Analysis of Dynamic Blood Flow Data In Vivo

    PubMed Central

    Yuan, Qiao-ying; Zhang, Ling; Xiao, Dan; Zhao, Kun; Lin, Chun; Si, Liang-yi

    2014-01-01

    Because of the limitations of existing methods and techniques for directly obtaining real-time blood data, no accurate microflow in vivo real-time analysis method exists. To establish a novel technical platform for real-time in vivo detection and to analyze average blood pressure and other blood flow parameters, a small, accurate, flexible, and nontoxic Fabry-Perot fiber sensor was designed. The carotid sheath was implanted through intubation of the rabbit carotid artery (n = 8), and the blood pressure and other detection data were determined directly through the veins. The fiber detection results were compared with test results obtained using color Doppler ultrasound and a physiological pressure sensor recorder. Pairwise comparisons among the blood pressure results obtained using the three methods indicated that real-time blood pressure information obtained through the fiber sensor technique exhibited better correlation than the data obtained with the other techniques. The highest correlation (correlation coefficient of 0.86) was obtained between the fiber sensor and pressure sensor. The blood pressure values were positively related to the total cholesterol level, low-density lipoprotein level, number of red blood cells, and hemoglobin level, with correlation coefficients of 0.033, 0.129, 0.358, and 0.373, respectively. The blood pressure values had no obvious relationship with the number of white blood cells and high-density lipoprotein and had a negative relationship with triglyceride levels, with a correlation coefficient of –0.031. The average ambulatory blood pressure measured by the fiber sensor exhibited a negative correlation with the quantity of blood platelets (correlation coefficient of −0.839, P<0.05). The novel fiber sensor can thus obtain in vivo blood pressure data accurately, stably, and in real time; the sensor can also determine the content and status of the blood flow to some extent. Therefore, the fiber sensor can obtain partially real

  4. Two-dimensional dopant analysis in silicon using chemical etching and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Neogi, Suneeta Shamanna

    as a metrology/analysis tool, when implemented in a precise and systematic manner. An appropriate sample preparation methodology is key to obtaining accurate and reproducible data. Evaluation of this technique is presented in terms of: (1) correlation of data to TCAD prediction using currently available process simulation capabilities; (2) quantitative comparison of 2-D dopant profiles obtained by selective chemical etching in combination with TEM with 2-D dopant profiles obtained by dopant-induced contrast studies from secondary electron images. A demonstration that the 2-D analysis/metrology tool developed in this investigation returns useful data requires its application on real devices. The physical channel length data obtained by selective chemical etching in combination with TEM on 0.35 mum technology MOSFET structures was correlated to effective channel length data obtained by electrical measurements. Metrology of solid source diffused versus ion implanted and annealed test structures revealed a significant difference in the lateral to vertical (l/v) ratio of the dopant distribution in a window cut into a mask (poly-Si/oxide stack:). An l/v ratio ˜0.8 for solid-source diffusion indicates an approach towards isotropic behavior during out-diffusion. An l/v ratio ˜0.5 for ion-implanted dopant distributions indicates an approach towards anisotropic behavior during out-diffusion. This result has a significant impact on the dopant processing step in IC fabrication. As the transistor dimensions continue to scale alternative methods to achieve ultra-shallow junctions are being pursued, including solid-source diffusion which can yield extremely shallow junctions, but has a significant disadvantage because of enhanced lateral diffusion.

  5. LSENS, a general chemical kinetics and sensitivity analysis code for homogeneous gas-phase reactions. 2: Code description and usage

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 2 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 2 describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part 1 (NASA RP-1328) derives the governing equations describes the numerical solution procedures for the types of problems that can be solved by lSENS. Part 3 (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.

  6. Does objective measurement of tracheal tube cuff pressures minimise adverse effects and maintain accurate cuff pressures? A systematic review and meta-analysis.

    PubMed

    Ca, Hockey; Aaj, van Zundert; Jd, Paratz

    2016-09-01

    Correct inflation pressures of the tracheal cuff are recommended to ensure adequate ventilation and prevent aspiration and adverse events. However there are conflicting views on which measurement to employ. The aim of this review was to examine whether adjustment of cuff pressure guided by objective measurement, compared with subjective measurement or observation of the pressure value alone, was able to prevent patient-related adverse effects and maintain accurate cuff pressures. A search of PubMed, Web of Science, Embase, CINAHL and ScienceDirect was conducted using keywords 'cuff pressure' and 'measure*' and related synonyms. Included studies were randomised or pseudo-randomised controlled trials investigating mechanically ventilated patients both in the intensive care unit and during surgery. Outcomes included adverse effects and the comparison of pressure measurements. Pooled analyses were performed to calculate risk ratios, effect sizes and 95% confidence intervals. Meta-analysis found preliminary evidence that adjustment of cuff pressure guided by objective measurement as compared with subjective measurement or observation of the pressure value alone, has benefit in preventing adverse effects. These included cough at two hours (odds ratio [OR] 0.42, confidence interval [CI] 0.23 to 0.79, P=0.007), hoarseness at 24 hours (OR 0.49, CI 0.31 to 0.76, P <0.002), sore throat (OR 0.73, CI 0.54 to 0.97, P <0.03), lesions of the trachea and incidences of silent aspiration (P=0.001), as well as maintaining accurate cuff pressures (Hedges' g 1.61, CI 2.69 to 0.53, P=0.003). Subjective measurement to guide adjustment or observation of the pressure value alone may lead to patient-related adverse effects and inaccuracies. It is recommended that an objective form of measurement be used. PMID:27608338

  7. CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

    PubMed Central

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  8. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  9. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine.

    PubMed

    Zhang, Yong; Cong, Qian; Xie, Yunfei; JingxiuYang; Zhao, Bing

    2008-12-15

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with gamma=1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications. PMID:18538628

  10. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

    2008-12-01

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with γ = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  11. Analysis of Pore Pressure and Stress Distribution around a Wellbore Drilled in Chemically Active Elastoplastic Formations

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Rahman, S. S.

    2011-09-01

    Drilling in low-permeable reactive shale formations with water-based drilling mud presents significant challenges, particularly in high-pressure and high-temperature environments. In previous studies, several models were proposed to describe the thermodynamic behaviour of shale. Most shale formations under high pressure are expected to undergo plastic deformation. An innovative algorithm including work hardening is proposed in the framework of thermo-chemo-poroelasticity to investigate the effect of plasticity on stresses around the wellbore. For this purpose a finite-element model of coupled thermo-chemo-poro-elastoplasticity is developed. The governing equations are based on the concept of thermodynamics of irreversible processes in discontinuous systems. In order to solve the plastic problem, a single-step backward Euler algorithm containing a yield surface-correction scheme is used to integrate the plastic stress-strain relation. An initial stress method is employed to solve the non-linearity of the plastic equation. In addition, super convergent patch recovery is used to accurately evaluate the time-dependent stress tensor from nodal displacement. The results of this study reveal that thermal and chemical osmosis can significantly affect the fluid flow in low-permeable shale formations. When the salinity of drilling mud is higher than that of pore fluid, fluid is pulled out of the formation by chemical osmotic back flow. Similar results are observed when the temperature of drilling mud is lower than that of the formation fluid. It is found that linear elastic approaches to wellbore stability analysis appear to overestimate the tangential stress around the wellbore and produce more conservative stresses compared to the results of field observation. Therefore, the drilling mud properties obtained from the elastoplastic wellbore stability in shales provide a safer mud weight window and reduce drilling cost.

  12. Improved Devices for Collecting Sweat for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Feedback, Daniel L.; Clarke, Mark S. F.

    2011-01-01

    Improved devices have been proposed for collecting sweat for biochemical analysis - especially for determination of the concentration of Ca2+ ions in sweat as a measure of loss of Ca from bones. Unlike commercially available sweat-collection patches used previously in monitoring osteoporosis and in qualitative screening for some drugs, the proposed devices would not allow evaporation of the volatile chemical components (mostly water) of sweat. Moreover, the proposed devices would be designed to enable determination of the volumes of collected sweat. From these volumes and the quantities of Ca(2+) and/or other analytes as determined by other means summarized below, one could determine the concentrations of the analytes in sweat. A device according to the proposal would be flexible and would be worn like a commercial sweat-collection patch. It would be made of molded polydimethylsiloxane (silicone rubber) or other suitable material having properties that, for the purpose of analyzing sweat, are similar to those of glass. The die for molding the silicone rubber would be fabricated by a combination of lithography and electroplating. The die would reproducibly form, in the silicone rubber, a precisely defined number of capillary channels per unit area, each channel having a precisely defined volume. Optionally, electrodes for measuring the Ca(2+) content of the sweat could be incorporated into the device. The volume of sweat collected in the capillary channels of the device would be determined from (1) the amount of light or radio waves of a given wavelength absorbed by the device and (2) the known geometry of the array of capillary channels. Then, in one of two options, centrifugation would be performed to move the sweat from the capillary tubes to the region containing the electrodes, which would be used to measure the Ca(2+) content by a standard technique. In the other option, centrifugation would be performed to remove the sweat from the device to make the sweat

  13. Improved Devices for Collecting Sweat for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2011-01-01

    Improved devices have been proposed for collecting sweat for biochemical analysis especially for determination of the concentration of Ca2+ ions in sweat as a measure of loss of Ca from bones. Unlike commercially available sweat-collection patches used previously in monitoring osteoporosis and in qualitative screening for some drugs, the proposed devices would not allow evaporation of the volatile chemical components (mostly water) of sweat. Moreover, the proposed devices would be designed to enable determination of the volumes of collected sweat. From these volumes and the quantities of Ca2+ and/or other analytes as determined by other means summarized below, one could determine the concentrations of the analytes in sweat. A device according to the proposal would be flexible and would be worn like a commercial sweat-collection patch. It would be made of molded polydimethylsiloxane (silicone rubber) or other suitable material having properties that, for the purpose of analyzing sweat, are similar to those of glass. The die for molding the silicone rubber would be fabricated by a combination of lithography and electroplating. The die would reproducibly form, in the silicone rubber, a precisely defined number of capillary channels per unit area, each channel having a precisely defined volume. Optionally, electrodes for measuring the Ca2+ content of the sweat could be incorporated into the device. The volume of sweat collected in the capillary channels of the device would be determined from (1) the amount of light or radio waves of a given wavelength absorbed by the device and (2) the known geometry of the array of capillary channels. Then, in one of two options, centrifugation would be performed to move the sweat from the capillary tubes to the region containing the electrodes, which would be used to measure the Ca2+ content by a standard technique. In the other option, centrifugation would be performed to remove the sweat from the device to make the sweat available

  14. Comparative chemical analysis of dew and rain water

    NASA Astrophysics Data System (ADS)

    Lekouch, Imad; Mileta, Marina; Muselli, Marc; Milimouk-Melnytchouk, Irène; Šojat, Višnja; Kabbachi, Belkacem; Beysens, Daniel

    2010-02-01

    Dew and rain water were collected and analyzed during 3 years (2004-2006) in Zadar, Croatia. The goal was to characterize the chemical properties of dew water versus rain water (and the atmosphere in which they form) and to determine the extent to which they can be used as potable water. The corresponding parameters were measured: pH, electrical conductivity (EC), major anions (HCO 3-, Cl -, SO 42-, NO 3-), and major cations (NH 4+, Na +, K +, Ca 2+, Mg 2+). The mean pH and EC values were comparable for both dew and rain water, pH = 6.7 (dew) and pH = 6.35 (rain), EC = 195 µS cm - 1 (dew) and EC = 178 µS cm - 1 (rain). The ratio (SO 42- + NO 3-)/(Ca 2+ + Mg 2+) was lower than 1, indicating the alkaline nature of both dew and rain water. Both dew and rain water exhibited low mineralization. The analysis of the major ions showed that the concentration of cations is high compared to that of anions (presumably because the NO 2-, HCOO - and CH 3COO - ions were not measured), with Ca² +, Na + and Mg 2+ as the main ions. In order to discriminate between the marine and non-marine origin of ions, the sea-salt fraction (SSF) was calculated by taking Na + as a reference. The small SSF value in dew suggests a considerable contribution of non-marine origin for components Ca ²+, K +, SO 42- and NO 3-, except Cl -. In contrast, in rain water, the values of the non sea-salt fraction (NSSF) indicate that only Ca² + and NO 3- are not influenced by sea proximity. The study of the neutralization factor, NF, reveals the descending order of the cations in dew and rain water, NF Ca²+ > NF Mg²+ > NF K+ > NF NH4+. The dew and rain water are in conformity with the World Health Organization directives for potability, except for Mg 2+.

  15. Evaluating multimedia chemical persistence: Classification and regression tree analysis

    SciTech Connect

    Bennett, D.H.; McKone, T.E.; Kastenberg, W.E.

    2000-04-01

    For the thousands of chemicals continuously released into the environment, it is desirable to make prospective assessments of those likely to be persistent. Widely distributed persistent chemicals are impossible to remove from the environment and remediation by natural processes may take decades, which is problematic if adverse health or ecological effects are discovered after prolonged release into the environment. A tiered approach using a classification scheme and a multimedia model for determining persistence is presented. Using specific criteria for persistence, a classification tree is developed to classify a chemical as persistent or nonpersistent based on the chemical properties. In this approach, the classification is derived from the results of a standardized unit world multimedia model. Thus, the classifications are more robust for multimedia pollutants than classifications using a single medium half-life. The method can be readily implemented and provides insight without requiring extensive and often unavailable data. This method can be used to classify chemicals when only a few properties are known and can be used to direct further data collection. Case studies are presented to demonstrate the advantages of the approach.

  16. Evaluating Chemical Persistence in a Multimedia Environment: ACART Analysis

    SciTech Connect

    Bennett, D.H.; McKone, T.E.; Kastenberg, W.E.

    1999-02-01

    For the thousands of chemicals continuously released into the environment, it is desirable to make prospective assessments of those likely to be persistent. Persistent chemicals are difficult to remove if adverse health or ecological effects are later discovered. A tiered approach using a classification scheme and a multimedia model for determining persistence is presented. Using specific criteria for persistence, a classification tree is developed to classify a chemical as ''persistent'' or ''non-persistent'' based on the chemical properties. In this approach, the classification is derived from the results of a standardized unit world multimedia model. Thus, the classifications are more robust for multimedia pollutants than classifications using a single medium half-life. The method can be readily implemented and provides insight without requiring extensive and often unavailable data. This method can be used to classify chemicals when only a few properties are known and be used to direct further data collection. Case studies are presented to demonstrate the advantages of the approach.

  17. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets.

    PubMed

    Fusch, C; Slotboom, J; Fuehrer, U; Schumacher, R; Keisker, A; Zimmermann, W; Moessinger, A; Boesch, C; Blum, J

    1999-10-01

    An animal study to evaluate dual-energy x-ray absorptiometry (DXA) and magnetic resonance (MR) imaging and spectroscopy for measurement of neonatal body composition was performed. Twenty-three piglets with body weights ranging from 848 to 7550 g were used. After measuring total body water, animals were killed and body composition was assessed using DXA and MR (1.5 T; MR imaging, T1-weighted sagittal spin-echo sequence; MR spectroscopy, three-dimensional chemical shift imaging) as well as chemical carcass analysis (standard methods) after homogenization. Body composition by chemical analysis (percent of body weight, mean +/- SD) was as follows: body water, 75.3 +/- 3.9%; total protein, 13.9 +/- 8.8%; and total fat, 6.5 +/- 3.7%. Absolute content of fat and total ash was 7-674 and 35-237 g, respectively. Mean hydration of fat-free mass was 0.804 +/- 0.011 g/kg and decreased with increasing body weight (r2 = 0.419) independent of age. Using DXA, bone mineral content was highly correlated with calcium content (r2 = 0.992), and calcium per bone mineral content was 44.1 +/- 4.2%. DXA fat mass correlated with total fat (r2 = 0.961). Using MR, spectroscopy and chemical analysis were highly correlated with fat-to-water ratio (r2 = 0.984) and absolute fat content (r2 = 0.988). Total fat by MR imaging volumetry showed a lower correlation (r2 = 0.913) and overestimated total fat by a factor of 2.46. Conversion equations for DXA were developed (total fat = 1.31 x fat mass measured by DXA--68.8; calcium = 0.402 x bone mineral content + 1.7), which improved precision and accuracy of DXA measurements. In conclusion, both DXA and MR spectroscopy give accurate and precise estimates of neonatal body composition and may become valuable tools for the noninvasive assessment of neonatal growth and nutritional status. PMID:10509370

  18. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  19. Accurate Identification of Common Pathogenic Nocardia Species: Evaluation of a Multilocus Sequence Analysis Platform and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Xiao, Meng; Pang, Lu; Chen, Sharon C-A; Fan, Xin; Zhang, Li; Li, Hai-Xia; Hou, Xin; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Species identification of Nocardia is not straightforward due to rapidly evolving taxonomy, insufficient discriminatory power of conventional phenotypic methods and also of single gene locus analysis including 16S rRNA gene sequencing. Here we evaluated the ability of a 5-locus (16S rRNA, gyrB, secA1, hsp65 and rpoB) multilocus sequence analysis (MLSA) approach as well as that of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in comparison with sequencing of the 5'-end 606 bp partial 16S rRNA gene to provide identification of 25 clinical isolates of Nocardia. The 5'-end 606 bp 16S rRNA gene sequencing successfully assigned 24 of 25 (96%) clinical isolates to species level, namely Nocardia cyriacigeorgica (n = 12, 48%), N. farcinica (n = 9, 36%), N. abscessus (n = 2, 8%) and N. otitidiscaviarum (n = 1, 4%). MLSA showed concordance with 16S rRNA gene sequencing results for the same 24 isolates. However, MLSA was able to identify the remaining isolate as N. wallacei, and clustered N. cyriacigeorgica into three subgroups. None of the clinical isolates were correctly identified to the species level by MALDI-TOF MS analysis using the manufacturer-provided database. A small "in-house" spectral database was established incorporating spectra of five clinical isolates representing the five species identified in this study. After complementation with the "in-house" database, of the remaining 20 isolates, 19 (95%) were correctly identified to species level (score ≥ 2.00) and one (an N. abscessus strain) to genus level (score ≥ 1.70 and < 2.00). In summary, MLSA showed superior discriminatory power compared with the 5'-end 606 bp partial 16S rRNA gene sequencing for species identification of Nocardia. MALDI-TOF MS can provide rapid and accurate identification but is reliant on a robust mass spectra database. PMID:26808813

  20. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    SciTech Connect

    Rabitz, H.

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  1. Photoacoustic physio-chemical analysis and its implementation in deep tissue with a catheter setup

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhou-xian; Lin, Jian-die D.; Cheng, Qian; Wang, Xueding

    2015-03-01

    Photoacoustic (PA) measurements encode the information associated with both physical microstructures and chemical contents in biological tissues. A two-dimensional physio-chemical spectrogram (PCS) can be formulated by combining the power spectra of PA signals acquired at a series of optical wavelengths. The analysis of PCS, or namely PA physio-chemical analysis (PAPCA), enables the quantification of the relative concentrations and the spatial distributions of a variety of chemical components in the tissue. This study validated the feasibility of PAPCA in characterizing liver conditions during the progression of non-alcoholic fatty liver disease. A catheter based setup facilitating measurement in deep tissues was also tested.

  2. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  3. ATMOSPHERIC MEASUREMENTS OF SELECTED HAZARDOUS ORGANIC CHEMICALS

    EPA Science Inventory

    Methods were developed for the accurate analysis of an expanded list of hazardous organic chemicals in the ambient air. On-site analysis using an instrumented mobile laboratory was performed for a total of 44 organic chemicals. Twenty of these are suspected mutagens or carcinogen...

  4. HANDBOOK: METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES

    EPA Science Inventory

    Originally printed in 1973, this revised publication contains procedures for the chemical measurements required under Section 304(g) of Public Law 92-500 for use in the National Pollutant Discharge Elimination System (NPDES). umber of new methods are also included in this version...

  5. Sampling of vehicle emissions for chemical analysis and biological testing.

    PubMed Central

    Schuetzle, D

    1983-01-01

    Representative dilution tube sampling techniques for particulate and gas phase vehicle emissions are described using Teflon filter media and XAD-2 resin. More than 90% of the total gas (C8-C18) and particulate direct acting Ames assay mutagenicity (TA 98) was found in the particulate phase. The gas and particulate phase material was fractionated by HPLC into nonpolar, moderately polar and highly polar chemical fractions. The moderately polar chemical fraction of the particulates contained more than 50% of the direct acting Ames assay mutagenicity for the total extract. The concentration of oxygenated polynuclear aromatic hydrocarbons (oxy-PAH) and nitrated PAH (nitro-PAH) identified in the moderately polar particulate fractions are given. Nitro-PAH account for most of the direct-acting (TA 98) Ames assay mutagenicity in these moderately polar fractions. Reactions and kinetic expressions for chemical conversion of PAH are presented. Chemical conversion of PAH to nitro-PAH during dilution tube sampling of particulates on Teflon filters and gases on XAD-2 resin is a minor problem (representing 10-20%, on the average, of the 1-nitropyrene found in extracts) at short (46 min) sampling times, at low sampling temperatures (42 degrees C), and in diluted exhaust containing 3 ppm NO2. Particulate emissions collected from dilution tubes on filter media appear to be representative of what is emitted in the environment as based upon a comparison of highway and laboratory studies. PMID:6186484

  6. An Analysis of the Algebraic Method for Balancing Chemical Reactions.

    ERIC Educational Resources Information Center

    Olson, John A.

    1997-01-01

    Analyzes the algebraic method for balancing chemical reactions. Introduces a third general condition that involves a balance between the total amount of oxidation and reduction. Requires the specification of oxidation states for all elements throughout the reaction. Describes the general conditions, the mathematical treatment, redox reactions, and…

  7. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    ERIC Educational Resources Information Center

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  8. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  9. CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: a possible metabolic link to blackwater fever

    PubMed Central

    2013-01-01

    Background The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. Methods Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MSE analysis. Reactive oxygen species generation was also measured in human erythrocytes incubated in the presence of quinine with and without microsomes. Results The metabolites 3-hydroxyquinine, 2’-oxoquininone, and O-desmethylquinine were observed after incubation with CYPs 3A4 (3-hydroxyquinine and 2’-oxoquininone) and 2D6 (O-desmethylquinine). In addition, multiple hydroxylations were observed both on the quinoline core and the quinuclidine ring system. Of the five primary abundance CYPs tested, 3A4, 2D6, 2C9, and 2C19 all demonstrated activity toward quinine, while 1A2 did not. Further, quinine produced robust dose-dependent oxidative stress in human erythrocytes in the presence of microsomes. Conclusions Taken in context, these data suggest a CYP-mediated link between quinine metabolism and the poorly understood haemolytic condition known as blackwater fever, often associated with quinine ingestion. PMID:23800033

  10. Identification of fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based on two video recordings.

    PubMed

    Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild

    2013-08-01

    This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies. PMID:23343036

  11. Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer

    PubMed Central

    Xie, Xuesheng; Liu, Changpeng; Lin, Wei; Zhan, Baoming; Dong, Changjun; Song, Zhen; Wang, Shilei; Qi, Yingguo; Wang, Jiali; Gu, Zengquan

    2016-01-01

    The aim of the present study was to investigate the association between platelet microRNA-96 (miR-96) expression levels and the occurrence of deep vein thrombosis (DVT) in orthopedic patients. A total of consecutive 69 orthopedic patients with DVT and 30 healthy individuals were enrolled. Ultrasonic color Doppler imaging was performed on lower limb veins after orthopedic surgery to determine the occurrence of DVT. An enzyme-linked fluorescent assay was performed to detect the levels of D-dimer in plasma. A quantitative polymerase chain reaction assay was performed to determine the expression levels of miR-96. Expression levels of platelet miR-96 were significantly increased in orthopedic patients after orthopedic surgery. miR-96 expression levels in orthopedic patients with DVT at days 1, 3 and 7 after orthopedic surgery were significantly increased when compared with those in the control group. The increased miR-96 expression levels were correlated with plasma D-dimer levels in orthopedic patients with DVT. However, for the orthopedic patients in the non-DVT group following surgery, miR-96 expression levels were correlated with plasma D-dimer levels. In summary, the present results suggest that the expression levels of miR-96 may be associated with the occurrence of DVT. The occurrence of DVT may be accurately predicted by comprehensive analysis of the levels of miR-96 and plasma D-dimer. PMID:27588107

  12. Robust Algorithm for Alignment of Liquid Chromatography-Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis Pipeline

    SciTech Connect

    Jaitly, Navdeep; Monroe, Matthew E.; Petyuk, Vladislav A.; Clauss, Therese RW; Adkins, Joshua N.; Smith, Richard D.

    2006-11-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative quantity. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate results from these techniques, variations in mass and elution time measurements between related analyses are corrected by using algorithms designed to align the various types of results: LC-MS/MS vs. LC-MS/MS, LC-MS vs. LC-MS/MS, and LC-MS vs. LC-MS. Described herein are new algorithms referred to collectively as Liquid Chromatography based Mass Spectrometric Warping and Alignment of Retention times of Peptides (LCMSWARP) which use a dynamic elution time warping approach similar to traditional algorithms that correct variation in elution time using piecewise linear functions. LCMSWARP is compared to a linear alignment algorithm that assumes a linear transformation of elution time between analyses. LCMSWARP also corrects for drift in mass measurement accuracies that are often seen in an LC-MS analysis due to factors such as analyzer drift. We also describe the alignment of LC-MS results and provide examples of alignment of analyses from different chromatographic systems to demonstrate more complex transformation functions.

  13. Accurate Analysis and Characterization of Silicon Field Effect Transistor-Based Terahertz Wave Detector with Quasi-Plasma Two-Dimensional Electron Gas.

    PubMed

    Kim, Kwan Sung; Ryu, Min Woo; Lee, Jeong Seop; Kim, Kyung Rok

    2016-05-01

    We report the nonresonant plasmonic terahertz (THz) wave detector based on the silicon (Si) field effect transistor (FET) with a technology computer-aided design (TCAD) platform. The plasma wave behavior has been modeled by a quasi-plasma electron box as a two-dimensional electron gas (2DEG) in the channel of the FET. The incoming alternating current (AC) signal as the THz wave radiation can induce the direct-current (DC) voltage difference between the source and drain, which is called the photoresponse. For accurate analysis of the modulation and propagation of the channel electron density as the plasma wave, we have characterized the quasi-plasma 2DEG model with two key parameters, such as quasi-plasma 2DEG length (I(QP)) and density (N(QP)). By using our normalization method, I(QP) and N(QP) is defined exactly as extracting the average point of the electron density. We also investigate the performance enhancement of the plasmonic terahertz wave detector based on Si FET by scaling down the gate oxide thickness (t(ox)), which is a significant parameter of FET-based plasmonic terahertz detector for the channel electron density modulation. According to scaling down t(ox), the responsivity (R(v)) and noise equivalent power (NEP), which are the important performance metrics of the THz wave detector, have been enhanced. The proposed methodologies will provide the advanced physical analysis and structural design platform for developing the plasmonic terahertz detectors operating in nonresonant regime. PMID:27483817

  14. What's the Point of a Raster ? Advantages of 3D Point Cloud Processing over Raster Based Methods for Accurate Geomorphic Analysis of High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2014-12-01

    High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.

  15. Chemical analysis of charged Li/SO(sub)2 cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Lawson, D.; Frank, H.; Halpert, G.; Barnes, J.; Bis, R.

    1987-01-01

    The initial focus of the program was to confirm that charging can indeed result in explosions and constitute a significant safety problem. Results of this initial effort clearly demonstrated that cells do indeed explode on charge and that charging does indeed constitute a real and severe safety problem. The results of the effort to identify the chemical reactions involved in and responsible for the observed behavior are described.

  16. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  17. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  18. Tattoo inks: legislation, pigments, metals and chemical analysis.

    PubMed

    Prior, Gerald

    2015-01-01

    Legal limits for chemical substances require that they are linked to clearly defined analytical methods. Present limits for certain chemicals in tattoo and permanent make-up inks do not mention analytical methods for the detection of metals, polycyclic aromatic hydrocarbons or forbidden colourants. There is, therefore, no established method for the determination of the quantities of these chemicals in tattoo and permanent make-up inks. Failing to provide an appropriate method may lead to unqualified and questionable results which often cause legal disputes that are ultimately resolved by a judge with regard to the method that should have been applied. Analytical methods are tuned to exactly what is to be found and what causes the health problems. They are extremely specific. Irrespective of which is the correct method for detecting metals in tattoo inks, the focus should be on the actual amounts of ink in the skin. CTL® has conducted experiments to determine these amounts and these experiments are crucial for toxicological evaluations and for setting legal limits. When setting legal limits, it is essential to also incorporate factors such as daily consumption, total uptake and frequency of use. A tattoo lasts for several decades; therefore, the limits that have been established for heavy metals used in drinking water or soap are not relevant. Drinking water is consumed on a daily basis and soap is used several times per week, while tattooing only occurs once. PMID:25833637

  19. Miniaturised wireless smart tag for optical chemical analysis applications.

    PubMed

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. PMID:24274311

  20. Analysis and reduction of chemical models under uncertainty.

    SciTech Connect

    Oxberry, Geoff; Debusschere, Bert J.; Najm, Habib N.

    2008-08-01

    While models of combustion processes have been successful in developing engines with improved fuel economy, more costly simulations are required to accurately model pollution chemistry. These simulations will also involve significant parametric uncertainties. Computational singular perturbation (CSP) and polynomial chaos-uncertainty quantification (PC-UQ) can be used to mitigate the additional computational cost of modeling combustion with uncertain parameters. PC-UQ was used to interrogate and analyze the Davis-Skodje model, where the deterministic parameter in the model was replaced with an uncertain parameter. In addition, PC-UQ was combined with CSP to explore how model reduction could be combined with uncertainty quantification to understand how reduced models are affected by parametric uncertainty.

  1. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S

  2. Accurate Identification of Common Pathogenic Nocardia Species: Evaluation of a Multilocus Sequence Analysis Platform and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Chen, Sharon C-A.; Fan, Xin; Zhang, Li; Li, Hai-Xia; Hou, Xin; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Species identification of Nocardia is not straightforward due to rapidly evolving taxonomy, insufficient discriminatory power of conventional phenotypic methods and also of single gene locus analysis including 16S rRNA gene sequencing. Here we evaluated the ability of a 5-locus (16S rRNA, gyrB, secA1, hsp65 and rpoB) multilocus sequence analysis (MLSA) approach as well as that of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in comparison with sequencing of the 5’-end 606 bp partial 16S rRNA gene to provide identification of 25 clinical isolates of Nocardia. The 5’-end 606 bp 16S rRNA gene sequencing successfully assigned 24 of 25 (96%) clinical isolates to species level, namely Nocardia cyriacigeorgica (n = 12, 48%), N. farcinica (n = 9, 36%), N. abscessus (n = 2, 8%) and N. otitidiscaviarum (n = 1, 4%). MLSA showed concordance with 16S rRNA gene sequencing results for the same 24 isolates. However, MLSA was able to identify the remaining isolate as N. wallacei, and clustered N. cyriacigeorgica into three subgroups. None of the clinical isolates were correctly identified to the species level by MALDI-TOF MS analysis using the manufacturer-provided database. A small “in-house” spectral database was established incorporating spectra of five clinical isolates representing the five species identified in this study. After complementation with the “in-house” database, of the remaining 20 isolates, 19 (95%) were correctly identified to species level (score ≥ 2.00) and one (an N. abscessus strain) to genus level (score ≥ 1.70 and < 2.00). In summary, MLSA showed superior discriminatory power compared with the 5’-end 606 bp partial 16S rRNA gene sequencing for species identification of Nocardia. MALDI-TOF MS can provide rapid and accurate identification but is reliant on a robust mass spectra database. PMID:26808813

  3. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    ERIC Educational Resources Information Center

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  4. Analysis of solids remaining following chemical cleaning in tank 6F

    SciTech Connect

    Poirier, Michael R.; Fondeur, Fernando F.; Missimer, David M.; Summer, Michael E.; Fink, Samuel D.

    2010-02-05

    Following chemical cleaning, a solid sample was collected and submitted to Savannah River National Laboratory (SRNL) for analysis. SRNL analyzed this sample by X-ray Diffraction (XRD) and scanning electron microscopy (SEM) to determine the composition of the solids remaining in Tank 6F and to assess the effectiveness of the chemical cleaning process.

  5. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    EPA Science Inventory

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  6. Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.

    PubMed

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1968-10-01

    The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper). PMID:17738182

  7. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state.

    PubMed

    Vander Wal, Randy L; Bryg, Vicky M; Hays, Michael D

    2011-03-15

    Carbonaceous aerosols can vary in elemental content, surface chemistry, and carbon nano-structure. Each of these properties is related to the details of soot formation. Fuel source, combustion process (affecting formation and growth conditions), and postcombustion exhaust where oxidation occurs all contribute to the physical structure and surface chemistry of soot. Traditionally such physical and chemical parameters have been measured separately by various techniques. Presented here is the unified measurement of these characteristics using X-ray photoelectron spectroscopy (XPS). In the present study, XPS is applied to combustion soot collected from a diesel engine (running biodiesel and pump-grade fuels); jet engine; and institutional, plant, and residential oil-fired boilers. Elemental composition is mapped by a survey scan over a broad energy range. Surface chemistry and carbon nanostructure are quantified by deconvolution of high-resolution scans over the C1s region. This combination of parameters forms a distinct matrix of identifiers for the soots from these sources. PMID:21322576

  8. Apparatus and method for performing microfluidic manipulations for chemical analysis

    SciTech Connect

    Ramsey, J.M.

    1999-12-14

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  9. Apparatus and method for performing microfluidic manipulations for chemical analysis

    DOEpatents

    Ramsey, J. Michael

    2002-01-01

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolitographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  10. Apparatus and method for performing microfluidic manipulations for chemical analysis

    DOEpatents

    Ramsey, J. Michael

    1999-01-01

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  11. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  12. A Psychometric Analysis of the Chemical Concepts Inventory

    ERIC Educational Resources Information Center

    Barbera, Jack

    2013-01-01

    designed to assess the alternate conceptions of students in high school or first-semester college chemistry. The instrument was published in 2002 along with an analysis of its data from a test population. This study supports the initial analysis and expands on the psychometric…

  13. Multiple automated headspace in-tube extraction for the accurate analysis of relevant wine aroma compounds and for the estimation of their relative liquid-gas transfer rates.

    PubMed

    Zapata, Julián; Lopez, Ricardo; Herrero, Paula; Ferreira, Vicente

    2012-11-30

    An automated headspace in-tube extraction (ITEX) method combined with multiple headspace extraction (MHE) has been developed to provide simultaneously information about the accurate wine content in 20 relevant aroma compounds and about their relative transfer rates to the headspace and hence about the relative strength of their interactions with the matrix. In the method, 5 μL (for alcohols, acetates and carbonyl alcohols) or 200 μL (for ethyl esters) of wine sample were introduced in a 2 mL vial, heated at 35°C and extracted with 32 (for alcohols, acetates and carbonyl alcohols) or 16 (for ethyl esters) 0.5 mL pumping strokes in four consecutive extraction and analysis cycles. The application of the classical theory of Multiple Extractions makes it possible to obtain a highly reliable estimate of the total amount of volatile compound present in the sample and a second parameter, β, which is simply the proportion of volatile not transferred to the trap in one extraction cycle, but that seems to be a reliable indicator of the actual volatility of the compound in that particular wine. A study with 20 wines of different types and 1 synthetic sample has revealed the existence of significant differences in the relative volatility of 15 out of 20 odorants. Differences are particularly intense for acetaldehyde and other carbonyls, but are also notable for alcohols and long chain fatty acid ethyl esters. It is expected that these differences, linked likely to sulphur dioxide and some unknown specific compositional aspects of the wine matrix, can be responsible for relevant sensory changes, and may even be the cause explaining why the same aroma composition can produce different aroma perceptions in two different wines. PMID:23102525

  14. X-RAY, MICROSCOPE, AND WET CHEMICAL TECHNIQUES: COMPLEMENTARY TEAM FOR DEPOSIT ANALYSIS

    EPA Science Inventory

    Commonly used techniques for the analysis of potable water scale and corrosion deposits do not provide equivalent information about the chemical nature and significance of the deposits. ptical examination, with unaided eye and with microscopes, provides some useful information. -...

  15. Chemical analysis and sampling techniques for geothermal fluids and gases at the Fenton Hill Laboratory

    SciTech Connect

    Trujillo, P.E.; Counce, D.; Grigsby, C.O.; Goff, F.; Shevenell, L.

    1987-06-01

    A general description of methods, techniques, and apparatus used for the sampling, chemical analysis, and data reporting of geothermal gases and fluids is given. Step-by-step descriptions of the procedures are included in the appendixes.

  16. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    SciTech Connect

    Dreizler, Andreas; Fried, Alan; Gord, James R

    2007-07-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica.

  17. Airborne photography of chemical releases and analysis of twilight sky brightness data, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    The photography from aboard an aircraft of chemical releases is reported. The equipment installation on the aircraft is described, and photographs of the releases are included. An extensive analysis of twilight sky photographs is presented.

  18. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  19. Toxic hazard and chemical analysis of leachates from furfurylated wood.

    PubMed

    Pilgård, Annica; Treu, Andreas; van Zeeland, Albert N T; Gosselink, Richard J A; Westin, Mats

    2010-09-01

    The furfurylation process is an extensively investigated wood modification process. Furfuryl alcohol molecules penetrate into the wood cell wall and polymerize in situ. This results in a permanent swelling of the wood cell walls. It is unclear whether or not chemical bonds exist between the furfuryl alcohol polymer and the wood. In the present study, five different wood species were used, both hardwoods and softwoods. They were treated with three different furfurylation procedures and leached according to three different leaching methods. The present study shows that, in general, the leachates from furfurylated wood have low toxicity. It also shows that the choice of leaching method is decisive for the outcome of the toxicity results. Earlier studies have shown that leachates from wood treated with furfuryl alcohol prepolymers have higher toxicity to Vibrio fischeri than leachates from wood treated with furfuryl alcohol monomers. This is probably attributable to differences in leaching of chemical compounds. The present study shows that this difference in the toxicity most likely cannot be attributed to maleic acid, furan, furfural, furfuryl alcohol, or 2-furoic acid. However, the difference might be caused by the two substances 5-hydroxymethylfurfural and 2,5-furandimethanol. The present study found no difference in the amount of leached furfuryl alcohol between leachates from furfurylated softwood and furfurylated hardwood species. Earlier studies have indicated differences in grafting of furfuryl alcohol to lignin. However, nothing was found in the present study that could support this. The leachates of furfurylated wood still need to be PMID:20821648

  20. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    NASA Technical Reports Server (NTRS)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; Gellert, R.; Achilles, C. N..; Rampe, E. B.; Bristow, T. F.; Crisp, J. A.; Sarrazin, P. C.; Farmer, J. D.; DesMarais, D. J.; Grotzinger, J. P.; Stolper, E. M.; Morookian, J. M.; Wilson, M. A.; Spanovich, N.; Anderson, R. C.

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  1. New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis

    PubMed Central

    Austero, Marjorie S.; Donius, Amalie E.; Wegst, Ulrike G. K.; Schauer, Caroline L.

    2012-01-01

    Chitosan (CS), the deacetylated form of chitin, the second most abundant, natural polysaccharide, is attractive for applications in the biomedical field because of its biocompatibility and resorption rates, which are higher than chitin. Crosslinking improves chemical and mechanical stability of CS. Here, we report the successful utilization of a new set of crosslinkers for electrospun CS. Genipin, hexamethylene-1,6-diaminocarboxysulphonate (HDACS) and epichlorohydrin (ECH) have not been previously explored for crosslinking of electrospun CS. In this first part of a two-part publication, we report the morphology, determined by field emission scanning electron microscopy (FESEM), and chemical interactions, determined by Fourier transform infrared microscopy, respectively. FESEM revealed that CS could successfully be electrospun from trifluoroacetic acid with genipin, HDACS and ECH added to the solution. Diameters were 267 ± 199 nm, 644 ± 359 nm and 896 ± 435 nm for CS–genipin, CS–HDACS and CS–ECH, respectively. Short- (15 min) and long-term (72 h) dissolution tests (T600) were performed in acidic, neutral and basic pHs (3, 7 and 12). Post-spinning activation by heat and base to enhance crosslinking of CS–HDACS and CS–ECH decreased the fibre diameters and improved the stability. In the second part of this publication, we report the mechanical properties of the fibres. PMID:22628209

  2. THE INTERACTIVE DECISION COMMITTEE FOR CHEMICAL TOXICITY ANALYSIS.

    PubMed

    Kang, Chaeryon; Zhu, Hao; Wright, Fred A; Zou, Fei; Kosorok, Michael R

    2012-01-01

    We introduce the Interactive Decision Committee method for classification when high-dimensional feature variables are grouped into feature categories. The proposed method uses the interactive relationships among feature categories to build base classifiers which are combined using decision committees. A two-stage or a single-stage 5-fold cross-validation technique is utilized to decide the total number of base classifiers to be combined. The proposed procedure is useful for classifying biochemicals on the basis of toxicity activity, where the feature space consists of chemical descriptors and the responses are binary indicators of toxicity activity. Each descriptor belongs to at least one descriptor category. The support vector machine, the random forests, and the tree-based AdaBoost algorithms are utilized as classifier inducers. Forward selection is used to select the best combinations of the base classifiers given the number of base classifiers. Simulation studies demonstrate that the proposed method outperforms a single large, unaggregated classifier in the presence of interactive feature category information. We applied the proposed method to two toxicity data sets associated with chemical compounds. For these data sets, the proposed method improved classification performance for the majority of outcomes compared to a single large, unaggregated classifier. PMID:24415822

  3. Analysis of residual chemicals on filtering facepiece respirators after decontamination.

    PubMed

    Salter, W B; Kinney, K; Wallace, W H; Lumley, A E; Heimbuch, B K; Wander, J D

    2010-08-01

    The N95 filtering facepiece respirator (FFR) is commonly used to protect individuals from infectious aerosols. Health care experts predict a shortage of N95 FFRs if a severe pandemic occurs, and an option that has been suggested for mitigating such an FFR shortage is to decontaminate and reuse the devices. Before the effectiveness of this strategy can be established, many parameters affecting respiratory protection must be measured: biocidal efficacy of the decontamination treatment, filtration performance, pressure drop, fit, and toxicity to the end user post treatment. This research effort measured the amount of residual chemicals created or deposited on six models of FFRs following treatment by each of 7 simple decontamination technologies. Measured amounts of decontaminants retained by the FFRs treated with chemical disinfectants were small enough that exposure to wearers will be below the permissible exposure limit (PEL). Toxic by-products were also evaluated, and two suspected toxins were detected after ethylene oxide treatment of FFR rubber straps. The results provide encouragement to efforts promoting the evolution of effective strategies for decontamination and reuse of FFRs. PMID:20526947

  4. Production and Chemical Analysis of Cometary Ice Tholins

    NASA Astrophysics Data System (ADS)

    McDonald, Gene D.; Whited, Linda J.; DeRuiter, Cynthia; Khare, Bishun N.; Patnaik, Archita; Sagan, Carl

    1996-07-01

    Organic heteropolymers that we call here ice tholin II have been produced by plasma discharge irradiation of water/methanol/carbon dioxide/ethane cocondensed ices in a rough simulation of cometary chemistry. The radiation yield of these organic heteropolymers is approximately 10-26g/eV. Intermediate products including polyalcohols, ethers, esters, carboxylic acids, and hydrocarbons are also produced. No detectable polyoxymethylene is generated in this experiment. Preliminary chemical analyses of ice tholin using spectroscopic and chromatographic techniques lead to the conclusion that ice tholin contains a significant degree of polyalcohol functionality, as well as aliphatic hydrocarbon groups and carbonyl-containing groups such as ketones and esters. Ice tholin II shows some spectroscopic similarities to 1:6 ethane/water ice tholin (ice tholin I), but overall the two are chemically distinct. Ice tholins may be difficult to detect in comets due to their low volatility, but nevertheless may have been delivered to the early Earth by cometary impacts and interplanetary dust particles. These polyalcohol-containing molecules would then have been available to participate in prebiotic chemistry, such as the synthesis of acyclic nucleic acid analogues which have been suggested as the first biomacromolecules

  5. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  6. Chemical recognition software

    SciTech Connect

    Wagner, J.S.; Trahan, M.W.; Nelson, W.E.; Hargis, P.J. Jr.; Tisone, G.C.

    1994-12-01

    We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures. even when the mixture is noisy and contaminated with unknowns.

  7. Chemical recognition software

    SciTech Connect

    Wagner, J.S.; Trahan, M.W.; Nelson, W.E.; Hargis, P.H. Jr.; Tisone, G.C.

    1994-06-01

    We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures, even when the mixture is noisy and contaminated with unknowns.

  8. Minimizing Errors in Numerical Analysis of Chemical Data.

    ERIC Educational Resources Information Center

    Rusling, James F.

    1988-01-01

    Investigates minimizing errors in computational methods commonly used in chemistry. Provides a series of examples illustrating the propagation of errors, finite difference methods, and nonlinear regression analysis. Includes illustrations to explain these concepts. (MVL)

  9. Laser applications to chemical analysis: an introduction by the feature editors

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Ramsey, J. Michael; Lucht, Robert P.

    1995-06-01

    This issue of Applied Optics features papers on the application of laser technology to chemical analysis. Many of the contributions, although not all, result from papers presented at the Fourth OSA Topical Meeting on Laser Applications to Chemical Analysis, which was held at Jackson Hole, Wyoming, March, 1994. This successful meeting, with nearly one hundred participants, continued the tradition of earlier LACA meetings to focus on the optical science of laser-based measurements of temperature and trace chemical assays in a wide variety of practical applications.

  10. Chemical analysis of electron beam curing of positive photoresist

    NASA Astrophysics Data System (ADS)

    Ross, Matthew F.; Christensen, Lorna D.; Magvas, John

    1994-05-01

    In this paper the chemical and thermal properties of electron beam cured photoresist were investigated and compared with conventional thermal curing methods. The photoresist used in this investigation was AZ P.4620, a positive novolak based photoresist formulated for thick film applications. The films were exposed with varying dosages using an electron beam photoresist curing system. The photoresist films were then analyzed for residual solvent content, photoactive compound decomposition, percentage of crosslinking, and film shrinkage as a function of exposure dose. These properties were then compared with the properties of resist films cured using conventional thermal curing methods. A model of photoresist curing chemistry as a function of dose is proposed as well as a method for optimizing the cure of the photoresist for different applications.

  11. Chemical analysis of surgical smoke by infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Sigrist, Markus W.

    2012-11-01

    The chemical composition of surgical smoke, a gaseous by-product of some surgical devices—lasers, drills, vessel sealing devices—is of great interest due to the many toxic components that have been found to date. For the first time, surgical smoke samples collected during routine keyhole surgery were analyzed with infrared laser spectroscopy. Traces (ppm range) of methane, ethane, ethylene, carbon monoxide and sevoflurane were detected in the samples which consisted mostly of carbon dioxide and water vapor. Except for the anaesthetic sevoflurane, none of the compounds were present at dangerous concentrations. Negative effects on the health of operation room personnel can be excluded for many toxic compounds found in earlier studies, since their concentrations are below recommended exposure limits.

  12. Improving uncertainty analysis in European Union risk assessment of chemicals.

    PubMed

    Verdonck, Frederik A M; Souren, Astrid; van Asselt, Marjolein B A; Van Sprang, Patrick A; Vanrolleghem, Peter A

    2007-07-01

    Handling uncertainty in curren European Union (EU) risk assessment of new and existing substances is problematic for several reasons. The known or quantifiable sources of uncertainty are mainly considered. Uncertainty is insufficiently, explicitly communicated to risk managers and decision makers but hidden and concealed in risk quotient numbers that appear to be certain and, therefore, create a false sense of certainty and protectiveness. The new EU chemical policy legislation, REACH, is an opportunity to learn from interdisciplinary thinking in order to evolve to smart risk assessment: an assessment in which awareness and openness to uncertainty is used to produce better characterizations and evaluations of risks. In a smart risk assessment context, quantifying uncertainty is not an aim but just a productive means to refine the assessment or to find alternative solutions for the problem at stake. Guidance and examples are given on how to differentiate, assess, and use uncertainty. PMID:17695106

  13. Comparative Analysis of Mutant Tyrosine Kinase Chemical Rescue†

    PubMed Central

    Muratore, Kathryn E.; Seeliger, Markus A.; Wang, Zhihong; Fomina, Dina; Neiswinger, Johnathan; Havranek, James J.; Baker, David; Kuriyan, John; Cole, Philip A.

    2009-01-01

    Protein tyrosine kinases are critical cell signaling enzymes. These enzymes have a highly conserved Arg residue in their catalytic loop which is present two residues or four residues downstream from an absolutely conserved Asp catalytic base. Prior studies on protein tyrosine kinases Csk and Src revealed the potential for chemical rescue of catalytically-deficient mutant kinases (Arg to Ala mutations) by small diamino compounds, particularly imidazole, however the potency and efficiency of rescue was greater for Src. This current study further examines the structural and kinetic basis of rescue for mutant Src as compared to mutant Abl tyrosine kinase. An X-ray crystal structure of R388A Src revealed the surprising finding that a histidine residue of the N-terminus of a symmetry-related kinase inserts into the active site of the adjacent Src and mimics the hydrogen bonding pattern seen in wild-type protein tyrosine kinases. Abl R367A shows potent and efficient rescue more comparable to Src, even though its catalytic loop is more like that of Csk. Various enzyme redesigns of the active sites indicate that the degree and specificity of rescue is somewhat flexible, but the overall properties of the enzymes and rescue agents play an overarching role. The newly discovered rescue agent 2-aminoimidazole is about as efficient as imidazole in rescuing R/A Src and Abl. Rate vs. pH studies with these imidazole analogs suggest that the protonated imidazolium is the preferred form for chemical rescue, consistent with structural models. The efficient rescue seen with mutant Abl points to the potential of this approach to be used effectively to analyze Abl phosphorylation pathways in cells. PMID:19260709

  14. Chemical pathway analysis of the Martian atmosphere: CO2-formation pathways

    NASA Astrophysics Data System (ADS)

    Stock, Joachim W.; Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.

    2012-05-01

    The chemical composition of a planetary atmosphere plays an important role for atmospheric structure, stability, and evolution. Potentially complex interactions between chemical species do not often allow for an easy understanding of the underlying chemical mechanisms governing the atmospheric composition. In particular, trace species can affect the abundance of major species by acting in catalytic cycles. On Mars, such cycles even control the abundance of its main atmospheric constituent CO2. The identification of catalytic cycles (or more generally chemical pathways) by hand is quite demanding. Hence, the application of computer algorithms is beneficial in order to analyze complex chemical reaction networks. Here, we have performed the first automated quantified chemical pathways analysis of the Martian atmosphere with respect to CO2-production in a given reaction system. For this, we applied the Pathway Analysis Program (PAP) to output data from the Caltech/JPL photochemical Mars model. All dominant chemical pathways directly related to the global CO2-production have been quantified as a function of height up to 86 km. We quantitatively show that CO2-production is dominated by chemical pathways involving HOx and Ox. In addition, we find that NOx in combination with HOx and Ox exhibits a non-negligible contribution to CO2-production, especially in Mars' lower atmosphere. This study reveals that only a small number of chemical pathways contribute significantly to the atmospheric abundance of CO2 on Mars; their contributions to CO2-production vary considerably with altitude. This analysis also endorses the importance of transport processes in governing CO2-stability in the Martian atmosphere. Lastly, we identify a previously unknown chemical pathway involving HOx, Ox, and HO2-photodissociation, contributing 8% towards global CO2-production by chemical pathways using recommended up-to-date values for reaction rate coefficients.

  15. Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to α-Al2O3

    USGS Publications Warehouse

    Pelinger, Judith A.; Eisenreich, Steven J.; Capel, Paul D.

    1993-01-01

    The sorption of hydrophobic organic chemicals (HOCs) to ??-Al2O3 was investigated with a headspace analysis method. The semiautomated headspace analyzer gave rapid, precise, and accurate results for a homologous series alkylbenzenes even at low percentages of solute mass sorbed (3-50%). Sorption experiments carried out with benzene alone indicated weak interactions with well-characterized aluminum oxide, and a solids concentration effect was observed. When the sorption coefficients for benzene alone obtained by headspace analysis were extrapolated up to the solids concentrations typically used in batch sorption experiments, the measured sorption coefficients agreed with reported sorption coefficients for HOCs and sediments of low fractional organic carbon content. Sorbed concentrations increased exponentially with aqueous concentration in isotherms with mixtures of alkylbenzenes, indicating solute-solute interactions at the mineral surface. Sorption was, however, greater than predicted for partitioning of a solute between its pure liquid phase and water, indicating additional influences of the surface and/or the structured liquid near the mineral surface. ?? 1993 American Chemical Society.

  16. Hyperdust : An advanced in-situ detection and chemical analysis of microparticles in space

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; Gruen, E.; Horanyi, M.; Kempf, S.; Maute, K.; Srama, R.

    2014-12-01

    Interplanetary dust that originates from comets and asteroids may be in different stages of Solar System evolution. Atmosphereless planetary bodies, e.g., planetary satellites, asteroids, or Kuiper belt objects are enshrouded in clouds of dust released by meteoroid impacts or by volcanism. The ejecta grains are samples from the surface of these objects and their analysis can be performed from orbit or flyby to determine the surface composition, interior structure and ongoing geochemical processes. Early dust mass spectrometers on the Halley missions had sufficient mass resolution in order to provide important cosmochemical information in the near-comet high dust flux environment. The Ulysses dust detector discovered interstellar grains within the planetary system (Gruen et al. A&A, 1994) and its twin detector on Galileo discovered the tenuous dust clouds around the Galilean satellites (Krueger et al., Icarus, 2003). The similar-sized Cosmic Dust Analyzer onboard the Cassini mission combined a highly sensitive dust detector with a low-mass resolution mass spectrometer. Compositional dust measurements from this instrument probed the deep interior of Saturn's Enceladus satellite (Postberg et al., Nature, 2009). Based on this experience new instrumentation was developed that combined the best attributes of all these predecessors and exceeded their capabilities in accurate trajectory determination. The Hyperdust instrument is a combination of a Dust Trajectory Sensor (DTS) together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number >100. The Hyperdust instrument is capable of distinguishing interstellar and interplanetary grains based on their trajectory

  17. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  18. Accurate measurement of time

    NASA Astrophysics Data System (ADS)

    Itano, Wayne M.; Ramsey, Norman F.

    1993-07-01

    The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.

  19. CHEMICAL ANALYSIS OF WET SCRUBBERS UTILIZING ION CHROMATOGRAPHY

    EPA Science Inventory

    The report describes the key elements required to develop a sampling and analysis program for a wet scrubber using ion chromatography as the main analytical technique. The first part of the report describes a sampling program for two different types of wet scrubbers: the venturi/...

  20. Rapid Screening of Complex Chemical Samples via Capillary Array Analysis

    SciTech Connect

    D. S. Anex; D. W. Neyer

    1998-11-01

    This report is a summary of the results of a two-year Laboratory-Directed Research and Development (LDRD) project that developed instrumentation and methods for capillary array analysis. During the course of this project, a new capillary array electrochromatography instrument was developed to perform eight simultaneous separations and provide complementary chromatographic information from each column on a single sample.

  1. Synthesis and analysis in studies of chemical evolution

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.; Hobish, M. K.; Kobayashi, K.; Hua, L. L.; Senaratne, N.

    1986-01-01

    Studies of the various processes that may have given rise to life on the Earth have demonstrated the appropriateness of an approach that makes use of analysis and synthesis. Analysis of extraterrestrial samples in the form of meteorites has demonstrated the presence of several precursors of biomolecules, most notably a full suite of nucleic acid bases and nucleotides of biological significance. These species were determined after exhaustive extraction of the sample and subsequent analysis using HPLC, GC, MS, and GC-MS. Procedural blanks indicate that these molecules are likely not the result of contamination during the extraction and analysis process. Similar species were found as products of spark discharge experiments in atmospheres thought to mimic primitive Earth conditions. These results indicate that the basic chemistry underlying these syntheses is common, and that life may not be unique to the Earth. Studies underway in the laboratory make use of proton nuclear magnetic resonance spectroscopy as a probe to assess associations between selected amino acids and any of several nucleotides comprising their genetic code and genetic anticode sequences. These studies demonstrate a clear selectivity by the anticode sequences, thus confirming the hydrophobicity studies performed by Lacey et al. These studies further support the contention that life is likely a natural result of the physics and chemistry of the universe.

  2. RAPID ON-SITE METHODS OF CHEMICAL ANALYSIS

    EPA Science Inventory

    The analysis of potentially hazardous air, water and soil samples collected and shipped to service laboratories off-site is time consuming and expensive. This Chapter addresses the practical alternative of performing the requisite analytical services on-site. The most significant...

  3. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  4. How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues?

    PubMed Central

    2013-01-01

    Background Forest residues represent an abundant and sustainable source of biomass which could be used as a biorefinery feedstock. Due to the heterogeneity of forest residues, such as hog fuel and bark, one of the expected challenges is to obtain an accurate material balance of these feedstocks. Current compositional analytical methods have been standardised for more homogenous feedstocks such as white wood and agricultural residues. The described work assessed the accuracy of existing and modified methods on a variety of forest residues both before and after a typical pretreatment process. Results When “traditional” pulp and paper methods were used, the total amount of material that could be quantified in each of the six softwood-derived residues ranged from 88% to 96%. It was apparent that the extractives present in the substrate were most influential in limiting the accuracy of a more representative material balance. This was particularly evident when trying to determine the lignin content, due to the incomplete removal of the extractives, even after a two stage water-ethanol extraction. Residual extractives likely precipitated with the acid insoluble lignin during analysis, contributing to an overestimation of the lignin content. Despite the minor dissolution of hemicellulosic sugars, extraction with mild alkali removed most of the extractives from the bark and improved the raw material mass closure to 95% in comparison to the 88% value obtained after water-ethanol extraction. After pretreatment, the extent of extractive removal and their reaction/precipitation with lignin was heavily dependent on the pretreatment conditions used. The selective removal of extractives and their quantification after a pretreatment proved to be even more challenging. Regardless of the amount of extractives that were originally present, the analytical methods could be refined to provide reproducible quantification of the carbohydrates present in both the starting material and

  5. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family.

    PubMed

    Nguyen, Thao; Aparicio, Mario; Saleh, Mahmoud A

    2015-01-01

    The triacylglycerol (TAG) structure and the regio-stereospecific distribution of fatty acids (FA) of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens), caraway (Carum carvi), cumin (Cuminum cyminum), coriander (Coriandrum sativum), anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), fennel (Foeniculum vulgare), and Khella (Ammi visnaga), all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v) using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs) from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES) using 1% boron trifluoride (BF₃) in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF) mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF) mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0), palmitoleic (C16:1n-9), stearic (C18:0), petroselinic (C18:1n-12), linoleic (C18:2n-6), linolinic (18:3n-3), and arachidic (C20:0) acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS) techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in

  6. Histology Verification Demonstrates That Biospectroscopy Analysis of Cervical Cytology Identifies Underlying Disease More Accurately than Conventional Screening: Removing the Confounder of Discordance

    PubMed Central

    Gajjar, Ketan; Ahmadzai, Abdullah A.; Valasoulis, George; Trevisan, Júlio; Founta, Christina; Nasioutziki, Maria; Loufopoulos, Aristotelis; Kyrgiou, Maria; Stasinou, Sofia Melina; Karakitsos, Petros; Paraskevaidis, Evangelos; Da Gama-Rose, Bianca; Martin-Hirsch, Pierre L.; Martin, Francis L.

    2014-01-01

    Background Subjective visual assessment of cervical cytology is flawed, and this can manifest itself by inter- and intra-observer variability resulting ultimately in the degree of discordance in the grading categorisation of samples in screening vs. representative histology. Biospectroscopy methods have been suggested as sensor-based tools that can deliver objective assessments of cytology. However, studies to date have been apparently flawed by a corresponding lack of diagnostic efficiency when samples have previously been classed using cytology screening. This raises the question as to whether categorisation of cervical cytology based on imperfect conventional screening reduces the diagnostic accuracy of biospectroscopy approaches; are these latter methods more accurate and diagnose underlying disease? The purpose of this study was to compare the objective accuracy of infrared (IR) spectroscopy of cervical cytology samples using conventional cytology vs. histology-based categorisation. Methods Within a typical clinical setting, a total of n = 322 liquid-based cytology samples were collected immediately before biopsy. Of these, it was possible to acquire subsequent histology for n = 154. Cytology samples were categorised according to conventional screening methods and subsequently interrogated employing attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. IR spectra were pre-processed and analysed using linear discriminant analysis. Dunn’s test was applied to identify the differences in spectra. Within the diagnostic categories, histology allowed us to determine the comparative efficiency of conventional screening vs. biospectroscopy to correctly identify either true atypia or underlying disease. Results Conventional cytology-based screening results in poor sensitivity and specificity. IR spectra derived from cervical cytology do not appear to discriminate in a diagnostic fashion when categories were based on conventional screening

  7. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family

    PubMed Central

    Nguyen, Thao; Aparicio, Mario; Saleh, Mahmoud A.

    2016-01-01

    The triacylglycerol (TAG) structure and the regio-stereospecific distribution of fatty acids (FA) of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens), caraway (Carum carvi), cumin (Cuminum cyminum), coriander (Coriandrum sativum), anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), fennel (Foeniculum vulgare), and Khella (Ammi visnaga), all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v) using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs) from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES) using 1% boron trifluoride (BF3) in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF) mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF) mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0), palmitoleic (C16:1n-9), stearic (C18:0), petroselinic (C18:1n-12), linoleic (C18:2n-6), linolinic (18:3n-3), and arachidic (C20:0) acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS) techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in

  8. Electrophysiological analysis of the nasal chemical senses in garter snakes.

    PubMed

    Inouchi, J; Wang, D; Jiang, X C; Kubie, J; Halpern, M

    1993-01-01

    Electroolfactogram and electrovomeronasogram recordings were made from garter snakes stimulated with vapor of amyl acetate, butanol and of earthworm wash. The olfactory epithelium was more sensitive than the vomeronasal epithelium to all three stimuli. Volatiles from prey washes were capable of stimulating the olfactory epithelium when delivered as airstreams. The vomeronasal epithelium was sensitive only to the air delivery of vapor of amyl acetate. Single unit recordings from the mitral cell layer of the accessory olfactory bulb of garter snakes were made in response to liquid delivery of a variety of chemical stimuli including classical odorants, amino acids and proteins derived from prey. All three classes of stimuli altered unit firing in the accessory olfactory bulb. Amyl acetate, earthworm wash, goldfish wash and non-volatile amino acids delivered as liquid stimuli to the vomeronasal epithelium produced responses in the accessory olfactory bulb that were more distinct and reliable than the electrovomeronasogram responses to airborne odorants recorded at the periphery. Both excitatory and inhibitory responses were observed in the accessory olfactory bulb of garter snakes. The direction of the response to a given stimulus differed for different neurons. Responses were frequently biphasic and could last longer than 50 seconds. Individual neurons responded to different classes of stimuli suggesting that they are broadly tuned. PMID:8386586

  9. Application of Key Events Analysis to Chemical Carcinogens and Noncarcinogens

    PubMed Central

    BOOBIS, ALAN R.; DASTON, GEORGE P.; PRESTON, R. JULIAN; OLIN, STEPHEN S.

    2009-01-01

    The existence of thresholds for toxicants is a matter of debate in chemical risk assessment and regulation. Current risk assessment methods are based on the assumption that, in the absence of sufficient data, carcinogenesis does not have a threshold, while noncarcinogenic endpoints are assumed to be thresholded. Advances in our fundamental understanding of the events that underlie toxicity are providing opportunities to address these assumptions about thresholds. A key events dose-response analytic framework was used to evaluate three aspects of toxicity. The first section illustrates how a fundamental understanding of the mode of action for the hepatic toxicity and the hepatocarcinogenicity of chloroform in rodents can replace the assumption of low-dose linearity. The second section describes how advances in our understanding of the molecular aspects of carcinogenesis allow us to consider the critical steps in genotoxic carcinogenesis in a key events framework. The third section deals with the case of endocrine disrupters, where the most significant question regarding thresholds is the possible additivity to an endogenous background of hormonal activity. Each of the examples suggests that current assumptions about thresholds can be refined. Understanding inter-individual variability in the events involved in toxicological effects may enable a true population threshold(s) to be identified. PMID:19690995

  10. Photoacoustic chemical sensing: layered systems and excitation source analysis

    NASA Astrophysics Data System (ADS)

    Marcus, Logan S.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    Photoacoustic spectroscopy (PAS) is a versatile tool that is well suited for the ranged interrogation of layered samples. We have previously demonstrated standoff photoacoustic (PA) chemical detection of condensed phase samples at one meter distance using an interferometric sensing platform. Current research investigates layered solid samples constructed from a thin layer of energetic material deposited on a substrate. The PA signal from the system, as measured by the interferometer, changes based on the differing optical and mechanical properties of the substrate. This signal variance must be understood in order to develop a sensor capable of detecting trace quantities of hazardous materials independent of the surface. Optical absorption and modal excitation are the two biggest sources of PA signal generated in the sample/substrate system. Finally, the mode of operation of the excitation source is investigated. Most PA sensing paradigms use a quantum cascade laser (QCL) operating in either pulsed or modulated CW mode. We will discuss photoacoustic signal generation with respect to these different operating modes.

  11. Chemical analysis applied to the radiation sterilization of solid ketoprofen

    NASA Astrophysics Data System (ADS)

    Colak, S.; Maquille, A.; Tilquin, B.

    2006-01-01

    The aim of this work is to investigate the feasibility of radiation sterilization of ketoprofen from a chemical point of view. Although irradiated ketoprofen has already been studied in the literature [Katusin-Razem et al., Radiat. Phys. Chem. 73 111-116 (2005)], new results, on the basis of electron spin resonance (ESR) measurements and the use of hyphenated techniques (GC-MS and LC-MS), are obtained. The ESR spectra of irradiated ketoprofen consists of four unresolved resonance peaks and the mean G-value of ketoprofen is found to be 4 +/- 0.9 nmoles/J, which is very small. HPLC-UV analyses indicate that no significant loss of ketoprofen is detected after irradiation. LC-MS-MS analyses show that the structures of the non-volatile final products are similar to ketoprofen. Benzaldehyde is detected in the irradiated samples after dynamic-extraction GC-MS. The analyses show that ketoprofen is radioresistant and therefore might be radiosterilized.

  12. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  13. Integrated separation and optical detection for novel on-chip chemical analysis

    SciTech Connect

    Warren, M.E.; Anex, D.S.; Rakestraw, D.; Gourley, P.L.

    1998-03-01

    This report represents the completion of a two years Laboratory Directed Research and Development (LDRD) program to investigate miniaturized systems for chemical detection and analysis. The future of advanced chemical detection and analysis is in miniature devices that are able to characterize increasingly complex samples, a laboratory on a chip. In this concept, chemical operations used to analyze complicated samples in a chemical laboratory sample handling, species separation, chemical derivitization and detection are incorporated into a miniature device. By using electrokinetic flow, this approach does not require pumps or valves, as fluids in microfabricated channels can be driven by externally applied voltages. This is ideal for sample handling in miniature devices. This project was to develop truly miniature on-chip optical systems based on Vertical Cavity Surface Emitting Lasers (VCSELs) and diffractive optics. These can be built into a complete system that also has on-chip electrokinetic fluid handling and chemical separation in a microfabricated column. The primary goal was the design and fabrication of an on-chip separation column with fluorescence sources and detectors that, using electrokinetic flow, can be used as the basis of an automated chemical analysis system. Secondary goals involved investigation of a dispersed fluorescence module that can be used to extend the versatility of the basic system and on chip, intracavity laser absorption as a high sensitivity detection technique.

  14. Advances in Mid-Infrared Spectroscopy for Chemical Analysis.

    PubMed

    Haas, Julian; Mizaikoff, Boris

    2016-06-12

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review. PMID:27070183

  15. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  16. Fixation and chemical analysis of single liquid particle

    NASA Astrophysics Data System (ADS)

    Kasahara, M.; Akashi, S.; Ma, C.-J.; Tohno, S.

    2000-08-01

    The sampling method and treatment procedures to fix liquid droplet as a solid particle were investigated and the elemental analysis of the fixed single particle was also tried applying PIXE and micro-PIXE analyses. Small liquid particles like fog droplet could be easily fixed by exposure to cyanoacrylate vapor within several minutes. Although large liquid particles like raindrops were also fixed successively, some of them were not perfect. Raindrops were easily fixed by freezing method. They existed in stable by exposure to cyanoacrylate vapor after freezing. The elemental concentration of single raindrop separated into 5 size ranges was determined using PIXE and micro-PIXE analysis. The concentration was dependent upon the raindrop size.

  17. Neural network based analysis for chemical sensor arrays

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-04-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.

  18. Chemical analysis of outgassing contaminants on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Mcnutt, R. C.

    1973-01-01

    Methods for analyzing and characterizing outgassing contaminants from such materials as RTV 501 potting compound and S 13 G paint are presented. Fractional distillation of a gross distillate from RTV 501 rubber was carried out and the distilled fractions examined as to their ultraviolet and infrared spectra by gas liquid chromatography. A sensitive technique for structural analysis and molecular identification was found to consist of a gas chromatography-mass spectroscopy system, which was determined to be economically unfeasible at present.

  19. Global Analysis Reveals Families of Chemical Motifs Enriched for hERG Inhibitors

    PubMed Central

    Du, Fang; Babcock, Joseph J.; Yu, Haibo; Zou, Beiyan; Li, Min

    2015-01-01

    Promiscuous inhibition of the human ether-à-go-go-related gene (hERG) potassium channel by drugs poses a major risk for life threatening arrhythmia and costly drug withdrawals. Current knowledge of this phenomenon is derived from a limited number of known drugs and tool compounds. However, in a diverse, naïve chemical library, it remains unclear which and to what degree chemical motifs or scaffolds might be enriched for hERG inhibition. Here we report electrophysiology measurements of hERG inhibition and computational analyses of >300,000 diverse small molecules. We identify chemical ‘communities’ with high hERG liability, containing both canonical scaffolds and structurally distinctive molecules. These data enable the development of more effective classifiers to computationally assess hERG risk. The resultant predictive models now accurately classify naïve compound libraries for tendency of hERG inhibition. Together these results provide a more complete reference map of characteristic chemical motifs for hERG liability and advance a systematic approach to rank chemical collections for cardiotoxicity risk. PMID:25700001

  20. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  1. Wet chemical analysis for the semiconductor industry—a total view

    NASA Astrophysics Data System (ADS)

    Balazs, Marjorie K.

    1998-11-01

    The analysis of liquids to obtain information about semiconductor materials is known in the industry as "wet chemistry" and has been used since the beginning of the production of IC's. However, the analytical procedures never gained any significant attention until the mid 70's when the absolute measurement of phosphorus in PSG films by wet chemical analysis was incorporated by several industrial labs as the standard method of analysis. Today, over 120 different procedures are used to gain specific information about incoming and processed materials used in the industry. These procedures cover ultra pure water, chemicals, thin films, and wafer cleanliness. Furthermore, they are used to evaluate the cleanliness of reactors, cleanrooms, and components of all kinds that are used in cleanrooms, wet benches and reactors. This paper will cover a total look at the applications of wet chemical processes and the usefulness of the data obtained from these analytical techniques. The paper will cover not only those tests that one would expect to be done by wet processes such as the analysis of metals in chemicals, but will also cover many unusual applications of wet chemical analysis such as their usefulness in evaluating products from a variety of reactors. Included in this part of the presentation will be a unique application to determine ion implantation contaminants and recent advances for analyzing 300mm wafers without breaking them and the analysis of contamination metals in copper thin films. Actual data will be provided for each of the analytical techniques presented.

  2. Different Models Used to Interpret Chemical Changes: Analysis of a Curriculum and Its Impact on French Students' Reasoning

    ERIC Educational Resources Information Center

    Kermen, Isabelle; Meheut, Martine

    2009-01-01

    We present an analysis of the new French curriculum on chemical changes describing the underlying models and highlighting their relations to the empirical level. The authors of the curriculum introduced a distinction between the chemical change of a chemical system and the chemical reactions that account for it. We specify the different roles of…

  3. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes

    PubMed Central

    Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-01-01

    We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a ∼21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes. PMID:19740761

  4. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.

    2011-02-01

    Femtosecond laser induced breakdown spectroscopy (LIBS) was used to identify the spatial resolution limitations and assess the minimal detectable mass restrictions in laser-ablation based chemical analysis. The atomic emission of sodium (Na) and potassium (K) dopants in transparent dielectric Mica matrices was studied, to find that both these elements could be detected from 450 nm diameter ablation craters, full-width-at-half-maximum (FWHM). Under optimal conditions, mass as low as 220 ag was measured, demonstrating the feasibility of using laser-ablation based chemical analysis to achieve high spatial resolution elemental analysis in real-time and at atmospheric pressure conditions.

  5. Inorganic chemical analysis of environmental materials—A lecture series

    USGS Publications Warehouse

    Crock, J.G.; Lamothe, P.J.

    2011-01-01

    At the request of the faculty of the Colorado School of Mines, Golden, Colorado, the authors prepared and presented a lecture series to the students of a graduate level advanced instrumental analysis class. The slides and text presented in this report are a compilation and condensation of this series of lectures. The purpose of this report is to present the slides and notes and to emphasize the thought processes that should be used by a scientist submitting samples for analyses in order to procure analytical data to answer a research question. First and foremost, the analytical data generated can be no better than the samples submitted. The questions to be answered must first be well defined and the appropriate samples collected from the population that will answer the question. The proper methods of analysis, including proper sample preparation and digestion techniques, must then be applied. Care must be taken to achieve the required limits of detection of the critical analytes to yield detectable analyte concentration (above "action" levels) for the majority of the study's samples and to address what portion of those analytes answer the research question-total or partial concentrations. To guarantee a robust analytical result that answers the research question(s), a well-defined quality assurance and quality control (QA/QC) plan must be employed. This QA/QC plan must include the collection and analysis of field and laboratory blanks, sample duplicates, and matrix-matched standard reference materials (SRMs). The proper SRMs may include in-house materials and/or a selection of widely available commercial materials. A discussion of the preparation and applicability of in-house reference materials is also presented. Only when all these analytical issues are sufficiently addressed can the research questions be answered with known certainty.

  6. Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis.

    PubMed

    Kim, Jungkyu; Stockton, Amanda M; Jensen, Erik C; Mathies, Richard A

    2016-02-23

    Programmable microfluidic platforms (PMPs) are enabling significant advances in the utility of microfluidics for chemical and biochemical analysis. Traditional microfluidic devices are analogous to application-specific devices - a new device is needed to implement each new chemical or biochemical assay. PMPs are analogous to digital electronic processors - all that is needed to implement a new assay is a change in the order of operations conducted by the device. In this review, we introduce PMPs based on normally-closed microvalves. We discuss recent applications of PMPs in diverse fields including genetic analysis, antibody-based biomarker analysis, and chemical analysis in planetary exploration. Prospects, challenges, and future concepts for this emerging technology will also be presented. PMID:26864083

  7. Contamination from electrically conductive silicone tubing during aerosol chemical analysis

    SciTech Connect

    Yu, Yong; Alexander, M. L.; Perraud, Veronique; Bruns, Emily; Johnson, Stan; Ezell, Michael J.; Finlayson-Pitts, Barbara J.

    2009-06-01

    Electrically conductive silicone tubing is used to minimize losses in sampling lines during the analysis of airborne particle size distributions and number concentrations. We report contamination from this tubing using gas chromatography-mass spectrometry (GC-MS) of filter-collected samples as well as by particle mass spectrometry. Comparison of electrically conductive silicone and stainless steel tubing showed elevated siloxanes only for the silicone tubing. The extent of contamination increased with length of tubing to which the sample was exposed, and decreased with increasing relative humidity.

  8. Chemical analysis of the hyphal wall of Schizophyllum commune.

    PubMed

    Sietsma, J H; Wessels, J G

    1977-01-24

    1. Purified hyphal wall fragments of Schizophyllum commune are analysed and shown to consist of glucose (67.6%), mannose (3.4%), xylose (0.2%), (N-acetyl)glucosamine (12.5%), amino acids (6.4%) and some lipid material (3.0%). 2. The previously proposed structures of two glucans located at the hyphal wall surface (Wessels et al. (1972) Biochim. Biophys. Acta 273, 346-358) were essentially confirmed using methylation analysis. The mucilaginous glucan consists of 1,3-linked beta-glucan chains with branches of single glucose units attached by beta-1,6 linkages on every third unit, on average, along the chain. The alkali soluble S-glucan is an exclusively 1,3-linked alpha-glucan. 3. The alkali-insoluble R-glucan, occurring in close association with chitin, in the inner wall layer, has been characterised by methylation analysis, X-ray diffraction, enzymatic hydrolysis with purified exo-beta-1,3-glucanase and Smith degradation. It appears to be a highly branched beta-1,3,beta-1,6-glucan and a model of this glucan is proposed. Certain parts of this highly insoluble R-glucan bear a close structural similarity to the mucilaginous glucan present at the outer wall surface and in the medium. PMID:189831

  9. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  10. Integrated optical sensor platform for multiparameter bio-chemical analysis.

    PubMed

    Lützow, Peter; Pergande, Daniel; Heidrich, Helmut

    2011-07-01

    There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security to point of care and medical diagnostics. Here, we highlight the theory and show first experimental results on a novel approach targeting the realization of massively multiplexed sensor arrays. The presented sensor platform is based on arrays of frequency-modulated integrated optical microring resonators (MRR) fed by a single bus waveguide combined with lock-in detection to filter out in a reliable and simple manner their individual response to external stimuli. The working principle is exemplified on an array of four thermo-optically modulated MRR. It is shown that with this technique tracking of individual resonances is possible even in case of strong spectral overlap. PMID:21747482

  11. Chemical Analysis of Fornax dwarf spheroidal with VLT/FLAMES

    NASA Astrophysics Data System (ADS)

    Letarte, B.; Hill, V.; Tolstoy, E.

    The Fornax dSph is a nearby dwarf spheroidal galaxy with five globular clusters and a complex star formation history. It is one of the most massive dwarf spheroidal galaxies in the Local Group. Using the FLAMES/GIRAFFE spectrograph on the VLT, we have obtained high resolution (R˜20 000) spectra for 80 Red Giant Branch stars in the central 25' of the Fornax dSph. We present abundance ratios for some of the elements we have in our analysis, including alpha (Mg and Ca), iron-peak (Fe and Ni) and heavy (Y, Ba, Eu) elements. We compare our results with the Milky Way (MW) and our recent VLT/UVES abundance determinations of nine individual stars in Fornax globular clusters.

  12. Differentiation of the Chemical Profile of Piper arboreum Tissues Using NIR Spectrometry and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Duarte, M. S.; Pontes, M. J. C.; Ramos, C. S.

    2016-01-01

    The differentiation of chemical profiles from Piper arboreum tissues using near infrared (NIR) spectrometry and principal component analysis (PCA) was addressed. The NIR analyses were performed with a small quantity of dried and ground tissues. Differences in the chemical composition of leaf, stem, and root tissues were observed. The results obtained were compared to those produced by gas chromatography-mass spectrometry (GC-MS) as the reference method, confirming the NIR results.

  13. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi

    PubMed Central

    Hodgkinson, A.

    1971-01-01

    A better understanding of the physico-chemical principles underlying the formation of calculus has led to a need for more precise information on the chemical composition of stones. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi which is suitable for routine use is presented. The procedure involves five simple qualitative tests followed by the quantitative determination of calcium, magnesium, inorganic phosphate, and oxalate. These data are used to calculate the composition of the stone in terms of calcium oxalate, apatite, and magnesium ammonium phosphate. Analytical results and derived values for five representative types of calculi are presented. PMID:5551382

  14. Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. IV. Discrete variable representation (DVR) basis functions and the analysis of accurate results for F+H2

    NASA Astrophysics Data System (ADS)

    Bačić, Z.; Kress, J. D.; Parker, G. A.; Pack, R. T.

    1990-02-01

    Accurate 3D coupled channel calculations for total angular momentum J=0 for the reaction F+H2→HF+H using a realistic potential energy surface are analyzed. The reactive scattering is formulated using the hyperspherical (APH) coordinates of Pack and Parker. The adiabatic basis functions are generated quite efficiently using the discrete variable representation method. Reaction probabilities for relative collision energies of up to 17.4 kcal/mol are presented. To aid in the interpretation of the resonances and quantum structure observed in the calculated reaction probabilities, we analyze the phases of the S matrix transition elements, Argand diagrams, time delays and eigenlifetimes of the collision lifetime matrix. Collinear (1D) and reduced dimensional 3D bending corrected rotating linear model (BCRLM) calculations are presented and compared with the accurate 3D calculations.

  15. Environmental Chemical Analysis (by B. B. Kebbekus and S. Mitra)

    NASA Astrophysics Data System (ADS)

    Bower, Reviewed By Nathan W.

    1999-11-01

    This text helps to fill a void in the market, as there are relatively few undergraduate instrumental analysis texts designed specifically for the expanding population of environmental science students. R. N. Reeve's introductory, open-learning Environmental Analysis (Wiley, 1994) is one of the few, and it is aimed at a lower level and is less appropriate for traditional classroom study. Kebbekus and Mitra's book appears to be an update of I. Marr and M. Cresser's excellent 1983 text by the same name (and also published under the Chapman and Hall imprint). It assumes no background in instrumental methods of analysis but it does depend upon a good general chemistry background in kinetic and equilibrium calculations and the standard laboratory techniques found in a classical introduction to analytical chemistry. The slant taken by the authors is aimed more toward engineers, not only in the choice of topics, but also in how they are presented. For example, the statistical significance tests presented follow an engineering format rather than the standard used in analytical chemistry. This approach does not detract from the book's clarity. The writing style is concise and the book is generally well written. The earlier text, which has become somewhat of a classic, took the unusual step of teaching the instruments in the context of their environmental application. It was divided into sections on the "atmosphere", the "hydrosphere", the "lithosphere", and the "biosphere". This text takes a similar approach in the second half, with chapters on methods for air, water, and solid samples. Users who intend to use the book as a text instead of a reference will appreciate the addition of chapters in the first half of the book on spectroscopic, chromatographic, and mass spectrometric methods. The six chapters in these two parts of the book along with four chapters scattered throughout on environmental measurements, sampling, sample preparation, and quality assurance make a nice

  16. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards.

    PubMed

    Anna, Sobek; Sofia, Bejgarn; Christina, Rudén; Magnus, Breitholtz

    2016-08-10

    A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis. PMID:27222376

  17. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 1: Theory and numerical solution procedures

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  18. Requirements analysis for safety-critical systems: A chemical batch processing example

    NASA Astrophysics Data System (ADS)

    Delemos, R.; Saeed, A.; Anderson, T.

    1994-01-01

    An essential basis for the development of software for safety-critical systems is to establish high-quality requirements specifications. In the paper the authors present a methodology for requirements analysis that consists of: a framework which facilitates the systematic analysis of the safety requirements, a graph which records the safety specifications and their relationships, and a set of procedures for the quality analysis of the safety specifications. To illustrate the approach a case study, based on chemical batch processing, is presented.

  19. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NASA Astrophysics Data System (ADS)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-11-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al). For the majority (five out of six) of the AGB targets, we find that the abundances of both iron and titanium determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of nonlocal thermodynamic equilibrium (NLTE) effects. In the O-Na, Al-Mg, and Na-Al planes, the RGB stars show the typical correlations observed for GC stars. Instead, all the AGB targets are clumped in the regions where first-generation stars are expected to lie, similar to what was recently found for the AGB population of NGC 6752. While the sodium and aluminum abundances could be underestimated as a consequence of the NLTE bias affecting iron and titanium, the oxygen line used does not suffer from the same effects, and the lack of O-poor AGB stars therefore is a solid result. We can thus conclude that none of the investigated AGB stars belongs to the second stellar generation of M62. We also find an RGB star with extremely high sodium abundance ([Na/Fe] = +1.08 dex). Based on observations collected at the ESO-VLT (Cerro Paranal, Chile) under program 193.D-0232. Also based on observations (GO10120 and GO11609) with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  20. Nuclear and radiochemical techniques in chemical analysis. Final report

    SciTech Connect

    Finston, H.L.; Williams, E.T.

    1981-06-01

    The areas studied during the period of the contract included determinations of cross sections for nuclear reactions, determination of neutron capture cross sections of radionuclides, application of special activation techniques, and x-ray counting, elucidation of synergic solvent extraction mechanisms and development of new solvent extraction techniques, and the development of a PIXE analytical facility. The thermal neutron capture cross section of /sup 22/Na was determined, and cross sections and energy levels were determined for /sup 20/Ne(n,..cap alpha..)/sup 17/O, /sup 20/Ne(n,P)/sup 20/F, and /sup 40/Ar(n,..cap alpha..)/sup 37/S. Inelastic scattering with 2 to 3 MeV neutrons followed by counting of the metastable states permits analysis of the following elements: In, Sr, Cd, Hg, and Pb. Bromine can be detected in the presence of a 500-fold excess of Na and/or K by thermal neutron activation and x-ray counting, and as little as 0.3 x 10/sup -9/ g of Hg can be detected by this technique. Mediun energy neutrons (10 to 160 MeV) have been used to determine Tl, Pb, and Bi by (n,Xn) and (n,PXn) reactions. The reaction /sup 19/F(P,..cap alpha..)/sup 76/O has been used to determine as little as 50 ..mu..mol of Freon -14. Mechanisms for synergic solvent extractions have been elucidated and a new technique of homogeneous liquid-liquid solvent extraction has been developed in which the neutral complex is rapidly extracted propylene carbonate by raising and lowering the temperature of the system. An external-beam PIXE system has been developed for trace element analyses of a variety of sample types. Various sample preparation techniques have been applied to a diverse range of samples including marine sediment, coral, coal, and blood.

  1. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. PMID:27311789

  2. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    PubMed Central

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  3. Multivariate data analysis for depth resolved chemical classification and quantification of sulfur in SNMS

    NASA Astrophysics Data System (ADS)

    Sommer, M.; Goschnick, J.

    2005-09-01

    The quantification of elements in quadrupole based SNMS is hampered by superpositions of atomic and cluster signals. Moreover, the conventional SNMS data evaluation employs only atomic signals to determine elemental concentrations, which not allows any chemical specifications of the determined elements. Improvements in the elemental quantification and additional chemical information can be obtained from kinetic energy analysis and the inclusion of molecular signals into mass spectra evaluation. With the help of multivariate data analysis techniques, the combined information is used for the first time for a quantitative and chemically distinctive determination of sulfur. The kinetic energy analysis, used to solve the interference of sulfur with O 2 at masses 32-34 D, turned out to be highly important for the new type of evaluation.

  4. Chemical Differentiation of Osseous, Dental, and Non-skeletal Materials in Forensic Anthropology using Elemental Analysis.

    PubMed

    Zimmerman, Heather A; Meizel-Lambert, Cayli J; Schultz, John J; Sigman, Michael E

    2015-03-01

    Forensic anthropologists are generally able to identify skeletal materials (bone and tooth) using gross anatomical features; however, highly fragmented or taphonomically altered materials may be problematic to identify. Several chemical analysis techniques have been shown to be reliable laboratory methods that can be used to determine if questionable fragments are osseous, dental, or non-skeletal in nature. The purpose of this review is to provide a detailed background of chemical analysis techniques focusing on elemental compositions that have been assessed for use in differentiating osseous, dental, and non-skeletal materials. More recently, chemical analysis studies have also focused on using the elemental composition of osseous/dental materials to evaluate species and provide individual discrimination, but have generally been successful only in small, closed groups, limiting their use forensically. Despite significant advances incorporating a variety of instruments, including handheld devices, further research is necessary to address issues in standardization, error rates, and sample size/diversity. PMID:25753999

  5. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    PubMed

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices. PMID:24682160

  6. Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity.

    PubMed

    Wei, Feifei; Ito, Kengo; Sakata, Kenji; Date, Yasuhiro; Kikuchi, Jun

    2015-03-01

    Extracting useful information from high dimensionality and large data sets is a major challenge for data-driven approaches. The present study was aimed at developing novel integrated analytical strategies for comprehensively characterizing seaweed similarities based on chemical diversity. The chemical compositions of 107 seaweed and 2 seagrass samples were analyzed using multiple techniques, including Fourier transform infrared (FT-IR) and solid- and solution-state nuclear magnetic resonance (NMR) spectroscopy, thermogravimetry-differential thermal analysis (TG-DTA), inductively coupled plasma-optical emission spectrometry (ICP-OES), CHNS/O total elemental analysis, and isotope ratio mass spectrometry (IR-MS). The spectral data were preprocessed using non-negative matrix factorization (NMF) and NMF combined with multivariate curve resolution-alternating least-squares (MCR-ALS) methods in order to separate individual component information from the overlapping and/or broad spectral peaks. Integrated analysis of the preprocessed chemical data demonstrated distinct discrimination of differential seaweed species. Further network analysis revealed a close correlation between the heavy metal elements and characteristic components of brown algae, such as cellulose, alginic acid, and sulfated mucopolysaccharides, providing a componential basis for its metal-sorbing potential. These results suggest that this integrated analytical strategy is useful for extracting and identifying the chemical characteristics of diverse seaweeds based on large chemical data sets, particularly complicated overlapping spectral data. PMID:25647718

  7. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.

    PubMed

    Shah, Falgun; Greene, Nigel

    2014-01-21

    The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds. PMID:24328225

  8. Greenland Scotland overflow studied by hydro-chemical multivariate analysis

    NASA Astrophysics Data System (ADS)

    Fogelqvist, E.; Blindheim, J.; Tanhua, T.; Østerhus, S.; Buch, E.; Rey, F.

    2003-01-01

    Hydrographic, nutrient and halocarbon tracer data collected in July-August 1994 in the Norwegian Sea, the Faroe Bank Channel (FBC), the Iceland and Irminger Basins and the Iceland Sea are presented. Special attention was given to the overflow waters over the Iceland-Scotland Ridge (ISOW). The Iceland-Scottland overflow water (ISOW) was identified along its pathway in the Iceland Basin, and entrainment of overlying water masses was quantified by multivariate analysis (MVA) using principal component analysis (PCA) and Partial Least Square (PLS) calibration. It was concluded that the deeper portion of the ISOW in the FBC was a mixture of about equal parts of Norwegian Sea Deep Water (NSDW) and Norwegian Sea Arctic Intermediate Water (NSAIW). The mixing development of ISOW during its descent in the Iceland Basin was analysed in three sections across the plume. In the southern section at 61°N, where the ISOW core was observed at 2300 m depth, the fraction of waters originating north of the ridge was assessed to be 54%. MVA assessed the fractional composition of the ISOW to be 21% NSDW, 22% NSAIW, 18% Northeast Atlantic Water (NEAW), 11% Modified East Icelandic Water, 25% Labrador Sea Water (LSW) and 3% North East Atlantic Deep Water. It may be noted that the fraction of NEAW is of the same volume as the NSDW. On its further path around the Reykjanes Ridge, the ISOW mixed mainly with LSW, and at 63°N in the Irminger Basin, it was warmer and fresher ( θ=2.8°C and S=34.92) than at 61°N east of the ridge (θ=2.37° C, S=34.97) . The most intensive mixing occurred immediately west of the FBC, probably due to high velocity of the overflow plume through the channel, where annual velocity means exceeded 1.1 m s -1. This resulted in shear instabilities towards the overlying Atlantic waters and cross-stream velocities exceeding 0.3 m s -1 in the bottom boundary layer. The role of NSAIW as a component of ISOW is increasing. Being largely a product of winter convection in the

  9. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    NASA Astrophysics Data System (ADS)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  10. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  11. Accurate ab Initio Spin Densities

    PubMed Central

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921

  12. Chemical measurement of urine volume

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.

    1978-01-01

    Chemical method of measuring volume of urine samples using lithium chloride dilution technique, does not interfere with analysis, is faster, and more accurate than standard volumetric of specific gravity/weight techniques. Adaptation of procedure to urinalysis could prove generally practical for hospital mineral balance and catechoamine determinations.

  13. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  14. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples.

    PubMed

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  15. An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints

    PubMed Central

    Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  16. An inverse analysis approach to the characterization of chemical transport in paints.

    PubMed

    Willis, Matthew P; Stevenson, Shawn M; Pearl, Thomas P; Mantooth, Brent A

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  17. Scallops skeletons as tools for accurate proxy calibration

    NASA Astrophysics Data System (ADS)

    Lorrain, A.; Paulet, Y.-M.; Chauvaud, L.; Dunbar, R.; Mucciarone, D.; Pécheyran, C.; Amouroux, D.; Fontugne, M.

    2003-04-01

    Bivalves skeletons are able to produce great geochemical proxies. But general calibration of those proxies are based on approximate time basis because of misunderstanding of growth rhythm. In this context, the Great scallop, Pecten maximus, appears to be a powerful tool as a daily growth deposit has been clearly identified for this species (Chauvaud et al, 1998; Lorrain et al, 2000), allowing accurate environmental calibration. Indeed, using this species, a date can be affiliated to each growth increment, and as a consequence environmental parameters can be closely compared (at a daily scale) to observed chemical and structural shell variations. This daily record provides an unequivocal basis to calibrate proxies. Isotopic (Delta-13C and Delta-15N) and trace element analysis (LA-ICP-MS) have been performed on several individuals and different years depending on the analysed parameter. Seawater parameters measured one meter above the sea-bottom were compared to chemical variations in the calcitic shell. Their confrontation showed that even with a daily basis for data interpretation, calibration is still a challenge. Inter-individual variations are found and correlations are not always reproducible from one year to the others. The first explanation could be an inaccurate appreciation of the proximate environment of the animal, notably the water-sediment interface could best represent Pecten maximus environment. Secondly, physiological parameters could be inferred for those discrepancies. In particular, calcification takes places in the extrapallial fluid, which composition might be very different from external environment. Accurate calibration of chemical proxies should consider biological aspects to gain better insights into the processes controlling the incorporation of those chemical elements. The characterisation of isotopic and trace element composition of the extrapallial fluid and hemolymph could greatly help our understanding of chemical shell variations.

  18. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin. PMID:16631342

  19. Diagnostic Chemical Analysis of Exhaled Human Breath Using a Novel Sub-Millimeter Spectroscopic Approach

    NASA Astrophysics Data System (ADS)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Branco, Daniela R.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    As many as 3000 chemicals are reported to be found in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. Present state of the art techniques used for analysis of exhaled human breath include mass spectrometry based methods, infrared spectroscopic sensors, electro chemical sensors and semiconductor oxide based testers. Some of these techniques are commercially available but are somewhat limited in their specificity and exhibit fairly high probability of false alarm. Here, we present the results of our most recent study which demonstrated a novel application of a terahertz high resolutions spectroscopic technique to the analysis of exhaled human breath, focused on detection of ethanol in the exhaled breath of a person which consumed an alcoholic drink. This technique possesses nearly ``absolute'' specificity and we demonstrated its ability to uniquely identify ethanol, methanol, and acetone in human breath. This project is now complete and we are looking to extend this method of chemical analysis of exhaled human breath to a broader range of chemicals in an attempt to demonstrate its potential for biomedical diagnostic purposes.

  20. Application of physico-chemical procedures in the analysis of urinary calculi

    SciTech Connect

    Rodgers, A.L.

    1985-01-01

    All physico-chemical techniques used in the analysis of urinary calculi have inherent advantages and limitations. Although x-ray powder diffraction can identify constituents unambiguously, certain minor components can be missed. Infrared spectroscopy is more sensitive but band assignment at low concentrations is difficult. Scanning electron microscopy together with energy dispersive x-ray analysis permits the simultaneous investigation of morphology and chemical microstructure. With the electron microprobe, minor constituents can be detected but tedious sample preparation procedures are required. Transmission electron microscopy is extremely useful in determining constituent inter-relationships and ultrastructure but ultramicrotomy is very difficult. Thermal gravimetric analysis gives quantitative information easily but does not satisfactorily distinguish between struvite and brushite. In an attempt to assess the accuracy of chemical analyses, 62 calculi were investigated applying several chemical tests. Those for MgS , PO4(T ), NHU and uric acid proved highly reliable while that for CaS often yielded an incorrect result. The test for oxalate was totally unsatisfactory. Investigators of stone composition and structure should include x-ray diffraction (or infrared spectroscopy) and scanning electron microscopy as their methods of first choice. In addition, chemical or thermogravimetric analyses should be utilized in an auxiliary capacity.

  1. [Relativity of commercial specification of Menthae Herba based on chemical analysis].

    PubMed

    Ye, Dan; Zhao, Ming; Shao, Yang; Ouyang, Zhen; Peng, Hua-sheng; Han Bang-xing; Zhang, Wei-wan-qi; Gu, Xue-mei

    2015-01-01

    In order to compare the differences of 35 Menthae Herba samples collected on the market and at producing areas, the contents of six total terpenoids, the essential oil and chromatographic fingerprints were analyzed, which provided evidences for drawing up the commodity specifications and grading criteria of Menthae Herba. GC-MS method was used to analyze the chemical constituents of 35 different samples. The chromatographic fingerprints obtained by using GC were then evaluated by similarity analysis, hierarchical clustering analysis and principal component analysis. The relativity between the content of six terpenoids and the essential oil were studied. In this study, the chemical profiles of 35 samples from different producing areas had significant disparity. All samples collected in the report could be categorized into four chemical types, L-menthol, pulegone, carvone and L-menthone, but the chemical profiles had no relationship with the areas. The chromatographic fingerprints of the samples from different types were dissimilar, while the different producing areas were difficult to be separated. It was indicated that the content of volatile oil was positively correlated with the content of L-menthol and the sum of six total terpenoids. The content of the essential oil, L-menthol and the sum of six total terpenoids of Menthae Herba were considered as one of the commercial specifications and grading criteria. These results in the research could be helpful to draw up the commercial specification and grading criteria of Menthae Herba from a view of chemical information. PMID:26080554

  2. Identification of different types of imperial age marble finds using instrumental chemical analysis and pattern recognition analysis.

    PubMed

    Campanella, L; Gregori, E; Tomassetti, M; Visco, G

    2001-01-01

    A physical-chemical characterisation of several marbles frequently used in ancient times for artistic or decorative purposes was performed in support the work of historians and restorers. The data were obtained using several different types of instrumental chemical methods (Thermogravimetry, Differential Thermal Analysis, X-ray Diffractometry and ICP Plasma Emission Spectroscopy) and have been summarised in short tables. The data have already proved useful in the identification of a small number of finds (statues or architectonic elements) from Ancient Rome (Imperial Age, 2nd-3nd cent. A.D.) for the purpose of which also a well-known pattern recognition analysis software package was used for data processing. In practice, the research showed that an organised set of chemical data obtained using several modern instrumental methods can provide a valid basis for the reasonably rapid and reliable identification of the type of marble used to make artistic artifacts that have not yet been subjected to typological study. PMID:11836948

  3. Chemical Analysis of Exhaled Human Breath Using High Resolution Mm-Wave Rotational Spectra

    NASA Astrophysics Data System (ADS)

    Guo, Tianle; Branco, Daniela; Thomas, Jessica; Medvedev, Ivan; Dolson, David; Nam, Hyun-Joo; O, Kenneth

    2014-06-01

    High resolution rotational spectroscopy enables chemical sensors that are both sensitive and highly specific, which is well suited for analysis of expired human breath. We have previously reported on detection of breath ethanol, methanol, acetone, and acetaldehyde using THz sensors. This paper will outline our present efforts in this area, with specific focus on our ongoing quest to correlate levels of blood glucose with concentrations of a few breath chemicals known to be affected by elevated blood sugar levels. Prospects, challenges and future plans will be outlined and discussed. Fosnight, A.M., B.L. Moran, and I.R. Medvedev, Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Applied Physics Letters, 2013. 103(13): p. 133703-5.

  4. Chemical Gradient-mediated Melting Curve Analysis for Genotyping of Single Nucleotide Polymorphisms

    PubMed Central

    Russom, Aman; Irimia, Daniel; Toner, Mehmet

    2009-01-01

    This report describes a microfluidic solid-phase Chemical Gradient-mediated Melting Curve Analysis (CGMCA) method for single nucleotide polymorphism (SNP) analysis. The method is based on allele-specific denaturation to discriminate mismatched (MM) from perfectly matched (PM) DNA duplexes upon exposure to linear chemical gradient. PM and MM DNA duplexes conjugated on beads are captured in a microfluidic gradient generator device designed with dams, keeping the beads trapped perpendicular to a gradient generating channel. Two denaturants, formamide and urea, were tested for their ability to destabilize the DNA duplex by competing with Watson-Crick pairing. Upon exposure to the chemical gradient, rapid denaturing profile was monitored in real time using fluorescence microscopy. The results show that the two duplexes exhibit different kinetics of denaturation profiles, enabling discrimination of MM from PM DNA duplexes to score SNP. PMID:19593749

  5. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis.

    PubMed

    Labbé, Nicole; Harper, David; Rials, Timothy; Elder, Thomas

    2006-05-17

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The multivariate models of charcoal were able to distinguish between species and wood thermal treatments, revealing that the characteristics of the wood charcoal depend not only on the wood species, but also on the carbonization temperature. This work demonstrates the potential of mid infrared spectroscopy in the whiskey industry, from the identification and classification of the wood species for the mellowing process to the chemical characterization of the barrels after the toasting and charring process. PMID:19127715

  6. LANL organic analysis detection capabilities for chemical and biological warfare agents

    SciTech Connect

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  7. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical extraction and analysis of individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN...

  8. A Chemical Instrumentation Game for Teaching Critical Thinking and Information Literacy in Instrumental Analysis Courses

    ERIC Educational Resources Information Center

    Henderson, David E.

    2010-01-01

    A simulation game is used to teach students in instrumental analysis courses to find the latest developments in the field, use the journal literature, and apply critical thinking to determine the relative importance of the work they find. They also learn about the business of chemical instruments and to make oral presentations. The competitive…

  9. 40 CFR 761.314 - Chemical analysis of standard wipe test samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical analysis of standard wipe test samples. 761.314 Section 761.314 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING,...

  10. MUTAGENICITY AND CHEMICAL ANALYSIS OF EMISSIONS FROM THE OPEN BURNING OF SCRAP RUBBER TIRES

    EPA Science Inventory

    The paper discusses the use of the Salmonella mutagenicity assay to perform bioassay-directed chemical analysis of emissions from the open burning of scrap rubber tires in both a small laboratory study using tires cut into two sizes (CHUNK and SHRED) and a field study of the larg...

  11. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  12. Fertilizer/Chemical Sales and Service Worker. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a current comprehensive and verified employer competency program list for fertilizer/chemical sales and service workers. Each unit (with or without subunits) contains competencies and competency builders that identify the occupational,…

  13. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

    EPA Science Inventory

    Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...

  14. Chemical Analysis of the Moon at the Surveyor VI Landing Site: Preliminary Results.

    PubMed

    Turkevich, A L; Patterson, J H; Franzgrote, E J

    1968-06-01

    The alpha-scattering experiment aboard soft-landing Surveyor VI has provided a chemical analysis of the surface of the moon in Sinus Medii. The preliminary results indicate that, within experimental errors, the composition is the same as that found by Surveyor V in Mare Tranquillitatis. This finding suggests that large portions of the lunar maria resemble basalt in composition. PMID:17749448

  15. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOEpatents

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  16. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    PubMed

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues. PMID:24633585

  17. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  18. How Accurate are Self-Reports? An Analysis of Self-Reported Healthcare Utilization and Absence When Compared to Administrative Data

    PubMed Central

    Short, Meghan E.; Pei, Xiaofei; Tabrizi, Maryam J.; Ozminkowski, Ronald J.; Gibson, Teresa B.; DeJoy, Dave M.; Wilson, Mark G.

    2009-01-01

    Objective To determine the accuracy of self-reported healthcare utilization and absence reported on health risk assessments (HRAs) against administrative claims and human resource records. Methods Self-reported values of healthcare utilization and absenteeism were analyzed for concordance to administrative claims values. Percent agreement, Pearson’s correlations, and multivariate logistic regression models examined the level of agreement and characteristics of participants with concordance. Results Self-report and administrative data showed greater concordance for monthly compared to yearly healthcare utilization metrics. Percent agreement ranged from 30 to 99% with annual doctor visits having the lowest percent agreement. Younger people, males, those with higher education, and healthier individuals more accurately reported their healthcare utilization and absenteeism. Conclusions Self-reported healthcare utilization and absenteeism may be used as a proxy when medical claims and administrative data are unavailable, particularly for shorter recall periods. PMID:19528832

  19. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition.

    PubMed

    Xu, Wenping; Song, Qiushuang; Li, Daxiang; Wan, Xiaochun

    2012-07-18

    High-performance liquid chromatography (HPLC) has been used to quantify levels of free amino acids, catechins, and caffeine in Chinese green tea. Levels of free amino acids and catechins in green tea leaves show obvious variation from spring to summer, which is useful information to identify the production season of commercial green tea. Supervised pattern recognition methods such as the K-nearest neighbor (KNN) method and Bayesian discriminant method (a type of linear discriminant analysis (LDA)) were used to discriminate between the production seasons of Chinese green tea. The optimal accuracy of the KNN method was ≤97.61 and ≤94.80% as validated by resubstitution and cross-validation tests, respectively, and that of LDA was ≤95.22 and ≤93.54%, respectively. Compared with LDA, the KNN method did not require a Gaussian distribution and was more accurate than LDA. The KNN method in combination with chemical analysis is recommended for discrimination of the production seasons of Chinese green tea. PMID:22720840

  20. Rapid, Accurate, and Non-Invasive Measurement of Zebrafish Axial Length and Other Eye Dimensions Using SD-OCT Allows Longitudinal Analysis of Myopia and Emmetropization

    PubMed Central

    Collery, Ross F.; Veth, Kerry N.; Dubis, Adam M.; Carroll, Joseph; Link, Brian A.

    2014-01-01

    Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2 = 0.9548, R2 = 0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of −0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of −0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors. PMID:25334040

  1. Development of Accurate Chemical Equilibrium Models for Oxalate Species to High Ionic Strength in the System: Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O at 25°C

    SciTech Connect

    Qafoku, Odeta; Felmy, Andrew R.

    2007-01-01

    The development of an accurate aqueous thermodynamic model is described for oxalate species in the Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O system at 25°C. The model is valid to high ionic strength (as high as 10m) and from very acid (10m H2SO4) to neutral and basic conditions. The model is based upon the equations of Pitzer and co-workers. The necessary ion-interaction parameters are determined by comparison with experimental data taken from the literature or determined in this study. The proposed aqueous activity and solubility model is valid for a range of applications from interpretation of studies on mineral dissolution at circumneutral pH to the dissolution of high-level waste tank sludges under acidic conditions.

  2. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Kutzner, C.; Kropp, M.; Brokmann, G.; Lang, W.; Steinke, A.; Kienle, A.; Hauptmann, P.

    2010-10-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected.

  3. Post failure localization instabilities in chemically active creeping faults: Steady-state bifurcation and transient analysis

    NASA Astrophysics Data System (ADS)

    Alevizos, S.; Poulet, T.; Veveakis, M.

    2014-12-01

    In this study we emphasize in the post failure evolution of a creeping fault, and provide temporal and spatial modes of evolution. In particular we study the behavior of a fluid-saturated fault under shear, based on the assumption that the fabric presents rate- and temperature dependent response to shear loading. A creeping fault of this type can, under certain conditions, produce excess heat due to shear heating, reaching temperatures which are high enough for triggering endothermic chemical reactions. We focus on the decomposition reactions and incorporate excess pore pressure generation and variations of the porosity due to the chemical effects (a process called chemical pressurization). After deriving the corresponding system of equations in the region of the ultra-cataclastic core, we study the influence of the model parameters, namely the frictional, hydraulic and chemical properties of the material, along with the boundary conditions of the problem, on the behavior of the fault and through a non-linear bifurcation analysis we provide regimes of stable-frictional sliding and pressurization. Furthermore, the system is integrated in time to extract its temporal behavior, providing regimes of stable creep, non-periodic and periodic seismic slip events due to chemical pressurization, depending on their frictional properties. It is shown that this chemically induced seismic slip is an ultra-localized event in the post failure regime. It takes place in an extremely narrow band, 2 orders of magnitude narrower than the initial one, verifying the field observations.

  4. Toxicogenomic evaluation of chemically induced chromosomal imbalance using DNA image analysis.

    PubMed

    Hatzi, Vasiliki I; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2013-06-01

    The study of carcinogenic potential of a variety of chemical agents such as food additives and drugs of abuse via the application of various in vitro methodologies constitutes the first step for the evaluation of their toxicogenomic profile. Considering the chromosomal theories of carcinogenesis, where it is stated that aneuploidy and chromosomal imbalance (instability) are among the main causes of carcinogenesis, chemicals capable to induce such changes in the cells could be considered as potential carcinogens. Chromosomal imbalance and aneuploidy directly affect the overall DNA content of the exposed cell as well as other cellular morpho- and densitometric features. These features can be measured by means of computerized DNA image analysis technologies and include DNA content (DNA Index), Proliferation Index, Ploidy Balance, Degree of Aneuploidy, Skewness and Kurtosis. Considering the enormous number of untested chemicals and drugs of abuse that follow non-genotoxic mechanisms of carcinogenesis, the establishment of a reliable technology for the estimation of chemically induced chromosomal imbalance is of particular importance in toxicogenomic studies. In the present article and based on our previously published work, we highlight the advantages of the applications of DNA image analysis technology in an easy-to-use experimental model for the evaluation of the potential risk of various chemicals. The use of this technology for the detection of chemically induced chromosomal instability will contribute to the development of safer regulatory directives concerning the use of chemicals in food and pharmaceutical industry, as well as in the clarification of mechanisms of action of drugs of abuse. PMID:23215871

  5. Comparison of infrared and wet chemical analysis of urinary tract calculi.

    PubMed

    Gault, M H; Ahmed, M; Kalra, J; Senciall, I; Cohen, W; Churchill, D

    1980-07-01

    Infrared analysis of urinary tract calculi using the system of interpretation of spectra of Oliver and Sweet [1] was compared with qualitative wet chemical analysis. This method of interpretation could be learned quickly and gave reproducible results, but had some limitations. Advantages of the infrared procedure include greater reproducibility. 1-mg sample size, greater sensitivity for oxalate and more uniform sensitivities. Minimum detectable amounts of reference standards varied roughly within 1 order of magnitude, compared with a range of 10(5) for wet chemical procedures. The comparable sensitivity for oxalate and phosphate permits a semi-quantitative approach for infrared. The main problems relate to the detection of magnesium ammonium phosphate and carbonate apatite, and wet chemical tests are recommended in addition, when these compounds are suggested. Calculi from 308 patients were analyzed by infrared. With this system of interpretation of spectra, infrared is considered to be a major advance in methodology for analysis of urinary tract calculi in the clinical laboratory, compared with qualitative wet chemical procedures. PMID:7389143

  6. Extracting chemical information from plane wave calculations by a 3D 'fuzzy atoms' analysis

    NASA Astrophysics Data System (ADS)

    Bakó, I.; Stirling, A.; Seitsonen, A. P.; Mayer, I.

    2013-03-01

    Bond order and valence indices have been calculated by the method of the three-dimensional 'fuzzy atoms' analysis, using the numerical molecular orbitals obtained from plane wave DFT calculations, i.e., without introducing any external atom-centered functions. Weight functions of both Hirshfeld and Becke types have been applied. The results are rather close to the similar 'fuzzy atoms' ones obtained by using atom-centered basis sets and agree well with the chemical expectations, stressing the power of the genuine chemical concepts.

  7. Laboratory conditions and safety in a chemical warfare agent analysis and research laboratory.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Kose, Songul

    2002-08-01

    Toxic chemicals have been used as weapons of war and also as means of terrorist attacks on civilian populations. Research focusing on chemical warfare agents (CWAs) may be associated with an increased risk of exposure to and contamination by these agents. This article summarizes some of the regulations concerning designation and safety in a CWA analysis and research laboratory and medical countermeasures in case of an accidental exposure. The design of such a laboratory, coupled with a set of safety guidelines, provides for the safe conduct of research and studies involving CWAs. Thus, a discussion of decontamination and protection means against CWAs is also presented. PMID:12188231

  8. Stratospheric Sampling and In Situ Atmospheric Chemical Element Analysis During Meteor Showers: A Resource Study

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    2000-01-01

    Resources studies for asteroidal mining evaluation have depended historically on remote sensing analysis for chemical elements. During the November 1998 Leonids meteor shower, a stratospheric balloon and various low-density capture media were used to sample fragments from Comet Tempel-Tuttle debris during a peak Earth crossing. The analysis not only demonstrates how potential sampling strategies may improve the projections for metals or rare elements in astromining, but also benchmarks materials during low temperature (-60 F), high dessication environments as seen during atmospheric exposure. The results indicate high aluminum, magnesium and iron content for various sampled particles recovered, but generalization to the sporadic meteors expected from asteroidal sources will require future improvements in larger sampling volumes before a broad-use strategy for chemical analysis can be described. A repeat of the experimental procedure is planned for the November 1999 Leonids' shower, and various improvements for atmospheric sampling will be discussed.

  9. A TIERED APPROACH TO PERFORMING UNCERTAINTY ANALYSIS IN CONDUCTING EXPOSURE ANALYSIS FOR CHEMICALS

    EPA Science Inventory

    The WHO/IPCS draft Guidance Document on Characterizing and Communicating Uncertainty in Exposure Assessment provides guidance on recommended strategies for conducting uncertainty analysis as part of human exposure analysis. Specifically, a tiered approach to uncertainty analysis ...

  10. Understanding surface-groundwater interactions through combined physical and chemical data analysis: tracing shallow groundwater recharge in Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Blackstock, J. M.; Horton, T. W.; Zawar-Reza, P.

    2010-12-01

    Determining sustainable water resource utilization rates is an important problem faced by regulatory agencies all around the world. One of the key parameters in determining accurate water budgeting schemes is the rate of water resource replenishment, or ‘recharge’ in groundwater systems. Fundamental questions regarding groundwater recharge include: What is the source of recharge? What is the spatial distribution of recharge? What is the annual average recharge rate, from potentially disparate sources in disparate areas? Answers to these questions can be gained through combining physical and chemical hydrogeological research tools, including stable isotopic compositions. Land-use intensification, including significant increases in dairying, has placed a priority on developing water resource management practices throughout New Zealand. In Canterbury (eastern South Island, New Zealand), applications for groundwater abstraction have increased 2-fold in the past decade. Fortunately, a wealth of long-term physical hydrogeological data for Cantberbury Plains aquifers is available through the regional government. However, basic chemical data, including potential tracers such as stable isotopic compositions, are generally absent at the regional scale. Here we present the first compilation of δ18O and δD values from individual precipitation events, local surface waters, depression springs, and groundwaters from the greater-Christchurch area. A variety of analytical methods were used in an effort to evaluate the potential use of water resource stable isotopic compositions as tracers of surface-groundwater interaction in the local hydrologic cycle. Our analysis produced several important findings: 1) Hybrid Single Particle Lagrangian Intergrated Trajectory (HYSPLIT) analysis does not yield a consistent pattern relating isotopic composition to air parcel trajectory. 2) shallow groundwater and depression spring isotopic compositions match high-altitude derived braided

  11. Comparison of methods for the concentration of suspended sediment in river water for subsequent chemical analysis

    USGS Publications Warehouse

    Horowltz, A.J.

    1986-01-01

    Centrifugation, settling/centrifugation, and backflush-filtration procedures have been tested for the concentration of suspended sediment from water for subsequent trace-metal analysis. Either of the first two procedures is comparable with in-line filtration and can be carried out precisely, accurately, and with a facility that makes the procedures amenable to large-scale sampling and analysis programs. There is less potential for post-sampling alteration of suspended sediment-associated metal concentrations with the centrifugation procedure because sample stabilization is accomplished more rapidly than with settling/centrifugation. Sample preservation can be achieved by chilling. Suspended sediment associated metal levels can best be determined by direct analysis but can also be estimated from the difference between a set of unfiltered-digested and filtered subsamples. However, when suspended sediment concentrations (<150 mg/L) or trace-metal levels are low, the direct analysis approach makes quantitation more accurate and precise and can be accomplished with simpler analytical procedures.

  12. Analysis of mass transport in an atmospheric pressure remote plasma-enhanced chemical vapor deposition process

    SciTech Connect

    Cardoso, R. P.; Belmonte, T.; Henrion, G.; Gries, T.; Tixhon, E.

    2010-01-15

    In remote microwave plasma enhanced chemical vapor deposition processes operated at atmospheric pressure, high deposition rates are associated with the localization of precursors on the treated surface. We show that mass transport can be advantageously ensured by convection for the heavier precursor, the lighter being driven by turbulent diffusion toward the surface. Transport by laminar diffusion is negligible. The use of high flow rates is mandatory to have a good mixing of species. The use of an injection nozzle with micrometer-sized hole enables us to define accurately the reaction area between the reactive species. The localization of the flow leads to high deposition rates by confining the reactive species over a small area, the deposition yield being therefore very high. Increasing the temperature modifies nonlinearly the deposition rates and the coating properties.

  13. Accurate Mass MS/MS/MS Analysis of Siderophores Ferrioxamine B and E1 by Collision-Induced Dissociation Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sidebottom, Ashley M.; Karty, Jonathan A.; Carlson, Erin E.

    2015-11-01

    Siderophores are bacterially secreted, small molecule iron chelators that facilitate the binding of insoluble iron (III) for reuptake and use in various biological processes. These compounds are classified by their iron (III) binding geometry, as dictated by subunit composition and include groups such as the trihydroxamates (hexadentate ligand) and catecholates (bidentate). Small modifications to the core structure such as acetylation, lipid tail addition, or cyclization, make facile characterization of new siderophores difficult by molecular ion detection alone (MS1). We have expanded upon previous fragmentation-directed studies using electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS/MS) and identified diagnostic MS3 features from the trihydroxamate siderophore class for ferrioxamine B and E1 by accurate mass. Diagnostic features for MS3 include C-C, C-N, amide, and oxime cleavage events with proposed losses of water and -CO from the iron (III) coordination sites. These insights will facilitate the discovery of novel trihydroxamate siderophores from complex sample matrices.

  14. Accurate Analysis and Evaluation of Acidic Plant Growth Regulators in Transgenic and Nontransgenic Edible Oils with Facile Microwave-Assisted Extraction-Derivatization.

    PubMed

    Liu, Mengge; Chen, Guang; Guo, Hailong; Fan, Baolei; Liu, Jianjun; Fu, Qiang; Li, Xiu; Lu, Xiaomin; Zhao, Xianen; Li, Guoliang; Sun, Zhiwei; Xia, Lian; Zhu, Shuyun; Yang, Daoshan; Cao, Ziping; Wang, Hua; Suo, Yourui; You, Jinmao

    2015-09-16

    Determination of plant growth regulators (PGRs) in a signal transduction system (STS) is significant for transgenic food safety, but may be challenged by poor accuracy and analyte instability. In this work, a microwave-assisted extraction-derivatization (MAED) method is developed for six acidic PGRs in oil samples, allowing an efficient (<1.5 h) and facile (one step) pretreatment. Accuracies are greatly improved, particularly for gibberellin A3 (-2.72 to -0.65%) as compared with those reported (-22 to -2%). Excellent selectivity and quite low detection limits (0.37-1.36 ng mL(-1)) are enabled by fluorescence detection-mass spectrum monitoring. Results show the significant differences in acidic PGRs between transgenic and nontransgenic oils, particularly 1-naphthaleneacetic acid (1-NAA), implying the PGRs induced variations of components and genes. This study provides, for the first time, an accurate and efficient determination for labile PGRs involved in STS and a promising concept for objectively evaluating the safety of transgenic foods. PMID:26309068

  15. A wall-less poly(vinyl alcohol) cryogel flow phantom with accurate scattering properties for transcranial Doppler ultrasound propagation channels analysis.

    PubMed

    Weir, Alexander J; Sayer, Robin; Cheng-Xiang Wang; Parks, Stuart

    2015-08-01

    Medical phantoms are frequently required to verify image and signal processing systems, and are often used to support algorithm development for a wide range of imaging and blood flow assessments. A phantom with accurate scattering properties is a crucial requirement when assessing the effects of multi-path propagation channels during the development of complex signal processing techniques for Transcranial Doppler (TCD) ultrasound. The simulation of physiological blood flow in a phantom with tissue and blood equivalence can be achieved using a variety of techniques. In this paper, poly (vinyl alcohol) cryogel (PVA-C) tissue mimicking material (TMM) is evaluated in conjunction with a number of potential scattering agents. The acoustic properties of the TMMs are assessed and an acoustic velocity of 1524ms(-1), an attenuation coefficient of (0:49) × 10(-4)fdBm(1)Hz(-1), a characteristic impedance of (1.72) × 10(6)Kgm(-2)s(-1) and a backscatter coefficient of (1.12) × 10(-28)f(4)m(-1)Hz(-4)sr(-1) were achieved using 4 freeze-thaw cycles and an aluminium oxide (Al(2)O(3)) scattering agent. This TMM was used to make an anatomically realistic wall-less flow phantom for studying the effects of multipath propagation in TCD ultrasound. PMID:26736851

  16. Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation

    SciTech Connect

    Van-Hoang Le; Anh-Thu Le; Xie Ruihua; Lin, C. D.

    2007-07-15

    We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data.

  17. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use. PMID:26086729

  18. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  19. Chemical Analysis of Primitive Objects Using a Slitless Ultraviolet Meteor Spectrometer (CAPO-SUMS)

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Wdowiak, T.; Lowrance, J.; Carruthers, G.; Jenniskens, P.; Gerakines, P.

    2003-01-01

    Measure the elemental composition in both random meteors and in the bolides forming specific meteor streams (these are traceable to specific small bodies in the solar system). These will yield the average chemical composition and degree of chemical variability in a statistically significant number of planetesimals. CAPO-SUMS is functionally equivalent to a series of multiple, small-body sample analysis missions, but provides much more analytical capability than is possible on any orbital or flyby mission due to the vaporization, ionization and ultraviolet emission from the ablating bolide as it enters the atmosphere. CAPO-SUMS will provide a chemical context from which the detailed analytical studies provided by a cometary or asteroidal lander mission can be interpreted.

  20. A Descriptive Analysis of the Chemical Bond Approach, the Chemical Education Material Study, and a Representative Traditional Chemistry Course.

    ERIC Educational Resources Information Center

    Crilly, Alice Roth

    This study compared three one-year courses in high school chemistry. One of these, entitled Modern Chemistry, represents the "traditional" precollegiate chemistry course. The others are the Chemical Bond Approach (CBA) and the Chemical Education Material Study (CHEM Study). These are the two major revisions in high school chemistry which emerged…