Polzer, S; Gasser, T C; Novak, K; Man, V; Tichy, M; Skacel, P; Bursa, J
2015-03-01
Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n=9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n=18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter bM=1.03 ± 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b=1.54 ± 0.40; outer media, b=0.72 ± 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (bA=0.27 ± 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R(2)=0.95 ± 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R(2)=0.92 ± 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented
High-temperature constitutive modeling
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Ellis, J. R.
1984-01-01
Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy.
Testing of constitutive models in LAME.
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Ramaswamy, V. G.; Vanstone, R. H.; Dame, L. T.; Laflen, J. H.
1984-01-01
The unified constitutive theories for application to typical isotropic cast nickel base supperalloys used for air-cooled turbine blades were evaluated. The specific modeling aspects evaluated were: uniaxial, monotonic, cyclic, creep, relaxation, multiaxial, notch, and thermomechanical behavior. Further development of the constitutive theories to model thermal history effects, refinement of the material test procedures, evaluation of coating effects, and verification of the models in an alternate material will be accomplished in a follow-on for this base program.
Constitutive modeling of inelastic anisotropic material response
NASA Technical Reports Server (NTRS)
Stouffer, D. C.
1984-01-01
A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, U. S.
1984-01-01
A state-of-the-art review of applicable constitutive models with selection of two for detailed comparison with a wide range of experimental tests was conducted. The experimental matrix contained uniaxial and biaxial tensile, creep, stress relaxation, and cyclic fatigue tests at temperatures to 1093 C and strain rates from .0000001 to .001/sec. Some nonisothermal cycles will also be run. The constitutive models will be incorporated into the MARC finite element structural analysis program with a demonstration computation made for advanced turbine blade configuration. In the code development work, particular emphasis is being placed on developing efficient integration algorithms for the highly nonlinear and stiff constitutive equations. Another area of emphasis is the appropriate and efficient methodology for determing constitutive constants from a minimum extent of experimental data.
Constitutive model development for isotropic materials
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
The objective is to develop a unified constitutive model for finite-element structural analysis of turbine engine hot section components. This effort constitutes a different approach for nonlinear finite-element computer codes which were heretofore based on classical inelastic methods. A unified constitutive theory will avoid the simplifying assumptions of classical theory and should more accurately represent the behavior of superalloy materials under cyclic loading conditions and high temperature environments. Model development will be directed toward isotropic, cast nickel-base alloys used for aircooled turbine blades and vanes. The contractor will select a base material for model development and an alternate material for verification purposes from a list of three alloys specified by NASA. The candidate alloys represent a cross-section of turbine blade and vane materials of interest to both large and small size engine manufacturers. Material stock for the base and alternate materials will be supplied to the Contractor by the government.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.
1988-01-01
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.
1986-01-01
The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined
Constitutive Laws for Dynamic Modelling of Soils,
1980-01-01
Constitutive Model for Fluid-Saturated Granular Material ", 8th US Nat...CLAY b) CAP MODEL c) ZIENKIEWICZ’S VISCOPLASTICITY 3 FIGURE 4 PARABOLIC UNDRAINED STRESS PATHS IN PENDER ’S MODEL =,*ammi I I I REPORT CONSTITUTIVE ...1971) : " Material Model for Granular Soils", ASCE Jour. Eng. Mech. Div., vol 97, EM3:935-950. DUNCAN, J.M. & CHANG, C.Y., (1970) : "Nonlinear
Constitutive modeling of fracture waves
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Romensky, E. I.; Bourne, N. K.
2003-02-01
A fracture wave (FW) in a brittle material is a narrow transition region (border) of a continuous fracture zone, which may be associated with the damage accumulation process initiated by propagation of shock waves. In multidimensional structures the fracture wave may behave in an unusual way. The high-speed photography of penetration of a borosilicate (Pyrex) glass block [N. K. Bourne, L. Forde, and J. E. Field, Proc. SPIE 2869, 626 (1997)] shows a visible fracture zone with an apparent flat front although the projectile is a hemispherically nosed rod. A strain-rate-sensitive model is being developed and employed for analysis of the role of the complex stress state and kinetic description of the damage accumulation to describe the process of the impact. Numerical analysis is conducted with a one-dimensional wave propagation code employing the model and with the LS-DYNA2D hydrocode in which the model has been implemented. The analysis demonstrates that (i) the second (plastic) shock wave is superseded by quicker FW relaxing stress behind the elastic precursor, and (ii) the FW front flattening is apparently caused by the change in the acoustic directional properties. This change is associated with the phase-like transition due to the damage accumulation within the FW. In particular, the FW transition separates a highly anisotropic zone of material characterized acoustically by longitudinal and shear waves in front of the FW from a nearly isotropic region of the material characterized only by bulk waves behind the FW.
Deviatoric constitutive model: domain of strain rate validity
Zocher, Marvin A
2009-01-01
A case is made for using an enhanced methodology in determining the parameters that appear in a deviatoric constitutive model. Predictability rests on our ability to solve a properly posed initial boundary value problem (IBVP), which incorporates an accurate reflection of material constitutive behavior. That reflection is provided through the constitutive model. Moreover, the constitutive model is required for mathematical closure of the IBVP. Common practice in the shock physics community is to divide the Cauchy tensor into spherical and deviatoric parts, and to develop separate models for spherical and deviatoric constitutive response. Our focus shall be on the Cauchy deviator and deviatoric constitutive behavior. Discussions related to the spherical part of the Cauchy tensor are reserved for another time. A number of deviatoric constitutive models have been developed for utilization in the solution of IBVPs that are of interest to those working in the field of shock physics, e.g. All of these models are phenomenological and contain a number of parameters that must be determined in light of experimental data. The methodology employed in determining these parameters dictates the loading regime over which the model can be expected to be accurate. The focus of this paper is the methodology employed in determining model parameters and the consequences of that methodology as it relates to the domain of strain rate validity. We shall begin by describing the methodology that is typically employed. We shall discuss limitations imposed upon predictive capability by the typically employed methodology. We shall propose a modification to the typically employed methodology that significantly extends the domain of strain rate validity.
Microplane constitutive model for porous isotropic rocks
NASA Astrophysics Data System (ADS)
Baant, Zdenk P.; Zi, Goangseup
2003-01-01
The paper deals with constitutive modelling of contiguous rock located between rock joints. A fully explicit kinematically constrained microplane-type constitutive model for hardening and softening non-linear triaxial behaviour of isotropic porous rock is developed. The microplane framework, in which the constitutive relation is expressed in terms of stress and strain vectors rather than tensors, makes it possible to model various microstructural physical mechanisms associated with oriented internal surfaces, such as cracking, slip, friction and splitting of a particular orientation. Formulation of the constitutive relation is facilitated by the fact that it is decoupled from the tensorial invariance restrictions, which are satisfied automatically. In its basic features, the present model is similar to the recently developed microplane model M4 for concrete, but there are significant improvements and modifications. They include a realistic simulation of (1) the effects of pore collapse on the volume changes during triaxial loading and on the reduction of frictional strength, (2) recovery of frictional strength during shearing, and (3) the shear-enhanced compaction in triaxial tests, manifested by a deviation from the hydrostatic stress-strain curve. The model is calibrated by optimal fitting of extensive triaxial test data for Salem limestone, and good fits are demonstrated. Although these data do not cover the entire range of behaviour, credence in broad capabilities of the model is lend by its similarity to model M4 for concrete - an artificial rock. The model is intended for large explicit finite-element programs.
A constitutive model for an overlay coating
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Swanson, G. A.
1988-01-01
Coatings are frequently applied to gas turbine blades and vanes to provide protection against oxidation and corrosion. The results of an experimental and analytical study to develop a constitutive model for an overlay coating is presented. Specimens were machined from a hot isostatically pressed billet of PWA 286. The tests consisted of isothermal stress relaxation cycles with monotonically increasing maximum strain and were conducted at various temperatures. The results were used to calculate the constants for various constitutive models, including the classical, the Walker isotropic, a simplified Walker, and Stowell models. A computerized regression analysis was used to calculate model constants from the data. The best fit was obtained for the Walker model, with the simplified Walker and classical models close behind.
An elastoplastic damage constitutive model for concrete
NASA Astrophysics Data System (ADS)
Liu, Jun; Lin, Gao; Zhong, Hong
2013-04-01
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.
Rapid implementation of advanced constitutive models
NASA Astrophysics Data System (ADS)
Starman, Bojan; Halilovič, Miroslav; Vrh, Marko; Štok, Boris
2013-12-01
This paper presents a methodology based on the NICE integration scheme [1, 2] for simple and rapid numerical implementation of a class of plasticity constitutive models. In this regard, an algorithm is purposely developed for the implementation of newly developed advanced constitutive models into explicit finite element framework. The methodology follows the organization of the problem state variables into an extended form, which allows the constitutive models' equations to be organized in such a way, that the algorithm can be optionally extended with minimal effort to integrate also evolution equations related to a description of other specific phenomena, such as damage, distortional hardening, phase transitions, degradation etc. To confirm simplicity of the program implementation, computational robustness, effectiveness and improved accuracy of the implemented integration algorithm, a deep drawing simulation of the cylindrical cup is considered as the case study, performed in ABAQUS/Explicit. As a fairly complex considered model, the YLD2004-18p model [3, 4] is first implemented via external subroutine VUMAT. Further, to give additional proof of the simplicity of the proposed methodology, a combination of the YLD2004-18p model and Gurson-Tvergaard-Needleman model (GTN) is considered. As demonstrated, the implementation is really obtained in a very simple way.
Constitutive modeling for single crystal superalloys
NASA Technical Reports Server (NTRS)
Stouffer, Donald C.; Dame, L. Thomas; Jayaraman, N.
1985-01-01
A crystallographic approach to constitutive modeling of single crystal superalloys is discussed. The approach is based on identifying the active slip planes and slip directions. The shear stresses are computed on each of the slip planes from applied stress components. The slip rate is then computed on each slip system and the microscopic inelastic strain rates are the sum of the slip in the individual slip systems. The constitutive model was implemented in a finite element code using twenty noted isoparametric solid elements. Constants were determined for octahedral and cube slip systems. These constants were then used to predict tension-compression asymmetry and fatigue loops. Other data was used to model the tensile and creep response.
Constitutive Models Based on Compressible Plastic Flows
NASA Technical Reports Server (NTRS)
Rajendran, A. M.
1983-01-01
The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.
Constitutive Modeling of Crosslinked Nanotube Materials
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.
2004-01-01
A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.
A review of nonlinear constitutive models for metals
NASA Technical Reports Server (NTRS)
Allen, David H.; Harris, Charles E.
1990-01-01
Over the past two decades a number of thermomechanical constitutive theories have been proposed for viscoplastic metals. These models are in most cases similar in that they utilize a set of internal state variables which provide locally averaged representations of microphysical phenomena such as dislocation rearrangement and grain boundary sliding. The state of development of several of these models is now at the point where accurate theoretical solutions can be obtained for a wide variety of structural problems at elevated temperatures. The fundamentals of viscoplasticity are briefly reviewed and a general framework is outlined. Several of the more prominent models are reviewed, and predictions from models are compared to experimental results.
Constitutive Modeling of Piezoelectric Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Tom (Technical Monitor)
2003-01-01
A new modeling approach is proposed for predicting the bulk electromechanical properties of piezoelectric composites. The proposed model offers the same level of convenience as the well-known Mori-Tanaka method. In addition, it is shown to yield predicted properties that are, in most cases, more accurate or equally as accurate as the Mori-Tanaka scheme. In particular, the proposed method is used to determine the electromechanical properties of four piezoelectric polymer composite materials as a function of inclusion volume fraction. The predicted properties are compared to those calculated using the Mori-Tanaka and finite element methods.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Constitutive modelling of composite biopolymer networks.
Fallqvist, B; Kroon, M
2016-04-21
The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures.
Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
Caner, Ferhun C; Guo, Zaoyang; Moran, Brian; Bazant, Zdenek P; Carol, Ignacio
2007-10-01
In a recent paper, Peng et al. (2006, "An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis," ASME J. Appl. Mech., 73(5), pp. 815-824) developed an anisotropic hyperelastic constitutive model for the human annulus fibrosus in which fiber-matrix interaction plays a crucial role in simulating experimental observations reported in the literature. Later, Guo et al. (2006, "A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Fibrosis," J. Mech. Phys. Solids, 54(9), pp. 1952-1971) used fiber reinforced continuum mechanics theory to formulate a model in which the fiber-matrix interaction was simulated using only composite effect. It was shown in these studies that the classical anisotropic hyperelastic constitutive models for soft tissue, which do not account for this shear interaction, cannot accurately simulate the test data on human annulus fibrosus. In this study, we show that the microplane model for soft tissue developed by Caner and Carol (2006, "Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue," ASME J. Biomech. Eng., 128(3), pp. 419-427) can be adjusted for human annulus fibrosus and the resulting model can accurately simulate the experimental observations without explicit fiber-matrix interaction because, in microplane model, the shear interaction between the individual fibers distributed in the tissue provides the required additional rigidity to explain these experimental facts. The intensity of the shear interaction between the fibers can be adjusted by adjusting the spread in the distribution while keeping the total amount of the fiber constant. A comparison of results obtained from (i) a fiber-matrix parallel coupling model, which does not account for the fiber-matrix interaction, (ii) the same model but enriched with fiber-matrix interaction, and (iii) microplane model for soft tissue adapted to annulus fibrosus with two
Improvements to constitutive material model for fabrics
NASA Astrophysics Data System (ADS)
Morea, Mihai I.
2011-12-01
The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.
Puckett, Elbridge Gerry; Miller, Gregory Hale
2012-10-14
. Phillip Colella, the head of ANAG, and some of his colleagues. Chris Algieri is now employed as a staff member in Dr. Bill Collins' Climate Science Department in the Earth Sciences Division at LBNL working with computational models of climate change. Finally, it should be noted that the work conducted by Professor Puckett and his students Sarah Williams and Chris Algieri and described in this final report for DOE grant # DE-FC02-03ER25579 is closely related to work performed by Professor Puckett and his students under the auspices of Professor Puckett's DOE SciDAC grant DE-FC02-01ER25473 An Algorithmic and Software Framework for Applied Partial Differential Equations: A DOE SciDAC Integrated Software Infrastructure Center (ISIC). Dr. Colella was the lead PI for this SciDAC grant, which was comprised of several research groups from DOE national laboratories and five university PI's from five different universities. In theory Professor Puckett tried to use funds from the SciDAC grant to support work directly involved in implementing algorithms developed by members of his research group at UCD as software that might be of use to Puckett's SciDAC CoPIs. (For example, see the work reported in Section 2.2.2 of this final report.) However, since there is considerable lead time spent developing such algorithms before they are ready to become `software' and research plans and goals change as the research progresses, Professor Puckett supported each member of his research group partially with funds from the SciDAC APDEC ISIC DE-FC02-01ER25473 and partially with funds from this DOE MICS grant DE-FC02-03ER25579. This has necessarily resulted in a significant overlap of project areas that were funded by both grants. In particular, both Sarah Williams and Chris Algieri were supported partially with funds from grant # DE-FG02-03ER25579, for which this is the final report, and in part with funds from Professor Puckett's DOE SciDAC grant # DE-FC02-01ER25473. For example, Sarah Williams
Constitutive modeling of contact angle hysteresis.
Vedantam, Srikanth; Panchagnula, Mahesh V
2008-05-15
We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.
Baumann, Andrew P; Shi, Xiutao; Roeder, Ryan K; Niebur, Glen L
2016-01-01
Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens from the femoral neck (n = 3), greater trochanter (n = 6), and lumbar vertebra (n = 1) of eight different donors were scanned by μ-CT and converted to voxel-based finite element models. Unconfined uniaxial compression and shear loading were simulated for each of three different constitutive models: a principal strain-based model, Drucker-Lode, and Drucker-Prager. The latter was applied with both infinitesimal and finite kinematics. Apparent yield strains exhibited minimal dependence on the constitutive model, differing by at most 16.1%, with the kinematic formulation being influential in compression loading. At the tissue level, the quantities and locations of yielded tissue were insensitive to the constitutive model, with the exception of the Drucker-Lode model, suggesting that correlation of microdamage with computational models does not improve the ability to discriminate between constitutive laws. Taken together, it is unlikely that a tissue constitutive model can be fully validated from apparent-level experiments alone, as the calculations are too insensitive to identify differences in the outcomes. Rather, any asymmetric criterion with a valid yield surface will likely be suitable for most trabecular bone models.
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
Constitutive Modelling of Concrete and Rocks Under Multiaxial Compressive Loadings,
1986-09-04
constitutive model for geologic materials such as concrete...determine the material constants associated with the proposed constitutive model . The model is then verified by back-predicting the stress-strain curves... constitutive model based on the theory of plas- ticity. Although such a model can be used for a wide range of materials , in this dissertation its
An improved computational constitutive model for glass
NASA Astrophysics Data System (ADS)
Holmquist, Timothy J.; Johnson, Gordon R.; Gerlach, Charles A.
2017-01-01
In 2011, Holmquist and Johnson presented a model for glass subjected to large strains, high strain rates and high pressures. It was later shown that this model produced solutions that were severely mesh dependent, converging to a solution that was much too strong. This article presents an improved model for glass that uses a new approach to represent the interior and surface strength that is significantly less mesh dependent. This new formulation allows for the laboratory data to be accurately represented (including the high tensile strength observed in plate-impact spall experiments) and produces converged solutions that are in good agreement with ballistic data. The model also includes two new features: one that decouples the damage model from the strength model, providing more flexibility in defining the onset of permanent deformation; the other provides for a variable shear modulus that is dependent on the pressure. This article presents a review of the original model, a description of the improved model and a comparison of computed and experimental results for several sets of ballistic data. Of special interest are computed and experimental results for two impacts onto a single target, and the ability to compute the damage velocity in agreement with experiment data. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag
Massoudi, Mehrdad; Wang, Ping
2013-02-07
The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.
Pre-Modeling Ensures Accurate Solid Models
ERIC Educational Resources Information Center
Gow, George
2010-01-01
Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…
New model accurately predicts reformate composition
Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )
1994-01-31
Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.
Constitutive Modeling of Magnesium Alloy Sheets
Lee, M. G.; Piao, K.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y.
2007-05-17
Magnesium alloy sheets have unique mechanical properties: high in-plane anisotropy/asymmetry of yield stress and hardening response, which have not been thoroughly studied. The unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of h.c.p metals and thus by deformation twinning. In this paper, the phenomenological continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were developed for a finite element analysis. A new hardening law based on two-surface model was developed to consider the general stress-strain response of metal sheets such as Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified to include the anisotropy of magnesium alloys. Also, characterization procedures of material parameters for the constitutive equations were presented and finally the correlation of simulation with measurements was performed to validate the proposed theory.
An Accurate, Simplified Model Intrabeam Scattering
Bane, Karl LF
2002-05-23
Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.
Anisotropic effects on constitutive model parameters of aluminum alloys
NASA Astrophysics Data System (ADS)
Brar, Nachhatter S.; Joshi, Vasant S.
2012-03-01
Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.
Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant
2011-06-01
Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.
A Simple Updated Constitutive Model of EPS Geofoam
NASA Astrophysics Data System (ADS)
Leo, Chin J.; Wong, Henry K.; Liyanapathirana, Samanthika
2010-05-01
This paper describes an updated and simple EPS constitutive model proposed by the authors for modelling EPS geofoam in geotechnical applications where geofoam-structure as well as geofoam-soil interactions occur. The work is based on an earlier model developed by the authors, which has since been modified to reflect recent experimental results suggesting the admissibility of the Drucker-Prager failure criterion in lieu of the Mohr-Coulumb criterion. The updated model is developed within the framework of classical elasto-plasticity, with the inclusion of strain hardening, a hardening rule defined in terms of equivalent deviatoric plastic strain and a non-associate flow rule. It is simple to calibrate (with 6 independent parameters determined from triaxial tests) and is relatively easy to incorporate into numerical codes. The updated model has been calibrated against results from a series of "drained" triaxial tests performed on the EPS geofoam. The steps required for calibration are described in the paper. It has been also been shown to accurately reproduce the responses of the material under shearing, in particular, of the shear-contraction post yield behaviour typical of geofoam material. The model will be applicable for a variety of geotechnical applications such as for the modelling of EPS geofoam inclusion behind retaining structures and as a buffer material to mitigate against dynamic loading and vibrations.
Microplane constitutive model and computational framework for blood vessel tissue.
Caner, Ferhun C; Carol, Ignacio
2006-06-01
This paper presents a nonlinearly elastic anisotropic microplane formulation in 3D for computational constitutive modeling of arterial soft tissue in the passive regime. The constitutive modeling of arterial (and other biological) soft tissue is crucial for accurate finite element calculations, which in turn are essential for design of implants, surgical procedures, bioartificial tissue, as well as determination of effect of progressive diseases on tissues and implants. The model presented is defined at a lower scale (mesoscale) than the conventional macroscale and it incorporates the effect of all the (collagen) fibers which are anisotropic structural components distributed in all directions within the tissue material in addition to that of isotropic bulk tissue. It is shown that the proposed model not only reproduces Holzapfel's recent model but also improves on it by accounting for the actual three-dimensional distribution of fiber orientation in the arterial wall, which endows the model with advanced capabilities in simulation of remodeling of soft tissue. The formulation is flexible so that its parameters could be adjusted to represent the arterial wall either as a single material or a material composed of several layers in finite element analyses of arteries. Explicit algorithms for both the material subroutine and the explicit integration with dynamic relaxation of equations of motion using finite element method are given. To circumvent the slow convergence of the standard dynamic relaxation and small time steps dictated by the stability of the explicit integrator, an adaptive dynamic relaxation technique that ensures stability and fastest possible convergence rates is developed. Incompressibility is enforced using penalty method with an updated penalty parameter. The model is used to simulate experimental data from the literature demonstrating that the model response is in excellent agreement with the data. An experimental procedure to determine the
Multiscale Constitutive Modeling of Asphalt Concrete
NASA Astrophysics Data System (ADS)
Underwood, Benjamin Shane
Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also
A phenomenological constitutive model for low density polyurethane foams
Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.
1987-04-01
Results from a series of hydrostatic and triaxial compression tests which were performed on polyurethane foams are presented in this report. These tests indicate that the volumetric and deviatoric parts of the foam behavior are strongly coupled. This coupling behavior could not be captured with any of several commonly used plasticity models. Thus, a new constitutive model was developed. This new model was based on a decomposition of the foam response into two parts: (1) response of the polymer skeleton, and (2) response of the air inside the cells. The air contribution was completely volumetric. The new constitutive model was implemented in two finite element codes, SANCHO and PRONTO. Results from a series of analyses completed with these codes indicated that the new constitutive model captured all of the foam behaviors that had been observed in the experiments. Finally, a typical dynamic problem was analyzed using the new constitutive model and other constitutive models to demonstrate differences between the models. Results from this series of analyses indicated that the new constitutive model generated displacement and acceleration predictions that were between predictions obtained using the other models. This result was expected. 9 refs., 45 figs., 4 tabs.
Study on the constitutive model for jointed rock mass.
Xu, Qiang; Chen, Jianyun; Li, Jing; Zhao, Chunfeng; Yuan, Chenyang
2015-01-01
A new elasto-plastic constitutive model for jointed rock mass, which can consider the persistence ratio in different visual angle and anisotropic increase of plastic strain, is proposed. The proposed the yield strength criterion, which is anisotropic, is not only related to friction angle and cohesion of jointed rock masses at the visual angle but also related to the intersection angle between the visual angle and the directions of the principal stresses. Some numerical examples are given to analyze and verify the proposed constitutive model. The results show the proposed constitutive model has high precision to calculate displacement, stress and plastic strain and can be applied in engineering analysis.
A dislocation density based constitutive model for cyclic deformation
Estrin, Y.; Braasch, H.; Brechet, Y.
1996-10-01
A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.
Evaluation of potential crushed-salt constitutive models
Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D.
1995-12-01
Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.
Life assessment of combustor liner using unified constitutive models
NASA Technical Reports Server (NTRS)
Tong, M. T.; Thompson, R. L.
1988-01-01
Hot section components of gas turbine engines are subject to severe thermomechanical loads during each mission cycle. Inelastic deformation can be induced in localized regions leading to eventual fatigue cracking. Assessment of durability requires reasonably accurate calculation of the structural response at the critical location for crack initiation. In recent years nonlinear finite element computer codes have become available for calculating inelastic structural response under cyclic loading. NASA-Lewis sponsored the development of unified constitutive material models and their implementation in nonlinear finite element computer codes for the structural analysis of hot section components. These unified models were evaluated with regard to their effect on the life prediction of a hot section component. The component considered was a gas turbine engine combustor liner. A typical engine mission cycle was used for the thermal and structural analyses. The analyses were performed on a CRAY computer using the MARC finite element code. The results were compared with laboratory test results, in terms of crack initiation lives.
Remarks on ConstitutiveModeling of Nanofluids
Massoudi, Mehrdad; Tran X. Phuoc
2012-01-01
Nanofluids are made by adding nanoscale particles in low volumetric fractions to a fluid in order to enhance or improve their rheological, mechanical, optical, and thermal properties. The base fluid can be any liquid such as oil, water, ethylene glycol, or conventional fluid mixtures. Limited available studies on nanofluid viscosity have been reported [1-19]. In most of these studies, the behavior of the viscosity and the shear stress of nanofluids have been interpreted using the widely used empirical model developed by Casson [20].
Constitutive modeling of superalloy single crystals with verification testing
NASA Technical Reports Server (NTRS)
Jordan, Eric; Walker, Kevin P.
1985-01-01
The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.
Constitutive modeling of shock response of PTFE
Brown, Eric N; Reanyansky, Anatoly D; Bourne, Neil K; Millett, Jeremy C F
2009-01-01
The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.
Constitutive and damage material modeling in a high pressure hydrogen environment
NASA Technical Reports Server (NTRS)
Russell, D. A.; Fritzemeier, L. G.
1991-01-01
Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.
Su, Xiang; Wang, Gang; Li, Jianfeng; Rong, Yiming
2016-01-01
The effects of strain rate and temperature on the dynamic behavior of Fe-based high temperature alloy was studied. The strain rates were 0.001-12,000 s(-1), at temperatures ranging from room temperature to 800 °C. A phenomenological constitutive model (Power-Law constitutive model) was proposed considering adiabatic temperature rise and accurate material thermal physical properties. During which, the effects of the specific heat capacity on the adiabatic temperature rise was studied. The constitutive model was verified to be accurate by comparison between predicted and experimental results.
Requirements for energy based constitutive modeling in tire mechanics
NASA Technical Reports Server (NTRS)
Luchini, John R.; Peters, Jim M.; Mars, Will V.
1995-01-01
The history, requirements, and theoretical basis of a new energy based constitutive model for (rubber) material elasticity, hysteresis, and failure are presented. Energy based elasticity is handled by many constitutive models, both in one dimension and in three dimensions. Conversion of mechanical energy to heat can be modeled with viscoelasticity or as structural hysteresis. We are seeking unification of elasticity, hysteresis, and failure mechanisms such as fatigue and wear. An energy state characterization for failure criteria of (rubber) materials may provide this unification and also help explain the interaction of temperature effects with failure mechanisms which are described as creation of growth of internal crack surface. Improved structural modeling of tires with FEM should result from such a unified constitutive theory. The theory will also guide experimental work and should enable better interpretation of the results of computational stress analyses.
Image-driven constitutive modeling of myocardial fibrosis
NASA Astrophysics Data System (ADS)
Wang, Vicky Y.; Niestrawska, Justyna A.; Wilson, Alexander J.; Sands, Gregory B.; Young, Alistair A.; LeGrice, Ian J.; Nash, Martyn P.
2016-05-01
Myocardial fibrosis is a pathological process that occurs during heart failure (HF). It involves microstructural remodeling of normal myocardial tissue, and consequent changes in both cardiac geometry and function. The role of myocardial structural remodeling in the progression of HF remains poorly understood. We propose a constitutive modeling framework, informed by high-resolution images of cardiac tissue structure, to model the mechanical response of normal and fibrotic myocardium. This image-driven constitutive modeling approach allows us to better reproduce and understand the relationship between structural and functional remodeling of ventricular myocardium during HF.
A comparison of material characterizations in frequently used constitutive models of ligaments.
Wan, Chao; Hao, Zhixiu; Wen, Shizhu
2014-06-01
Longitudinal tensile and simple shear stress-strain curves of human medial collateral ligaments (MCL) were fitted by six frequently used constitutive relations of ligaments using two different fitting methods for determining which was the best fitting method and the most preferable constitutive model for describing the ligament properties. According to the results of fitting goodness, two typical constitutive models were further analyzed by FEM to investigate the effect of the variation in MCL constitutive models under some physiological loads (i.e., 4.5 Nm external tibial and 10 Nm valgus tibial torques). It was found that different fitting methods induced great variations in describing the simple shear behavior whereas no obvious difference in the longitudinal tensile behavior. The most accurate description of both the longitudinal tensile and simple shear behaviors was obtained from the constitutive model with ground substance defined by an exponential function when the parameters were fitted by the two test data, respectively. Although the distributions of maximal principal stress were almost the same, the variation in MCL constitutive models affected the highest value of the stress greatly when MCL was under the complex physiological loads.
Deformation modeling and constitutive modeling for anisotropic superalloys
NASA Technical Reports Server (NTRS)
Milligan, Walter W.; Antolovich, Stephen D.
1989-01-01
A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.
A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Prasad, K. Sajun; Gupta, Amit Kumar; Singh, Yashjeet; Singh, Swadesh Kumar
2016-12-01
This paper presents a modified mechanical threshold stress (m-MTS) constitutive model. The m-MTS model incorporates variable athermal and dynamic strain aging (DSA) Components to accurately predict the flow stress behavior of austenitic stainless steels (ASS)-316 and 304. Under strain rate variations between 0.01-0.0001 s-1, uniaxial tensile tests were conducted at temperatures ranging from 50-650 °C to evaluate the material constants of constitutive models. The test results revealed the high dependence of flow stress on strain, strain rate and temperature. In addition, it was observed that DSA occurred at elevated temperatures and very low strain rates, causing an increase in flow stress. While the original MTS model is capable of predicting the flow stress behavior for ASS, statistical parameters point out the inefficiency of the model when compared to other models such as Johnson Cook model, modified Zerilli-Armstrong (m-ZA) model, and modified Arrhenius-type equations (m-Arr). Therefore, in order to accurately model both the DSA and non-DSA regimes, the original MTS model was modified by incorporating variable athermal and DSA components. The suitability of the m-MTS model was assessed by comparing the statistical parameters. It was observed that the m-MTS model was highly accurate for the DSA regime when compared to the existing models. However, models like m-ZA and m-Arr showed better results for the non-DSA regime.
Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.
Broome, Scott Thomas; Flint, Gregory Mark; Dewers, Thomas; Newell, Pania
2015-11-01
This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.
Unified constitutive model for single crystal deformation behavior with applications
NASA Technical Reports Server (NTRS)
Walker, K. P.; Meyer, T. G.; Jordan, E. H.
1988-01-01
Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.
A quick accurate model of nozzle backflow
NASA Technical Reports Server (NTRS)
Kuharski, R. A.
1991-01-01
Backflow from nozzles is a major source of contamination on spacecraft. If the craft contains any exposed high voltages, the neutral density produced by the nozzles in the vicinity of the craft needs to be known in order to assess the possibility of Paschen breakdown or the probability of sheath ionization around a region of the craft that collects electrons for the plasma. A model for backflow has been developed for incorporation into the Environment-Power System Analysis Tool (EPSAT) which quickly estimates both the magnitude of the backflow and the species makeup of the flow. By combining the backflow model with the Simons (1972) model for continuum flow it is possible to quickly estimate the density of each species from a nozzle at any position in space. The model requires only a few physical parameters of the nozzle and the gas as inputs and is therefore ideal for engineering applications.
A constitutive model with damage for high temperature superalloys
NASA Technical Reports Server (NTRS)
Sherwood, J. A.; Stouffer, D. C.
1988-01-01
A unified constitutive model is searched for that is applicable for high temperature superalloys used in modern gas turbines. Two unified inelastic state variable constitutive models were evaluated for use with the damage parameter proposed by Kachanov. The first is a model (Bodner, Partom) in which hardening is modeled through the use of a single state variable that is similar to drag stress. The other (Ramaswamy) employs both a drag stress and back stress. The extension was successful for predicting the tensile, creep, fatigue, torsional and nonproportional response of Rene' 80 at several temperatures. In both formulations, a cumulative damage parameter is introduced to model the changes in material properties due to the formation of microcracks and microvoids that ultimately produce a macroscopic crack. A back stress/drag stress/damage model was evaluated for Rene' 95 at 1200 F and is shown to predict the tensile, creep, and cyclic loading responses reasonably well.
Accurate spectral modeling for infrared radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Gupta, S. K.
1977-01-01
Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.
NASA Astrophysics Data System (ADS)
Wang, J. X.; Jia, P. Y.; Wang, Y. S.; Jiang, L.
2010-03-01
In this article, using Gibson-Ashby constitutive model, we suggest a new method for numerical investigation of forced convection heat transfer in porous foam metal, and try to consolidate the study for mechanical property and that for thermal characteristic. By available experimental data, we simulated to two cases, namely as the transfer in porous media for diameter is 0.6 mm and porosity is 0.402, and for diameter is 1.6 mm and porosity is 0.462. The result, from our constitutive model for single forced convection heat transfer, corresponds well with the experimental data. As for pressure drop prediction in porous is in good agreement with experiment, and the error is only 5% to 10%, but for transfer is less accurate, the error is about 20%, which is acceptable in practice. So it is done that constitutive model is used to simulate the transfer property.
Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys
2012-01-01
strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration...structural components made of high strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material...rate sensitivity, Johnson - Cook , constitutive model. PACS: 62.20 .Dc, 62.20..Fe, S 62.50. +p, 83.60.La INTRODUCTION Aluminum 7075 alloys are
Probabilistic constitutive relationships for cyclic material strength models
NASA Technical Reports Server (NTRS)
Boyce, L.; Chamis, C. C.
1988-01-01
A methodology is developed that provides a probabilistic treatment for the lifetime of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs.
Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites
NASA Technical Reports Server (NTRS)
Gates, T. S.; Sun, C. T.
1991-01-01
A constitutive model to describe the elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites under plane stress conditions is presented. Formulations are given for quasi-static plasticity and time-dependent viscoplasticity. Experimental procedures required to generate the necessary material constants are explained, and the experimental data is compared to the predicted behavior.
Constitutive modeling of viscoplastic damage in solder material
WEI,YONG; CHOW,C.L.; NEILSEN,MICHAEL K.; FANG,HUEI ELIOT
2000-04-17
This paper presents a constitutive modeling of viscoplastic damage in 63Sn-37Pb solder material taking into account the effects of microstructural change in grain coarsening. Based on the theory of damage mechanics, a two-scalar damage model is developed by introducing the damage variables and the free energy equivalence principle. An inelastic potential function based on the concept of inelastic damage energy release rate is proposed and used to derive an inelastic damage evolution equation. The validation of the model is carried out for the viscoplastic material by predicting monotonic tensile behavior and tensile creep curves at different temperatures. The softening behavior of the material under monotonic tension loading can be characterized with the model. The results demonstrate adequately the validity of the proposed viscoplastic constitutive modeling for the solder material.
The Constitutive Modeling of Thin Films with Randon Material Wrinkles
NASA Technical Reports Server (NTRS)
Murphey, Thomas W.; Mikulas, Martin M.
2001-01-01
Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%
A constitutive model for sintering of granulated ceramic powders
NASA Astrophysics Data System (ADS)
Shinagawa, K.; Hirashima, Y.
1998-05-01
Sintering behavior of granulated powder is investigated to develop a constitutive model for deformation analysis of ceramic powder compacts during sintering. Spray-dried alumina is compacted by CIPing (cold isostatic pressing) and sintered at various temperatures. Shrinkage and the change in grain size of the compacts during sintering are revealed in relation to the inhomogeneous microstructure consisting of fractured and unfractured granules as a consequence of the compaction. A constitutive model for the ceramic powder compacts having the internal structure is presented; The difference in grain growth in dense and sparse regions of the compacts is taken into consideration to the model. The results calculated by the model show good agreement with that obtained by experiment.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Arnold, Steven M.
2001-01-01
Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.
Rate dependent constitutive models for fiber reinforced polymer composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1990-01-01
A literature survey was conducted to assess the state-of-the-art in rate dependent constitutive models for continuous fiber reinforced polymer matrix composite (PMC) materials. Several recent models which include formulations for describing plasticity, viscoelasticity, viscoplasticity, and rate-dependent phenomenon such as creep and stress relaxation are outlined and compared. When appropriate, these comparisons include brief descriptions of the mathematical formulations, the test procedures required for generating material constants, and details of available data comparing test results to analytical predictions.
Numerical considerations in the development and implementation of constitutive models
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Imbrie, P. K.
1985-01-01
Several unified constitutive models were tested in uniaxial form by specifying input strain histories and comparing output stress histories. The purpose of the tests was to evaluate several time integration methods with regard to accuracy, stability, and computational economy. The sensitivity of the models to slight changes in input constants was also investigated. Results are presented for In100 at 1350 F and Hastelloy-X at 1800 F.
Temperature Dependent Constitutive Modeling for Magnesium Alloy Sheet
Lee, Jong K.; Lee, June K.; Kim, Hyung S.; Kim, Heon Y.
2010-06-15
Magnesium alloys have been increasingly used in automotive and electronic industries because of their excellent strength to weight ratio and EMI shielding properties. However, magnesium alloys have low formability at room temperature due to their unique mechanical behavior (twinning and untwining), prompting for forming at an elevated temperature. In this study, a temperature dependent constitutive model for magnesium alloy (AZ31B) sheet is developed. A hardening law based on non linear kinematic hardening model is used to consider Bauschinger effect properly. Material parameters are determined from a series of uni-axial cyclic experiments (T-C-T or C-T-C) with the temperature ranging 150-250 deg. C. The influence of temperature on the constitutive equation is introduced by the material parameters assumed to be functions of temperature. Fitting process of the assumed model to measured data is presented and the results are compared.
Unified constitutive models for high-temperature structural applications
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.
1988-01-01
Unified constitutive models are characterized by the use of a single inelastic strain rate term for treating all aspects of inelastic deformation, including plasticity, creep, and stress relaxation under monotonic or cyclic loading. The structure of this class of constitutive theory pertinent for high temperature structural applications is first outlined and discussed. The effectiveness of the unified approach for representing high temperature deformation of Ni-base alloys is then evaluated by extensive comparison of experimental data and predictions of the Bodner-Partom and the Walker models. The use of the unified approach for hot section structural component analyses is demonstrated by applying the Walker model in finite element analyses of a benchmark notch problem and a turbine blade problem.
Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling.
Forestiero, A; Carniel, E L; Natali, A N
2014-01-01
This study was aimed at the definition of a constitutive formulation of ankle ligaments and of a procedure for the constitutive parameters evaluation, for the biomechanical analysis by means of numerical models. To interpret the typical features of ligaments mechanical response, as anisotropic configuration, geometric non-linearity, non-linear elasticity and time-dependent behaviour, a specific fibre-reinforced visco-hyperelastic model is provided. The identification of constitutive parameters is performed by a stochastic-deterministic procedure that minimises the discrepancy between experimental and computational results. A preliminary evaluation of parameters is performed by analytical models in order to define reference values. Afterwards, solid models are developed to consider the complex histo-morphometric configuration of samples as a basis for the definition of numerical models. The results obtained are adopted for upgrading parameter values by comparison with specific mechanical tests. Assuming the new parameters set, the final numerical results are compared with the overall set of experimental data, to assess the reliability and efficacy of the analysis developed for the interpretation of the mechanical response of ankle ligaments.
Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.
Metzger, Thomas A; Niebur, Glen L
2016-10-03
The mechanical environment and mechanobiology of bone marrow may play essential roles in bone adaptation, cancer metastasis, and immune cell regulation. However, the location of marrow within the trabecular pore space complicates experimental measurement of marrow mechanics. Computational models provide a means to assess the shear stress and pressure in the marrow during physiological loading, but they rely on accurate inputs for the marrow and the physics assumed for the interaction of bone and marrow. Elastic, viscoelastic, and fluid constitutive properties have all been reported from experimental measurements of marrow properties. It is unclear whether this ambiguity reflects the various length-scales, loading rates, and boundary conditions of the experiments, or if the material models are sufficiently similar as to be interchangeable. To address this question, we analyzed both the mean shear stress and its spatial distribution induced in marrow during compression of trabecular bone cubes when using linear elastic, neo-Hookean, viscoelastic, and power-law fluid constitutive models. Experimentally reported parameters were initially applied for all four constitutive models, resulting in poor agreement. The parameters of the soft solid models were calibrated by linear interpolation so that the volume averaged shear stress agreed with the fluid model for each, but this could only be accomplished on a specimen-by-specimen basis. Following calibration, the root-mean-squared (RMS) difference between the solid and fluid constitutive models was still greater than 26% even when the overall mean shear stress was in close agreement, indicating that the spatial distribution of stress is also sensitive to the constitutive model. As such, the choice of constitutive model should be backed by a strong rationale, and results should be interpreted with care.
Fault models and constitutive laws across the lithosphere
NASA Astrophysics Data System (ADS)
Shimamoto, T.
2011-12-01
Establishment of fault model is important not only for modeling earthquake cycles (stress accumulation, earthquake generation and afterslip), but also for analyzing tectonics of lithosphere. Since Sibson (1977, J. Geol. Soc. London) proposed a famous fault model, several fault models have been proposed (Scholz, 1988, Geol. Rundschau; Shimamoto, 1989, J. Struct. Geol.; Kawamoto and Shimamoto, 1998, Tectonophy). There has not been much progress in fault models since then, and even those fault models had limited applications in the modeling earthquakes and tectonics because no constitutive laws describing brittle to high-temperature ductile deformation across the lithosphere have been proposed. Moreover there was no additional experimental data reported to cover the brittle-ductile transition under large shearing deformation. However, the situation has been changing since Shimamoto (2004, JpGU) and Shimamoto and Noda, 2010, AGU) proposed an empirical friction to flow law which describes the transition from friction to fully plastic flow under shear for halite. Only frictional constitutive parameters and parameters in flow law are used and properties in the transitional regime can be predicted once those parameters are known. Thus this law provides a working model for reanalyzing diverse fault properties such as clay-bearing faults, for planning experimental researches to produce friction to flow behavior for realistic rocks, and for modeling fault and plate-boundary behaviors including generation of large earthquakes. I will summarize the current status on fault models and friction to flow constitutive laws across the lithosphere focusing the following aspects. (1) Friction to flow transition for important rocks. Existing friction and flows laws will be combined to propose constitutive property across the lithosphere (e.g., rate and state friction law combined with flow law for diabase). I will show how such a law can be used in the modeling using 2D modeling of
Nonlinear creep damage constitutive model for soft rocks
NASA Astrophysics Data System (ADS)
Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.
2017-02-01
In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.
Structural analysis of turbine blades using unified constitutive models
NASA Technical Reports Server (NTRS)
Kaufman, A.; Tong, M.; Saltsman, J. F.; Halford, G. R.
1986-01-01
The utility of advanced constitutive models and structural analysis methods in predicting the cyclic life of an air-cooled turbine blade is assessed. Five structural analysis methods were exercised in calculating the cyclic stress-strain response at the airfoil critical location. The methods studied were a cyclic elastic finite-element analysis, nonlinear finite-element analyses based on classical inelastic models and the unified models of Bodner and Walker, and a simplified inelastic procedure. These analyses were compared in terms of computing times and of predicted crack initiation lives using the Strainrange Partitioning method.
A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers
NASA Astrophysics Data System (ADS)
Wang, Qiming; Gao, Zheming
2016-09-01
Nanocomposite hydrogels with only nanoparticle crosslinkers exhibit extraordinarily higher stretchability and toughness than the conventional organically crosslinked hydrogels, thus showing great potential in the applications of artificial muscles and cartilages. Despite their potential, the microscopic mechanics details underlying their mechanical performance have remained largely elusive. Here, we develop a constitutive model of the nanoparticle hydrogels to elucidate the microscopic mechanics behaviors, including the microarchitecture and evolution of the nanoparticle crosslinked polymer chains during the mechanical deformation. The constitutive model enables us to understand the Mullins effect of the nanocomposite hydrogels, and the effects of nanoparticle concentrations and sizes on their cyclic stress-strain behaviors. The theory is quantitatively validated by the tensile tests on a nanocomposite hydrogel with nanosilica crosslinkers. The theory can also be extended to explain the mechanical behaviors of existing hydrogels with nanoclay crosslinkers, and the necking instability of the composite hydrogels with both nanoparticle crosslinkers and organic crosslinkers. We expect that this constitutive model can be further exploited to reveal mechanics behaviors of novel particle-polymer chain interactions, and to design unprecedented hydrogels with both high stretchability and toughness.
Bayesian calibration of hyperelastic constitutive models of soft tissue.
Madireddy, Sandeep; Sista, Bhargava; Vemaganti, Kumar
2016-06-01
There is inherent variability in the experimental response used to characterize the hyperelastic mechanical response of soft tissues. This has to be accounted for while estimating the parameters in the constitutive models to obtain reliable estimates of the quantities of interest. The traditional least squares method of parameter estimation does not give due importance to this variability. We use a Bayesian calibration framework based on nested Monte Carlo sampling to account for the variability in the experimental data and its effect on the estimated parameters through a systematic probability-based treatment. We consider three different constitutive models to represent the hyperelastic nature of soft tissue: Mooney-Rivlin model, exponential model, and Ogden model. Three stress-strain data sets corresponding to the deformation of agarose gel, bovine liver tissue, and porcine brain tissue are considered. Bayesian fits and parameter estimates are compared with the corresponding least squares values. Finally, we propagate the uncertainty in the parameters to a quantity of interest (QoI), namely the force-indentation response, to study the effect of model form on the values of the QoI. Our results show that the quality of the fit alone is insufficient to determine the adequacy of the model, and due importance has to be given to the maximum likelihood value, the landscape of the likelihood distribution, and model complexity.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
A Constitutive Model for Isothermal Pseudoelasticity Coupled with Plasticity
NASA Astrophysics Data System (ADS)
Jiang, Dongjie; Landis, Chad M.
2016-12-01
In this paper, a new constitutive model for isothermal pseudoelastic shape memory alloys is presented. The model is based upon a kinematic hardening framework that was previously developed for ferroelastic and ferroelectric switching behavior. The basis of the model includes a transformation surface, an associated flow rule for transformation strain, and kinematic hardening with the back stresses represented by a transformation potential that is dependent upon the transformation strain. In contrast to many models that introduce tension/compression asymmetry by devising transformation surfaces in terms of invariants of the stress tensor, this model achieves this capability by means of expressing the transformation potential from which the back stresses are derived as a weighted mix of two potentials that are, respectively, calibrated to measured tensile and compressive responses. Additionally, in this model, plastic deformation is allowed to occur at high stresses by employing a standard J2-based yield surface with isotropic hardening. Finally, to demonstrate the ability of the constitutive model to perform in highly non-proportional loading states, some finite element simulations on crack tip fields are presented.
A position-aware linear solid constitutive model for peridynamics
Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.
2015-11-06
A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. We improved model behavior in the vicinity of free surfaces through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. Furthermore, the model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations on simple benchmark problems show a sharp reduction in error relative to the LPS model.
A position-aware linear solid constitutive model for peridynamics
Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.
2015-11-06
A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. We improved model behavior in the vicinity of free surfaces through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. Furthermore, the model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations onmore » simple benchmark problems show a sharp reduction in error relative to the LPS model.« less
Constitutive modeling of crimped collagen fibrils in soft tissues.
Grytz, Rafael; Meschke, Günther
2009-10-01
A microstructurally oriented constitutive formulation for the hyperelastic response of crimped collagen fibrils existing in soft connective tissues is proposed. The model is based on observations that collagen fibrils embedded in a soft matrix crimp into a smooth three-dimensional pattern when unloaded. Following ideas presented by Beskos and Jenkins [Beskos, D., Jenkins, J., 1975. A mechanical model for mammalian tendon. ASME Journal of Applied Mechanics 42, 755-758] and Freed and Doehring [Freed, A., Doehring, T., 2005. Elastic model for crimped collagen fibrils. Journal of Biomechanical Engineering 127, 587-593] the collagen fibril crimp is approximated by a cylindrical helix to represent the constitutive behavior of the hierarchical organized substructure of biological tissues at the fibrillar level. The model is derived from the nonlinear axial force-stretch relationship of an extensible helical spring, including the full extension of the spring as a limit case. The geometrically nonlinear solution of the extensible helical spring is carried out by an iterative procedure. The model only requires one material parameter and two geometrical parameters to be determined from experiments. The ability of the proposed model to reproduce the biomechanical response of fibrous tissues is demonstrated for fascicles from rat tail tendons, for porcine cornea strips, and for bovine Achilles tendons.
Life prediction and constitutive models for engine hot section
NASA Technical Reports Server (NTRS)
Swanson, G. A.; Meyer, T. G.; Nissley, D. M.
1986-01-01
The purpose of this program is to develop life prediction models for coated anisotropic materials used in gas turbine airfoils. In the program, two single crystal alloys and two coatings are being tested. These include PWA 1480, Alloy 185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive models are also being developed for these materials to predict the time independent (plastic) and time dependent (creep) strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularly important for high temperature gas turbine applications and is basic to any life prediction system. Some of the accomplishments of the program are highlighted.
Image guided constitutive modeling of the silicone brain phantom
NASA Astrophysics Data System (ADS)
Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan
2005-04-01
The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.
A new constitutive model for nitrogen austenitic stainless steel
NASA Astrophysics Data System (ADS)
Fréchard, S.; Lichtenberger, A.; Rondot, F.; Faderl, N.; Redjaïmia, A.; Adoum, M.
2003-09-01
Quasi-static, quasi-dynamic and dynamic compression tests have been performed on a nitrogen alloyed austenitic stainless steel. For all strain rates, a high strain hardening rate and a good ductility have been achieved. In addition, this steel owns a great strain rate sensitivity. The temperature sensitivity bas been determined between 20°C and 400°C. Microstructural analysis has been performed after different loading conditions in relation to the behaviour of the material. Johnson-Cook and Zerilli-Armstrong models have been selected to fit the experimental data into constitutive equations. These models do not reproduce properly the behaviour of this type of steel over the complete range. A new constitutive model that fits very well all the experimental data at different strain, strain rate and temperature has been determined. The model is based on empirical considerations on the separated influence of the main parameters. Single Taylor tests have been realized to validate the models. Live observations of the specimen during impact have been achieved using a special CCD camera set-up. The overall profile at different times are compared to numerical predictions using LS-DYNA code.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints.
A linearized and incompressible constitutive model for arteries.
Liu, Y; Zhang, W; Wang, C; Kassab, G S
2011-10-07
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke's law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young's moduli E₁ (circumferential), E₂ (axial), and E₃ (radial) are necessary to fit the data. The advantages and limitations of this model are discussed.
Development of a Constitutive Model of Polypropylene for Thermoforming
NASA Astrophysics Data System (ADS)
O'Connor, C.; Martin, P.; Menary, G.; Sweeney, J.; Caton-Rose, P.; Spencer, P.
2011-05-01
In this paper the authors outline a constitutive model, implemented within finite element analyses, which was developed for large deformation, high temperature multi-axial stretching of polypropylenes. The model has been generalised to a fully 3-dimensional thermally coupled form. The paper describes how model parameters were characterised using constant width, biaxial and sequential stretching of polypropylenes at elevated temperature using a custom built flexible biaxial stretching machine developed at Queen's University Belfast. The paper presents results of finite element model predictions of material stretching behaviour compared to range of physical experiments. The results presented in the paper confirm that this model is very effective in predicting the complex thermo-mechanical behaviours of polypropylenes at elevated temperatures.
Modeling, simulation and experimental verification of constitutive models for energetic materials
NASA Astrophysics Data System (ADS)
Haberman, K. S.; Bennett, J. G.; Asay, B. W.; Henson, B. F.; Funk, D. J.
1998-07-01
Simulation of the complete response of components and systems composed of energetic materials, such as PBX-9501 (1) is important in the determination of the safety of various explosive systems. For example, predicting the correct state of stress, rate of deformation and temperature during penetration is essential in the prediction of ignition. Such simulation requires accurate constitutive models. These models must also be computationally efficient to enable analysis of large scale three dimensional problems using explicit lagrangian finite element codes such as DYNA3D (2). However, to be of maximum utility, these predictions must be validated against robust dynamic experiments. In this paper, we report comparisons between experimental and predicted displacement fields in PBX-9501 during dynamic deformation, and describe the modeling approach. The predictions used Visco-SCRAM and the Generalized Method of Cells which have been implemented into DYNA3D. The experimental data were obtained using laser-induced fluorescence speckle photography. Results from this study have lead to more accurate models and have also guided further experimental work.
Modeling, simulation and experimental verification of constitutive models for energetic materials
Haberman, K.S.; Bennett, J.G.; Assay, B.W.
1997-09-01
Simulation of the complete response of components and systems composed of energetic materials, such as PBX-9501 is important in the determination of the safety of various explosive systems. For example, predicting the correct state of stress, rate of deformation and temperature during penetration is essential in the prediction of ignition. Such simulation requires accurate constitutive models. These models must also be computationally efficient to enable analysis of large scale three dimensional problems using explicit lagrangian finite element codes such as DYNA3D. However, to be of maximum utility, these predictions must be validated against robust dynamic experiments. In this paper, the authors report comparisons between experimental and predicted displacement fields in PBX-9501 during dynamic deformation, and describe the modeling approach. The predictions used Visco-SCRAM and the Generalized Method of Cells which have been implemented into DYNA3D. The experimental data were obtained using laser-induced fluorescence speckle photography. Results from this study have lead to more accurate models and have also guided further experimental work.
A nonlocal constitutive model for trabecular bone softening in compression.
Charlebois, Mathieu; Jirásek, Milan; Zysset, Philippe K
2010-10-01
Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Dynamic rupture modeling with laboratory-derived constitutive relations
Okubo, P.G.
1989-01-01
A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2004-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2001-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive modeling and computational implementation for finite strain plasticity
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1985-01-01
This paper describes a simple alternate approach to the difficult problem of modeling material behavior. Starting from a general representation for a rate-tpe constitutive equation, it is shown by example how sets of test data may be used to derive restrictions on the scalar functions appearing in the representation. It is not possible to determine these functions from experimental data, but the aforementioned restrictions serve as a guide in their eventual definition. The implications are examined for hypo-elastic, isotropically hardening plastic, and kinematically hardening plastic materials. A simple model for the evolution of the 'back-stress,' in a kinematic-hardening plasticity theory, that is entirely analogous to a hypoelastic stress-strain relation is postulated and examined in detail in modeling finitely plastic tension-torsion test. The implementation of rate-type material models in finite element algorithms is also discussed.
Constitutive modelling of evolving flow anisotropy including distortional hardening
Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie
2011-05-04
The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.
NASA Astrophysics Data System (ADS)
Huang, Zhipeng; Gao, Lihong; Wang, Yangwei; Wang, Fuchi
2016-09-01
The Johnson-Cook (J-C) constitutive model is widely used in the finite element simulation, as this model shows the relationship between stress and strain in a simple way. In this paper, a cluster global optimization algorithm is proposed to determine the J-C constitutive model parameters of materials. A set of assumed parameters is used for the accuracy verification of the procedure. The parameters of two materials (401 steel and 823 steel) are determined. Results show that the procedure is reliable and effective. The relative error between the optimized and assumed parameters is no more than 4.02%, and the relative error between the optimized and assumed stress is 0.2% × 10-5. The J-C constitutive parameters can be determined more precisely and quickly than the traditional manual procedure. Furthermore, all the parameters can be simultaneously determined using several curves under different experimental conditions. A strategy is also proposed to accurately determine the constitutive parameters.
Materials constitutive models for nonlinear analysis of thermally cycled structures
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.
Application of constitutive model considering nonlinear unloading behavior for Gen.3 AHSS
NASA Astrophysics Data System (ADS)
Sun, Li; Wagoner, R. H.
2013-05-01
Nonlinear unloading behavior has been reported as an important factor for accurate springback prediction. In this study, a newly proposed special component of strain: "Quasi-Plastic-Elastic" ("QPE") strain was utilized to study the springback behavior of Advanced High Strength Steels (AHSS). Several types of steels, including IF steel, DP780, TRIP780, DP980, TWIP980 and QP980 were considered in this research. The results showed that all the tested steels have following behavior: 1) QPE strain is recoverable, like elastic deformation. 2) It dissipates work, like plastic deformation. A 3-D constitutive model considering QPE behavior was implemented in Abaqus/Standard with shell element and applied to draw-bend springback test for Gen. 3 AHSS, QP980. Predictions for springback using the QPE model were more accurate compared with standard elastic-plastic models.
High rate constitutive modeling of aluminium alloy tube
NASA Astrophysics Data System (ADS)
Salisbury, C. P.; Worswick, M. J.; Mayer, R.
2006-08-01
As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.
Constitutive modeling of human saphenous veins at overloading pressures.
Veselý, J; Horný, L; Chlup, H; Adámek, T; Krajíček, M; Žitný, R
2015-05-01
In the present study, inflation tests with free axial extension of 15 human vena saphena magna were conducted ex vivo to obtain data suitable for multi-axial constitutive modeling at overloading conditions (pressures up to approximately 15kPa). Subsequently the data were fitted with a hyperelastic, nonlinear and anisotropic constitutive model based on the theory of the closed thick-walled tube. It was observed that initial highly deformable behavior (up to approximately 2.5kPa) in the pressure-circumferential stretch response is followed by progressive large strain stiffening. Contrary to that, samples were much stiffer in longitudinal direction, where the observed stretches were in the range 0.98-1.03 during the entire pressurization in most cases. The effect of possible residual stress was evaluated in a simulation of the intramural stress distribution with the opening angle prescribed to 0°, 10°, 20°, 30°, 40°, and 50°. The result suggests that the optimal opening angle making the stress distribution through the wall thickness uniform is about 40°. The material parameters presented here are suitable for use in mechanobiological simulations describing the adaptation of the autologous vein wall after bypass surgery.
Sacks, Michael S
2003-04-01
Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v. 16, pp. 1-12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892-902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.
Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity
Puso, M
2003-01-21
Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.
Turbulence modeling based on non-Newtonian constitutive laws
NASA Astrophysics Data System (ADS)
Mompean, G.; Qiu, X.; Schmitt, F. G.; Thompson, R.
2011-12-01
This work revisits the analogy between Newtonian turbulence and non-Newtonian laminar flows. Several direct numerical simulations (DNS) data of a plane channel flow, for a large range of Reynolds numbers (180 <= Reτ <= 2000) were explored. The profiles of mean velocity and second moment quantities were used to extract viscometric functions in the non-Newtonian modeling framework. The Reynolds stress tensor is expressed in terms of a set of basis kinematic tensors based on a projection of a nonlinear framework. The coefficients of the model are given as functions of the intensity of the mean strain tensor. The apparent eddy turbulent viscosity, the first and second normal stress differences are presented as function of the shear rate. One of the advantages of the new algebraic nonlinear power law constitutive equation derived in the paper, is that is only dependent on the mean velocity gradient and can be integrated up to the wall.
Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.
Szczesny, Spencer E; Peloquin, John M; Cortes, Daniel H; Kadlowec, Jennifer A; Soslowsky, Louis J; Elliott, Dawn M
2012-02-01
The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon's two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R(2) ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that
Constitutive modeling of calcium carbonate supersaturated seawater mixtures
NASA Astrophysics Data System (ADS)
Reis, Martina; Sousa, Maria De Fátima; Bertran, Celso; Bassi, Adalberto
2014-11-01
Calcium carbonate supersaturated seawater mixtures have attracted attention of many researchers since the deposition of CaCO3(s) from such solutions can lead to scaling problems in oil fields. However, despite their evident practical importance in petroleum engineering, the hydro and thermodynamic behaviors of these mixtures have not been well-understood yet. In this work, a constitutive model based on the foundations of the constitutive theory of continuum mechanics, and the Müller-Liu entropy principle is proposed. The calcium carbonate supersaturated seawater mixture is regarded as a reactive viscous fluid with heat and electrical conductions. The obtained results indicate that the thermodynamic behavior of CaCO3 supersaturated seawater mixtures is closely related to the individual dynamics of each constituent of the mixture, particularly to the linear momentum, and mass exchanges. Furthermore, the results show that, unlike classical continuum mixtures, the extra entropy flux is not null, and higher-order gradients of deformation contribute to the residual entropy production of the class of mixtures under study. The results of this work may be relevant for the prevention of the mineral scale formation in oil fields. The first author acknowledges the São Paulo Research Foundation (Grant 2013/ 20872-2) for its funding.
Towards a Simple Constitutive Model for Bread Dough
NASA Astrophysics Data System (ADS)
Tanner, Roger I.
2008-07-01
Wheat flour dough is an example of a soft solid material consisting of a gluten (rubbery) network with starch particles as a filler. The volume fraction of the starch filler is high-typically 60%. A computer-friendly constitutive model has been lacking for this type of material and here we report on progress towards finding such a model. The model must describe the response to small strains, simple shearing starting from rest, simple elongation, biaxial straining, recoil and various other transient flows. A viscoelastic Lodge-type model involving a damage function. which depends on strain from an initial reference state fits the given data well, and it is also able to predict the thickness at exit from dough sheeting, which has been a long-standing unsolved puzzle. The model also shows an apparent rate-dependent yield stress, although no explicit yield stress is built into the model. This behaviour agrees with the early (1934) observations of Schofield and Scott Blair on dough recoil after unloading.
Experimental investigation and constitutive model for lime mudstone.
Wang, Junbao; Liu, Xinrong; Zhao, Baoyun; Song, Zhanping; Lai, Jinxing
2016-01-01
In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
NASA Astrophysics Data System (ADS)
Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen
2014-09-01
Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
A Linearized and Incompressible Constitutive Model for Arteries
Liu, Y.; Zhang, W.; Wang, C.; Kassab, G. S.
2011-01-01
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke’s law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young’s moduli E1 (circumferential), E2 (axial), and E3 (radial) are necessary to fit the data. The advantages and limitations of this model are discussed. PMID:21605567
A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets.
Zhang, Will; Ayoub, Salma; Liao, Jun; Sacks, Michael S
2016-03-01
Fundamental to developing a deeper understanding of pathophysiological remodeling in mitral valve (MV) disease is the development of an accurate tissue-level constitutive model. In the present work, we developed a novel meso-scale (i.e. at the level of the fiber, 10-100 μm in length scale) structural constitutive model (MSSCM) for MV leaflet tissues. Due to its four-layer structure, we focused on the contributions from the distinct collagen and elastin fiber networks within each tissue layer. Requisite collagen and elastin fibrous structural information for each layer were quantified using second harmonic generation microscopy and conventional histology. A comprehensive mechanical dataset was also used to guide model formulation and parameter estimation. Furthermore, novel to tissue-level structural constitutive modeling approaches, we allowed the collagen fiber recruitment function to vary with orientation. Results indicated that the MSSCM predicted a surprisingly consistent mean effective collagen fiber modulus of 162.72 MPa, and demonstrated excellent predictive capability for extra-physiological loading regimes. There were also anterior-posterior leaflet-specific differences, such as tighter collagen and elastin fiber orientation distributions (ODF) in the anterior leaflet, and a thicker and stiffer atrialis in the posterior leaflet. While a degree of angular variance was observed, the tight valvular tissue ODF also left little room for any physically meaningful angular variance in fiber mechanical responses. Finally, a novel fibril-level (0.1-1 μm) validation approach was used to compare the predicted collagen fiber/fibril mechanical behavior with extant MV small angle X-ray scattering data. Results demonstrated excellent agreement, indicating that the MSSCM fully captures the tissue-level function. Future utilization of the MSSCM in computational models of the MV will aid in producing highly accurate simulations in non-physiological loading states that can
NASA Astrophysics Data System (ADS)
Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing
2016-03-01
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
NASA Astrophysics Data System (ADS)
Lemoine, X.; Sriram, S.; Kergen, R.
2011-05-01
ArcelorMittal continuously develops new steel grades (AHSS) with high performance for the automotive industry to improve the weight reduction and the passive safety. The wide market introduction of AHSS raises a new challenge for manufacturers in terms of material models in the prediction of forming—especially formability and springback. The relatively low uniform elongation, the high UTS and the low forming limit curve of these AHSS may cause difficulties in forming simulations. One of these difficulties is the consequence of the relatively low uniform elongation on the parameters identification of isotropic hardening model. Different experimental tests allow to reach large plastic strain levels (hydraulic bulge test, stack compression test, shear test…). After a description on how to determine the flow curve in these experimental tests, a comparison of the different flow curves is made for different steel grades. The ArcelorMittal identification protocol for hardening models is only based on stress-strain curves determined in uniaxial tension. Experimental tests where large plastic strain levels are reached are used to validate our identification protocol and to recommend some hardening models. Finally, the influence of isotropic hardening models and yield loci in forming prediction for AHSS steels will be presented.
Some advances in experimentation supporting development of viscoplastic constitutive models
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Robinson, D. N.
1985-01-01
The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments performed at room temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-placed calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.
Some advances in experimentation supporting development of viscoplastic constitutive models
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Robinson, D. N.
1985-01-01
The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments conducted at room and elevated temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-place calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.
Mechanical tests for validation of seismic isolation elastomer constitutive models
Kulak, R.F.; Hughes, T.H.
1992-01-01
High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs.
Mechanical tests for validation of seismic isolation elastomer constitutive models
Kulak, R.F.; Hughes, T.H.
1992-05-01
High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs.
Life prediction and constitutive models for anisotropic materials
NASA Technical Reports Server (NTRS)
Bill, R. C.
1982-01-01
The intent of this program is to develop a basic understanding of cyclic creep-fatigue deformation mechanisms and damage accumulation, a capability for reliable life prediction, and the ability to model the constitutive behavior of anisotropic single crystal (SC) and directionally solidified or recrystallized (DSR) comprise the program, and the work breakdown for each option reflects a distinct concern for two classes of anisotropic materials, SC and DSR materials, at temperatures encountered in the primary gas path (airfoil temperatures), and at temperatures typical of the blade root attachment and shank area. Work directed toward the higher temperature area of concern in the primary gas path includes effects of coatings on the behavior and properties of the materials of interest. The blade root attachment work areas will address the effects of stress concentrations associated with attachment features.
Constitutive modelling of a tungsten heavy metal alloy
NASA Astrophysics Data System (ADS)
Skoglund, P.
2003-09-01
The dynamic mechanical behaviour of a tungsten heavy metal alloy (WHA) with potential use as a kinetic energy penetrator is investigated. Mechanical properties related to tensile loading are measured at strain rates up to 400 s^{-1} and at temperatures from 20 ^{circ}C to about 500 ^{circ}C. From the experimental data parameters for the constitutive equations developed by Johnson and Cook (J&C) as well as Zerilli and Armstrong (Z&A) are determined. From the extracted models isothermal and adiabatic flow stress curves are calculated and compared to experiments. At high strain rates or high temperatures the J&C model deviates about 5-10% from experimental results, while the Z&A model shows a better agreement with the collected data. It should be emphasised that the Z&A model used in this work is developed for materials with body centred crystals whereas the WHA is a composite with both face centredand body centred crystals.
Constitutive modelling of a reinforced soil using hierarchical model
NASA Astrophysics Data System (ADS)
Varadarajan, A.; Sharma, K. G.; Soni, K. M.
1999-03-01
Drained triaxial tests are conducted on natural and reinforced sand under various stress paths. Direct shear tests and pull-out tests are conducted on soil-reinforcement interface and on reinforcement, respectively. The effects of two types of reinforcement, viz, woven and non-woven geotextile and number of layers of reinforcement are investigated. Hierarchical single surface model is used to depict the behaviour of natural and reinforced soil by treating the soil as a single composite material and by considering soil, reinforcement and interface as independent elements. It is shown that the material parameters are very much affected by the type and the number of layers of reinforcement. The hierarchical model provides satisfactory prediction for both natural and reinforced soil.
A constitutive model for Sn-Pb solder.
Neilsen, Michael K.; Vianco, Paul Thomas; Boyce, Brad Lee
2010-10-01
A unified creep plasticity damage (UCPD) model for Sn-Pb solder is developed in this paper. Stephens and Frear (1999) studied the creep behavior of near-eutectic 60Sn-40Pb solder subjected to low strain rates and found that the inelastic (creep and plastic) strain rate could be accurately described using a hyperbolic Sine function of the applied effective stress. A recently developed high-rate servo-hydraulic method was employed to characterize the temperature and strain-rate dependent stress-strain behavior of eutectic Sn-Pb solder over a wide range of strain rates (10{sup -4} to 10{sup 2} per second). The steady state inelastic strain rate data from these latest experiments were also accurately captured by the hyperbolic Sine equation developed by Stephens and Frear. Thus, this equation was used as the basis for the UCPD model for Sn-Pb solder developed in this paper. Stephens, J.J., and Frear, D.R., Metallurgical and Materials Transactions A, Volume 30A, pp. 1301-1313, May 1999.
Constitutive modeling and control of 1D smart composite structures
NASA Astrophysics Data System (ADS)
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Accurate modelling of unsteady flows in collapsible tubes.
Marchandise, Emilie; Flaud, Patrice
2010-01-01
The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.
Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2001-01-01
A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
An accurate temperature correction model for thermocouple hygrometers.
Savage, M J; Cass, A; de Jager, J M
1982-02-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature.
More-Accurate Model of Flows in Rocket Injectors
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford
2011-01-01
An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.
Advances in Constitutive and Failure Models for Sheet Forming Simulation
NASA Astrophysics Data System (ADS)
Yoon, Jeong Whan; Stoughton, Thomas B.
2016-08-01
Non-Associated Flow Rule (Non-AFR) can be used as a convenient way to account for anisotropic material response in metal deformation processes, making it possible for example, to eliminate the problem of the anomalous yielding in equibiaxial tension that is mistakenly attributed to limitations of the quadratic yield function, but may instead be attributed to the Associated Flow Rule (AFR). Seeing as in Non-AFR based models two separate functions can be adopted for yield and plastic potential, there is no constraint to which models are used to describe each of them. In this work, the flexible combination of two different yield criteria as yield function and plastic potential under Non-AFR is proposed and evaluated. FE simulations were carried so as to verify the accuracy of the material directionalities predicted using these constitutive material models. The stability conditions for non-associated flow connected with the prediction of yield point elongation are also reviewed. Anisotropic distortion hardening is further incorporated under non-associated flow. It has been found that anisotropic hardening makes the noticeable improvements for both earing and spring-back predictions. This presentation is followed by a discussion of the topic of the forming limit & necking, the evidence in favor of stress analysis, and the motivation for the development of a new type of forming limit diagram based on the polar effective plastic strain (PEPS) diagram. In order to connect necking to fracture in metals, the stress-based necking limit is combined with a stress- based fracture criterion in the principal stress, which provides an efficient method for the analysis of necking and fracture limits. The concept for the PEPS diagram is further developed to cover the path-independent PEPS fracture which is compatible with the stress-based fracture approach. Thus this fracture criterion can be utilized to describe the post-necking behavior and to cover nonlinear strain-path. Fracture
Constitutive modeling of the rheological behavior of platelet suspensions
NASA Astrophysics Data System (ADS)
Sommer, Drew E.
Compression molding of chopped fiber composites is used to manufacture complex 3D geometries with high fiber volume fractions of 50-60% and long, discontinuous fibers and thermoplastic matrices. When prepreg, chopped into platelets, is used as a charge material, the individual platelets remain intact during the molding process and flow relative to one another, as experimental observations show. Heterogeneity of the platelet/resin suspension cannot be considered at the structural scale of molding simulation. Instead, the suspension should be idealized into the homogenized anisotropic and viscous system which obeys the prescribed anisotropic stress-strain rate constitutive relation. The viscosity tensor of the aforementioned constitutive law was analytically evaluated in this work through the representative volume element (RVE) based analysis. An idealized microstructure of platelets was developed to perform such an analysis. The platelets were aligned and arranged in a planar configuration with periodic boundary conditions. Analytic expressions for the effective, anisotropic viscosities were derived by micromechanical analysis for the idealized microstructure of rigid platelets. In this analysis, the load transfer mechanisms and their contribution to the viscosity of the platelet assembly were investigated. The kinematic assumption of linear velocity distributions consistent with the mechanism of shearing rate was adopted. While the platelets were assumed to be rigid, the resin was taken as an incompressible, isotropic fluid which provided for the platelet-to-platelet load transfer. Strain rate and temperature dependence were included by modeling the polymer matrix as a Carreau fluid. Shear strain in the resin was developed due to the relative motion of adjacent platelets. The resin shear strain rate was expressed in terms of the corresponding platelet velocities. Equilibrium of the platelet was used to relate the applied far-field stress to the average strain rate
Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.
Huynh, Linh; Tagkopoulos, Ilias
2015-08-21
In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.
Probabilistic constitutive relationships for material strength degradation models
NASA Technical Reports Server (NTRS)
Boyce, L.; Chamis, C. C.
1989-01-01
In the present probabilistic methodology for the strength of aerospace propulsion system structural components subjected to such environmentally-induced primitive variables as loading stresses, high temperature, chemical corrosion, and radiation, time is encompassed as an interacting element, allowing the projection of creep and fatigue effects. A probabilistic constitutive equation is postulated to account for the degradation of strength due to these primitive variables which may be calibrated by an appropriately curve-fitted least-squares multiple regression of experimental data. The resulting probabilistic constitutive equation is embodied in the PROMISS code for aerospace propulsion component random strength determination.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Mouse models of human AML accurately predict chemotherapy response
Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.
2009-01-01
The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691
Mouse models of human AML accurately predict chemotherapy response.
Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W
2009-04-01
The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients.
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.
2015-01-01
Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results
A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan
2014-12-01
Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.
Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng
Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.
NASA Technical Reports Server (NTRS)
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
Requirements of constitutive models for two nickel-base superalloys
NASA Technical Reports Server (NTRS)
Laflen, J. H.; Cook, T. S.
1983-01-01
The constitutive behavior of two nickel-base superalloys, Rene '80 and Inconel 718, utilized in gas turbine blade and disk components, respectively, is presented. In turbine blade applications, the high homologous temperatures result in strain-rate effects dominating behavior. In turbine disks, the temperatures are cooler so that mean stress effects become important. The impact of these two variables on the overall crack initiation lifetime and analysis methodology is discussed.
Examination and sensitivity study of the KOVEC constitutive model for beryllium
Moss, W.C.; Glenn, L.A.
1983-01-01
We have checked the consistency of the KOVEC constitutive model for beryllium with experimental data, by examining work hardening, the temperature dependence of the yield strength, strain-rate effects, and the Hugoniot (U/sub s/-U/sub p/) relations. We have examined the sensitivity of simulations of uniaxial strain plate impact experiments, in which beryllium was used, to changes in the beryllium constitutive model. We also discuss the nonuniqueness of constitutive models. 17 figures.
NASA Technical Reports Server (NTRS)
Veazie, David R.
1998-01-01
Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.
Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.
Wu, Tim; Hung, Alice; Mithraratne, Kumar
2014-11-01
This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.
3-D Nonlinear Constitutive Modeling Approach for Composite Materials
1992-05-01
material nonlinearities, damage , and interfacial debonding [1]. These nonlinearities must be considered for accurate prediction of strength or stability...the overall nonlinear behavior covers plasticity and damage effects, both of which could have significant impact on structural analysis results...through a user-written material ( UMAT ) subroutine. D Micromechanical Analyse Micromechanical methods and selective experimentation are used to develop an
NASA Astrophysics Data System (ADS)
Demir, Eralp
2017-01-01
A new, simple and physically consistent dislocation-density-based continuum model is developed in a large-strain crystal plasticity framework. All the constitutive laws are expressed in a simple and unique way in terms of a single state variable dislocation density. The proposed physically based model predicts experimental single-crystal stress-strain curves along different crystal directions more accurately than a classical model with widely accepted constitutive laws. The polycrystal texture predictions from the dislocation-density-based and classical models having the same single-crystal stress-strain characteristics are in good agreement with the classical model when Taylor-type homogenization is used in conjunction with enough number of grains.
Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures
NASA Astrophysics Data System (ADS)
Zhao, Jingwei; Jiang, Zhengyi; Zu, Guoqing; Du, Wei; Zhang, Xin; Jiang, Laizhu
2016-05-01
The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900-1100 °C and strain rate range of 1-50 s-1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.
Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations
NASA Astrophysics Data System (ADS)
Bowman, J.; Jensen, S.; McDonald, Mark
2010-10-01
High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.
Constitutive Model Parameter Study For Armor Steel And Tungsten Alloys
2012-01-01
considered in the study. The first consisted of 90% tungsten ( W ), 7% nickel (Ni), and 3% iron (Fe) by volume and is denoted by 90W-7Ni-3Fe. The second...Hardness. Unpublished, April 2010. 6. G.T. Gray, S.R. Chen, W . Wright, and M.F. Lopez. Constitutive Equations for Annealed Metals Under Compression at...the High Pressure, High Strain Rate Loading Environment of Ballistic Impact. PhD thesis, Johns Hopkins University, 1992. 11. W . Lanz and W . Odermatt
Development of in vivo Constitutive Models for Liver: Application to Surgical Simulation
Lister, Kevin; Gao, Zhan; Desai, Jaydev P.
2011-01-01
Advancements in real-time surgical simulation techniques have provided the ability to utilize more complex nonlinear constitutive models for biological tissues which result in increased haptic and graphic accuracy. When developing such a model, verification is necessary to determine the accuracy of the force response as well as the magnitude of tissue deformation for tool-tissue interactions. In this study, we present an experimental device which provides the ability to obtain force-displacement information as well as surface deformation of porcine liver for in vivo probing tasks. In addition, the system is capable of accurately determining the geometry of the liver specimen. These combined attributes provide the context required to simulate the experiment with accurate boundary conditions, whereby the only variable in the analysis is the material properties of the liver specimen. During the simulation, effects of settling due to gravity have been taken into account by a technique which incorporates the proper internal stress conditions in the model without altering the geometry. Initially, an Ogden model developed from ex vivo tension and compression experimentation is run through the simulation to determine the efficacy of utilizing an ex vivo model for simulation of in vivo probing tasks on porcine liver. Subsequently, a method for improving upon the ex vivo model was developed using different hyperelastic models such that increased accuracy could be achieved for the force characteristics compared to the displacement characteristics, since changes in the force variation would be more perceptible to a user in the simulation environment, while maintaining a high correlation with the surface displacement data. Furthermore, this study also presents the probing simulation which includes the capsule surrounding the liver. PMID:21161684
Development of in vivo constitutive models for liver: application to surgical simulation.
Lister, Kevin; Gao, Zhan; Desai, Jaydev P
2011-03-01
Advancements in real-time surgical simulation techniques have provided the ability to utilize more complex nonlinear constitutive models for biological tissues which result in increased haptic and graphic accuracy. When developing such a model, verification is necessary to determine the accuracy of the force response as well as the magnitude of tissue deformation for tool-tissue interactions. In this study, we present an experimental device which provides the ability to obtain force-displacement information as well as surface deformation of porcine liver for in vivo probing tasks. In addition, the system is capable of accurately determining the geometry of the liver specimen. These combined attributes provide the context required to simulate the experiment with accurate boundary conditions, whereby the only variable in the analysis is the material properties of the liver specimen. During the simulation, effects of settling due to gravity have been taken into account by a technique which incorporates the proper internal stress conditions in the model without altering the geometry. Initially, an Ogden model developed from ex vivo tension and compression experimentation is run through the simulation to determine the efficacy of utilizing an ex vivo model for simulation of in vivo probing tasks on porcine liver. Subsequently, a method for improving upon the ex vivo model was developed using different hyperelastic models such that increased accuracy could be achieved for the force characteristics compared to the displacement characteristics, since changes in the force variation would be more perceptible to a user in the simulation environment, while maintaining a high correlation with the surface displacement data. Furthermore, this study also presents the probing simulation which includes the capsule surrounding the liver.
Constitutive Modeling of High-Temperature Flow Behavior of an Nb Micro-alloyed Hot Stamping Steel
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Feng, Ding; Huang, Yunhua; Wei, Shizhong; Mohrbacher, Hardy; Zhang, Yue
2016-03-01
The thermal deformation behavior and constitutive models of an Nb micro-alloyed 22MnB5 steel were investigated by conducting isothermal uniaxial tensile tests at the temperature range of 873-1223 K with strain rates of 0.1-10 s-1. The results indicated that the investigated steel showed typical work hardening and dynamic recovery behavior during hot deformation, and the flow stress decreased with a decrease in strain rate and/or an increase in temperature. On the basis of the experimental data, the modified Johnson-Cook (modified JC), modified Norton-Hoff (modified NH), and Arrhenius-type (AT) constitutive models were established for the subject steel. However, the flow stress values predicted by these three models revealed some remarkable deviations from the experimental values for certain experimental conditions. Therefore, a new combined modified Norton-Hoff and Arrhenius-type constitutive model (combined modified NH-AT model), which accurately reflected both the work hardening and dynamic recovery behavior of the subject steel, was developed by introducing the modified parameter k ɛ. Furthermore, the accuracy of these constitutive models was assessed by the correlation coefficient, the average absolute relative error, and the root mean square error, which indicated that the flow stress values computed by the combined modified NH-AT model were highly consistent with the experimental values (R = 0.998, AARE = 1.63%, RMSE = 3.85 MPa). The result confirmed that the combined modified NH-AT model was suitable for the studied Nb micro-alloyed hot stamping steel. Additionally, the practicability of the new model was also verified using finite element simulations in ANSYS/LS-DYNA, and the results confirmed that the new model was practical and highly accurate.
Modeling of rock friction 1. Experimental results and constitutive equations
Dieterich, J.H.
1979-01-01
Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of ??6 MPa demonstrate that competing time, displacement, and velocity effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip is also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability. Copyright ?? 1979 by the American Geophysical Union.
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots
Hajdin, Christine E.; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W.; Mathews, David H.; Weeks, Kevin M.
2013-01-01
A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified. PMID:23503844
Towards Accurate Molecular Modeling of Plastic Bonded Explosives
NASA Astrophysics Data System (ADS)
Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.
2010-03-01
There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.
Integrated research in constitutive modelling at elevated temperatures, part 2
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Allen, D. H.
1986-01-01
Four current viscoplastic models are compared experimentally with Inconel 718 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used include Bodner's anisotropic model; Krieg, Swearengen, and Rhode's model; Schmidt and Miller's model; and Walker's exponential model.
Personalized Orthodontic Accurate Tooth Arrangement System with Complete Teeth Model.
Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Liu, Yi; Fan, Qilei; Hou, Yulin; Jiang, Xiaotong
2015-09-01
The accuracy, validity and lack of relation information between dental root and jaw in tooth arrangement are key problems in tooth arrangement technology. This paper aims to describe a newly developed virtual, personalized and accurate tooth arrangement system based on complete information about dental root and skull. Firstly, a feature constraint database of a 3D teeth model is established. Secondly, for computed simulation of tooth movement, the reference planes and lines are defined by the anatomical reference points. The matching mathematical model of teeth pattern and the principle of the specific pose transformation of rigid body are fully utilized. The relation of position between dental root and alveolar bone is considered during the design process. Finally, the relative pose relationships among various teeth are optimized using the object mover, and a personalized therapeutic schedule is formulated. Experimental results show that the virtual tooth arrangement system can arrange abnormal teeth very well and is sufficiently flexible. The relation of position between root and jaw is favorable. This newly developed system is characterized by high-speed processing and quantitative evaluation of the amount of 3D movement of an individual tooth.
A Constitutive Model for Long Time Duration Mechanical Behavior in Insensitive High Explosives
Darnell, I M; Oh, S; Hrousis, C A; Cunningham, B J; Gagliardi, F J
2010-03-09
An anisotropic constitutive model for the long term dimensional stability of insensitive high explosives is proposed. Elastic, creep, thermal, and ratchet growth strains are developed. Pressure and temperature effects are considered. The constitutive model is implemented in an implicit finite element code and compared to a variety of experimental data.
Girard, Michaël J A; Downs, J Crawford; Burgoyne, Claude F; Suh, J-K Francis
2009-05-01
The sclera is the white outer shell and principal load-bearing tissue of the eye as it sustains the intraocular pressure. We have hypothesized that the mechanical properties of the posterior sclera play a significant role in and are altered by the development of glaucoma-an ocular disease manifested by structural damage to the optic nerve head. An anisotropic hyperelastic constitutive model is presented to simulate the mechanical behavior of the posterior sclera under acute elevations of intraocular pressure. The constitutive model is derived from fiber-reinforced composite theory, and incorporates stretch-induced stiffening of the reinforcing collagen fibers. Collagen fiber alignment was assumed to be multidirectional at local material points, confined within the plane tangent to the scleral surface, and described by the semicircular von Mises distribution. The introduction of a model parameter, namely, the fiber concentration factor, was used to control collagen fiber alignment along a preferred fiber orientation. To investigate the effects of scleral collagen fiber alignment on the overall behaviors of the posterior sclera and optic nerve head, finite element simulations of an idealized eye were performed. The four output quantities analyzed were the scleral canal expansion, the scleral canal twist, the posterior scleral canal deformation, and the posterior laminar deformation. A circumferential fiber organization in the sclera restrained scleral canal expansion but created posterior laminar deformation, whereas the opposite was observed with a meridional fiber organization. Additionally, the fiber concentration factor acted as an amplifying parameter on the considered outputs. The present model simulation suggests that the posterior sclera has a large impact on the overall behavior of the optic nerve head. It is therefore primordial to provide accurate mechanical properties for this tissue. In a companion paper (Girard, Downs, Bottlang, Burgoyne, and Suh, 2009
Marchi, Benjamin C; Arruda, Ellen M
2017-02-01
The mechanical behaviors of biological soft tissues are challenging to describe abstractly, with each individual tissue potentially characterized by its own unique nonlinear, anisotropic, and viscoelastic properties. These complexities are exacerbated by patient to patient variability, both mechanically and anatomically, and by inherent constitutive heterogeneity. Despite these challenges, computational models of whole knee biomechanics can be instrumental in describing the onset and progression of injury and disease. In this work, a three-dimensional whole knee computational model was developed using patient-specific anatomy, containing tissues with constitutive relationships built from relevant experimental investigations. In an effort to address the common assumption of linear elastic descriptions of articular cartilage in whole knee models, this work investigates the implications, with respect to macroscopic kinematics and local deformation, of incorporating physiologically motivated and mechanically accurate constitutive heterogeneity in articular cartilage, highlighting the sensitivities of each corresponding level of constitutive complexity. We show how the inclusion of representative cartilage material models affects deformation distributions within the joint, as well as relative joint motion. In particular, the assumption of linear elasticity in articular cartilage results in an overprediction of joint motion and significantly affects predicted local cartilage strains, while full-field, mechanically heterogeneous cartilage descriptions have a less drastic effect at both the tissue and joint levels. Nonetheless, joints containing complete descriptions of articular cartilage heterogeneity may be an integral component in building comprehensive computational tools to advance our understanding of injury and disease mechanisms.
Integrated research in constitutive modelling at elevated temperatures, part 1
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Allen, D. H.
1986-01-01
Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.
Constitutive Modeling of the Mechanical Properties of Optical Fibers
NASA Technical Reports Server (NTRS)
Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.
1998-01-01
Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.
Quinci, Federico; Dressler, Matthew; Strickland, Anthony M; Limbert, Georges
2014-04-01
Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities. It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation
Lee, H.K.; Simunovic, S.
1999-09-01
A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs).To estimate the overall elastoplastic damage responses,an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers.The proposed effective yield criterion,to ether with the assumed overall associative plastic flow rule and hardening law, constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix composites.First,an effective elastoplastic constitutive dama e model for aligned fiber-reinforced composites is proposed.A micromechanical damage constitutive model for RFPCs is then developed.The average process over all orientations upon overning constitutive field equations and overall yield function for aligned fiber-reinforced composites i s performed to obtain the constitutive relations and effective yield function of RFPCs.The discrete numerical integration algorithms and the continuum tan ent operator are also presented to implement the proposed dama e constitutive model.The dama e constitutive model forms the basis for the pro ressive crushing in composite structures under impact loading.
Enterococcus faecalis Constitutes an Unusual Bacterial Model in Lysozyme Resistance▿
Hébert, Laurent; Courtin, Pascal; Torelli, Riccardo; Sanguinetti, Maurizio; Chapot-Chartier, Marie-Pierre; Auffray, Yanick; Benachour, Abdellah
2007-01-01
Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis. PMID:17785473
An anisotropic constitutive model with biaxial-tension coupling for woven composite reinforcements
NASA Astrophysics Data System (ADS)
Yao, Yuan; Huang, Xiaoshuang; Peng, Xiongqi; Gong, Youkun
2016-10-01
Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model with biaxial tension coupling for woven composite reinforcements is developed. Experimental data from literature are used to identify material parameters in the constitutive model for a specific balanced plain woven fabric. The developed model is validated by comparing numerical results with experimental biaxial tension data under different stretch ratios and picture-frame shear data, demonstrating that the developed constitutive model is highly suitable to characterize the highly non-linear and strongly anisotropic mechanical behaviors of woven composite reinforcements under large deformation.
A constitutive model of polyether-ether-ketone (PEEK).
Chen, Fei; Ou, Hengan; Lu, Bin; Long, Hui
2016-01-01
A modified Johnson-Cook (JC) model was proposed to describe the flow behaviour of polyether-ether-ketone (PEEK) with the consideration of coupled effects of strain, strain rate and temperature. As compared to traditional JC model, the modified one has better ability to predict the flow behaviour at elevated temperature conditions. In particular, the yield stress was found to be inversely proportional to temperature from the predictions of the proposed model.
NASA Astrophysics Data System (ADS)
Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.
2012-11-01
A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Qingping, Sun; Shouwen, Yu; Kehchih, Hwang
1990-05-01
A new micromechanics constitutive model for pure dilatant transformation plasticity of structure ceramics is proposed in this paper. Based on the thermodynamics, micromechanics and microscale t→m transformation mechanism analysis of the TZP and PSZ ZrO2-containing ceramics, an analytic expressions of the Helmholtz and complementary free energy of the constitutive element for the case of pure dilatant transformation is derived for the first time in a self-consistent manner. By the analysis of energy dissipation in the forward and reverse transformations, the micromechanics constitutive law is derived in the framework of Hill-Rice's internal variable constitutive theory.
Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy
Young, Sung; Nam, Tae-Hyun
2013-12-15
Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading.
Constitutive models used to simulate penetration and perforation of concrete targets
Akers, S.A.; Adley, M.D.
1996-12-31
Only a limited number of nonlinear constitutive models are available in wave propagation codes to simulate geologic materials, and these models often do not capture the fundamental and often complex mechanical behavior of these materials. Researchers at the WES have recently implemented two models, which were specifically designed for geologic materials, into the large-strain Lagrangian wave-propagation code EPIC. These models are currently being used in finite-element simulations of penetration and ground-shock problems. In this paper, the formulation of the constitutive models is examined and the implementation of the models into EPIC is briefly described. Results from a series of calculations are presented to illustrate the effect of the constitutive models on penetration and perforation problems. Three models are compared, one of the new WES models, the EPIC crushable-solids model, which is often employed to model geologic materials, and EPIC`s Holmquist-Johnson-Cook model for concrete.
NASA Astrophysics Data System (ADS)
Zhou, Hao-Miao; Li, Meng-Han; Li, Xiao-Hong; Zhang, Da-Guang
2016-08-01
For a giant magnetostrictive rod under the action of multiple physical loads, such as an external magnetic field, temperature and axial pre-stress, this paper proposes a general one-dimensional nonlinear magneto-thermo-mechanical coupled constitutive model. This model is based on the Taylor expansion of the elastic Gibbs free energy of giant magnetostrictive material and thermodynamic relations from the perspective of macro continuum mechanics. Predictions made using this model are in good agreement with experimental data for magnetization and the magnetostrictive strain curve under the collective effect of pre-stress and temperature. Additionally, the model overcomes the drawback of the existing magneto-thermo-mechanical constitutive model that cannot accurately predict the magnetization and magnetostrictive strain curve for different temperatures and pre-stresses. Furthermore, the constitutive model does not contain an implicit function and is compact, and can thus be applied in both situations of tensile and compressive stress and to both positive and negative magnetostrictive materials, and it is thus appropriate for engineering applications. Comprehensive analysis shows that the model fully describes the nonlinear coupling properties of a magnetic field, magnetostrictive strain and elasticity of a magnetostrictive material subjected to stress, a magnetic field and heat.
Modeling and Algorithmic Approaches to Constitutively-Complex, Microstructured Fluids
Miller, Gregory H.; Forest, Gregory
2014-05-01
We present a new multiscale model for complex fluids based on three scales: microscopic, kinetic, and continuum. We choose the microscopic level as Kramers' bead-rod model for polymers, which we describe as a system of stochastic differential equations with an implicit constraint formulation. The associated Fokker-Planck equation is then derived, and adiabatic elimination removes the fast momentum coordinates. Approached in this way, the kinetic level reduces to a dispersive drift equation. The continuum level is modeled with a finite volume Godunov-projection algorithm. We demonstrate computation of viscoelastic stress divergence using this multiscale approach.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping
NASA Astrophysics Data System (ADS)
Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang
2017-01-01
In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.
NASA Astrophysics Data System (ADS)
Mousavi, Mohammad Reza; Arghavani, Jamal
2017-01-01
This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple formulation of the proposed constitutive model. To show the model capability in reproducing the main features of MSMAs, several numerical examples are solved and compared with available experimental data as well as available three-dimensional constitutive models in the literature. Demonstrating good agreement with experimental data besides possessing computational advantages, the proposed constitutive model can be used for analysis of MSMA-based smart structures.
A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping
NASA Astrophysics Data System (ADS)
Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang
2017-03-01
In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.
A transverse isotropic viscoelastic constitutive model for aortic valve tissue
Bucchi, Andrea; Screen, Hazel R. C.; Evans, Sam L.
2017-01-01
A new anisotropic viscoelastic model is developed for application to the aortic valve (AV). The directional dependency in the mechanical properties of the valve, arising from the predominantly circumferential alignment of collagen fibres, is accounted for in the form of transverse isotropy. The rate dependency of the valve's mechanical behaviour is considered to stem from the viscous (η) dissipative effects of the AV matrix, and is incorporated as an explicit function of the deformation rate (λ˙). Model (material) parameters were determined from uniaxial tensile deformation tests of porcine AV specimens at various deformation rates, by fitting the model to each experimental dataset. It is shown that the model provides an excellent fit to the experimental data across all different rates and satisfies the condition of strict local convexity. Based on the fitting results, a nonlinear relationship between η and λ˙ is established, highlighting a ‘shear-thinning’ behaviour for the AV with increase in the deformation rate. Using the model and these outcomes, the stress–deformation curves of the AV tissue under physiological deformation rates in both the circumferential and radial directions are predicted and presented. To verify the predictive capabilities of the model, the stress–deformation curves of AV specimens at an intermediate deformation rate were estimated and validated against the experimental data at that rate, showing an excellent agreement. While the model is primarily developed for application to the AV, it may be applied without the loss of generality to other collagenous soft tissues possessing a similar structure, with a single preferred direction of embedded collagen fibres. PMID:28280556
Constitutive modelling of brain tissue: experiment and theory.
Miller, K; Chinzei, K
1997-01-01
Recent developments in computer-integrated and robot-aided surgery--in particular, the emergence of automatic surgical tools and robots--as well as advances in virtual reality techniques, call for closer examination of the mechanical properties of very soft tissues (such as brain, liver, kidney, etc.). The ultimate goal of our research into the biomechanics of these tissues is the development of corresponding, realistic mathematical models. This paper contains experimental results of in vitro, uniaxial, unconfined compression of swine brain tissue and discusses a single-phase, non-linear, viscoelastic tissue model. The experimental results obtained for three loading velocities, ranging over five orders of magnitude, are presented. The applied strain rates have been much lower than those applied in previous studies, focused on injury modelling. The stress-strain curves are concave upward for all compression rates containing no linear portion from which a meaningful elastic modulus might be determined. The tissue response stiffened as the loading speed increased, indicating a strong stress-strain rate dependence. The use of the single-phase model is recommended for applications in registration, surgical operation planning and training systems as well as a control system of an image-guided surgical robot. The material constants for the brain tissue are evaluated. Agreement between the proposed theoretical model and experiment is good for compression levels reaching 30% and for loading velocities varying over five orders of magnitude.
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Astrophysics Data System (ADS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-08-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-01-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
[Citizen constitution and social representations: reflecting about health care models].
da Silva, Sílvio Eder Dias; Ramos, Flávia Regina Souza; Martins, Cleusa Rios; Padilha, Maria Itayra; Vasconcelos, Esleane Vilela
2010-12-01
This article presents a reflection on the meaning of the terms citizenship and health, addressing the Theory of Social Representations as a strategy for implementing and evaluating health care models in Brazil. First, a brief history about the concept of citizenship is presented; then the article addresses the principles of freedom and equality according to Kant; the third section of the article shows that health is as a right of the citizen and a duty of the state. Finally, the Theory of Social Representations is emphasized as a strategy to evaluate and implement the health services provided to citizens by the current health care models in Brazil.
Formation of algae growth constitutive relations for improved algae modeling.
Gharagozloo, Patricia E.; Drewry, Jessica Louise.
2013-01-01
This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.
Advanced Constitutive Modeling of Plain and Reinforced Concretes
1988-12-31
reporting period, there has been considerable activity directed toward developing and applying non-local models of strain softening. Virtually all of...27 5.5 Principle of Virtual Work .................................................. 28 * 5.6 Summary of Basic...80 11.4 Trial Displacement Field .................................................. 80 11.5 Principle of Virtual Work for Synthesized Field
NASA Astrophysics Data System (ADS)
Cai, Jun; Zhang, Xiaolu; Wang, Kuaishe; Miao, Chengpeng
2016-11-01
The hot deformation behavior of BFe10-1-2 cupronickel alloy was investigated over wide ranges of deformation temperature and strain rate. The physics-based constitutive model was developed to predict the dynamic recovery (DRV) behavior of BFe10-1-2 cupronickel alloy at elevated temperatures. In order to verify the validity of the developed constitutive equation, the correlation coefficient (R) and average absolute relative error (AARE) were introduced to make statistics. The results indicated that the developed constitutive equation lead a good agreement between the calculated and experimental data and can accurately characterize the hot DRV behaviors for the BFe10-1-2 cupronickel alloy.
Poisson׳s ratio of arterial wall - Inconsistency of constitutive models with experimental data.
Skacel, Pavel; Bursa, Jiri
2016-02-01
Poisson׳s ratio of fibrous soft tissues is analyzed in this paper on the basis of constitutive models and experimental data. Three different up-to-date constitutive models accounting for the dispersion of fibre orientations are analyzed. Their predictions of the anisotropic Poisson׳s ratios are investigated under finite strain conditions together with the effects of specific orientation distribution functions and of other parameters. The applied constitutive models predict the tendency to lower (or even negative) out-of-plane Poisson׳s ratio. New experimental data of porcine arterial layer under uniaxial tension in orthogonal directions are also presented and compared with the theoretical predictions and other literature data. The results point out the typical features of recent constitutive models with fibres concentrated in circumferential-axial plane of arterial layers and their potential inconsistence with some experimental data. The volumetric (in)compressibility of arterial tissues is also discussed as an eventual and significant factor influencing this inconsistency.
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite
NASA Astrophysics Data System (ADS)
Pawlikowski, Marek
2014-02-01
The constitutive modelling of the polyurethane nanocomposite presented in the paper is done in the context of its possible application as one of the components of the intervertebral disc prosthesis. The constitutive study is a part of the researches aiming at creation of the new prosthetic device. The material is considered as incompressible, isotropic and visco-hyperelastic one. The focus of the work lies on the formulation of a constitutive equation for its further implementation in finite element analyses. The equation is formulated on the basis of uniaxial monotonic compression tests and relaxation tests performed at room temperature. The constants of the constitutive model are determined from the experimental data by means of the curve-fitting approach employing least-squares optimisation method. The constitutive modelling consisted of two steps. In the first one pure hyperelastic model was determined. The Mooney-Rivlin model proved to be the best one to describe hyperelastic behaviour of the material. In the second step non-linear visco-hyperelastic model was derived. Relaxation times, characteristic amplitudes and Mooney-Rivlin hyperelastic constants were calibrated on the basis of strain-stress curves (hysteresis loops) obtained experimentally at three strain rates, i.e. and . The constitutive law is validated on the basis of relaxation test. The paper concludes with summary and plans for further investigations in the area.
Constitutive Modeling for Flow Behavior of Medium-Carbon Bainitic Steel and Its Processing Maps
NASA Astrophysics Data System (ADS)
Yang, Zhinan; Li, Yingnan; Li, Yanguo; Zhang, Fucheng; Zhang, Ming
2016-11-01
The hot deformation behavior of a medium-carbon bainitic steel was studied in a temperature range of 900-1100 °C and a strain rate range of 0.01-10 s-1. With increasing strain, the flow stress displays three tendencies: a continuous increase under most conditions and a peak stress with and without a steady-state region. Accurate constitutive modeling was proposed and exhibits a correlation coefficient of 0.984 and an average absolute relative error of 0.063 between the experimental and predicted stress values. The activation energy of the steel increased from 393 to 447 kJ/mol, when the strain increased from 0.1 to 0.4, followed by a slight fluctuation at higher strain. Finally, processing maps under different strains were constructed and exhibit a varied instability region with increasing strain. Microstructural observations show that a mischcrystal structure formed in the specimens that worked on the instability regions, which resulted from the occurrence of flow localization. Some deformation twins were also observed in certain specimens and were responsible for negative m-values. The optimum hot working processing parameters for the studied steel were 989-1012 °C, 0.01-0.02 s-1 and 1034-1066 °C, 0.07-0.22 s-1, and a full dynamic recrystallization structure with fine homogeneous grains could be obtained.
Life prediction and constitutive models for engine hot section anisotropic materials
NASA Technical Reports Server (NTRS)
Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.
1987-01-01
The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.
NASA Astrophysics Data System (ADS)
Haberman, Keith
2001-07-01
A micromechanically based constitutive model for the dynamic inelastic behavior of brittle materials, specifically "Dionysus-Pentelicon marble" with distributed microcracking is presented. Dionysus-Pentelicon marble was used in the construction of the Parthenon, in Athens, Greece. The constitutive model is a key component in the ability to simulate this historic explosion and the preceding bombardment form cannon fire that occurred at the Parthenon in 1678. Experiments were performed by Rosakis (1999) that characterized the static and dynamic response of this unique material. A micromechanical constitutive model that was previously successfully used to model the dynamic response of granular brittle materials is presented. The constitutive model was fitted to the experimental data for marble and reproduced the experimentally observed basic uniaxial dynamic behavior quite well. This micromechanical constitutive model was then implemented into the three dimensional nonlinear lagrangain finite element code Dyna3d(1998). Implementing this methodology into the three dimensional nonlinear dynamic finite element code allowed the model to be exercised on several preliminary impact experiments. During future simulations, the model is to be used in conjunction with other numerical techniques to simulate projectile impact and blast loading on the Dionysus-Pentelicon marble and on the structure of the Parthenon.
Jordan, Petr; Kerdok, Amy E; Howe, Robert D; Socrate, Simona
2011-04-01
We describe a modeling methodology intended as a preliminary step in the identification of appropriate constitutive frameworks for the time-dependent response of biological tissues. The modeling approach comprises a customizable rheological network of viscous and elastic elements governed by user-defined 1D constitutive relationships. The model parameters are identified by iterative nonlinear optimization, minimizing the error between experimental and model-predicted structural (load-displacement) tissue response under a specific mode of deformation. We demonstrate the use of this methodology by determining the minimal rheological arrangement, constitutive relationships, and model parameters for the structural response of various soft tissues, including ex vivo perfused porcine liver in indentation, ex vivo porcine brain cortical tissue in indentation, and ex vivo human cervical tissue in unconfined compression. Our results indicate that the identified rheological configurations provide good agreement with experimental data, including multiple constant strain rate load/unload tests and stress relaxation tests. Our experience suggests that the described modeling framework is an efficient tool for exploring a wide array of constitutive relationships and rheological arrangements, which can subsequently serve as a basis for 3D constitutive model development and finite-element implementations. The proposed approach can also be employed as a self-contained tool to obtain simplified 1D phenomenological models of the structural response of biological tissue to single-axis manipulations for applications in haptic technologies.
Clarifying types of uncertainty: when are models accurate, and uncertainties small?
Cox, Louis Anthony Tony
2011-10-01
Professor Aven has recently noted the importance of clarifying the meaning of terms such as "scientific uncertainty" for use in risk management and policy decisions, such as when to trigger application of the precautionary principle. This comment examines some fundamental conceptual challenges for efforts to define "accurate" models and "small" input uncertainties by showing that increasing uncertainty in model inputs may reduce uncertainty in model outputs; that even correct models with "small" input uncertainties need not yield accurate or useful predictions for quantities of interest in risk management (such as the duration of an epidemic); and that accurate predictive models need not be accurate causal models.
Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
Wang, Lingle; Deng, Yuqing; Wu, Yujie; Kim, Byungchan; LeBard, David N; Wandschneider, Dan; Beachy, Mike; Friesner, Richard A; Abel, Robert
2017-01-10
The accurate prediction of protein-ligand binding free energies remains a significant challenge of central importance in computational biophysics and structure-based drug design. Multiple recent advances including the development of greatly improved protein and ligand molecular mechanics force fields, more efficient enhanced sampling methods, and low-cost powerful GPU computing clusters have enabled accurate and reliable predictions of relative protein-ligand binding free energies through the free energy perturbation (FEP) methods. However, the existing FEP methods can only be used to calculate the relative binding free energies for R-group modifications or single-atom modifications and cannot be used to efficiently evaluate scaffold hopping modifications to a lead molecule. Scaffold hopping or core hopping, a very common design strategy in drug discovery projects, is critical not only in the early stages of a discovery campaign where novel active matter must be identified but also in lead optimization where the resolution of a variety of ADME/Tox problems may require identification of a novel core structure. In this paper, we introduce a method that enables theoretically rigorous, yet computationally tractable, relative protein-ligand binding free energy calculations to be pursued for scaffold hopping modifications. We apply the method to six pharmaceutically interesting cases where diverse types of scaffold hopping modifications were required to identify the drug molecules ultimately sent into the clinic. For these six diverse cases, the predicted binding affinities were in close agreement with experiment, demonstrating the wide applicability and the significant impact Core Hopping FEP may provide in drug discovery projects.
New process model proves accurate in tests on catalytic reformer
Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. )
1994-07-25
A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.
Etch modeling for accurate full-chip process proximity correction
NASA Astrophysics Data System (ADS)
Beale, Daniel F.; Shiely, James P.
2005-05-01
The challenges of the 65 nm node and beyond require new formulations of the compact convolution models used in OPC. In addition to simulating more optical and resist effects, these models must accommodate pattern distortions due to etch which can no longer be treated as small perturbations on photo-lithographic effects. (Methods for combining optical and process modules while optimizing the speed/accuracy tradeoff were described in "Advanced Model Formulations for Optical and Process Proximity Correction", D. Beale et al, SPIE 2004.) In this paper, we evaluate new physics-based etch model formulations that differ from the convolution-based process models used previously. The new models are expressed within the compact modeling framework described by J. Stirniman et al. in SPIE, vol. 3051, p469, 1997, and thus can be used for high-speed process simulation during full-chip OPC.
NASA Technical Reports Server (NTRS)
Walker, K. P.
1981-01-01
Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.
A New Constitutive Model for the Plastic Flow of Metals at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Spigarelli, S.; El Mehtedi, M.
2013-11-01
A new constitutive model based on the combination of the Garofalo and Hensel-Spittel equations has been used to describe the plastic flow behavior of an AA6005 aluminum alloy tested in torsion. The analysis of the experimental data by the constitutive model resulted in an excellent description of the flow curves. The model equation was then rewritten to explicitly include the Arrhenius term describing the temperature dependence of plastic deformation. The calculation indicated that the activation energy for hot working slowly decreased with increasing strain, leading to thermally activated flow softening. The combined use of the new equation and torsion testing led to the development of a constitutive model which can be safely adopted in a computer code to simulate forging or extrusion.
Constitutive modeling of time-dependent response of human plantar aponeurosis.
Pavan, P G; Pachera, P; Stecco, C; Natali, A N
2014-01-01
The attention is focused on the viscoelastic behavior of human plantar aponeurosis tissue. At this purpose, stress relaxation tests were developed on samples taken from the plantar aponeurosis of frozen adult donors with age ranging from 67 to 78 years, imposing three levels of strain in the physiological range (4%, 6%, and 8%) and observing stress decay for 240 s. A viscohyperelastic fiber-reinforced constitutive model with transverse isotropy was assumed to describe the time-dependent behavior of the aponeurotic tissue. This model is consistent with the structural conformation of the tissue where collagen fibers are mainly aligned with the proximal-distal direction. Constitutive model fitting to experimental data was made by implementing a stochastic-deterministic procedure. The stress relaxation was found close to 40%, independently of the level of strain applied. The agreement between experimental data and numerical results confirms the suitability of the constitutive model to describe the viscoelastic behaviour of the plantar aponeurosis.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.
1986-01-01
This report presents the results of the first year of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and/or fatigue data, tests were conducted on coated and uncoated PWA 1480 specimens tensilely loaded in the 100 , 110 , 111 , and 123 directions. A literature survey of constitutive models was completed for both single crystal alloys and metallic coating materials; candidate models were selected. One constitutive model under consideration for single crystal alloys applies Walker's micromechanical viscoplastic formulation to all slip systems participating in the single crystal deformation. The constitutive models for the overlay coating correlate the viscoplastic data well. For the aluminide coating, a unique test method is under development. LCF and TMF tests are underway. The two coatings caused a significant drop in fatigue life, and each produced a much different failure mechanism.
Towards an Accurate Performance Modeling of Parallel SparseFactorization
Grigori, Laura; Li, Xiaoye S.
2006-05-26
We present a performance model to analyze a parallel sparseLU factorization algorithm on modern cached-based, high-end parallelarchitectures. Our model characterizes the algorithmic behavior bytakingaccount the underlying processor speed, memory system performance, aswell as the interconnect speed. The model is validated using theSuperLU_DIST linear system solver, the sparse matrices from realapplications, and an IBM POWER3 parallel machine. Our modelingmethodology can be easily adapted to study performance of other types ofsparse factorizations, such as Cholesky or QR.
How Accurate Is A Hydraulic Model? | Science Inventory | US ...
Symposium paper Network hydraulic models are widely used, but their overall accuracy is often unknown. Models are developed to give utilities better insight into system hydraulic behavior, and increasingly the ability to predict the fate and transport of chemicals. Without an accessible and consistent means of validating a given model against the system it is meant to represent, the value of those supposed benefits should be questioned. Supervisory Control And Data Acquisition (SCADA) databases, though ubiquitous, are underused data sources for this type of task. Integrating a network model with a measurement database would offer professionals the ability to assess the model’s assumptions in an automated fashion by leveraging enormous amounts of data.
Modeling for accurate dimensional scanning electron microscope metrology: then and now.
Postek, Michael T; Vladár, András E
2011-01-01
A review of the evolution of modeling for accurate dimensional scanning electron microscopy is presented with an emphasis on developments in the Monte Carlo technique for modeling the generation of the electrons used for imaging and measurement. The progress of modeling for accurate metrology is discussed through a schematic technology timeline. In addition, a discussion of a future vision for accurate SEM dimensional metrology and the requirements to achieve it are presented.
ACCURATE LOW-MASS STELLAR MODELS OF KOI-126
Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron
2011-10-10
The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.
Accurate two-equation modelling of falling film flows
NASA Astrophysics Data System (ADS)
Ruyer-Quil, Christian
2015-11-01
The low-dimensional modeling of the wave dynamics of a falling liquid film on an inclined plane is revisited. The advantages and shortcomings of existing modelling approaches: weighted residual method, center-manifold analysis, consistent Saint-Venant approach are discussed and contrasted. A novel formulation of a two-equation consistent model is proposed. The proposed formulation cures the principal limitations of previous approaches: (i) apart from surface tension terms, it admits a conservative form which enables to make use of efficient numerical schemes, (ii) it recovers with less than 1 percent of error the asymptotic speed of solitary waves in the inertial regime found by DNS, (iii) it adequately captures the velocity field under the waves and in particular the wall drag. Research supported by Insitut Universitaire de France.
Building accurate geometric models from abundant range imaging information
Diegert, C.; Sackos, J.; Nellums, R.
1997-05-01
The authors define two simple metrics for accuracy of models built from range imaging information. They apply the metric to a model built from a recent range image taken at the Laser Radar Development and Evaluation Facility (LDERF), Eglin AFB, using a Scannerless Range Imager (SRI) from Sandia National Laboratories. They also present graphical displays of the residual information produced as a byproduct of this measurement, and discuss mechanisms that these data suggest for further improvement in the performance of this already impressive SRI.
Magnetic field models of nine CP stars from "accurate" measurements
NASA Astrophysics Data System (ADS)
Glagolevskij, Yu. V.
2013-01-01
The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.
Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
Tang, C Y; Ng, G Y F; Wang, Z W; Tsui, C P; Zhang, G
2011-01-01
Numerous constitutive models describing the mechanical properties of tendons have been proposed during the past few decades. However, few were widely used owing to the lack of implementation in the general finite element (FE) software, and very few systematic studies have been done on selecting the most appropriate parameters for these constitutive laws. In this work, the visco-hyperelastic constitutive model of the tendon implemented through the use of three-parameter Mooney-Rivlin form and sixty-four-parameter Prony series were firstly analyzed using ANSYS FE software. Afterwards, an integrated optimization scheme was developed by coupling two optimization toolboxes (OPTs) of ANSYS and MATLAB for estimating these unknown constitutive parameters of the tendon. Finally, a group of Sprague-Dawley rat tendons was used to execute experimental and numerical simulation investigation. The simulated results showed good agreement with the experimental data. An important finding revealed that too many Maxwell elements was not necessary for assuring accuracy of the model, which is often neglected in most open literatures. Thus, all these proved that the constitutive parameter optimization scheme was reliable and highly efficient. Furthermore, the approach can be extended to study other tendons or ligaments, as well as any visco-hyperelastic solid materials.
Constitutive model for the dynamic response of a NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Shi, Xiaohong; Zeng, Xiangguo; Chen, Huayan
2016-07-01
In this paper, based on irreversible thermodynamic theory, the Helmholtz free energy function, was selected to deduce both the master equations and evolution equations of the constitutive model of a NiTi alloy under high strain. The Helmholtz free energy function contains the parameters of the reflecting phase transition and plastic property. The constitutive model for a NiTi alloy was implemented using a semi-implicit stress integration algorithm. Four successive stages can be differentiated and simulated: parent phase elasticity, martensitic phase transition, martensitic elasticity, and dislocation yield. The simulation results are in good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard
1988-01-01
A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.
Turbulence constitutive modeling of the square root of the Reynolds stress
NASA Astrophysics Data System (ADS)
Ariki, Taketo
2015-11-01
A methodology for turbulence constitutive modeling is discussed on the basis of the square-root tensor of the Reynolds stress. The present methodology can satisfy the realizability condition for the Reynolds stress proposed by Schumann [Phys. Fluids 20, 721 (1977)], 10.1063/1.861942 in a more general manner than the conventional methodologies. The definition and uniqueness of the square-root tensor have been discussed, and its boundary condition has been properly obtained consistently with that of the Reynolds stress. Examples of possible constitutive models of both tensor-expansion and transport-equation types have been proposed.
Labus, Kevin M; Puttlitz, Christian M
2016-09-01
Computational models of the brain require accurate and robust constitutive models to characterize the mechanical behavior of brain tissue. The anisotropy of white matter has been previously demonstrated; however, there is a lack of data describing the effects of multi-axial loading, even though brain tissue experiences multi-axial stress states. Therefore, a biaxial tensile experiment was designed to more fully characterize the anisotropic behavior of white matter in a quasi-static loading state, and the mechanical data were modeled with an anisotropic hyperelastic continuum model. A probabilistic analysis was used to quantify the uncertainty in model predictions because the mechanical data of brain tissue can show a high degree of variability, and computational studies can benefit from reporting the probability distribution of model responses. The axonal structure in white matter can be heterogeneous and regionally dependent, which can affect computational model predictions. Therefore, corona radiata and corpus callosum regions were tested, and histology and transmission electron microscopy were performed on tested specimens to relate the distribution of axon orientations and the axon volume fraction to the mechanical behavior. These measured properties were implemented into a structural constitutive model. Results demonstrated a significant, but relatively low anisotropic behavior, yet there were no conclusive mechanical differences between the two regions tested. The inclusion of both biaxial and uniaxial tests in model fits improved the accuracy of model predictions. The mechanical anisotropy of individual specimens positively correlated with the measured axon volume fraction, and, accordingly, the structural model exhibited slightly decreased uncertainty in model predictions compared to the model without structural properties.
Accurate first principles model potentials for intermolecular interactions.
Gordon, Mark S; Smith, Quentin A; Xu, Peng; Slipchenko, Lyudmila V
2013-01-01
The general effective fragment potential (EFP) method provides model potentials for any molecule that is derived from first principles, with no empirically fitted parameters. The EFP method has been interfaced with most currently used ab initio single-reference and multireference quantum mechanics (QM) methods, ranging from Hartree-Fock and coupled cluster theory to multireference perturbation theory. The most recent innovations in the EFP model have been to make the computationally expensive charge transfer term much more efficient and to interface the general EFP dispersion and exchange repulsion interactions with QM methods. Following a summary of the method and its implementation in generally available computer programs, these most recent new developments are discussed.
Omori, T; Ishikawa, T; Barthès-Biesel, D; Salsac, A-V; Walter, J; Imai, Y; Yamaguchi, T
2011-04-01
A capsule is a liquid drop enclosed by a solid, deformable membrane. To analyze the deformation of a capsule accurately, both the fluid mechanics of the internal and external fluids and the solid mechanics of the membrane must be solved precisely. Recently, many researchers have used discrete spring network models to express the membrane mechanics of capsules and biological cells. However, it is unclear whether such modeling is sufficiently accurate to solve for capsule deformation. This study examines the correlations between the mechanical properties of the discrete spring network model and continuum constitutive laws. We first compare uniaxial and isotropic deformations of a two-dimensional (2D) sheet, both analytically and numerically. The 2D sheet is discretized with four kinds of mesh to analyze the effect of the spring network configuration. We derive the relationships between the spring constant and continuum properties, such as the Young modulus, Poisson ratio, area dilation modulus, and shear modulus. It is found that the mechanical properties of spring networks are strongly dependent on the mesh configuration. We then calculate the deformation of a capsule under inflation and in a simple shear flow in the Stokes flow regime, using various membrane models. To achieve high accuracy in the flow calculation, a boundary-element method is used. Comparing the results between the different membrane models, we find that it is hard to express the area incompressibility observed in biological membranes using a simple spring network model.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Meyer, T. G.
1992-01-01
This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Meyer, T. G.; Walker, K. P.
1992-01-01
This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.
Accurate numerical solutions for elastic-plastic models. [LMFBR
Schreyer, H. L.; Kulak, R. F.; Kramer, J. M.
1980-03-01
The accuracy of two integration algorithms is studied for the common engineering condition of a von Mises, isotropic hardening model under plane stress. Errors in stress predictions for given total strain increments are expressed with contour plots of two parameters: an angle in the pi plane and the difference between the exact and computed yield-surface radii. The two methods are the tangent-predictor/radial-return approach and the elastic-predictor/radial-corrector algorithm originally developed by Mendelson. The accuracy of a combined tangent-predictor/radial-corrector algorithm is also investigated.
Accurate Force Field Development for Modeling Conjugated Polymers.
DuBay, Kateri H; Hall, Michelle Lynn; Hughes, Thomas F; Wu, Chuanjie; Reichman, David R; Friesner, Richard A
2012-11-13
The modeling of the conformational properties of conjugated polymers entails a unique challenge for classical force fields. Conjugation imposes strong constraints upon bond rotation. Planar configurations are favored, but the concomitantly shortened bond lengths result in moieties being brought into closer proximity than usual. The ensuing steric repulsions are particularly severe in the presence of side chains, straining angles, and stretching bonds to a degree infrequently found in nonconjugated systems. We herein demonstrate the resulting inaccuracies by comparing the LMP2-calculated inter-ring torsion potentials for a series of substituted stilbenes and bithiophenes to those calculated using standard classical force fields. We then implement adjustments to the OPLS-2005 force field in order to improve its ability to model such systems. Finally, we show the impact of these changes on the dihedral angle distributions, persistence lengths, and conjugation length distributions observed during molecular dynamics simulations of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and poly 3-hexylthiophene (P3HT), two of the most widely used conjugated polymers.
Constitutive model for shape memory alloys and its use in design and finite element analysis
NASA Astrophysics Data System (ADS)
Bose, Sudip; Santhanam, Sridhar
2002-07-01
A constitutive model for predicting the thermomechanical behavior of Shape Memory Alloys (SMAs) has been developed and validated. The model uses an approach similar to Brinson, Liang and Rogers, and Tanaka. It links key thermomechanical variables: stress, strain, temperature, and martensite fraction. A basic differential form for the SMA constitutive behavior, developed by Tanaka, forms the foundation of the model. The model is completed with a definition of the rules governing the behavior of martensite fraction. Like Brinson, the model distinguishes between de-twinned and twinned martensite. The phase transition temperatures are assumed to be a linear function of applied stress. The forward and reverse phase transformations are described by piecewise exponential functions. There are a number of parameters in the model that need to be determined using experimental data. The critical transformation temperatures are determined by resistivity measurements. All other parameters are determined by mechanical tension testing followed by nonlinear least-squares estimations. Mechanical testing consisted of displacement controlled, tension tests on Nitinol wires at several temperatures. The effectiveness of this model is demonstrated by its use in the design of an SMA actuated robotic arm. The constitutive model is used in conjunction with a lumped heat transfer model, a kinematic model, and a dynamic model to predict the behavior of the arm. Comparison between predictions and experimentally observed behavior is very good indicating a sound constitutive model. The model is also built into a finite element code that simulates pseudoelastic SMA behavior. The code considers geometric and material nonlinearities. The behavior of a simple pseudoelastic device is shown to be well predicted by the finite element code.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.
2015-12-01
We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.
Continuum-Based FEM Modeling of Ceramic Powder Compaction Using a Cap-Plasticity Constitutive Model
ARGUELLO JR.,JOSE G.; FOSSUM,ARLO F.; ZEUCH,DAVID H.; EWSUK,KEVIN G.
2000-05-01
Software has been developed and extended to allow finite element (FE) modeling of ceramic powder compaction using a cap-plasticity constitutive model. The underlying, general-purpose FE software can be used to model even the most complex three-dimensional (3D) geometries envisioned. Additionally, specialized software has been developed within this framework to address a general subclass of axisymmetric compacts that are common in industry. The expertise required to build the input deck, run the FE code, and post-process the results for this subclass of compacts is embedded within the specialized software. The user simply responds to a series of prompts, evaluates the quality of the FE mesh that is generated, and analyzes the graphical results that are produced. The specialized software allows users with little or no FE expertise to benefit from the tremendous power and insight that FE analysis can bring to the design cycle. The more general underlying software provides complete flexibility to model more complicated geometries and processes of interest to ceramic component manufacturers but requires significantly more user interaction and expertise.
Coupled Hydro-Mechanical Constitutive Model for Vegetated Soils: Validation and Applications
NASA Astrophysics Data System (ADS)
Switala, Barbara Maria; Veenhof, Rick; Wu, Wei; Askarinejad, Amin
2016-04-01
It is well known, that presence of vegetation influences stability of the slope. However, the quantitative assessment of this contribution remains challenging. It is essential to develop a numerical model, which combines mechanical root reinforcement and root water uptake, and allows modelling rainfall induced landslides of vegetated slopes. Therefore a novel constitutive formulation is proposed, which is based on the modified Cam-clay model for unsaturated soils. Mechanical root reinforcement is modelled introducing a new constitutive parameter, which governs the evolution of the Cam-clay failure surface with the degree of root reinforcement. Evapotranspiration is modelled in terms of the root water uptake, defined as a sink term in the water flow continuity equation. The original concept is extended for different shapes of the root architecture in three dimensions, and combined with the mechanical model. The model is implemented in the research finite element code Comes-Geo, and in the commercial software Abaqus. The formulation is tested, performing a series of numerical examples, which allow validation of the concept. The direct shear test and the triaxial test are modelled in order to test the performance of the mechanical part of the model. In order to validate the hydrological part of the constitutive formulation, evapotranspiration from the vegetated box is simulated and compared with the experimental results. Obtained numerical results exhibit a good agreement with the experimental data. The implemented model is capable of reproducing results of basic geotechnical laboratory tests. Moreover, the constitutive formulation can be used to model rainfall induced landslides of vegetated slopes, taking into account the most important factors influencing the slope stability (root reinforcement and evapotranspiration).
Skacel, Pavel; Bursa, Jiri
2015-01-01
Several constitutive models have been proposed for the description of mechanical behaviour of soft tissues containing collagen fibres. Some of the commonly used approaches accounting for the dispersion of fibre orientations are based on the summation of (mechanical) contributions of differently oriented fibre families. This leads to the need of numerical integration on the sphere surface, and the related numerical consumption is the main disadvantage of this category of constitutive models. The paper is focused on the comparison of various numerical integration methods applied to a specific constitutive model applicable for arterial walls. Robustness and efficiency of several integration rules were tested with respect to application in finite element (FE) codes. Among all the analysed numerical integration rules, the best results were reached by Lebedev quadrature; the related parameters for the specific constitutive model are presented in the paper. The results were implemented into the commercial FE code ANSYS via user subroutines, and their applicability was demonstrated by an example of FE simulation with non-homogenous stress field.
A solidification constitutive model for NIKE2D and NIKE3D
Raboin, P.J.
1994-03-17
This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.
On the unimportance of constitutive models in computing brain deformation for image-guided surgery.
Wittek, Adam; Hawkins, Trent; Miller, Karol
2009-02-01
Imaging modalities that can be used intra-operatively do not provide sufficient details to confidently locate the abnormalities and critical healthy areas that have been identified from high-resolution pre-operative scans. However, as we have shown in our previous work, high quality pre-operative images can be warped to the intra-operative position of the brain. This can be achieved by computing deformations within the brain using a biomechanical model. In this paper, using a previously developed patient-specific model of brain undergoing craniotomy-induced shift, we conduct a parametric analysis to investigate in detail the influences of constitutive models of the brain tissue. We conclude that the choice of the brain tissue constitutive model, when used with an appropriate finite deformation solution, does not affect the accuracy of computed displacements, and therefore a simple linear elastic model for the brain tissue is sufficient.
An automated procedure for material parameter evaluation for viscoplastic constitutive models
NASA Technical Reports Server (NTRS)
Imbrie, P. K.; James, G. H.; Hill, P. S.; Allen, D. H.; Haisler, W. E.
1988-01-01
An automated procedure is presented for evaluating the material parameters in Walker's exponential viscoplastic constitutive model for metals at elevated temperature. Both physical and numerical approximations are utilized to compute the constants for Inconel 718 at 1100 F. When intermediate results are carefully scrutinized and engineering judgement applied, parameters may be computed which yield stress output histories that are in agreement with experimental results. A qualitative assessment of the theta-plot method for predicting the limiting value of stress is also presented. The procedure may also be used as a basis to develop evaluation schemes for other viscoplastic constitutive theories of this type.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
NASA Astrophysics Data System (ADS)
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2016-11-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Micromechanics and constitutive models for soft active materials with phase evolution
NASA Astrophysics Data System (ADS)
Wang, Binglian
Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.
Horný, Lukáš; Netušil, Marek; Daniel, Matěj
2014-10-01
The abdominal aorta is susceptible to age-related pathological changes (arteriosclerosis, atherosclerosis, aneurysm, and tortuosity). Computational biomechanics and mechanobiology provide models capable of predicting mutual interactions between a changing mechanical environment and patho-physiological processes in ageing. However, a key factor is a constitutive equation which should reflect the internal tissue architecture. Our study investigates three microstructurally-motivated invariant-based hyperelastic anisotropic models suitable for description of the passive mechanical behaviour of the human abdominal aorta at a multiaxial state of stress known from recent literature. The three adopted models have also been supplemented with a newly proposed constitutive model (limiting extensibility with fibre dispersion). All models additively decouple the mechanical response of the isotropic (elastin and smooth muscle cells represented by the neo-Hookean term) and the anisotropic (collagen) parts. Two models use exponential functions to capture large strain stiffening ascribed to the engagement of collagen fibres into the load-bearing process. The other two models are based on the concept of limiting extensibility. Perfect alignment of reinforcing fibres with two preferred directions as well as fibre dispersion are considered. Constitutive models are calibrated to the inflation-extension response adopted from the literature based on the computational model of the residually-stressed thick-walled tube. A correlation analysis of determined material parameters was performed to reveal dependence on the age. The results of the nonlinear regression suggest that limiting fibre extensibility is the concept which is suitable to be used for the constitutive description of the aorta at multiaxial stress states and is highly sensitive to ageing-induced changes in mechanical response.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
A continuum constitutive model for the active behaviour of skeletal muscle
NASA Astrophysics Data System (ADS)
Ehret, Alexander E.; Böl, Markus; Itskov, Mikhail
2011-03-01
In the present paper we propose a continuum constitutive model for the passive and active mechanical behaviour of skeletal muscle. Unlike most works in this field, the model is not based on an additive split between passive and active components but considers muscle tissue as one continuous biological material, which alters its properties when activated. This alteration also allows for a kinematic interpretation on the muscle fibre level and is described by a single activation-dependent model parameter. This as well as the other material parameters are obtained from standard experiments on resting and activated muscle or from microstructural information such as fibre type and twitch characteristics. In the passive state, the constitutive equations are governed by a transversely isotropic polyconvex and coercive strain-energy function. The model shows excellent agreement with experimental stress-stretch data of a passive and activated rat tibialis anterior muscle.
NASA Astrophysics Data System (ADS)
Nagel, T.; Böttcher, N.; Görke, U. J.; Kolditz, O.
2014-12-01
The design process of geotechnical installations includes the application of numerical simulation tools for safety assessment, dimensioning and long term effectiveness estimations. Underground salt caverns can be used for the storage of natural gas, hydrogen, oil, waste or compressed air. For their design one has to take into account fluctuating internal pressures due to different levels of filling, the stresses imposed by the surrounding rock mass, irregular geometries and possibly heterogeneous material properties [3] in order to estimate long term cavern convergence as well as locally critical wall stresses. Constitutive models applied to rock salt are usually viscoplastic in nature and most often based on a Burgers-type rheological model extended by non-linear viscosity functions and/or plastic friction elements. Besides plastic dilatation, healing and damage are sometimes accounted for as well [2]. The scales of the geotechnical system to be simulated and the laboratory tests from which material parameters are determined are vastly different. The most common material testing modalities to determine material parameters in geoengineering are the uniaxial and the triaxial compression tests. Some constitutive formulations in widespread use are formulated based on equivalent rather than tensorial quantities valid under these specific test conditions and are subsequently applied to heterogeneous underground systems and complex 3D load cases. We show here that this procedure is inappropriate and can lead to erroneous results. We further propose alternative formulations of the constitutive models in question that restore their validity under arbitrary loading conditions. For an efficient numerical simulation, the discussed constitutive models are integrated locally with a Newton-Raphson algorithm that directly provides the algorithmically consistent tangent matrix for the global Newton iteration of the displacement based finite element formulation. Finally, the finite
A local constitutive model for the discrete element method. Application to geomaterials and concrete
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Zárate, Francisco; Miquel, Juan; Santasusana, Miquel; Celigueta, Miguel Angel; Arrufat, Ferran; Gandikota, Raju; Valiullin, Khaydar; Ring, Lev
2015-06-01
This paper presents a local constitutive model for modelling the linear and non linear behavior of soft and hard cohesive materials with the discrete element method (DEM). We present the results obtained in the analysis with the DEM of cylindrical samples of cement, concrete and shale rock materials under a uniaxial compressive strength test, different triaxial tests, a uniaxial strain compaction test and a Brazilian tensile strength test. DEM results compare well with the experimental values in all cases.
A constitutive model for representing coupled creep, fracture, and healing in rock salt
Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.
1996-03-01
The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps.
NASA Astrophysics Data System (ADS)
Daming, Nie; Zhen, Lu; Kaifeng, Zhang
2017-02-01
The constitutive models based on grain size effect are crucial for analyzing the deformation of metal foils. Previous investigations on the constitutive models concentrate on the foils whose thickness/average grain diameter (T/D) ratios are more than 3. In this study, the commercial pure titanium foils with thickness of 0.1 and 0.2 mm were employed as the experimental materials. The mechanical properties of foils with dimensions of nine different T/D ratios categorized into three ranges (T/D < 1, 1 ≤ T/D < 3, T/D ≥ 3)were tested. Meanwhile, the fracture behaviors and fracture mechanisms of the samples with different T/D ratios were compared and analyzed. Besides, three constitutive models incorporating the surface layer effect and grain boundary strengthening effect were established for the three T/D ratio ranges correspondingly. In these models, the thickness of the surface layers is set T for T/D < 1 foils, D for T/D > 3, and increases with D linearly in 1 ≤ T/D < 3. The results calculated by the three models were compared. The experiments indicate that those models are all in good agreement.
Application of symbolic computations to the constitutive modeling of structural materials
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Tan, H. Q.; Dong, X.
1990-01-01
In applications involving elevated temperatures, the derivation of mathematical expressions (constitutive equations) describing the material behavior can be quite time consuming, involved and error-prone. Therefore intelligent application of symbolic systems to faciliate this tedious process can be of significant benefit. Presented here is a problem oriented, self contained symbolic expert system, named SDICE, which is capable of efficiently deriving potential based constitutive models in analytical form. This package, running under DOE MACSYMA, has the following features: (1) potential differentiation (chain rule), (2) tensor computations (utilizing index notation) including both algebraic and calculus; (3) efficient solution of sparse systems of equations; (4) automatic expression substitution and simplification; (5) back substitution of invariant and tensorial relations; (6) the ability to form the Jacobian and Hessian matrix; and (7) a relational data base. Limited aspects of invariant theory were also incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet pre-defined order and simplify expressions so as to limit expression growth. Results are displayed, when applicable, utilizing index notation. SDICE was designed to aid and complement the human constitutive model developer. A number of examples are utilized to illustrate the various features contained within SDICE. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
A constitutive model for micro-cracked bodies with growing inclusions
NASA Astrophysics Data System (ADS)
Bongué Boma, Malika; Alaoui, Amina
2012-01-01
A model of micro-cracked bodies having rigid inclusions growing in their pores is proposed, based on the theories of generalized continua. We first use the balance equations of an existing model of micro-cracked bodies, and we then perform a multiscale description in order to determine constitutive laws that account for the growth of the inclusions. We call macroscopic, the description in which the material is considered as a continuum with microstructure, whereas we refer to microscopic scale when one crack is observed at a closer view. We finally use equivalences between both descriptions in order to write the constitutive laws in terms of variables that are characteristic of (i) the geometry of the crack field and (ii) the growth of the inclusions. Such an approach can find, for instance, application in the modeling of expansion due to delayed ettringite formation: we perform numerical simulations using mechanical and geometrical parameters that are characteristic of high strength sulfoaluminate concrete.
Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels
NASA Astrophysics Data System (ADS)
Sun, Mingyue; Hao, Luhan; Li, Shijian; Li, Dianzhong; Li, Yiyi
2011-11-01
Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.
A simplified constitutive model for predicting shape memory polymers deformation behavior
NASA Astrophysics Data System (ADS)
Li, Yunxin; Guo, Siu-Siu; He, Yuhao; Liu, Zishun
2015-12-01
Shape memory polymers (SMPs) can keep a temporary shape after pre-deformation at a higher temperature and subsequent cooling. When they are reheated, their original shapes can be recovered. Such special characteristics of SMPs make them widely used in aerospace structures, biomedical devices, functional textiles and other devices. Increasing usefulness of SMPs motivates us to further understand their thermomechanical properties and deformation behavior, of which the development of appropriate constitutive models for SMPs is imperative. There is much work in literatures that address constitutive models of the thermo-mechanical coupling in SMPs. However, due to their complex forms, it is difficult to apply these constitutive models in the real world. In this paper, a three-element model with simple form is proposed to investigate the thermo-mechanical small strain (within 10%) behavior of polyurethane under uniaxial tension. Two different cases of heated recovery are considered: (1) unconstrained free strain recovery and (2) stress recovery under full constraint at a strain level fixed during low temperature unloading. To validate the model, simulated and predicted results are compared with Tobushi's experimental results and good agreement can be observed.
NASA Astrophysics Data System (ADS)
Holtzman, B. K.; King, D. S.; Kohlstedt, D. L.
2011-12-01
Coupling between deformation and melt transport have long been recognized in field observations and inferred to be important in the dynamics of crustal and lithosphere dynamics. We are studying these processes with closely knit experimental and theoretical approaches. Here, we present a synthesis of experimental observations of strain weakening associated with strain partitioning in networks of melt-rich shear zones. Variability in the mechanical data from torsion experiments reflect different degrees of melt segregation, due to different material properties, stress levels and boundary conditions (constant torque or constant twist rate). To explore this variability in more detail, we develop a mesoscale constitutive model that treats segregation as a process occurring within the representative elementary volume, described by internal state variables. This constitutive model is comprised of several aspects, including 1) mass balance, 2) mechanical energy balance, and 3) an evolution equation for a single internal state variable describing the degree of melt segregation. At present, the evolution equation is relatively empirical, designed to allow us to quantify the sensitivity of the segregation rate to stress levels. These variations can be seen in the macroscopic creep data as well as the melt distribution within the torsion sample, which contains a continuous range of mechanical conditions from center to edge. The constitutive model is formulated for easy implementation in numerical models, in conjunction with common stress-, grain size- and temperature-dependent flow laws.
Energy-based constitutive modelling of local material properties of canine aortas
Shahmirzadi, Danial; Acosta, Camilo J.; Konofagou, Elisa
2016-01-01
This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases. PMID:27703701
Cady, C.M.; Chen, S.R.; Gray, G.T. III
1996-08-23
The objective of this study was to characterize the dynamic mechanical properties of four different structural sheet steels used in automobile manufacture. The analysis of a drawing quality, special killed (DQSK) mild steel; high strength, low alloy (HSLA) steel; interstitial free (IF); and a high strength steel (M-190) have been completed. In addition to the true stress-true strain data, coefficients for the Johnson-Cook, Zerilli-Armstrong, and Mechanical Threshold Stress constitutive models have been determined from the mechanical test results at various strain rates and temperatures and are summarized. Compression, tensile, and biaxial bulge tests and low (below 0.1/s) strain rate tests were completed for all four steels. From these test results it was determined to proceed with the material modeling optimization using the through thickness compression results. Compression tests at higher strain rates and temperatures were also conducted and analyzed for all the steels. Constitutive model fits were generated from the experimental data. This report provides a compilation of information generated from mechanical tests, the fitting parameters for each of the constitutive models, and an index and description of data files.
A procedure for utilization of a damage-dependent constitutive model for laminated composites
NASA Technical Reports Server (NTRS)
Lo, David C.; Allen, David H.; Harris, Charles E.
1992-01-01
Described here is the procedure for utilizing a damage constitutive model to predict progressive damage growth in laminated composites. In this model, the effects of the internal damage are represented by strain-like second order tensorial damage variables and enter the analysis through damage dependent ply level and laminate level constitutive equations. The growth of matrix cracks due to fatigue loading is predicted by an experimentally based damage evolutionary relationship. This model is incorporated into a computer code called FLAMSTR. This code is capable of predicting the constitutive response and matrix crack damage accumulation in fatigue loaded laminated composites. The structure and usage of FLAMSTR are presented along with sample input and output files to assist the code user. As an example problem, an analysis of crossply laminates subjected to two stage fatigue loading was conducted and the resulting damage accumulation and stress redistribution were examined to determine the effect of variations in fatigue load amplitude applied during the first stage of the load history. It was found that the model predicts a significant loading history effect on damage evolution.
Energy-based constitutive modelling of local material properties of canine aortas.
Laksari, Kaveh; Shahmirzadi, Danial; Acosta, Camilo J; Konofagou, Elisa
2016-09-01
This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases.
NASA Technical Reports Server (NTRS)
Arnold, S. M.
2006-01-01
Materials property information such as composition and thermophysical/mechanical properties abound in the literature. Oftentimes, however, the corresponding response curves from which these data are determined are missing or at the very least difficult to retrieve. Further, the paradigm for collecting materials property information has historically centered on (1) properties for materials comparison/selection purposes and (2) input requirements for conventional design/analysis methods. However, just as not all materials are alike or equal, neither are all constitutive models (and thus design/ analysis methods) equal; each model typically has its own specific and often unique required materials parameters, some directly measurable and others indirectly measurable. Therefore, the type and extent of materials information routinely collected is not always sufficient to meet the current, much less future, needs of the materials modeling community. Informatics has been defined as the science concerned with gathering, manipulating, storing, retrieving, and classifying recorded information. A key aspect of informatics is its focus on understanding problems and applying information technology as needed to address those problems. The primary objective of this article is to highlight the need for a paradigm shift in materials data collection, analysis, and dissemination so as to maximize the impact on both practitioners and researchers. Our hope is to identify and articulate what constitutes "sufficient" data content (i.e., quality and quantity) for developing, characterizing, and validating sophisticated nonlinear time- and history-dependent (hereditary) constitutive models. Likewise, the informatics infrastructure required for handling the potentially massive amounts of materials data will be discussed.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.
1989-01-01
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.
A constitutive model of porous SMAs considering tensile-compressive asymmetry behaviors.
Liu, Bingfei; Dui, Guansuo; Xie, Benming; Xue, Lijun
2014-04-01
A constitutive model of the macroscopic behaviors of porous shape memory alloys (SMA) is developed in this work. A yield function for porous SMAs considering both the effect of hydrostatic stress and the tensile-compressive asymmetry is proposed. Combining the constitutive model of dense SMAs and the macroscale and microscale analysis, the evolution equation for the overall transformation strain is then derived. Examples for the response of both dense SMA and porous Ni-Ti SMA subjected to uniaxial tension and compression loads are supplied. Good agreement between the numerical prediction results and the published experimental data is observed. Numerical result shows that the yielding stresses, loop width and length, strain-hardening behaviors of porous SMAs under pure tensile and pure compressive are different. Importantly, the transformation initiation stress is much closer to the experiment result than simulated by Zhao et al. (2005).
2006-09-01
2899–2938. Clayton, J.D., McDowell, D.L., 2003. Finite polycrystalline elastoplasticity and damage : multiscale kinematics. Int. J. Solids Struct. 40...5669–5688. Clayton, J.D., McDowell, D.L., 2004. Homogenized finite elastoplasticity and damage : theory and computations. Mech. Mater., 36, 799–824...tungsten–nickel iron (W–Ni– Fe) alloy. Aspects associated with constitutive modeling of damage and failure in the homogenized material system are
Analyses for Debonding of Stitched Composite Sandwich Structures Using Improved Constitutive Models
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Sleight, D. W.; Krishnamurthy, T.; Raju, I. S.
2001-01-01
A fracture mechanics analysis based on strain energy release rates is used to study the effect of stitching in bonded sandwich beam configurations. Finite elements are used to model the configurations. The stitches were modeled as discrete nonlinear spring elements with a compliance determined by experiment. The constitutive models were developed using the results of flatwise tension tests from sandwich material rather than monolithic material. The analyses show that increasing stitch stiffness, stitch density and debond length decrease strain energy release rates for a fixed applied load.
A constitutive model for the forces of a magnetic bearing including eddy currents
NASA Technical Reports Server (NTRS)
Taylor, D. L.; Hebbale, K. V.
1993-01-01
A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.
NASA Astrophysics Data System (ADS)
Avakian, Artjom; Ricoeur, Andreas
2017-02-01
A constitutive modelling of ferromagnetic materials under combined magnetomechanical multiaxial loading with different boundary conditions and a finite element implementation are presented. The phenomenologically motivated model is capable of predicting magnetisation, strain, and stress and is thus suitable, e.g., for applications in multiferroic composites. The approach covers a reversible nonlinear behaviour as it is observed, e.g., in cobalt ferrite and other soft magnetic alloys. Various examples demonstrate the suitability of the model and its numerical implementation and give an insight into the behaviour of soft magnets, exposed to different boundary conditions or being embedded into other compliant materials.
Ding, J.L.; Liu, K.C.; Brinkman, C.R.
1992-12-31
A constitutive model capable of describing deformation and predicting rupture life was developed for high temperature ceramic materials under general thermal-mechanical loading conditions. The model was developed based on the deformation and fracture behavior observed from a systematic experimental study on an advanced silicon nitride (Si{sub 3}N{sub 4}) ceramic material. Validity of the model was evaluated with reference to creep and creep rupture data obtained under constant and stepwise-varied loading conditions, including the effects of annealing on creep and creep rupture behavior.
Avazmohammadi, Reza; Hill, Michael R; Simon, Marc A; Zhang, Will; Sacks, Michael S
2016-10-01
The function of right ventricle (RV) is recognized to play a key role in the development of many cardiopulmonary disorders, such as pulmonary arterial hypertension (PAH). Given the strong link between tissue structure and mechanical behavior, there remains a need for a myocardial constitutive model that accurately accounts for right ventricular myocardium architecture. Moreover, most available myocardial constitutive models approach myocardium at the length scale of mean fiber orientation and do not explicitly account for different fibrous constituents and possible interactions among them. In the present work, we developed a fiber-level constitutive model for the passive mechanical behavior of the right ventricular free wall (RVFW). The model explicitly separates the mechanical contributions of myofiber and collagen fiber ensembles, and accounts for the mechanical interactions between them. To obtain model parameters for the healthy passive RVFW, the model was informed by transmural orientation distribution measurements of myo- and collagen fibers and was fit to the mechanical testing data, where both sets of data were obtained from recent experimental studies on non-contractile, but viable, murine RVFW specimens. Results supported the hypothesis that in the low-strain regime, the behavior of the RVFW is governed by myofiber response alone, which does not demonstrate any coupling between different myofiber ensembles. At higher strains, the collagen fibers and their interactions with myofibers begin to gradually contribute and dominate the behavior as recruitment proceeds. Due to the use of viable myocardial tissue, the contribution of myofibers was significant at all strains with the predicted tensile modulus of [Formula: see text]32 kPa. This was in contrast to earlier reports (Horowitz et al. 1988) where the contribution of myofibers was found to be insignificant. Also, we found that the interaction between myo- and collagen fibers was greatest under
A constitutive model for elastoplastic solids containing primary and secondary voids
NASA Astrophysics Data System (ADS)
Fabrègue, D.; Pardoen, T.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional
NASA Astrophysics Data System (ADS)
Augustins, L.; Billardon, R.; Hild, F.
2016-09-01
The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.
A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials
NASA Astrophysics Data System (ADS)
Shahsavari, H.; Naghdabadi, R.; Baghani, M.; Sohrabpour, S.
2016-12-01
In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing variables and employing the strain equivalence hypothesis, the strain tensor is determined in the effective configuration. Satisfying the Clausius-Duhem inequality, the evolution equations are introduced for the viscoelastic and viscoplastic strains. The damage and healing variables also evolve according to two different prescribed functions. To employ the proposed model in different loading conditions, the model is discretized in the semi-implicit form. Material parameters of the model are identified employing experimental tests on asphalt mixes available in the literature. Finally, capability of the model is demonstrated comparing the model predictions in the creep-recovery and repeated creep-recovery with the experimental results available in the literature and a good agreement between predicted and test results is revealed.
A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S
2015-02-01
Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
A size-dependent constitutive modelling framework for localised failure analysis
NASA Astrophysics Data System (ADS)
Nguyen, Giang D.; Nguyen, Chi T.; Nguyen, Vinh P.; Bui, Ha H.; Shen, Luming
2016-08-01
Localised deformation of materials usually takes place in thin bands during the nonlinear phase of the deformation process. The orientation and size of these localisation bands are important properties characterising the post-localisation behaviour of the materials, and hence should be taken into account in constitutive modelling. In this research, a new approach is proposed for the integration of both size and orientation of a localisation band in the constitutive description beyond the onset of localisation. Since a length scale related to the size of the localisation band appears in the model description, its post-localisation response then scales with both the band size and the size of the volume element containing it. Therefore, size effects are intrinsically included and post-localisation behaviour is correctly captured, which helps ensure convergence of numerical solutions upon discretisation refinement in numerical analysis of boundary value problems. The concept together with implementation features of the framework and its performances at constitutive level and in the analysis of boundary value problems are presented in this paper.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Tan, H. Q.; Dong, X.
1989-01-01
Development of new material models for describing the high temperature constitutive behavior of real materials represents an important area of research in engineering disciplines. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved and error prone; thus intelligent application of symbolic systems to facilitate this tedious process can be of significant benefit. A computerized procedure (SDICE) capable of efficiently deriving potential based constitutive models, in analytical form is presented. This package, running under MACSYMA, has the following features: partial differentiation, tensor computations, automatic grouping and labeling of common factors, expression substitution and simplification, back substitution of invariant and tensorial relations and a relational data base. Also limited aspects of invariant theory were incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). Finally not only calculation of flow and/or evolutionary laws were accomplished but also the determination of history independent nonphysical coefficients in terms of physically measurable parameters, e.g., Young's modulus, was achieved. The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet predefined order and simplify expressions so as to limit expression growth. Results are displayed when applicable utilizing index notation.
NASA Technical Reports Server (NTRS)
Wilt, T. E.
1995-01-01
The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Swanson, G. A.
1985-01-01
The purpose is to develop life prediction models for coated anisotropic materials used in gas temperature airfoils. Two single crystal alloys and two coatings are now being tested. These include PWA 1480; Alloy 185; overlay coating, PWA 286; and aluminide coating, PWA 273. Constitutive models are also being developed for these materials to predict the plastic and creep strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularily important for high temperature gas turbine applications and is basic to any life prediction system.
Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D.
2010-06-15
Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.
NASA Astrophysics Data System (ADS)
Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D.
2010-06-01
Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.
Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images
NASA Technical Reports Server (NTRS)
Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.
1999-01-01
Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.
A nonlinear constitutive model for stress relaxation in ligaments and tendons.
Davis, Frances M; De Vita, Raffaella
2012-12-01
A novel constitutive model that describes stress relaxation in transversely isotropic soft collagenous tissues such as ligaments and tendons is presented. The model is formulated within the nonlinear integral representation framework proposed by Pipkin and Rogers (J. Mech. Phys. Solids. 16:59-72, 1968). It represents a departure from existing models in biomechanics since it describes not only the strain dependent stress relaxation behavior of collagenous tissues but also their finite strains and transverse isotropy. Axial stress-stretch data and stress relaxation data at different axial stretches are collected on rat tail tendon fascicles in order to compute the model parameters. Toward this end, the rat tail tendon fascicles are assumed to be incompressible and undergo an isochoric axisymmetric deformation. A comparison with the experimental data proves that, unlike the quasi-linear viscoelastic model (Fung, Biomechanics: Mechanics of Living Tissues. Springer, New York, 1993) the constitutive law can capture the observed nonlinearities in the stress relaxation response of rat tail tendon fascicles.
Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L.; Pijnappels, Daniël A.; Panfilov, Alexander V.
2016-01-01
Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities. PMID:27332890
NASA Astrophysics Data System (ADS)
Tricerri, Paolo; Dedè, Luca; Deparis, Simone; Quarteroni, Alfio; Robertson, Anne M.; Sequeira, Adélia
2015-03-01
This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemodynamics for idealized geometries of healthy cerebral arteries modeled by both nonlinear isotropic and anisotropic material constitutive laws. In particular, it focuses on an anisotropic model initially proposed for cerebral arteries to characterize the activation of collagen fibers at finite strains. In the current work, this constitutive model is implemented for the first time in the context of an FSI formulation. In this framework, we investigate the influence of the material model on the numerical results and, in the case of the anisotropic laws, the importance of the collagen fibers on the overall mechanical behavior of the tissue. With this aim, we compare our numerical results by analyzing fluid dynamic indicators, vessel wall displacement, Von Mises stress, and deformations of the collagen fibers. Specifically, for an anisotropic model with collagen fiber recruitment at finite strains, we highlight the progressive activation and deactivation processes of the fibrous component of the tissue throughout the wall thickness during the cardiac cycle. The inclusion of collagen recruitment is found to have a substantial impact on the intramural stress, which will in turn impact the biological response of the intramural cells. Hence, the methodology presented here will be particularly useful for studies of mechanobiological processes in the healthy and diseased vascular wall.
A constitutive model for layer development in shear zones near the brittle-ductile transition
NASA Astrophysics Data System (ADS)
Montési, Laurent G. J.
2007-04-01
The microstructure of ductile shear zones differs from that of surrounding wall rocks. In particular, compositional layering is a hallmark of shear zones. As layered rocks are weaker than their isotropic protolith when loaded in simple shear, layering may hold the key to explain localization of ductile deformation onto ductile shear zones. I propose here a constitutive model for layer development. A two-level mixing theory allows the strength of the aggregate to be estimated at intermediate degrees of layering. A probabilistic failure model is introduced to control how layers develop in a deforming aggregate. This model captures one of the initial mechanism of phase interconnection identified experimentally by Holyoke and Tullis (2006a, 2006b), fracturing of load bearing grains. This model reproduces the strength evolution of these experiments and can now be applied to tectonic modeling.
3-D Numerical Simulation of Hydrostatic Tests of Porous Rocks Using Adapted Constitutive Model
NASA Astrophysics Data System (ADS)
Chemenda, A. I.; Daniel, M.
2014-12-01
The high complexity and poor knowledge of the constitutive properties of porous rocks are principal obstacles for the modeling of their deformation. Normally, the constitutive lows are to be derived from the experimental data (nominal strains and stresses). They are known, however, to be sensitive to the mechanical instabilities within the rock specimen and the boundary (notably friction) conditions at its ends. To elucidate the impact of these conditions on the measured mechanical response we use 3-D finite-difference simulations of experimental tests. Modeling of hydrostatic tests was chosen because it does not typically involve deformation instabilities. The ends of the cylindrical 'rock sample' are in contact with the 'steel' elastic platens through the frictional interfaces. The whole system is subjected to a normal stress Pc applied to the external model surface. A new constitutive model of porous rocks with the cap-type yield function is used. This function is quadratic in the mean stress σm and depends on the inelastic strain γp in a way to generate strain softening at small σm and strain-hardening at high σm. The corresponding material parameters are defined from the experimental data and have clear interpretation in terms of the geometry of the yield surface. The constitutive model with this yield function and the Drucker-Prager plastic potential has been implemented in 3-D dynamic explicit code Flac3D. The results of an extensive set of numerical simulations at different model parameters will be presented. They show, in particular, that the shape of the 'numerical' hydrostats is very similar to that obtained from the experimental tests and that it is practically insensitive to the interface friction. On the other hand, the stress and strain fields within the specimen dramatically depend on this parameter. The inelastic deformation at the specimen's ends starts well before reaching the grain crushing pressure P* and evolves heterogeneously with Pc
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson-Tvergaard-Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process.
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140
A three-dimensional constitutive model for the stress relaxation of articular ligaments.
Davis, Frances M; De Vita, Raffaella
2014-06-01
A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress-stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757-763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67-76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model.
A microplane constitutive model for shape memory alloys considering tension-compression asymmetry
NASA Astrophysics Data System (ADS)
Karamooz Ravari, M. R.; Kadkhodaei, M.; Ghaei, A.
2015-07-01
Shape memory alloys are a group of advanced materials that have found several industrial applications due to their interesting mechanical properties including a shape memory effect and superelasticity. In order to optimize the use of such materials in manufacturing different devices, appropriate advanced constitutive models are required. Recent experiments show that shape memory alloys exhibit an asymmetric response during tension and compression loading. In this paper, a new three-dimensional constitutive law is proposed based on microplane theory with the purpose of describing the tension-compression asymmetry. The model utilizes an equivalent stress on the foundation of second and third invariants of the deviatoric stress tensor in combination with two internal variables to distinguish between martensite volume fraction as well as martensite elastic modulus during tension and compression. The proposed model is then used to simulate uniaxial tension-compression loading in superelasticity as well as ferroelasticity regimes. The simulation results are compared with the corresponding results obtained by experiment and previous models reported in the literature, and a good agreement is observed. In addition, a four-point bending test is simulated for NiTi tubes in several cases. The predicted moment-curvature response and variations in the position of the neutral axis correlate fairly well with the experimental findings reported in the literature.
NASA Astrophysics Data System (ADS)
Chakraborty, Debadi; Sader, John E.
2015-05-01
Simple bulk liquids such as water are commonly assumed to be Newtonian. While this assumption holds widely, the fluid-structure interaction of mechanical devices at nanometer scales can probe the intrinsic molecular relaxation processes in a surrounding liquid. This was recently demonstrated through measurement of the high frequency (20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically assess the available constitutive equations for compressible viscoelastic flows in their linear limits—such models are required for analysis of the above-mentioned measurements. We show that previous models, with the exception of a very recent proposal, do not reproduce the required response at high frequency. We explain the physical origin of this recent model and show that it recovers all required features of a linear viscoelastic flow. This constitutive equation thus provides a rigorous foundation for the analysis of vibrating nanostructures in simple liquids. The utility of this model is demonstrated by solving the fluid-structure interaction of two common problems: (1) a sphere executing radial oscillations in liquid, which depends strongly on the liquid compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles in liquid, where the effects of liquid compressibility are negligible. This highlights the importance of shear and compressional relaxation processes, as a function of flow geometry, and the impact of the shear and bulk viscosities on nanometer scale flows.
3D Mechanical properties of the layered esophagus: experiment and constitutive model.
Yang, W; Fung, T C; Chian, K S; Chong, C K
2006-12-01
The identification of a three dimensional constitutive model is useful for describing the complex mechanical behavior of a nonlinear and anisotropic biological tissue such as the esophagus. The inflation tests at the fixed axial extension of 1, 1.125, and 1.25 were conducted on the muscle and mucosa layer of a porcine esophagus separately and the pressure-radius-axial force was recorded. The experimental data were fitted with the constitutive model to obtain the structure-related parameters, including the collagen amount and fiber orientation. Results showed that a bilinear strain energy function (SEF) with four parameters could fit the inflation data at an individual extension very well while a six-parameter model had to be used to capture the inflation behaviors at all three extensions simultaneously. It was found that the collagen distribution was axial preferred in both layers and the mucosa contained more collagen, which were in agreement with the findings through a pair of uniaxial tensile test in our previous study. The model was expected to be used for the prediction of stress distribution within the esophageal wall under the physiological state and provide some useful information in the clinical studies of the esophageal diseases.
Lester, Brian; Scherzinger, William
2017-01-19
Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less
Structural bonding-breakage constitutive model for natural unsaturated clayey soils
NASA Astrophysics Data System (ADS)
Cai, Guo-Qing; Zhao, Cheng-Gang; Qin, Xiao-Ming
2010-12-01
The natural clayey soils are usually structural and unsaturated, which makes their mechanical properties quite different from the remolded saturated soils. A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism. In this model, the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory, and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic, whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model. The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils. Parametric analyses of the effects of damage variables on the model predictions are further carried out, which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.
Finite plasticity in \\varvec{P}^top \\varvec{P}. Part I: constitutive model
NASA Astrophysics Data System (ADS)
Grandi, Diego; Stefanelli, Ulisse
2017-01-01
We address a finite-plasticity model based on the symmetric tensor \\varvec{P}^top \\varvec{P} instead of the classical plastic strain \\varvec{P}. Such a structure arises by assuming that the material behavior is invariant with respect to frame transformations of the intermediate configuration. The resulting variational model is lower dimensional, symmetric and based solely on the reference configuration. We discuss the existence of energetic solutions at the material-point level as well as the convergence of time discretizations. The linearization of the model for small deformations is ascertained via a rigorous evolution-Γ -convergence argument. The constitutive model is combined with the equilibrium system in Part II where we prove the existence of quasistatic evolutions and ascertain the linearization limit (Grandi and Stefanelli in 2016).
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, G.
2011-12-01
In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.
NASA Astrophysics Data System (ADS)
Salari, S.; Naderi, M.; Bleck, W.
2015-02-01
Simulation of hot stamping process needs reliable material data, especially at high temperatures where plastic deformation takes place in austenitic microstructure. In the current study, high-temperature non-isothermal compression tests (NICT) at different ranges of temperature, strain and strain rate as well as constitutive modeling of the flow curves were carried out. The Johnson-Cook and the Nemat-Nasser phenomenological models for isothermal deformation conditions were revised and applied to fit the flow curves during high-temperature NICT. It was shown that the models can satisfactorily predict the material flow stress at the mentioned conditions. Furthermore, the models were employed in order to describe the work-hardening behavior of the material. The results indicated that the fitted work-hardening rate can successfully follow the experimental data during deformation till no strain-induced phase transformation is initiated.
Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.
Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation
NASA Astrophysics Data System (ADS)
Yano, Ryosuke
2017-02-01
The Uehling-Uhlenbeck (U-U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U-U model equation. DSMC analysis based on the U-U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U-U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green-Kubo expression and the shock layer of a dilute Bose gas around a cylinder.
An efficient and accurate model of the coax cable feeding structure for FEM simulations
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.
1995-01-01
An efficient and accurate coax cable feed model is proposed for microstrip or cavity-backed patch antennas in the context of a hybrid finite element method (FEM). A TEM mode at the cavity-cable junction is assumed for the FEM truncation and system excitation. Of importance in this implementation is that the cavity unknowns are related to the model fields by enforcing an equipotential condition rather than field continuity. This scheme proved quite accurate and may be applied to other decomposed systems as a connectivity constraint. Comparisons of our predictions with input impedance measurements are presented and demonstrate the substantially improved accuracy of the proposed model.
2010-01-01
Background Proteasomes play a central role in the major histocompatibility class I (MHCI) antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site). There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC), optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07) and the immunoproteasome (MCC = 0.36 ± 0.06) were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific to predict cleavage by
Explicit robust schemes for implementation of general principal value-based constitutive models
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Tan, H. Q.; Zhang, Y.
1993-01-01
The issue of developing effective and robust schemes to implement general hyperelastic constitutive models is addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate the associated FORTRAN code for the explicit forms of the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid for the entire deformation range. The analytical form of these explicit expressions is given here for the case in which the strain-energy potential is taken as a nonseparable polynomial function of the principle stretches.
Experimental evaluation criteria for constitutive models of time dependent cyclic plasticity
NASA Technical Reports Server (NTRS)
Martin, J. F.
1986-01-01
Notched members were tested at temperatures far above those recorded till now. Simulation of the notch root stress response was accomplished to establish notch stress-strain behavior. Cyclic stress-strain profiles across the net-section were recorded and on-line direct notch strain control was accomplished. Data are compared to three analysis techniques with good results. The objective of the study is to generate experimental data that can be used to evaluate the accuracy of constitutive models of time dependent cyclic plasticity.
NASA Astrophysics Data System (ADS)
Zampaloni, Michael A.
This work focuses on the development of a constitutive relationship for the modeling of a multi-preferred fiber orientation sheet that has several different primary fiber orientations, none of which are necessarily mutually perpendicular prior to, or during, deformation. One of the goals was to develop the constitutive relationship for the deformation behavior of the fiber mat reinforced thermoplastics with a random orientation, a material that is starting to gain in popularity but has not been extensively investigated. Two different types of mat fiber reinforced material were investigated; one a continuous fiber mat and one a chopped fiber mat, both with a polypropylene matrix. Both materials were characterized through a series of squeeze flow and uniaxial tensile tests to determine the preferred fiber orientations as well as the material properties. The constitutive model was implemented through a user-subroutine into the commercial finite element analysis code ABAQUS/Explicit and the numerical results were validated against experimental stamping results. Overall, the multi-preferred fiber orientation constitutive relationship was able to accurately capture the material instabilities that occurred during the stamping process. Since the mat fiber reinforced materials have not been extensively investigated this research creates one of the building blocks that can be used to develop more accurate models in the future. With the addition of a constitutive relationship for the interaction between the layers, this single layer model could be expanded into a constitutive relationship for the full sheet. In addition to the constitutive modeling aspect of this work there is also an experimental portion that deals with the development, design, build and verification of a new processing method for the shaping and forming of fiber reinforced thermoplastic materials, stamp thermo-hydroforming. Experimentation demonstrated that the process provides a 7--10 percent increase in
NASA Astrophysics Data System (ADS)
Andrews, Benjamin J.
The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for
Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence
2016-05-31
Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.
A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues.
Comellas, Ester; Gasser, T Christian; Bellomo, Facundo J; Oller, Sergio
2016-03-01
Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data.
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre
NASA Astrophysics Data System (ADS)
Tang, H.; Barthelat, F.; Espinosa, H. D.
2007-07-01
In order to better understand the strengthening mechanism observed in nacre, we have developed an interface computational model to simulate the behavior of the organic present at the interface between aragonite tablets. In the model, the single polymer-chain behavior is characterized by the worm-like-chain (WLC) model, which is in turn incorporated into the eight-chain cell model developed by Arruda and Boyce [Arruda, E.M., Boyce, M.C., 1993a. A three-dimensional constitutive model for the large stretches, with application to polymeric glasses. Int. J. Solids Struct. 40, 389-412] to achieve a continuum interface constitutive description. The interface model is formulated within a finite-deformation framework. A fully implicit time-integration algorithm is used for solving the discretized governing equations. Finite element simulations were performed on a representative volume element (RVE) to investigate the tensile response of nacre. The staggered arrangement of tablets and interface waviness obtained experimentally by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M., Espinosa, H.D., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55 (2), 306-337] was included in the RVE simulations. The simulations showed that both the rate-dependence of the tensile response and hysteresis loops during loading, unloading and reloading cycles were captured by the model. Through a parametric study, the effect of the polymer constitutive response during tablet-climbing and its relation to interface hardening was investigated. It is shown that stiffening of the organic material is not required to achieve the experimentally observed strain hardening of nacre during tension. In fact, when ratios of contour length/persistent length experimentally identified are employed in the simulations, the predicted stress-strain behavior exhibits a deformation hardening consistent with the one measured
A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues
Sacks, Michael S.; Wognum, Silvia
2016-01-01
Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials. PMID:26855761
A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues.
Sacks, Michael S; Zhang, Will; Wognum, Silvia
2016-02-06
Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials.
Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey
2016-11-21
Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.
Zhao, Xuefeng; Liu, Yi; Zhang, Wei; Wang, Chong; Kassab, Ghassan S
2011-10-07
Recently, a novel linearized constitutive model with a new strain measure that absorbs the material nonlinearity was validated for arteries. In this study, the linearized arterial stress-strain relationship is implemented into a finite element method package, ANSYS, via the user subroutine USERMAT. The reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open sector (zero-stress state). The residual strain is taken into account by analytic calculation and the incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element analyses are conducted to demonstrate potential applications of this approach in a complex boundary value problem where angioplasty balloon interacts with the vessel wall. The model predictions of transmural circumferential and compressive radial stress distributions were also validated against an exponential-type Fung model, and the mean error was found to be within 6%.
An experimental study on stress-strain behavior and constitutive model of hardfill material
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Du, Bin; Yao, Yuancheng; He, Xianfeng
2011-11-01
Hardfill is a new type of artificially cemented material for dam construction works, with a wide application prospect. Its mechanical behavior lies between concrete and rockfill materials. A series of large-scale triaxial tests are performed on hardfill specimens at different ages, and the stress-strain behavior of hardfill is further discussed. The strength and stress-strain relationship of hardfill materials show both frictional mechanism and cohesive mechanism. An age-related constitutive model of hardfill is developed, which is a parallel model consisting of two components, rockfill component and cementation component. Moreover, a comparison is made between the simulated and the experimental results, which shows that the parallel model can reflect the mechanical characteristics of both rockfill-like nonlinearity and concrete-like age relativity. In addition, a simplified method for the determination of parameters is proposed.
NASA Astrophysics Data System (ADS)
Myong, R. S.
2016-01-01
The Knudsen layer, found in the region of gas flow very close (in order of a few mean free paths) to the solid surfaces, plays a critical role in accurately modeling rarefied and micro-scale gases. In various previous investigations, abnormal behaviors at high Knudsen numbers such as nonlinear velocity profile, velocity gradient singularity, and pronounced thermal effect are identified to exist in the Knudsen layer. However, some behaviors, in particular, the velocity gradient singularity near the surface and higher temperature, remain elusive in the continuum framework. In this study, based on the second-order macroscopic constitutive equation recently derived from the kinetic Boltzmann equation via the balanced closure and cumulant expansion [R. S. Myong, "On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules," Phys. Fluids 26(5), 056102 (2014)], the macroscopic second-order constitutive and slip-jump models that are able to explain qualitatively all the known non-classical and non-isothermal behaviors are proposed. As a result, new analytical solutions to the Knudsen layer in Couette flow, in conjunction with the algebraic nonlinearly coupled second-order constitutive and Maxwell velocity slip and Smoluchowski temperature jump models, are derived. It was shown that the velocity gradient singularity in the Knudsen layer can be explained within the continuum framework, when the nonlinearity of the constitutive model is morphed into the determination of the velocity slip in the nonlinear slip and jump model. Also, the smaller velocity slip and shear stress are shown to be caused by the shear-thinning property of the second-order constitutive model, that is, vanishing effective viscosity at high Knudsen number.
NASA Astrophysics Data System (ADS)
Michel, Jean-Claude; Suquet, Pierre
2016-05-01
In 2003 the authors proposed a model-reduction technique, called the Nonuniform Transformation Field Analysis (NTFA), based on a decomposition of the local fields of internal variables on a reduced basis of modes, to analyze the effective response of composite materials. The present study extends and improves on this approach in different directions. It is first shown that when the constitutive relations of the constituents derive from two potentials, this structure is passed to the NTFA model. Another structure-preserving model, the hybrid NTFA model of Fritzen and Leuschner, is analyzed and found to differ (slightly) from the primal NTFA model (it does not exhibit the same variational upper bound character). To avoid the "on-line" computation of local fields required by the hybrid model, new reduced evolution equations for the reduced variables are proposed, based on an expansion to second order (TSO) of the potential of the hybrid model. The coarse dynamics can then be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations. The acceleration provided by the new coarse dynamics over the full-field computations (and over the hybrid model) is then spectacular, larger by three orders of magnitude than the acceleration due to the sole reduction of unknowns.
Constitutive Modeling of Hot Deformation Behavior of High-Strength Armor Steel
NASA Astrophysics Data System (ADS)
Bobbili, Ravindranadh; Madhu, Vemuri
2016-05-01
The hot isothermal compression tests of high-strength armor steel under a wide range of deformation temperatures (1100-1250 °C) and strain rates of (0.001-1/s) were performed. Based on the experimental data, constitutive models were established using the original Johnson-Cook (JC) model, modified JC model, and strain-compensated Arrhenius model, respectively. The modified JC model considers the coupled effects of strain hardening, strain rate hardening, and thermal softening. Moreover, the prediction accuracy of these developed models was determined by estimating the correlation coefficient ( R) and average absolute relative error (AARE). The results demonstrate that the flow behavior of high-strength armor steel is considerably influenced by the strain rate and temperature. The original JC model is inadequate to provide good description on the flow stress at evaluated temperatures. The modified JC model and strain-compensated Arrhenius model significantly enhance the predictability. It is also observed from the microstructure study that at low strain rates (0.001-0.01/s) and high temperatures (1200-1250 °C), a typical dynamic recrystallization (DRX) occurs.
Elasto-Plasticity Behavior of Type 5000 and 6000 Aluminum Alloy Sheets and Its Constitutive Modeling
Tamura, Shohei; Sumikawa, Satoshi; Hamasaki, Hiroshi; Yoshida, Fusahito; Uemori, Takeshi
2010-06-15
To examine the deformation characteristic of type 5000 and 6000 aluminum alloy sheets, uniaxial tension, biaxial stretching and in-plane cyclic tension-compression experiments were performed, and from these, r-values (r{sub 0}, r{sub 45} and r{sub 90}), yield loci and cyclic stress-strain responses were obtained. For the accurate description of anisotropies of the materials, high-ordered anisotropic yield functions, such as Gotoh's biquadratic yield function and Barlat's Yld2000-2d, are necessary. Furthermore, for the simulation of cyclic behavior, an advanced kinematic hardening model, such as Yoshida-Uemori model (Y-U model), should be employed. The effect of the selection of material models on the accuracy of the springback prediction was discussed by performing hat bending FE simulation using several yield functions and two types of hardening laws (the isotropic hardening model and Y-U model).
Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue
Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William
2008-01-01
In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel.
Jankowska, Malgorzata A; Bartkowiak-Jowsa, Magdalena; Bedzinski, Romuald
2015-10-01
The study concerns the determination of mechanical properties of human coronary arterial walls with both experimental and constitutive modeling approaches. The research material was harvested from 18 patients (range 50-84 years). On the basis of hospital records and visual observation, each tissue sample was classified according to the stage (0, I, II, III) of atherosclerosis development (SAD). Then, strip samples considered as a membrane with the shape of rectangular parallelepiped were preconditioned and subjected to uniaxial tensile tests in longitudinal (n=27) and circumferential (n=4) direction. With experimental data obtained, the stress-strain characteristics were prepared. Furthermore, tensile strengths and related strains, stiffness coefficients and tangent modules of elasticity were computed. For a constitutive model of passive mechanical behavior of coronary arteries, values of material parameters were computed. The studies led to the following conclusions. Most importantly, the atherosclerotic changes affect all the mechanical properties of arterial walls. A progress of arteriosclerosis contributes to an increase of vascular stiffness. The highest values of the stiffness coefficients are obtained for the tissues in the advanced stage of the disease. We were also able to observe that gradual calcification, progression of atherosclerosis and degradation of collagen in the tissue caused a decrease of tensile strengths and related strains. Finally, a comparison made for the tissues with the advanced SAD showed that the tensile strengths and strains were much higher in the case of the samples with the circumferential orientation rather than those with the longitudinal one.
Comparison of constitutive models of arterial layers with distributed collagen fibre orientations.
Skacel, Pavel; Bursa, Jiri
2014-01-01
Several constitutive models have been proposed for description of mechanical behaviour of soft tissues containing collagen fibres. The model with aligned fibres is modified in this paper to take the dispersion of fibre orientations into account through angular integration and it is compared with the model that is defined through generalized structure tensor. The paper is focused on the effect of fibre dispersion on the resulting stress-strain behaviour predicted by both models analyzed. Analytical calculations are used for the comparison of the mechanical behaviour under a specific biaxial tension mode. The two models have been implemented into commercial finite element code ANSYS via user subroutines and used for numerical simulation resulting in a non-homogeneous stress field. The effects of the fibre dispersion predicted by both models being compared differ significantly, e.g., the resulting stress difference between both models is lower than 10% only in the case of extremely small dispersion of collagen fibres orientation (κ< (0.01 to 0.03)). These results are consistent with those of other related literature. The applicability of the model defined through the generalized structure tensor is discussed.
Constitutive modelling of lubricants in concentrated contacts at high slide to roll ratios
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slide to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slide to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slide to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.
A friction to flow constitutive law and its application to a 2-D modeling of earthquakes
NASA Astrophysics Data System (ADS)
Shimamoto, Toshihiko; Noda, Hiroyuki
2014-11-01
Establishment of a constitutive law from friction to high-temperature plastic flow has long been a challenging task for solving problems such as modeling earthquakes and plate interactions. Here we propose an empirical constitutive law that describes this transitional behavior using only friction and flow parameters, with good agreements with experimental data on halite shear zones. The law predicts steady state and transient behaviors, including the dependence of the shear resistance of fault on slip rate, effective normal stress, and temperature. It also predicts a change in velocity weakening to velocity strengthening with increasing temperature, similar to the changes recognized for quartz and granite gouge under hydrothermal conditions. A slight deviation from the steady state friction law due to the involvement of plastic deformation can cause a large change in the velocity dependence. We solved seismic cycles of a fault across the lithosphere with the law using a 2-D spectral boundary integral equation method, revealing dynamic rupture extending into the aseismic zone and rich evolution of interseismic creep including slow slip prior to earthquakes. Seismic slip followed by creep is consistent with natural pseudotachylytes overprinted with mylonitic deformation. Overall fault behaviors during earthquake cycles are insensitive to transient flow parameters. The friction-to-flow law merges "Christmas tree" strength profiles of the lithosphere and rate dependency fault models used for earthquake modeling on a unified basis. Strength profiles were drawn assuming a strain rate for the flow regime, but we emphasize that stress distribution evolves reflecting the fault behavior. A fault zone model was updated based on the earthquake modeling.
A New Constitutive Model for the High-Temperature Flow Behavior of 95CrMo Steel
NASA Astrophysics Data System (ADS)
Xie, Bao-Sheng; Cai, Qing-Wu; Wei, Yu; Xu, Li-Xiong; Zhen, Ning
2016-12-01
The compressive deformation behavior of 95CrMo steel, one of the worldwide used hollow steels, was investigated on a Gleeble-3500 thermo-simulation machine within temperature range of 1073-1323 K and strain rate range of 0.1-10 s-1. Considering the influence of work-hardening, dynamic recovery and dynamic recrystallization, a new constitutive model for high-temperature flow stress was established in this paper. The calculated values predicted by the new constitutive model lie fairly close to the experimental values with a correlation coefficient ( R) of generally above 0.99 and an average absolute relative error of 3.00%, proving a good predictability of the new constitutive model. Also, a modified Sellars-Tegart-Garofalo model (STG model) was introduced to verify the precision of the new constitutive model. Compared to the modified STG model, the new constitutive model has a higher accuracy, which implies it is a reliable tool for predicting flow stress at high temperatures not only under equilibrium state, but also under transient deformation conditions. Besides, the new constitutive model was proved still viable in the initial stage of plastic deformation where plastic strain is lower than 0.05.
Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers
Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas
2016-01-01
A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496
NASA Astrophysics Data System (ADS)
Haberman, K. S.; Asay, B. W.; Henson, B. F.; Funk, D. J.
1997-07-01
Simulation of the complete response of components and systems composed of energetic materials, such as PBX9501 is important in the determination of the safety of various explosive systems. For example, predicting the correct state of stress, rate of deformation and temperature during penetration is essential in the prediction of ignition. Such simulation requires accurate constitutive models. These models must also be computationally efficient to enable analysis of large scale three dimensional problems using explicit lagrangian finite element codes such as DYNA3D. However, to be of maximum utility, these predictions must be validated against robust dynamic experiments. In this paper, we report comparisons between experimental and predicted displacement fields in PBX9501 during dynamic deformation, and describe the modeling approach. The predictions use Visco-SCRAM and the generalized method of cells which have been implemented into DYNA3D. The experimental data were obtained using laser-induced fluorescense speckle photography. Results from this study have lead to more accurate models and have also guided further experimental work.
NASA Astrophysics Data System (ADS)
Pietruszczak, Stanisław; Haghighat, Ehsan
2015-02-01
In this paper, the problem of modeling of mixed mode cracking in concrete structures is addressed within the context of a constitutive law with embedded discontinuity (CLED). This approach, which was originally developed for describing the propagation of localized deformation in a "smeared" sense, is enhanced here to model a discrete nature of crack propagation. The latter is achieved by coupling the CLED approach with the level-set method, which is commonly used within the framework of Extended Finite Element (XFEM). Numerical simulations of experimental tests conducted at Delft University, which involve four-point bending of a notched concrete beam under the action of two independent actuators, are presented. The results based on enhanced CLED approach are directly compared with XFEM simulations. The predictions from both these methodologies are quite consistent with the experimental data, thereby giving advantage to CLED scheme in view of its simplicity in the numerical implementation.
A Micromechanics Based Constitutive Model For Brittle Failure at High Strain Rates
NASA Astrophysics Data System (ADS)
Bhat, H. S.; Rosakis, A.; Sammis, C. G.
2011-12-01
The micromechanical damage mechanics formulated by Ashby and Sammis [1] and generalized by Desh- pande and Evans [2] has been extended to allow for a more generalized stress state and to incorporate an ex- perimentally motivated new crack growth (damage evo- lution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces strain-rate sensitivity in the constitutive re- sponse. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over strain rates ranging from ˜ 10-6 to 103 s-1. Model parameters determined from from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent.
Das, Sumanta; Maroli, Amit; Singh, Sudhanshu S.; Stannard, Tyler; Xiao, Xianghui; Chawla, Nikhilesh; Neithalath, Narayanan
2016-06-01
This paper presents a microstructure-guided modeling approach to predict the effective elastic response of heterogeneous materials, and demonstrates its application toward two highly heterogeneous, uncon- ventional structural binders, i.e., iron carbonate and fly ash geopolymer. Microstructural information from synchrotron X-ray tomography (XRT) and intrinsic elastic properties of component solid phases from statistical nanoindentation are used as the primary inputs. The virtual periodic 3D microstructure reconstructed using XRT, along with periodic boundary conditions is used as a basis for strain- controlled numerical simulation scheme in the linear elastic range to predict the elastic modulus as well as the stresses in the microstructural phases. The elastic modulus of the composite material predicted from the microstructure-based constitutive modeling approach correlates very well with experimental measurements for both the materials considered. This technique efficiently links the microstructure to mechanical properties of interest and helps develop material design guidelines for novel heterogeneous composites
Bhandarkar, Suhas; Betcher, Jacob; Smith, Ryan; Lairson, Bruce; Ayers, Travis
2016-06-30
Targets for ICF shots on NIF typically use ~500nm thin polyimide films with a coating of 25nm of aluminum as windows that seal the laser entrance hole or LEH. Their role is to contain the hohlraum gas and minimize the extraneous infra-red radiation getting in. This is necessary to precisely control the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both ambient and cryogenic temperatures. The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.
Bhandarkar, Suhas; Betcher, Jacob; Smith, Ryan; ...
2016-06-30
Targets for ICF shots on NIF typically use ~500nm thin polyimide films with a coating of 25nm of aluminum as windows that seal the laser entrance hole or LEH. Their role is to contain the hohlraum gas and minimize the extraneous infra-red radiation getting in. This is necessary to precisely control the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both ambient and cryogenic temperatures.more » The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.« less
A Volume-Fraction Based Two-Phase Constitutive Model for Blood
Zhao, Rui; Massoudi, Mehrdad; Hund, S.J.; •Antaki, J.F.
2008-06-01
Mechanically-induced blood trauma such as hemolysis and thrombosis often occurs at microscopic channels, steps and crevices within cardiovascular devices. A predictive mathematical model based on a broad understanding of hemodynamics at micro scale is needed to mitigate these effects, and is the motivation of this research project. Platelet transport and surface deposition is important in thrombosis. Microfluidic experiments have previously revealed a significant impact of red blood cell (RBC)-plasma phase separation on platelet transport [5], whereby platelet localized concentration can be enhanced due to a non-uniform distribution of RBCs of blood flow in a capillary tube and sudden expansion. However, current platelet deposition models either totally ignored RBCs in the fluid by assuming a zero sample hematocrit or treated them as being evenly distributed. As a result, those models often underestimated platelet advection and deposition to certain areas [2]. The current study aims to develop a two-phase blood constitutive model that can predict phase separation in a RBC-plasma mixture at the micro scale. The model is based on a sophisticated theory known as theory of interacting continua, i.e., mixture theory. The volume fraction is treated as a field variable in this model, which allows the prediction of concentration as well as velocity profiles of both RBC and plasma phases. The results will be used as the input of successive platelet deposition models.
A novel constitutive model of skeletal muscle taking into account anisotropic damage.
Ito, D; Tanaka, E; Yamamoto, S
2010-01-01
The purpose of this study is to develop a constitutive model of skeletal muscle that describes material anisotropy, viscoelasticity and damage of muscle tissue. A free energy function is described as the sum of volumetric elastic, isochoric elastic and isochoric viscoelastic parts. The isochoric elastic part is divided into two types of shear response and the response in the fiber direction. To represent the dependence of the mechanical properties on muscle activity, we incorporate a contractile element into the model. The viscoelasticity of muscle is modeled as a three-dimensional model constructed by extending the one-dimensional generalized Maxwell model. Based on the framework of continuum damage mechanics, the anisotropic damage of muscle tissue is expressed by a second-order damage tensor. The evolution of the damage is assumed to depend on the current strain and damage. The evolution equation is formulated using the representation theorem of tensor functions. The proposed model is applied to the experimental data on tensile mechanical properties in the fiber direction and the compression properties in the fiber and cross-fiber directions in literature. The model can predict non-linear mechanical properties and breaking points.
Lee, Chung-Hao; Rabbah, Jean-Pierre; Yoganathan, Ajit P; Gorman, Robert C; Gorman, Joseph H; Sacks, Michael S
2015-11-01
Recent long-term studies showed an unsatisfactory recurrence rate of severe mitral regurgitation 3-5 years after surgical repair, suggesting that excessive tissue stresses and the resulting strain-induced tissue failure are potential etiological factors controlling the success of surgical repair for treating mitral valve (MV) diseases. We hypothesized that restoring normal MV tissue stresses in MV repair techniques would ultimately lead to improved repair durability through the restoration of MV normal homeostatic state. Therefore, we developed a micro- and macro- anatomically accurate MV finite element model by incorporating actual fiber microstructural architecture and a realistic structure-based constitutive model. We investigated MV closing behaviors, with extensive in vitro data used for validating the proposed model. Comparative and parametric studies were conducted to identify essential model fidelity and information for achieving desirable accuracy. More importantly, for the first time, the interrelationship between the local fiber ensemble behavior and the organ-level MV closing behavior was investigated using a computational simulation. These novel results indicated not only the appropriate parameter ranges, but also the importance of the microstructural tuning (i.e., straightening and re-orientation) of the collagen/elastin fiber networks at the macroscopic tissue level for facilitating the proper coaptation and natural functioning of the MV apparatus under physiological loading at the organ level. The proposed computational model would serve as a logical first step toward our long-term modeling goal-facilitating simulation-guided design of optimal surgical repair strategies for treating diseased MVs with significantly enhanced durability.
Lee, Chung-Hao; Rabbah, Jean-Pierre; Yoganathan, Ajit P.; Gorman, Robert C.; Gorman, Joseph H.
2016-01-01
Recent long-term studies showed an unsatisfactory recurrence rate of severe mitral regurgitation 3–5 years after surgical repair, suggesting that excessive tissue stresses and the resulting strain-induced tissue failure are potential etiological factors controlling the success of surgical repair for treating mitral valve (MV) diseases. We hypothesized that restoring normal MV tissue stresses in MV repair techniques would ultimately lead to improved repair durability through the restoration of MV normal homeostatic state. Therefore, we developed a micro- and macro- anatomically accurate MV finite element model by incorporating actual fiber microstructural architecture and a realistic structure-based constitutive model. We investigated MV closing behaviors, with extensive in vitro data used for validating the proposed model. Comparative and parametric studies were conducted to identify essential model fidelity and information for achieving desirable accuracy. More importantly, for the first time, the interrelationship between the local fiber ensemble behavior and the organ-level MV closing behavior was investigated using a computational simulation. These novel results indicated not only the appropriate parameter ranges, but also the importance of the microstructural tuning (i.e., straightening and re-orientation) of the collagen/elastin fiber networks at the macroscopic tissue level for facilitating the proper coaptation and natural functioning of the MV apparatus under physiological loading at the organ level. The proposed computational model would serve as a logical first step toward our long-term modeling goal—facilitating simulation-guided design of optimal surgical repair strategies for treating diseased MVs with significantly enhanced durability. PMID:25947879
Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall.
Basciano, C A; Kleinstreuer, C
2009-02-01
The arterial wall is a complex fiber-reinforced composite. Pathological conditions, such as aneurysms, significantly alter the mechanical response of the arterial wall, resulting in a loss of elasticity, enhanced anisotropy, and increased chances of mechanical failure. Invariant-based models of the healthy and aneurysmal abdominal aorta were constructed based on first principles and published experimental data with implementations for several numerical cases, as well as comparisons to current healthy and aneurysmal tissue data. Inherent limitations of a traditional invariant-based methodology are also discussed and compared to the models' ability to accurately reproduce experimental trends. The models capture the nonlinear and anisotropic mechanical responses of the two arterial sections and make reasonable predictions regarding the effects of alterations in healthy and diseased tissue histology. Additionally, the new models exhibit convex and anisotropic monotonically increasing energy contours (suggesting numerical stability) but have potentially the inherent limitations of a covariant theoretical framework. Although the traditional invariant framework exhibits significant covariance, the invariant terms utilized in the new models exhibited limited covariance and are able to accurately reproduce experimental trends. A streamlined implementation is also possible for future numerical investigations of fluid-structure interactions in abdominal aortic aneurysms.
Application of a Dislocation Density-Based Constitutive Model to Al-Alloyed TWIP Steel
NASA Astrophysics Data System (ADS)
Kim, Jinkyung; Estrin, Yuri; De Cooman, Bruno Charles
2013-09-01
High Mn steels exhibit an exceptional combination of high strength and large ductility owing to their high strain-hardening rate during deformation. The addition of Al is needed to improve the mechanical performance of TWIP steel by means of the control of the stacking fault energy. In this study, a constitutive modeling approach, which can describe the strain-hardening behavior and the effect of Al on the mechanical properties, was used. In order to understand the deformation behavior of Fe18Mn0.6C and Fe18Mn0.6C1.5Al TWIP steels, a comparative study of the microstructural evolution was conducted by means of transmission electron microscopy and electron backscatter diffraction. The microstructure analysis focused on dislocations, stacking faults, and mechanical twins as these are the defects controlling the strain-hardening behavior of TWIP steels. A comparison of the strain-hardening behavior of Fe18Mn0.6C and Fe18Mn0.6C1.5Al TWIP steels was made in terms of a dislocation density-based constitutive model that goes back to the Kubin-Estrin model. The densities of mobile and forest dislocations are coupled in order to account for the interaction between the two dislocation populations during straining. The model was used to estimate the contribution of dynamic strain aging to the flow stress. As deformation twinning occurred only in a subset of the grains, the grain population was subdivided into twinned grains and twin-free grains. Different constitutive equations were used for the two families of grains. The analysis revealed that (i) the grain size and dynamic recovery effects determine the strain-hardening behavior of the twin-free grains, (ii) the deformation twins, which act as effective barriers to dislocation motion, are the predominant elements of the microstructure that governs the strain hardening of the twinned grains, and (iii) the DSA contribution to strain hardening of TWIP steel is only minor.
Winters, Taylor M; Takahashi, Mitsuhiko; Lieber, Richard L; Ward, Samuel R
2011-01-04
An a priori model of the whole active muscle length-tension relationship was constructed utilizing only myofilament length and serial sarcomere number for rabbit tibialis anterior (TA), extensor digitorum longus (EDL), and extensor digitorum II (EDII) muscles. Passive tension was modeled with a two-element Hill-type model. Experimental length-tension relations were then measured for each of these muscles and compared to predictions. The model was able to accurately capture the active-tension characteristics of experimentally-measured data for all muscles (ICC=0.88 ± 0.03). Despite their varied architecture, no differences in predicted versus experimental correlations were observed among muscles. In addition, the model demonstrated that excursion, quantified by full-width-at-half-maximum (FWHM) of the active length-tension relationship, scaled linearly (slope=0.68) with normalized muscle fiber length. Experimental and theoretical FWHM values agreed well with an intraclass correlation coefficient of 0.99 (p<0.001). In contrast to active tension, the passive tension model deviated from experimentally-measured values and thus, was not an accurate predictor of passive tension (ICC=0.70 ± 0.07). These data demonstrate that modeling muscle as a scaled sarcomere provides accurate active functional but not passive functional predictions for rabbit TA, EDL, and EDII muscles and call into question the need for more complex modeling assumptions often proposed.
NASA Astrophysics Data System (ADS)
Farabi, E.; Zarei-Hanzaki, A.; Abedi, H. R.
2015-01-01
Characterizing the high temperature flow behavior of a lead bearing duplex brass in a wide range of forming temperatures (673-1073 K) and strain rates (0.001-0.1 s-1) has been conducted in the present work. In order to establish the constitutive equations, two major modeling procedures, phenomenological (the Original Johnson-Cook and the Arrhenius-type) and physically based (the modified Zerilli-Armstrong) models, have been employed. The capability and accuracy of each model has been assessed via standard statistical parameters such as average absolute relative error and correlation coefficient. The comparative and comprehensive study of the flow behavior indicated that the accuracy of the phenomenological models was strongly dependent on the range of the testing temperatures and the corresponding mechanism which operate under the specified deformation conditions. It has been indicated that by limiting the temperature range a more precise Q-value is reached, which positively influences the accuracy of the Arrhenius-type model. In contrast, the modified Zerilli-Armstrong model was capable to overcome these limitations and properly considers the physical characteristics including dislocation dynamics and thermal activation to develop the materials constants.
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.
Impact erosion prediction using the finite volume particle method with improved constitutive models
NASA Astrophysics Data System (ADS)
Leguizamón, Sebastián; Jahanbakhsh, Ebrahim; Maertens, Audrey; Vessaz, Christian; Alimirzazadeh, Siamak; Avellan, François
2016-11-01
Erosion damage in hydraulic turbines is a common problem caused by the high- velocity impact of small particles entrained in the fluid. In this investigation, the Finite Volume Particle Method is used to simulate the three-dimensional impact of rigid spherical particles on a metallic surface. Three different constitutive models are compared: the linear strainhardening (L-H), Cowper-Symonds (C-S) and Johnson-Cook (J-C) models. They are assessed in terms of the predicted erosion rate and its dependence on impact angle and velocity, as compared to experimental data. It has been shown that a model accounting for strain rate is necessary, since the response of the material is significantly tougher at the very high strain rate regime caused by impacts. High sensitivity to the friction coefficient, which models the cutting wear mechanism, has been noticed. The J-C damage model also shows a high sensitivity to the parameter related to triaxiality, whose calibration appears to be scale-dependent, not exclusively material-determined. After calibration, the J-C model is capable of capturing the material's erosion response to both impact velocity and angle, whereas both C-S and L-H fail.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, N. S.; Joshi, V. S.; Harris, B. W.
2009-12-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant; Harris, Bryan
2009-06-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.
The contribution of mouse models to the understanding of constitutional thrombocytopenia
Léon, Catherine; Dupuis, Arnaud; Gachet, Christian; Lanza, François
2016-01-01
Constitutional thrombocytopenias result from platelet production abnormalities of hereditary origin. Long misdiagnosed and poorly studied, knowledge about these rare diseases has increased considerably over the last twenty years due to improved technology for the identification of mutations, as well as an improvement in obtaining megakaryocyte culture from patient hematopoietic stem cells. Simultaneously, the manipulation of mouse genes (transgenesis, total or conditional inactivation, introduction of point mutations, random chemical mutagenesis) have helped to generate disease models that have contributed greatly to deciphering patient clinical and laboratory features. Most of the thrombocytopenias for which the mutated genes have been identified now have a murine model counterpart. This review focuses on the contribution that these mouse models have brought to the understanding of hereditary thrombocytopenias with respect to what was known in humans. Animal models have either i) provided novel information on the molecular and cellular pathways that were missing from the patient studies; ii) improved our understanding of the mechanisms of thrombocytopoiesis; iii) been instrumental in structure-function studies of the mutated gene products; and iv) been an invaluable tool as preclinical models to test new drugs or develop gene therapies. At present, the genetic determinants of thrombocytopenia remain unknown in almost half of all cases. Currently available high-speed sequencing techniques will identify new candidate genes, which will in turn allow the generation of murine models to confirm and further study the abnormal phenotype. In a complementary manner, programs of random mutagenesis in mice should also identify new candidate genes involved in thrombocytopenia. PMID:27478199
2014-06-01
iii 7. Concluding Remarks 31 8. References 32 Distribution List 35 iv List of Figures Figure 1. Bony anatomy of the spinal column (panel a) and a...NUCLEUS PULPOSUS LAMELLAE OF ANNULUS FIBROSUS a) b) c) Figure 1. Bony anatomy of the spinal column (panel a) and a typical vertebra (panel b). Vertebra...hyperelastic constitutive model to capture the anisotropy of the spinal intervertebral discs. The constitutive model was implemented in the finite
Accurate protein structure modeling using sparse NMR data and homologous structure information.
Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David
2012-06-19
While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.
A multi-branch finite deformation constitutive model for a shape memory polymer based syntactic foam
NASA Astrophysics Data System (ADS)
Gu, Jianping; Sun, Huiyu; Fang, Changqing
2015-02-01
A multi-branch thermoviscoelastic-themoviscoplastic finite deformation constitutive model incorporated with structural and stress relaxation is developed for a thermally activated shape memory polymer (SMP) based syntactic foam. In this paper, the total mechanical deformation of the foam is divided into the components of the SMP and the elastic glass microballoons by using the mixture rule. The nonlinear Adam-Gibbs model is used to describe the structural relaxation of the SMP as the temperature crosses the glass transition temperature (Tg). Further, a multi-branch model combined with the modified Eying model of viscous flow is used to capture the multitude of relaxation processes of the SMP. The deformation of the glass microballoons could be split into elastic and inelastic components. In addition, the phenomenological evolution rule is implemented in order to further characterize the macroscopic post-yield strain softening behaviors of the syntactic foam. A comparison between the numerical simulation and the thermomechanical experiment shows an acceptable agreement. Moreover, a parametric study is conducted to examine the predictability of the model and to provide guidance for reasonable design of the syntactic foam.
On the constitutive relations for catalyst coated membrane applied to in-situ fuel cell modeling
NASA Astrophysics Data System (ADS)
Khorasany, Ramin M. H.; Goulet, Marc-Antoni; Alavijeh, Alireza Sadeghi; Kjeang, Erik; Wang, G. Gary; Rajapakse, R. K. N. D.
2014-04-01
The elastic-viscoplastic behavior of catalyst coated membranes (CCMs) used in polymer electrolyte membrane fuel cells is investigated in this work. Experimental results reveal significant differences between the mechanical properties of a pure perfluorosulfonic acid ionomer membrane and the corresponding CCM under uniaxial tension and cyclic loading. An elastic-viscoplastic constitutive model that is capable of capturing the time dependent response of the CCM at different humidity and temperature conditions is developed and validated against ex-situ experimental results. The validated model is then utilized to simulate the in-situ mechanical response of the CCM when treated as a composite object bonded through the ionomer phase. When compared to a conventional membrane model, the CCM model predicts considerably lower maximum stress and higher plastic strain under typical fuel cell operating conditions and improved plastic strain recovery during hygrothermal unloading. These results reflect the weaker nature of the CCM material which yields at a lower stress than the membrane and may lead to elevated plastic deformation when exposed to hygrothermal cycles in a constrained fuel cell environment. Hence, coupled CCM implementation is generally recommended for finite element modeling of fuel cells.
Pierce, David M; Maier, Franz; Weisbecker, Hannah; Viertler, Christian; Verbrugghe, Peter; Famaey, Nele; Fourneau, Inge; Herijgers, Paul; Holzapfel, Gerhard A
2015-01-01
Development of aortic aneurysms includes significant morphological changes within the tissue: collagen content increases, elastin content reduces and smooth muscle cells degenerate. We seek to quantify the impact of these changes on the passive mechanical response of aneurysms in the supra-physiological loading range via mechanical testing and constitutive modeling. We perform uniaxial extension tests on circumferentially and axially oriented strips from five thoracic (65.6 years ± 13.4, mean ± SD) and eight abdominal (63.9 years ± 11.4) aortic fusiform aneurysms to investigate both continuous and discontinuous softening during supra-physiological loading. We determine the significance of the differences between the fitted model parameters: diseased thoracic versus abdominal tissues, and healthy (Weisbecker et al., J. Mech. Behav. Biomed. Mater. 12, 93-106, 2012) versus diseased tissues. We also test correlations among these parameters and age, Body Mass Index (BMI) and preoperative aneurysm diameter, and investigate histological cuts. Tissue response is anisotropic for all tests and the anisotropic pseudo-elastic damage model fits the data well for both primary loading and discontinuous softening which we interpret as damage. We found statistically relevant differences between model parameters fitted to diseased thoracic versus abdominal tissues, as well as between those fitted to healthy versus diseased tissues. Only BMI correlated with fitted model parameters in abdominal aortic aneurysmal tissues.
Huang, Chong; Zhu, Yan-bo; Liu, Zhuo-jun
2012-04-01
From the point of view of systems science, human body can be considered as a complex system, and the human health system is a subsystem of it. Systems science conducts investigation in a holistic manner. As a theoretical method, it deals with the operation and evolution of systems from the macroscopic perspective, so this theory is similar to phenomenological theory of traditional Chinese medicine (TCM) in methodology. Naturally, numerous theories of systems science can be used in research of the human health systems of TCM. In this paper, the authors introduced synergetic, a theory of modern systems science, and its slaving principle, and in particular, analyzed the concept of order parameters related to the slaving principle and the relationship between body constitutions of TCM and order parameters. The body constitution of TCM can be treated as a slow variable in the human health systems. By using synergetic, the authors established a model of the human health system based on body constitutions of TCM. As an application of the model, the authors illustrated the argumentation in the theory of constitution being separable, the theory of a relationship between constitution and disease, and the theory of a recuperable constitution. To some extent, this work has made links between the TCM theory of body constitution and modern systems science, and it will offer a new thought for modeling the human health system.
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L
2011-12-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz
2012-01-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094
Taylor, Zeike A; Kirk, Thomas B; Miller, Karol
2007-08-01
Current development of a laser scanning confocal arthroscope within our school will enable 3D microscopic imaging of joint tissues in vivo. Such an instrument could be useful, for example, in assessing the microstructural condition of the living tissues without physical biopsy. It is envisaged also that linked to a suitable microstructural constitutive formulation, such imaging could allow non-invasive patient-specific estimation of tissue mechanical performance. Such a procedure could have applications in surgical planning and simulation, and assessment of engineered tissue replacements, where tissue biopsy is unacceptable. In this first of two papers the development of a suitable constitutive framework for generating such estimates is reported. A microstructure-based constitutive formulation for cartilaginous tissues is presented. The model extends existing fibre composite-type models and accounts for strain-rate sensitivity of the tissue mechanical response through incorporation of a viscoelastic fibre phase. Importantly, the model is constructed so as to allow direct incorporation of structural data from confocal images. A finite element implementation of the formulation suitable for incorporation within commercial codes is also presented.
Harry-O'kuru, R E; Carriere, C J
2002-05-22
Asclepias syriaca L., the common milkweed, is a new industrial crop. The seed contains about 20-30 wt % of a highly unsaturated oil having unusual fatty acids. Exploring value-added products from the oil, milkweed triglycerides have been oxidized by in situ performic acid to the polyoxirane and polyhydroxy triglycerides (PHTG). The rheological properties of milkweed PHTG were characterized in various shear flows. Milkweed PHTG displayed nonlinear viscoelastic behavior at applied strains greater than 1%. Milkweed PHTG was found to obey time-strain separability. A nonlinear Wagner constitutive model was used successfully to qualitatively predict the behavior of milkweed PHTG in both start-up and cessation of steady-state shear flow.
Heyden, Stefanie; Nagler, Andreas; Bertoglio, Cristóbal; Biehler, Jonas; Gee, Michael W; Wall, Wolfgang A; Ortiz, Michael
2015-12-16
A key element of the cardiac cycle of the human heart is the opening and closing of the four valves. However, the material properties of the leaflet tissues, which fundamentally contribute to determine the mechanical response of the valves, are still an open field of research. The main contribution of the present study is to provide a complete experimental data set for porcine heart valve samples spanning all valve and leaflet types under tensile loading. The tests show a fair degree of reproducibility and are clearly indicative of a number of fundamental tissue properties, including a progressively stiffening response with increasing elongation. We then propose a simple anisotropic constitutive model, which is fitted to the experimental data set, showing a reasonable interspecimen variability. Furthermore, we present a dynamic finite element analysis of the aortic valve to show the direct usability of the obtained material parameters in computational simulations.
Constitutive and equation of state models using object-oriented programming methods
Wong, M.K.W.; Peery, J.S.; Budge, K.G.
1992-01-01
Large-scale simulations of solid dynamics problems require sophisticated computer hardware, employing specialized or unique features to enhance performance. The developer of computational mechanics codes is not only faced with the task of programming the necessary analysis algorithms, but also of ensuring that the available system capabilities are properly utilized to obtain the highest possible performance. Developing and maintaining the code for a number of computers, ranging from single processor serial workstations to massively parallel vectorized supercomputers, becomes a very difficult, potentially intractable problem. In this paper, we present an approach that seeks to minimize this problem by applying object-oriented programming (OOP) concepts to the development of the RHALE++ hydrodynamics/solid mechanics code that is written in the C++ language. In particular, we use the OOP paradigm to facilitate code development, maintenance, and portability of constitutive and equation of state models.
Constitutive and equation of state models using object-oriented programming methods
Wong, M.K.W.; Peery, J.S.; Budge, K.G.
1992-10-01
Large-scale simulations of solid dynamics problems require sophisticated computer hardware, employing specialized or unique features to enhance performance. The developer of computational mechanics codes is not only faced with the task of programming the necessary analysis algorithms, but also of ensuring that the available system capabilities are properly utilized to obtain the highest possible performance. Developing and maintaining the code for a number of computers, ranging from single processor serial workstations to massively parallel vectorized supercomputers, becomes a very difficult, potentially intractable problem. In this paper, we present an approach that seeks to minimize this problem by applying object-oriented programming (OOP) concepts to the development of the RHALE++ hydrodynamics/solid mechanics code that is written in the C++ language. In particular, we use the OOP paradigm to facilitate code development, maintenance, and portability of constitutive and equation of state models.
Fan, Rong; Sacks, Michael S
2014-06-27
Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have implemented a structural constitutive model into a finite element framework specialized for membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural simulations were used to set the non-fibrous matrix modulus because fibers have little effects on tissue deformation under three-point bending. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress-strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (Billiar and Sacks, 1997. J. Biomech. 30 (7), 753-756) where we observed that under strip biaxial stretch the simulated fiber splay responses were not in good agreement with the experimental results, suggesting non-affine deformations may have occurred. However, by correctly accounting for the isotropic phase of the measured fiber splay, good agreement was obtained. While not the final word, these simulations suggest that affine fiber kinematics for planar collagenous tissues is a reasonable assumption at the macro level. Simulation tools such as these are
Stender, Michael E; Regueiro, Richard A; Klisch, Stephen M; Ferguson, Virginia L
2015-08-01
Traumatic injuries and gradual wear-and-tear of articular cartilage (AC) that can lead to osteoarthritis (OA) have been hypothesized to result from tissue damage to AC. In this study, a previous equilibrium constitutive model of AC was extended to a constitutive damage articular cartilage (CDAC) model. In particular, anisotropic collagen (COL) fibril damage and isotropic glycosaminoglycan (GAG) damage were considered in a 3D formulation. In the CDAC model, time-dependent effects, such as viscoelasticity and poroelasticity, were neglected, and thus all results represent the equilibrium response after all time-dependent effects have dissipated. The resulting CDAC model was implemented in two different finite-element models. The first simulated uniaxial tensile loading to failure, while the second simulated spherical indentation with a rigid indenter displaced into a bilayer AC sample. Uniaxial tension to failure simulations were performed for three COL fibril Lagrangian failure strain (i.e., the maximum elastic COL fibril strain) values of 15%, 30%, and 45%, while spherical indentation simulations were performed with a COL fibril Lagrangian failure strain of 15%. GAG damage parameters were held constant for all simulations. Our results indicated that the equilibrium postyield tensile response of AC and the macroscopic tissue failure strain are highly dependent on COL fibril Lagrangian failure strain. The uniaxial tensile response consisted of an initial nonlinear ramp region due to the recruitment of intact fibrils followed by a rapid decrease in tissue stress at initial COL fibril failure, as a result of COL fibril damage which continued until ultimate tissue failure. In the spherical indentation simulation, damage to both the COL fibril and GAG constituents was located only in the superficial zone (SZ) and near the articular surface with tissue thickening following unloading. Spherical indentation simulation results are in agreement with published experimental
A validated 3D microstructure-based constitutive model of coronary artery adventitia.
Chen, Huan; Guo, Xiaomei; Luo, Tong; Kassab, Ghassan S
2016-07-01
A structure-based model that accurately predicts micro- or macromechanical behavior of blood vessels is necessary to understand vascular physiology. Based on recently measured microstructural data, we propose a three-dimensional microstructural model of coronary adventitia that incorporates the elastin and collagen distributions throughout the wall. The role of ground substance was found to be negligible under physiological axial stretch λz = 1.3, based on enzyme degradation of glycosaminoglycans in swine coronary adventitia (n = 5). The thick collagen bundles of outer adventitia (n = 4) were found to be undulated and unengaged at physiological loads, whereas the inner adventitia consisted of multiple sublayers of entangled fibers that bear the majority of load at higher pressures. The microstructural model was validated against biaxial (inflation and extension) experiments of coronary adventitia (n = 5). The model accurately predicted the nonlinear responses of the adventitia, even at high axial force (axial stretch ratio λz = 1.5). The model also enabled a reliable estimation of material parameters of individual fibers that were physically reasonable. A sensitivity analysis was performed to assess the effect of using mean values of the distributions for fiber orientation and waviness as opposed to the full distributions. The simplified mean analysis affects the fiber stress-strain relation, resulting in incorrect estimation of mechanical parameters, which underscores the need for measurements of fiber distribution for a rigorous analysis of fiber mechanics. The validated structure-based model of coronary adventitia provides a deeper understanding of vascular mechanics in health and can be extended to disease conditions.
Sham, Sam; Walker, Kevin P.
2008-01-01
The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail.
Constitutive modeling of an electrospun tubular scaffold used for vascular tissue engineering.
Hu, Jin-Jia
2015-08-01
In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles α (30°, 45°, and 60°) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress-strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small α. Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress-strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the
Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.
Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng
2015-06-10
In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.
Isothermal recovery response and constitutive model of thermoset shape memory polymers
NASA Astrophysics Data System (ADS)
Tan, Huifeng; Zhou, Tao; Liu, Yuyan; Lan, Lan
2012-04-01
Deformation recovery capability is one of the important indexes to examination shape memory effect of the shape memory polymers (SMPs). And the shape memory characteristic of SMPs is closely related to different phase states and mechanical properties above and below the glass transition temperature (Tg). In this paper, we investigated the strain recovery response of a thermoset shape memory epoxy resin modified by polyurethane (PU) through uniaxial compression experiments under various isothermal conditions and strain rates and developed a "three-phase" constitutive model based on phase transition concept, which including stationary phase, active phase and frozen phase. This model established the mutual transformation relationships between frozen phase and active phase of SMPs by introducing temperature switch function, which presents the stain storage and release process of SMPs under loading and changing temperature environment. Besides, the proposed model represents the SMPs deformation process of viscous hysteresis response by employing the rheological elements description of the three phases. The numerical results agree very well with experiment results of stress-strain response curve of isothermal compression/unloading test, which validated this model can predict the finite deformation behavior of SMPs.
Constitutive Modeling for Particle-Dispersed Composites with Degradation Due to Interfacial Damage
Chang, Huajian
2002-07-01
The composite materials are susceptible to interfacial delamination. The overall properties of composites will degrade dramatically if the interface between the particles and the matrix material undertakes interfacial damage. In present paper, the effects of interfacial delamination on the macro properties of composites are evaluated by the Equivalent Inclusion Method (EIM) with some modifications and supplementation on the conventional one, which was originally proposed by Eshelby. The meso-local behaviors of particle, matrix, as well as their interface are theoretically modeled, and the relationships between these behaviors and the macro stress/stress field are established. Upon modeling the damaged interface with spring layers and making equivalent of stress and strain inside a real particle to those inside the corresponding virtual inclusion, a modified Eshelby tensor and the damage-relevant tensor of the inclusions are derived explicitly. These tensors can be conveniently incorporated into the constitutive model, and make it available to assess the effects of delamination. Some numerical calculations are carried out to verify the performance of the present model. (author)
Isothermal recovery response and constitutive model of thermoset shape memory polymers
NASA Astrophysics Data System (ADS)
Tan, Huifeng; Zhou, Tao; Liu, Yuyan; Lan, Lan
2011-11-01
Deformation recovery capability is one of the important indexes to examination shape memory effect of the shape memory polymers (SMPs). And the shape memory characteristic of SMPs is closely related to different phase states and mechanical properties above and below the glass transition temperature (Tg). In this paper, we investigated the strain recovery response of a thermoset shape memory epoxy resin modified by polyurethane (PU) through uniaxial compression experiments under various isothermal conditions and strain rates and developed a "three-phase" constitutive model based on phase transition concept, which including stationary phase, active phase and frozen phase. This model established the mutual transformation relationships between frozen phase and active phase of SMPs by introducing temperature switch function, which presents the stain storage and release process of SMPs under loading and changing temperature environment. Besides, the proposed model represents the SMPs deformation process of viscous hysteresis response by employing the rheological elements description of the three phases. The numerical results agree very well with experiment results of stress-strain response curve of isothermal compression/unloading test, which validated this model can predict the finite deformation behavior of SMPs.
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
Identification of an advanced constitutive model of Magnesium alloy AZ31B
Liu, Z. G.; Massoni, E.
2011-05-04
The main aim of this paper is to study the flow behavior of the AZ31B magnesium alloy by means of tensile tests performed in extended ranges of temperature and strain rates. The flow stress-strain curves analyzed by power law type constitutive equation can only fit well with experimental curves at the work-hardening stage. A new mathematical model is studied to describe the softening behavior of material based on tensile experiments. The relative parameters are obtained by fitting the equation with the experimental data. The genetic algorithm has been used to obtain the global optimal fitting parameters. The comparison between the fitted and experimental data proves the effectiveness of the model. The results indicate that this model leads to a better simulation of the flow stress during the softening stage than that of the power law equation. Based on this model, the deep drawing process has been simulated with the commercial finite element code FORGE registered. The punch load and thickness distribution of AZ31 sheet have been studied. The study of the results is helpful to the application of the stamping technology for the magnesium alloy sheet.
Constitutive Model Constants for Low Carbon Steels from Tension and Torsion Data
NASA Astrophysics Data System (ADS)
Brar, N. S.; Joshi, V. S.; Harris, B. W.
2007-12-01
Low carbon C1010 steel is characterized under tension and torsion to determine Johnson-Cook (J-C) strength model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact on structural components made of this material. J-C model constants (A, B, n, C, and m) for the alloy are determined from tension and torsion stress-strain data. Reference tension tests are performed at a strain rate of ˜1/s at room temperature. Tests at high strain rates are performed at temperatures to 750 °C. Torsion tests at quasi-static and high strain rates are performed at both room and high temperatures. Equivalent plastic tensile stress-strain data are obtained from torsion data using von Mises flow rule and compared directly to measured tensile data. J-C strength model constants are determined from these data. Similar low carbon steels (1006, 1008, and 1020) have their J-C constants compared.
Development of modified cable models to simulate accurate neuronal active behaviors
2014-01-01
In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted. PMID:25277743
Constitutive Model Modification of Titanium Alloy Ti-6Al-4V Based on Dislocation Pile-up Theory
NASA Astrophysics Data System (ADS)
Zhang, Yi-Chuan; Zhou, Tian-Feng; Che, Jiang-Tao; Liang, Zhi-Qiang; Wang, Xi-Bin
2016-05-01
Through the Split Hopkinson Pressure Bar (SHPB) test and the quasi-static tensile test on non-standard specimen of titanium alloy Ti-6Al-4V, the rules of the mechanical property changing with the specimen size under different temperatures are summarized, and the parameters of the classical constitutive Johnson-Cook (JC) model are determined. Based on the dislocation pile-up theory, the classical constitutive JC model is modified by considering the influence of grain size, and the modified JC model is established by adding a functional term Δσ into the classical constitutive model to describe the influence of the grain. The tensile testis analyzed by the finite element method (FEM) simulation. Comparing with the experimental results, the simulation results based on the modified JC model show much better accuracy than that by the classical JC model.
Zhang, Chao; Chen, Yin-Guang
2013-03-01
Based on activated sludge model No. 2 (ASM2), the anaerobic/aerobic kinetic model of phosphorus-accumulating organisms (PAO) was established with mixed short-chain fatty acids (SCFAs) as the base substance in enhanced biological phosphorus removal process. The characteristic of the PAO model was that the anaerobic metabolism rates of glycogen degradation, poly-beta-hydroxyalkanoates synthesis and polyphosphate hydrolysis were expressed by SCFAs uptake equation, and the effects of anaerobic maintenance on kinetics and stoichiometry were considered. The PAO kinetic model was composed of 3 soluble components, 4 particulate components and a pH parameter, which constituted the matrix of stoichiometric coefficients. On the basis of PAO model, the GAO kinetic model was established, which included 7 processes, and phosphorus content influenced the aerobic metabolism only.
Taylor, Zeike A; Kirk, Thomas B; Miller, Karol
2007-10-01
The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.
Chan, R W; Titze, I R
2000-01-01
The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [Chan and Titze, J. Acoust. Soc. Am. 106, 2008-2021 (1999)], but data were obtained only in a frequency range of 0.01-15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Fung, Biomechanics (Springer-Verlag, New York, 1993), pp. 277-292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [Zhu et al., J. Biomech. 24, 1007-1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.
Sasson, Aviad; Patchornik, Shachar; Eliasy, Rami; Robinson, Dror; Haj-Ali, Rami
2012-04-01
Chitosan hydrogels (CHs) have been considered as a potential implant material for replacement and repair of the Nucleus Pulposus (NP) within the intervertebral disk. The nonlinear mechanical behavior of a CH material is investigated experimentally and computationally in this study. A series of confined and unconfined compression tests are designed and conducted for this hydrogel. Hyperelastic strain energy density functions (SEDFs) are calibrated using the experimental data. A hyperelastic constitutive model is selected to best fit the multi-axial behavior of the hydrogel. Its general prediction ability is verified using finite element (FE) simulations of hydrogel indentation experiments conducted using a spherical tip indentor. In addition, digital image correlation (DIC) technique is also used in the indentation test in order to process the full-field surface strains where the indentor contacts the hydrogel. The DIC test results in the form of top-surface strains compared well with those predicted by the FE model. Results show repeatability for the examined specimens under the applied tests. Confined and unconfined test results are found to be sufficient to calibrate the SEDFs. The Ogden model was selected to represent the nonlinear behavior of the CH material which can be used in future biomechanical simulations of the spine.
Mechanical effects of ionic replacements in articular cartilage. Part I: The constitutive model.
Loret, Benjamin; Simões, Fernando M F
2005-11-01
A three-phase multi-species electro-chemo-mechanical model of articular cartilage is developed that accounts for the effect of two water compartments, namely intra-fibrillar water stored in between collagen fibrils and extra-fibrillar water covering proteoglycans. The collagen fibers constitute the solid phase while intra-fibrillar water and dissolved NaCl and CaCl(2) on one hand and extra-fibrillar water, ions Na(+), Ca(2+) and Cl(-) and proteoglycans on the other hand, form the two fluid phases. The complete picture that includes time-dependent mass transfers between the two fluid phases, diffusion of water and ions and electrical flow emerges from the Clausius-Duhem inequality but it is deferred to further study. The analysis is restricted to equilibrium states. The present work complements the mechanical model developed in Loret and Simões (Mech Material 36(5-6): 515-541, 2004a) where the presence of the sole NaCl was considered. In its current version, the model can handle mechanical and chemical loadings and unloadings involving the two salts, NaCl and CaCl(2). In order to reproduce experimental data, the shielding effects are made cation-dependent. Strong orientation of collagen fibers parallel to the joint surface implies anisotropic mechanical properties. Electro-chemo-mechanical couplings result in a chemistry-dependent apparent tensile Poisson's ratio, that increases to large values as the solution gets fresher. The model captures these aspects as well. The features of the model are first exposed in an infinitesimal strain context. Subsequently, large strains that typically occur in uniaxial traction under deionized water are accounted for, and a nonlinear anisotropic hyper-elastic behavior is developed. Parametric identification and simulations of actual loading processes are described in a companion paper, Loret and Simões (Biomech Model Mechanobiol, in press, DOI 10.1007/s10237-004-0063-6).
Kramer, Sharlotte Lorraine Bolyard; Scherzinger, William M.
2014-09-01
The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
Can phenological models predict tree phenology accurately under climate change conditions?
NASA Astrophysics Data System (ADS)
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2014-05-01
The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay
Kim, Jaeuk U.; Ku, Boncho; Kim, Young-Min; Do, Jun-Hyeong; Jang, Eunsu; Jeon, Young Ju; Kim, Keun Ho; Kim, Jong Yeol
2013-01-01
Sasang constitutional medicine (SCM) shares its philosophy with that of personalized medicine: it provides constitution-specific treatment and healthcare individualized for each patient. In this work, we propose the concept of the Sasang Health Index (SHI) as an attempt to assess the individualized health status in the framework of SCM. From the target population of females in their fifties and older, we recruited 298 subjects and collected their physiological data, including complexion, radial pulse, and voice, and their questionnaire responses. The health status of each subject was evaluated by two Korean medical doctors independently, and the SHI model was obtained by combining all the integrative features of the phenotype data using a regression technique. As a result, most subjects belonged to either the healthy, subhealthy, or slightly diseased group, and the intraclass correlation coefficient between the two doctors' health scoring reached 0.95. We obtained an SHI model for each constitution type with adjusted R-squares of 0.50, 0.56, and 0.30, for the TE, SE, and SY constitution types, respectively. In the proposed SHI model, the significant characteristics used in the health assessment consisted of constitution-specific features in accordance with the classic literature and features common to all the constitution types. PMID:23843888
Seth A Veitzer
2008-10-21
Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.
A constitutive-relationship model for film flow on rough fracture surfaces
NASA Astrophysics Data System (ADS)
Liu, H. H.
Film flow on fracture surfaces may be an important mechanism for fast flow in unsaturated fractured rocks. Incorporating this mechanism into a numerical model requires knowledge of constitutive relationships for film flow. Based on fractal concepts and a conceptual argument of Tokunaga et al. that water films could be treated as analogues to water in unsaturated porous media, a simple constitutive-relationship model has been developed. The validity of the model is supported by excellent agreements between calculation results and experimental observations for two different fracture surfaces. L'écoulement en film sur les surfaces de fracture peut être un mécanisme important pour l'écoulement rapide dans les roches fracturées non saturées. L'incorporation de ce mécanisme dans un modèle numérique nécessite la connaissance des relations fondamentales pour l'écoulement en film. Basé sur des concepts fractals et sur un argument conceptuel de Tokunaga et al. selon lequel des films d'eau peuvent être considérés comme des analogues de l'eau en milieu poreux non saturé, un modèle simple des relations fondamentales a été développé. La validité de ce modèle est confirmée grâce à une excellente concordance entre les résultats du calcul et les observations expérimentales pour deux surfaces différentes de fractures. El flujo pelicular en la superficie de las fracturas puede ser un mecanismo importante para el flujo rápido en rocas fracturadas no saturadas. Incorporarlo en un modelo numérico requiere conocer las relaciones constitutivas del flujo pelicular. Se ha desarrollado un modelo de una relación constitutiva sencilla partiendo de conceptos fractales y de un argumento conceptual de Tokunaga et al., según el cual las películas de agua pueden ser tratadas como análogos del agua en medios porosos no saturados. La validez del modelo es corroborada por los excelentes ajustes entre los resultados numéricos y las observaciones experimentales en dos
ERIC Educational Resources Information Center
Klishas, Andrey A.
2016-01-01
The paper explores the impact of the continental system exerted on the constitutional and political evolution of both the United States and individual states and tries to characterize the development of constitutional review phenomenon within the framework of the continental legal system and the Anglo-Saxon legal system. The research stands on the…
Stranger than friction: force chain buckling and its implications for constitutive modelling
NASA Astrophysics Data System (ADS)
Tordesillas, Antoinette
A recently developed thermomicromechanical continuum formulation has paved the way for the construction of a new breed of constitutive laws without need for phenomonelogical parameters above the particle scale. Particle group behavior is key to this formulation and new insights into the role of force chain buckling in constitutive response are presented.
Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming
NASA Astrophysics Data System (ADS)
Stoughton, Thomas B.; Yoon, Jeong Whan
2011-08-01
This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.
Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming
Stoughton, Thomas B.; Yoon, Jeong Whan
2011-08-22
This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.
NASA Astrophysics Data System (ADS)
Wang, Chuanjie; Xue, Shaoxi; Chen, Gang; Zhang, Peng
2017-02-01
In micro-scaled plastic deformation, material strength and ductile fracture behaviors of thin sheet in tension are quite different from those in macro-scale. In this study, uniaxial tensile tests of Monel 400 thin sheets with different microstructures were carried out to investigate the plastic deformation size effect in micro-scale. The experimental results indicate that the flow stress and fracture strain departure from the traditional empirical formula when there are only fewer grains across the thickness. And the number of dimples on the fracture surface is getting smaller with the decreasing ratio of specimen thickness to grain size. Then, a constitutive model based on dislocation density considering the free surface effect in micro-scale is proposed to reveal the mechanism of the flow stress size effect. In addition, a model is proposed considering the surface roughening inducing the thickness nonuniform and the decrease of micro-voids resulting from the reduction of grain boundary density with the decreasing ratio of specimen thickness to grain size. The interactive effects of the surface roughening and the decrease of micro-voids result in the earlier fracture in micro tension of the specimen with fewer grains across the thickness.
NASA Astrophysics Data System (ADS)
Cao, Y.; Di, H. S.; Misra, R. D. K.; Zhang, Jiecen
2014-12-01
The hot deformation behavior of a Fe-Ni-Cr austenitic Alloy 800H was explored in the intermediate temperature range of 825-975 °C and strain rate range of 0.01-10 s-1. The study indicates that dynamic recrystallization (DRX) occurred at 875-975 °C for strain rates of 0.01-0.1 s-1 and adiabatic heating generated at high strain rates accelerated the DRX process. Based on the experimental data, the Johnson-Cook, modified Johnson-Cook, and Arrhenius-type constitutive models were established to predict the flow stress during hot deformation. A comparative study was made on the accuracy and effectiveness of the above three developed models. The microstructure analysis indicated that all the deformation structures exhibited elongated grains and evidence of some degree of DRX. The multiple DRX at 975 °C and 0.01 s-1 led to an increase in the intensity of {001} <100> "cube" texture component and a significant reduction in the intensity of {011} <211> "brass" component. Additionally, the average values of grain average misorientation and grain orientation spread for deformed microstructure were inversely proportional to the fraction of DRX.
NASA Astrophysics Data System (ADS)
Wang, Chuanjie; Xue, Shaoxi; Chen, Gang; Zhang, Peng
2017-03-01
In micro-scaled plastic deformation, material strength and ductile fracture behaviors of thin sheet in tension are quite different from those in macro-scale. In this study, uniaxial tensile tests of Monel 400 thin sheets with different microstructures were carried out to investigate the plastic deformation size effect in micro-scale. The experimental results indicate that the flow stress and fracture strain departure from the traditional empirical formula when there are only fewer grains across the thickness. And the number of dimples on the fracture surface is getting smaller with the decreasing ratio of specimen thickness to grain size. Then, a constitutive model based on dislocation density considering the free surface effect in micro-scale is proposed to reveal the mechanism of the flow stress size effect. In addition, a model is proposed considering the surface roughening inducing the thickness nonuniform and the decrease of micro-voids resulting from the reduction of grain boundary density with the decreasing ratio of specimen thickness to grain size. The interactive effects of the surface roughening and the decrease of micro-voids result in the earlier fracture in micro tension of the specimen with fewer grains across the thickness.
NASA Astrophysics Data System (ADS)
Bringa, Eduardo; Ruestes, Carlos; Rodriguez Nieva, Joaquin; Tramontina, Diego; Tang, Yizhe; Meyers, Marc
2015-06-01
Mimicking shock compression experiments, our molecular dynamics simulations explore the mechanical response and plasticity effects under uniaxial high strain rate compression (10**7/s to 10**9/s) for Au and Ta single crystals with a collection of spherical nanovoids, with a radius of 3-4 nm, resulting in an initial porosity of %-10%. Dislocation analysis was used to evaluate and quantify the evolution of plasticity. The evolution of dislocations configuration and densities were predicted and successfully compared to an analysis based on Ashby's concept of geometrically-necessary dislocations. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density. The results obtained are compared with a variety of dislocation-based constitutive models. Plastic activity leads to a decrease in porosity until voids disappear completely. Based on the atomistic simulations, a densification regime was observed in all nanoporous samples studied. With these results, a new strain- based porosity model for metals is proposed for simulations at the continuum scale. EB, CR and DT thank support from PICT-0092 and a SeCTyP-UNCuyo grant.
Accurate and efficient halo-based galaxy clustering modelling with simulations
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Guo, Hong
2016-06-01
Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-29
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
5D model for accurate representation and visualization of dynamic cardiac structures
NASA Astrophysics Data System (ADS)
Lin, Wei-te; Robb, Richard A.
2000-05-01
Accurate cardiac modeling is challenging due to the intricate structure and complex contraction patterns of myocardial tissues. Fast imaging techniques can provide 4D structural information acquired as a sequence of 3D images throughout the cardiac cycle. To mode. The beating heart, we created a physics-based surface model that deforms between successive time point in the cardiac cycle. 3D images of canine hearts were acquired during one complete cardiac cycle using the DSR and the EBCT. The left ventricle of the first time point is reconstructed as a triangular mesh. A mass-spring physics-based deformable mode,, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, is applied to the initial mesh and allows the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resulting 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto anatomic surfaces, producing a 5D model, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. The model faithfully represents structural changes throughout the cardiac cycle. Such models provide the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allow quantitative assessment of regional myocardial motion. The electrical activation mapping provides spatial and temporal correlation within the cardiac cycle. In procedures which as intra-cardiac catheter ablation, visualization of the dynamic model can be used to accurately localize the foci of myocardial arrhythmias and guide positioning of catheters for optimal ablation.
Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.
Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M
2014-12-01
Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration.
Using a highly accurate self-stop Cu-CMP model in the design flow
NASA Astrophysics Data System (ADS)
Izuha, Kyoko; Sakairi, Takashi; Shibuki, Shunichi; Bora, Monalisa; Hatem, Osama; Ghulghazaryan, Ruben; Strecker, Norbert; Wilson, Jeff; Takeshita, Noritsugu
2010-03-01
An accurate model for the self-stop copper chemical mechanical polishing (Cu-CMP) process has been developed using CMP modeling technology from Mentor Graphics. This technology was applied on data from Sony to create and optimize copper electroplating (ECD), Cu-CMP, and barrier metal polishing (BM-CMP) process models. These models take into account layout pattern dependency, long range diffusion and planarization effects, as well as microloading from local pattern density. The developed ECD model accurately predicted erosion and dishing over the entire range of width and space combinations present on the test chip. Then, the results of the ECD model were used as an initial structure to model the Cu-CMP step. Subsequently, the result of Cu-CMP was used for the BM-CMP model creation. The created model was successful in reproducing the measured data, including trends for a broad range of metal width and densities. Its robustness is demonstrated by the fact that it gives acceptable prediction of final copper thickness data although the calibration data included noise from line scan measurements. Accuracy of the Cu-CMP model has a great impact on the prediction results for BM-CMP. This is a critical feature for the modeling of high precision CMP such as self-stop Cu-CMP. Finally, the developed model could successfully extract planarity hotspots that helped identify potential problems in production chips before they were manufactured. The output thickness values of metal and dielectric can be used to drive layout enhancement tools and improve the accuracy of timing analysis.
Ian Robertson
2007-04-28
Development and validation of constitutive models for polycrystalline materials subjected to high strain-rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions. To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be integrated fully with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experiment is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models. One aspect of the program involves the direct observation of specific mechanisms of micro-plasticity, as these indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an
Stephens, Elizabeth V.; Vetrano, John S.; Koeppel, Brian J.; Chou, Y. S.; Sun, Xin; Khaleel, Mohammad A.
2009-09-05
This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNL’s glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described.
Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E
2009-01-01
We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease.
Yield-Ensuring DAC-Embedded Opamp Design Based on Accurate Behavioral Model Development
NASA Astrophysics Data System (ADS)
Jang, Yeong-Shin; Nguyen, Hoai-Nam; Ryu, Seung-Tak; Lee, Sang-Gug
An accurate behavioral model of a DAC-embedded opamp (DAC-opamp) is developed for a yield-ensuring LCD column driver design. A lookup table for the V-I curve of the unit differential pair in the DAC-opamp is extracted from a circuit simulation and is later manipulated through a random error insertion. Virtual ground assumption simplifies the output voltage estimation algorithm. The developed behavioral model of a 5-bit DAC-opamp shows good agreement with the circuit level simulation with less than 5% INL difference.
Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid
2016-01-01
A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137
Body charge modelling for accurate simulation of small-signal behaviour in floating body SOI
NASA Astrophysics Data System (ADS)
Benson, James; Redman-White, William; D'Halleweyn, Nele V.; Easson, Craig A.; Uren, Michael J.
2002-04-01
We show that careful modelling of body node elements in floating body PD-SOI MOSFET compact models is required in order to obtain accurate small-signal simulation results in the saturation region. The body network modifies the saturation output conductance of the device via the body-source transconductance, resulting in a pole/zero pair being introduced in the conductance-frequency response. We show that neglecting the presence of body charge in the saturation region can often yield inaccurate values for the body capacitances, which in turn can adversely affect the modelling of the output conductance above the pole/zero frequency. We conclude that the underlying cause of this problem is the use of separate models for the intrinsic and extrinsic capacitances. Finally, we present a simple saturation body charge model which can greatly improve small-signal simulation accuracy for floating body devices.
Coexpression systems as models for the analysis of constitutive GPCR activity.
Schneider, Erich H; Seifert, Roland
2010-01-01
The investigation of constitutive activity of GPCRs in transfected mammalian cells is often hampered by the presence of other constitutively active receptors that generate a high background signal. This impairs the measurement of constitutive activity and of inverse agonistic effects, both of which often occur in a relatively small signal range. Moreover, constitutive activity of a GPCR depends on the interacting G-protein. Since the commonly used mammalian cells contain a set of several different G-protein types, it is very difficult to investigate the influence of specific Gα and Gβγ subunits on constitutive activity in more detail in these expression systems. Here, we show that the Sf9 cell/baculovirus expression system provides excellent conditions for the characterization of constitutively active GPCRs. Sf9 cells express a restricted set of G-protein subtypes that show only a limited capability of interacting with mammalian GPCRs. Moreover, the Sf9 cell/baculovirus expression system allows the combined expression of up to four different proteins encoded by the respective genetically modified baculoviruses. Using the highly constitutively active human histamine H₄R (hH₄R) as a paradigm, we demonstrate how the coexpression of hH₄R with different signaling proteins (Gα, Gβγ, and RGS-proteins) in combination with sensitive functional assays (high-affinity agonist binding and steady-state GTPase- and GTPγS-binding assays) allows in-depth studies of constitutive activity. The preparation of Sf9 cell membranes, coexpressing hH₄R and various additional proteins, is described in detail as well as the procedures of the different functional assays. Moreover, we show that coexpression of GPCRs with signal transduction components in Sf9 cells can also be applied to the characterization of other constitutively active receptors, for example, the formyl peptide receptor and β₂-adrenoceptor.
An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.
An Irreversible Constitutive Law for Modeling the Delamination Process using Interface Elements
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Ambur, Damodar (Technical Monitor)
2002-01-01
An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.
NASA Astrophysics Data System (ADS)
Chemenda, Alexandre I.; Mas, Daniel
2016-11-01
The overwhelming majority of experimental tests on rocks have only been conducted for a single value of the Lode angle θ corresponding to the axisymmetric compression (AC). There are now sufficiently extensive data sets from both AC and axisymmetric extension (AE) tests (corresponding to two extreme θ values) for two materials (synthetic rock analog GRAM1 and Solnhofen Limestone). These data cover a wide range of the confining pressure (from brittle faulting to ductile flow). Very recently the data from true 3-D tests (for different θ) also covering both brittle and ductile fields were published for Castlegate and Bentheim Sandstone as well. The results from all these tests summarized and processed in this paper constitute a solid basis which allows general conclusions to be drawn about the dependence of rock behavior on θ. In all cases, the yield/failure envelopes were shown to be θ-dependent so that the material strength at low mean stress σ is smaller under AE than under AC, while at high σ, it is the opposite. The brittle-ductile transition under AE occurs at σ 1.5 times greater than under AC, meaning that under AE the material is more prone to fracture development. The angle between the most compressive stress and the forming deformation localization bands is systematically higher for AE than for AC for the same σ. Based on these data we formulate a new three-invariant constitutive model with convex and concave yield functions (YFs) which is used for the bifurcation analysis. The results of this analysis agree with the experimental data (for both YFs) and reveal that the θ-dependence of rock properties encourages the strain localization. The major factors defining this dependence are the θ-dependence of the YFs but also of the dilatancy factor which is greater for AE than for AC. The theoretical results show that the failure (deformation band) plane can deviate from the intermediate stress direction and can become parallel to the maximum compressive
Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F
2011-07-01
A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.
2016-06-01
We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.
NASA Astrophysics Data System (ADS)
Fang, Chung; Wang, Yongqi; Hutter, Kolumban
2006-07-01
A thermodynamically consistent continuum theory for single-phase, single-constituent cohesionless granular materials is presented. The theory is motivated by dimensional inconsistencies of the original Goodman-Cowin theory [1-3]; it is constructed by removing these inconsistencies through the introduction of an internal length ℓ. Four constitutive models are proposed and discussed in which ℓ is (i) a material constant (Model I), (ii) an independent constitutive variable (Model II), (iii) an independent dynamic field quantity (Model III) and (iv) an independent kinematic field quantity (Model IV). Expressions of the constitutive variables emerging in the systems of the balance equations in these four models in thermodynamic equilibrium are deduced by use of a thermodynamic analysis based on the Müller-Liu entropy principle. Comments on the validity of these four models are given and discussed; the results presented in the current study show a more general formulation for the constitutive quantities and can be used as a basis for further continuum-based theoretical investigations on the behaviour of flowing granular materials. Numerical results regarding simple plane shear flows will be discussed and compared in Part II of this work.
Accurate modeling of switched reluctance machine based on hybrid trained WNN
NASA Astrophysics Data System (ADS)
Song, Shoujun; Ge, Lefei; Ma, Shaojie; Zhang, Man
2014-04-01
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.
A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever
Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J.; Scott, Dana P.; Feldmann, Heinz; Ebihara, Hideki
2016-01-01
Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF. PMID:27976688
A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever.
Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J; Scott, Dana P; Feldmann, Heinz; Ebihara, Hideki
2016-12-15
Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF.
Accurate modeling of switched reluctance machine based on hybrid trained WNN
Song, Shoujun Ge, Lefei; Ma, Shaojie; Zhang, Man
2014-04-15
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.
Beyond Ellipse(s): Accurately Modelling the Isophotal Structure of Galaxies with ISOFIT and CMODEL
NASA Astrophysics Data System (ADS)
Ciambur, B. C.
2015-09-01
This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.
BEYOND ELLIPSE(S): ACCURATELY MODELING THE ISOPHOTAL STRUCTURE OF GALAXIES WITH ISOFIT AND CMODEL
Ciambur, B. C.
2015-09-10
This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.
Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current
Schutte, Ryan J.; Schutte, Soleil S.; Algara, Jacqueline; Barragan, Eden V.; Gilligan, Jeff; Staber, Cynthia; Savva, Yiannis A.; Smith, Martin A.; Reenan, Robert
2014-01-01
Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A mutations cause distinct phenotypes in Drosophila as they do in humans, this study focuses on a knock-in line carrying a mutation that causes a more severe seizure disorder termed Dravet syndrome (DS). Introduction of the DS SCN1A mutation (S1231R) into the Drosophila sodium channel gene para results in flies that exhibit spontaneous and heat-induced seizures with distinct characteristics and lower onset temperature than the GEFS+ flies. Electrophysiological studies of GABAergic interneurons in the brains of adult DS flies reveal, for the first time in an in vivo model system, that a missense DS mutation causes a constitutive and conditional reduction in sodium current activity and repetitive firing. In addition, feeding with the serotonin precursor 5-HTP suppresses heat-induced seizures in DS but not GEFS+ flies. The distinct alterations of sodium currents in DS and GEFS+ GABAergic interneurons demonstrate that both loss- and gain-of-function alterations in sodium currents are capable of causing reduced repetitive firing and seizure phenotypes. The mutation-specific effects of 5-HTP on heat-induced seizures suggest the serotonin pathway as a potential therapeutic target for DS. PMID:24805083
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em
2010-05-19
Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.
NASA Astrophysics Data System (ADS)
GASPARETTO, A.
2001-02-01
Vibration control of flexible link mechanisms with more than two flexible links is still an open question, mainly because defining a model that is adequate for the designing of a controller is a rather difficult task. In this work, an accurate dynamic non-linear model of a flexible-link planar mechanism is presented. In order to bring the system into a form that is suitable for the design of a vibration controller, the model is then linearized about an operating point, so as to achieve a linear model of the system in the standard state-space form of system theory. The linear model obtained, which is valid for whatever planar mechanism with any number of flexible link, is then applied to a four-bar planar linkage. Extensive simulation is carried out, aimed at comparing the system dynamic evolution, both in the open- and in the closed-loop case, using the non-linear model and the linearized one. The results prove that the error made by using the linearized system instead of the non-linear one is small. Therefore, it can be concluded that the model proposed in this work can constitute an effective basis for designing and testing many types of vibration controllers for flexible planar mechanisms.
De Focatiis, Davide S. A.; Buckley, C. Paul; Embery, John
2008-07-07
This paper investigates the behaviour of a well-characterised monodisperse grade of entangled atactic polystyrene across a very wide temperature and strain rate range through linear and non-linear melt rheology and solid-state deformation. In an effort to construct a constitutive model for large deformations able to describe rheological response right across this wide timescale, two well-established rheological models are combined: the well known RoliePoly (RP) conformational melt model and the Oxford glass-rubber constitutive model for glassy polymers. Comparisons between experimental data and simulations from a numerical implementation of the model illustrate that the model can cope well with the range of deformations in which orientation is limited to length-scales longer than an entanglement length. One approach in which the model can be expanded to incorporate the effects of orientation on shorter length scales using anisotropic viscoplastic flow is briefly discussed.
NASA Astrophysics Data System (ADS)
De Focatiis, Davide S. A.; Embery, John; Buckley, C. Paul
2008-07-01
This paper investigates the behaviour of a well-characterised monodisperse grade of entangled atactic polystyrene across a very wide temperature and strain rate range through linear and non-linear melt rheology and solid-state deformation. In an effort to construct a constitutive model for large deformations able to describe rheological response right across this wide timescale, two well-established rheological models are combined: the well known RoliePoly (RP) conformational melt model and the Oxford glass-rubber constitutive model for glassy polymers. Comparisons between experimental data and simulations from a numerical implementation of the model illustrate that the model can cope well with the range of deformations in which orientation is limited to length-scales longer than an entanglement length. One approach in which the model can be expanded to incorporate the effects of orientation on shorter length scales using anisotropic viscoplastic flow is briefly discussed.
Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel
2015-01-01
The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available.
Janečka, Adam Průša, Vít
2015-04-28
We discuss the benefits of using the so-called implicit type constitutive relations introduced by K. R. Rajagopal, J. Fluid Mech. 550, 243-249 (2006) and K. R. Rajagopal, Appl. Math. 48, 279-319 (2003) in the description of the behaviour of non-Newtonian fluids. In particular, we focus on the benefits of using the implicit type constitutive relations in the mathematical modelling of fluids in which the shear stress/shear rate dependence is given by an S-shaped curve, and in modelling of fluids that exhibit nonzero normal stress differences. We also discuss a thermodynamical framework that allows one to cope with the implicit type constitutive relations.
Accurate verification of the conserved-vector-current and standard-model predictions
Sirlin, A.; Zucchini, R.
1986-10-20
An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.
Vladescu, Jason C; Carroll, Regina; Paden, Amber; Kodak, Tiffany M
2012-01-01
The present study replicates and extends previous research on the use of video modeling (VM) with voiceover instruction to train staff to implement discrete-trial instruction (DTI). After staff trainees reached the mastery criterion when teaching an adult confederate with VM, they taught a child with a developmental disability using DTI. The results showed that the staff trainees' accurate implementation of DTI remained high, and both child participants acquired new skills. These findings provide additional support that VM may be an effective method to train staff members to conduct DTI.
Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Schwanghart, Wolfgang; Govers, Gerard
2017-01-01
Landscape evolution models (LEMs) allow the study of earth surface responses to changing climatic and tectonic forcings. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, the numerical accuracy of these models has received less attention. Most LEMs use first-order accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and river knickpoints. This has potential consequences for the integrated response of the simulated landscape. Here we test a higher-order flux-limiting finite volume method that is total variation diminishing (TVD-FVM) to solve the partial differential equations of river incision and tectonic displacement. We show that using the TVD-FVM to simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal variability of catchment-wide erosion rates. Furthermore, a two-dimensional TVD-FVM accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation was hitherto largely limited to LEMs with flexible spatial discretization. We implement the scheme in TTLEM (TopoToolbox Landscape Evolution Model), a spatially explicit, raster-based LEM for the study of fluvially eroding landscapes in TopoToolbox 2.
Accurate method for including solid-fluid boundary interactions in mesoscopic model fluids
Berkenbos, A. Lowe, C.P.
2008-04-20
Particle models are attractive methods for simulating the dynamics of complex mesoscopic fluids. Many practical applications of this methodology involve flow through a solid geometry. As the system is modeled using particles whose positions move continuously in space, one might expect that implementing the correct stick boundary condition exactly at the solid-fluid interface is straightforward. After all, unlike discrete methods there is no mapping onto a grid to contend with. In this article we describe a method that, for axisymmetric flows, imposes both the no-slip condition and continuity of stress at the interface. We show that the new method then accurately reproduces correct hydrodynamic behavior right up to the location of the interface. As such, computed flow profiles are correct even using a relatively small number of particles to model the fluid.
Gay, Guillaume; Courtheoux, Thibault; Reyes, Céline; Tournier, Sylvie; Gachet, Yannick
2012-03-19
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.
2013-01-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
The Constitution in Other Lands.
ERIC Educational Resources Information Center
Bill of Rights in Action, 1987
1987-01-01
Designed for classroom teaching, this document contains articles on the new constitutions of Japan, South Korea, and the Philippine Islands which were modeled in part on the U.S. Constitution. These countries' experiences with constitutional government are examined, and whether or not the U.S. Constitution can be a suitable model for other…
ERIC Educational Resources Information Center
Zachlod, Michelle, Ed.
California State Standard 5.7 is delineated in the following manner: "Students describe the people and events associated with the development of the U.S. Constitution and analyze the Constitution's significance as the foundation of the American republic." Students answer six questions about the Constitution and present suggestions for…
Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm
NASA Astrophysics Data System (ADS)
Huang, Yanhua; Gu, Lizhi
2015-09-01
The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and
Can a Global Model Accurately Simulate Land-Atmosphere Interactions under Climate Change Conditions?
NASA Astrophysics Data System (ADS)
Zhou, C., VI; Wang, K.
2015-12-01
Surface air temperature (Ta) is largely determined by surface net radiation (Rn) and its partitioning into latent (LE) and sensible heat fluxes (H). Existing model evaluations of the absolute values of these fluxes are less helpful because the evaluation results are a blending of inconsistent spatial scales, inaccurate model forcing data and inaccurate parameterizations. This study further evaluates the relationship of LE and H with Rn and environmental parameters, including Ta, relative humidity (RH) and wind speed (WS), using ERA-interim reanalysis data at a grid of 0.125°×0.125° with measurements at AmeriFlux sites from 1998 to 2012. The results demonstrate that ERA-Interim can reproduce the absolute values of environmental parameters, radiation and turbulent fluxes rather accurately. The model performs well in simulating the correlation of LE and H to Rn, except for the notable correlation overestimation of H against Rn over high-density vegetation (e.g., deciduous broadleaf forest (DBF), grassland (GRA) and cropland (CRO)). The sensitivity of LE to Rn in the model is similar to the observations, but that of H to Rn is overestimated by 24.2%. In regions with high-density vegetation, the correlation coefficient between H and Ta is overestimated by more than 0.2, whereas that between H and WS is underestimated by more than 0.43. The sensitivity of H to Ta is overestimated by 0.72 Wm-2 °C-1, whereas that of H to WS in the model is underestimated by 16.15 Wm-2/(ms-1) over all of the sites. Considering both LE and H, the model cannot accurately capture the response of the evaporative fraction (EF=LE/(LE+H)) to Rn and the environmental parameters.
Jacobs, Nathan T; Cortes, Daniel H; Peloquin, John M; Vresilovic, Edward J; Elliott, Dawn M
2014-08-22
Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress-strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model's nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc's nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc's full nonlinear response in multiple loading scenarios.
Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1997-01-01
The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various
Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.
Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit
2015-05-01
A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies.
Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.
Accurate model of electron beam profiles with emittance effects for pierce guns
NASA Astrophysics Data System (ADS)
Zeng, Peng; Wang, Guangqiang; Wang, Jianguo; Wang, Dongyang; Li, Shuang
2016-09-01
Accurate prediction of electron beam profile is one of the key objectives of electron optics, and the basis for design of the practical electron gun. In this paper, an improved model describing electron beam in Pierce gun with both space charge effects and emittance effects is proposed. The theory developed by Cutler and Hines is still applied for the accelerating region of the Pierce gun, while the motion equations of the electron beams in the anode aperture and drift tunnel are improved by modifying electron optics theory with emittance. As a result, a more universal and accurate formula of the focal length of the lens for the electron beam with both effects is derived for the anode aperture with finite dimension, and a modified universal spread curve considering beam emittance is introduced in drift tunnel region. Based on these improved motion equations of the electron beam, beam profiles with space charge effects and emittance effects can be theoretically predicted, which are subsequently approved to agree well with the experimentally measured ones. The developed model here is helpful to design more applicable Pierce guns at high frequencies.
Accurate and scalable social recommendation using mixed-membership stochastic block models
Godoy-Lorite, Antonia; Moore, Cristopher
2016-01-01
With increasing amounts of information available, modeling and predicting user preferences—for books or articles, for example—are becoming more important. We present a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of users’ ratings. Like previous approaches, we assume that there are groups of users and of items and that the rating a user gives an item is determined by their respective group memberships. However, we allow each user and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches such as matrix factorization, we do not assume that users in each group prefer a single group of items. In particular, we do not assume that ratings depend linearly on a measure of similarity, but allow probability distributions of ratings to depend freely on the user’s and item’s groups. The resulting overlapping groups and predicted ratings can be inferred with an expectation-maximization algorithm whose running time scales linearly with the number of observed ratings. Our approach enables us to predict user preferences in large datasets and is considerably more accurate than the current algorithms for such large datasets. PMID:27911773
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy
NASA Astrophysics Data System (ADS)
Sun, Y.; Ye, W. H.; Hu, L. X.
2016-04-01
The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2014-01-01
The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285
NASA Astrophysics Data System (ADS)
Meng, Lie; Wang, Menghan; Liu, Xiao; Wang, Fenglin
2016-04-01
In order to reveal the flow characteristics of Cu-6 %Ag alloy on the condition of hot deformation, the isothermal compression experiments are carried out at the temperatures of 973-1123 K under strain rates of 0.01-10 s-1. The effects of deformation condition on the hot compression deformation behavior are investigated. The low instability strain (ɛ i) behavior at high strain rate (10 s-1) is discussed in this paper. According to the experiment results and analyses, the deformation twinning and inhomogeneous grains are thought to be the possible reasons for low strain cracking. Then, a modified physically based constitutive model is established. The strain for maximum softening rate (\\varepsilon_{ *} ) is quoted in the constitutive equation which is proved that there is a nearly linear relationship between { ln }\\varepsilon_{ *} and { ln }Z . What's more, the correlation coefficient (R) and the average absolute relative error (AARE) are used to evaluate the accuracy of the established constitutive model. The values of R and AARE are 0.99612 and 3.47 %, respectively, which show that the modified constitutive model can exactly reveal the flow stress of Cu-6 %Ag alloy.
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-02-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-01-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674
NASA Astrophysics Data System (ADS)
Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.
2016-02-01
An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Laflen, J. H.; Lindholm, U. S.
1985-01-01
Unified constitutive material models were developed for structural analyses of aircraft gas turbine engine components with particular application to isotropic materials used for high-pressure stage turbine blades and vanes. Forms or combinations of models independently proposed by Bodner and Walker were considered. These theories combine time-dependent and time-independent aspects of inelasticity into a continuous spectrum of behavior. This is in sharp contrast to previous classical approaches that partition inelastic strain into uncoupled plastic and creep components. Predicted stress-strain responses from these models were evaluated against monotonic and cyclic test results for uniaxial specimens of two cast nickel-base alloys, B1900+Hf and Rene' 80. Previously obtained tension-torsion test results for Hastelloy X alloy were used to evaluate multiaxial stress-strain cycle predictions. The unified models, as well as appropriate algorithms for integrating the constitutive equations, were implemented in finite-element computer codes.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Laflen, J. H.; Lindholm, U. S.
1985-01-01
Unified constitutive material models were developed for structural analyses of aircraft gas turbine engine components with particular application to isotropic materials used for high-pressure stage turbine blades and vanes. Forms or combinations of models independently proposed by Bodner and Walker were considered. These theories combine time-dependent and time-independent aspects of inelasticity into a continuous spectrum of behavior. This is in sharp contrast to previous classical approaches that partition inelastic strain into uncoupled plastic and creep components. Predicted stress-strain responses from these models were evaluated against monotonic and cyclic test results for uniaxial specimens of two cast nickel-base alloys, B1900+Hf and Rene 80. Previously obtained tension-torsion test results for Hastelloy X alloy were used to evaluate multiaxial stress-strain cycle predictions. The unified models, as well as appropriate algorithms for integrating the constitutive equations, were implemented in finite-element computer codes.
NASA Astrophysics Data System (ADS)
Kroon, M.
2011-11-01
Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.
Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish
2016-04-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina
Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish
2016-01-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143
Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model
NASA Astrophysics Data System (ADS)
Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.
2007-05-01
Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem
Development and application of accurate analytical models for single active electron potentials
NASA Astrophysics Data System (ADS)
Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas
2015-05-01
The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).
Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R
2017-02-14
Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.
Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation
NASA Astrophysics Data System (ADS)
Poddar, Banibrata; Giurgiutiu, Victor
2016-04-01
Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.
NASA Astrophysics Data System (ADS)
McKemmish, Laura K.; Yurchenko, Sergei N.; Tennyson, Jonathan
2016-11-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity of electronic transitions. We test finite-field off-diagonal dipole moments, but found that (1) the accuracy of the excitation energies were not sufficient to allow accurate dipole moments to be evaluated and (2) computer time requirements for perpendicular transitions were prohibitive. The best off-diagonal dipole moments are calculated using wavefunctions with different CASSCF orbitals.
Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates
NASA Astrophysics Data System (ADS)
Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo
2017-03-01
The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.
NASA Astrophysics Data System (ADS)
Chen, Ming-Song; Lin, Y. C.; Li, Kuo-Kuo; Chen, Jian
2016-09-01
The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi: 10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain.
ERIC Educational Resources Information Center
Berkowitz, Peter
2009-01-01
After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…
Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran
2016-10-01
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functional differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.
Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L
2016-08-01
Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises.
Efficient and Accurate Explicit Integration Algorithms with Application to Viscoplastic Models
NASA Technical Reports Server (NTRS)
Arya, Vinod K.
1994-01-01
Several explicit integration algorithms with self-adative time integration strategies are developed and investigated for efficiency and accuracy. These algorithms involve the Runge-Kutta second order, the lower Runge-Kutta method of orders one and two, and the exponential integration method. The algorithms are applied to viscoplastic models put forth by Freed and Verrilli and Bodner and Partom for thermal/mechanical loadings (including tensile, relaxation, and cyclic loadings). The large amount of computations performed showed that, for comparable accuracy, the efficiency of an integration algorithm depends significantly on the type of application (loading). However, in general, for the aforementioned loadings and viscoplastic models, the exponential integration algorithm with the proposed self-adaptive time integration strategy worked more (or comparably) efficiently and accurately than the other integration algorithms. Using this strategy for integrating viscoplastic models may lead to considerable savings in computer time (better efficiency) without adversely affecting the accuracy of the results. This conclusion should encourage the utilization of viscoplastic models in the stress analysis and design of structural components.
Accurate integral equation theory for the central force model of liquid water and ionic solutions
NASA Astrophysics Data System (ADS)
Ichiye, Toshiko; Haymet, A. D. J.
1988-10-01
The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.
Linaro, Daniele; Storace, Marco; Giugliano, Michele
2011-03-01
Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here.
Santolini, Marc; Mora, Thierry; Hakim, Vincent
2014-01-01
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond
Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data
NASA Astrophysics Data System (ADS)
Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej
2016-04-01
GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.
Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.
Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M
2016-06-21
We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.
Brandenburg, Jan Gerit; Grimme, Stefan
2014-06-05
The ambitious goal of organic crystal structure prediction challenges theoretical methods regarding their accuracy and efficiency. Dispersion-corrected density functional theory (DFT-D) in principle is applicable, but the computational demands, for example, to compute a huge number of polymorphs, are too high. Here, we demonstrate that this task can be carried out by a dispersion-corrected density functional tight binding (DFTB) method. The semiempirical Hamiltonian with the D3 correction can accurately and efficiently model both solid- and gas-phase inter- and intramolecular interactions at a speed up of 2 orders of magnitude compared to DFT-D. The mean absolute deviations for interaction (lattice) energies for various databases are typically 2-3 kcal/mol (10-20%), that is, only about two times larger than those for DFT-D. For zero-point phonon energies, small deviations of <0.5 kcal/mol compared to DFT-D are obtained.
NASA Astrophysics Data System (ADS)
Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.
2016-03-01
SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.
Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham
2003-03-27
Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.
Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries
Haldar, K.; Lagoudas, D. C.
2014-01-01
A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials. PMID:25197247
Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries.
Haldar, K; Lagoudas, D C
2014-09-08
A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials.
O’Connor, James PB; Boult, Jessica KR; Jamin, Yann; Babur, Muhammad; Finegan, Katherine G; Williams, Kaye J; Little, Ross A; Jackson, Alan; Parker, Geoff JM; Reynolds, Andrew R; Waterton, John C; Robinson, Simon P
2015-01-01
There is a clinical need for non-invasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning and therapy monitoring. Oxygen enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed “Oxy-R fraction”) would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here we demonstrate that OE-MRI signals are accurate, precise and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia non-invasively and is immediately translatable to the clinic. PMID:26659574
A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.
Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas
2010-11-01
Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants.
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie
2008-03-28
Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.
Random generalized linear model: a highly accurate and interpretable ensemble predictor
2013-01-01
Background Ensemble predictors such as the random forest are known to have superior accuracy but their black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable especially when forward feature selection is used to construct the model. However, forward feature selection tends to overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling (interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found little attention in the literature. Results Comprehensive evaluations involving hundreds of genomic data sets, the UCI machine learning benchmark data, and simulations are used to give GLM based ensemble predictors a new and careful look. A novel bootstrap aggregated (bagged) GLM predictor that incorporates several elements of randomness and instability (random subspace method, optional interaction terms, forward variable selection) often outperforms a host of alternative prediction methods including random forests and penalized regression models (ridge regression, elastic net, lasso). This random generalized linear model (RGLM) predictor provides variable importance measures that can be used to define a “thinned” ensemble predictor (involving few features) that retains excellent predictive accuracy. Conclusion RGLM is a state of the art predictor that shares the advantages of a random forest (excellent predictive accuracy, feature importance measures, out-of-bag estimates of accuracy) with those of a forward selected generalized linear model (interpretability). These methods are implemented in the freely available R software package randomGLM. PMID:23323760
Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region
NASA Technical Reports Server (NTRS)
Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping
2016-01-01
A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.
Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region.
Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K; Yang, Ping
2016-10-10
A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTM-SOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm^{-1} resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10^{-3} mW/cm^{2}/sr/cm^{-1} and the relative error is typically less than 0.2%.
Accurate Models of Formation Enthalpy Created using Machine Learning and Voronoi Tessellations
NASA Astrophysics Data System (ADS)
Ward, Logan; Liu, Rosanne; Krishna, Amar; Hegde, Vinay; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris
Several groups in the past decade have used high-throughput Density Functional Theory to predict the properties of hundreds of thousands of compounds. These databases provide the unique capability of being able to quickly query the properties of many compounds. Here, we explore how these datasets can also be used to create models that can predict the properties of compounds at rates several orders of magnitude faster than DFT. Our method relies on using Voronoi tessellations to derive attributes that quantitatively characterize the local environment around each atom, which then are used as input to a machine learning model. In this presentation, we will discuss the application of this technique to predicting the formation enthalpy of compounds using data from the Open Quantum Materials Database (OQMD). To date, we have found that this technique can be used to create models that are about twice as accurate as those created using the Coulomb Matrix and Partial Radial Distribution approaches and are equally as fast to evaluate.
A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation
Gehlhausen, Jeffrey R.; Park, Su-Jung; Hickox, Ann E.; Shew, Matthew; Staser, Karl; Rhodes, Steven D.; Menon, Keshav; Lajiness, Jacquelyn D.; Mwanthi, Muithi; Yang, Xianlin; Yuan, Jin; Territo, Paul; Hutchins, Gary; Nalepa, Grzegorz; Yang, Feng-Chun; Conway, Simon J.; Heinz, Michael G.; Stemmer-Rachamimov, Anat; Yates, Charles W.; Wade Clapp, D.
2015-01-01
Neurofibromatosis type 2 (NF2) is an autosomal dominant genetic disorder resulting from germline mutations in the NF2 gene. Bilateral vestibular schwannomas, tumors on cranial nerve VIII, are pathognomonic for NF2 disease. Furthermore, schwannomas also commonly develop in other cranial nerves, dorsal root ganglia and peripheral nerves. These tumors are a major cause of morbidity and mortality, and medical therapies to treat them are limited. Animal models that accurately recapitulate the full anatomical spectrum of human NF2-related schwannomas, including the characteristic functional deficits in hearing and balance associated with cranial nerve VIII tumors, would allow systematic evaluation of experimental therapeutics prior to clinical use. Here, we present a genetically engineered NF2 mouse model generated through excision of the Nf2 gene driven by Cre expression under control of a tissue-restricted 3.9kbPeriostin promoter element. By 10 months of age, 100% of Postn-Cre; Nf2flox/flox mice develop spinal, peripheral and cranial nerve tumors histologically identical to human schwannomas. In addition, the development of cranial nerve VIII tumors correlates with functional impairments in hearing and balance, as measured by auditory brainstem response and vestibular testing. Overall, the Postn-Cre; Nf2flox/flox tumor model provides a novel tool for future mechanistic and therapeutic studies of NF2-associated schwannomas. PMID:25113746
2011-01-01
Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645
NASA Astrophysics Data System (ADS)
Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.
2015-12-01
Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work
Quesada A, Gabriel
2009-09-01
In the last thirty years significant changes to protect the environment have been introduced in the judicial, administrative and social systems. Costa Rica is a well known international model in the field of sustainable development, and here I present a proposal for adding environmental gaurantees to the Costa Rican Constitution. One of the most important changes in the Costa Rican judicial system has been the introduction of an environmental amendment in the Constitution (Article 50). However, it is still fundamental to introduce a Title of Environmental Guarantees in the Constitution of Costa Rica, with these components: first, the State, the public and the private sector have the duty of defending the right to a safe environment; second, public domain over environmental issues, and third, the use of the environment should be regulated by scientific and technical knowledge. If current efforts succeed, Costa Rica will be the first country in the world to include Environmental Guarantees in its Constitution. This would be an example to other nations.
Life prediction and constitutive models for engine hot section anisotropic materials
NASA Technical Reports Server (NTRS)
Swanson, G. A.
1984-01-01
The development of directionally solidified and single crystal alloys is perhaps the most important recent advancement in hot section materials technology. The objective is to develop knowledge that enables the designer to improve anisotropic gas turbine parts to their full potential. Two single crystal alloys selected were PWA 1480 and Alloy 185. The coatings selected were an overlay coating, PWA 286, and an aluminide diffusion coating, PWA 273. The constitutive specimens were solid and cylindrical; the fatigue specimens were hollow and cylindrical. Two thicknesses of substrate are utilized. Specimens of both thickness (0.4 and 1.5 mm) will be coated and then tested for tensile, creep, and fatigue properties.