Accurate density functional thermochemistry for larger molecules.
Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.
1997-06-20
Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).
Accurate ionization potential of semiconductors from efficient density functional calculations
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2016-07-01
Despite its huge successes in total-energy-related applications, the Kohn-Sham scheme of density functional theory cannot get reliable single-particle excitation energies for solids. In particular, it has not been able to calculate the ionization potential (IP), one of the most important material parameters, for semiconductors. We illustrate that an approximate exact-exchange optimized effective potential (EXX-OEP), the Becke-Johnson exchange, can be used to largely solve this long-standing problem. For a group of 17 semiconductors, we have obtained the IPs to an accuracy similar to that of the much more sophisticated G W approximation (GWA), with the computational cost of only local-density approximation/generalized gradient approximation. The EXX-OEP, therefore, is likely as useful for solids as for finite systems. For solid surfaces, the asymptotic behavior of the vx c has effects similar to those of finite systems which, when neglected, typically cause the semiconductor IPs to be underestimated. This may partially explain why standard GWA systematically underestimates the IPs and why using the same GWA procedures has not been able to get an accurate IP and band gap at the same time.
An Accurate Density Functional from Exchange-Correlation Hole
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Mo, Yuxiang
The exchange-correlation hole is most fundamentally important in the development and understanding of density functional theory (DFT). However, due to the nonlocal nature of the exchange-correlation hole, development of DFT from the underlying hole presents a great challenge, and the works along this direction are limited. Here I will discuss a novel nonempirical DFT based on a semilocal hole, which is obtained from the density matrix expansion. Extensive tests on molecules and solids show that this functional can achieve remarkable accuracy for wide-ranging properties in condensed matter physics and quantum chemistry. This work was supported by NSF under Grant No. CHE-1261918.
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.
Tao, Jianmin; Mo, Yuxiang
2016-08-12
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals. PMID:27563956
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Mo, Yuxiang
2016-08-01
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.
Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan
2016-06-21
We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results. PMID:27240749
Accurate calculation and modeling of the adiabatic connection in density functional theory
NASA Astrophysics Data System (ADS)
Teale, A. M.; Coriani, S.; Helgaker, T.
2010-04-01
AC. When parametrized in terms of the same input data, the AC-CI model offers improved performance over the corresponding AC-D model, which is shown to be the lowest-order contribution to the AC-CI model. The utility of the accurately calculated AC curves for the analysis of standard density functionals is demonstrated for the BLYP exchange-correlation functional and the interaction-strength-interpolation (ISI) model AC integrand. From the results of this analysis, we investigate the performance of our proposed two-parameter AC-D and AC-CI models when a simple density functional for the AC at infinite interaction strength is employed in place of information at the fully interacting point. The resulting two-parameter correlation functionals offer a qualitatively correct behavior of the AC integrand with much improved accuracy over previous attempts. The AC integrands in the present work are recommended as a basis for further work, generating functionals that avoid spurious error cancellations between exchange and correlation energies and give good accuracy for the range of densities and types of correlation contained in the systems studied here.
Accurate ab Initio Spin Densities
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921
NASA Astrophysics Data System (ADS)
Skone, Jonathan; Govoni, Marco; Galli, Giulia
Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.
NASA Astrophysics Data System (ADS)
Balabin, Roman M.; Lomakina, Ekaterina I.
2009-08-01
Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.
Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade
2015-10-30
This research provides a performance investigation of density functional theory and also proposes new functional parameterizations to deal with electric field gradient (EFG) calculations at nuclear positions. The entire procedure is conducted within the four-component formalism. First, we noticed that traditional hybrid and long-range corrected functionals are more efficient in the description of EFG variations for a set of elements (indium, antimony, iodine, lutetium, and hafnium) among linear molecules. Thus, we selected the PBE0, B3LYP, and CAM-B3LYP functionals and promoted a reoptimization of their parameters for a better description of these EFG changes. The PBE0q variant developed here showed an overall promising performance in a validation test conducted with potassium, iodine, copper, and gold. In general, the correlation coefficients found in linear regressions between experimental nuclear quadrupole coupling constants and calculated EFGs are improved while the systematic EFG errors also decrease as a result of this reparameterization. PMID:26284820
NASA Astrophysics Data System (ADS)
Małolepsza, Edyta; Witek, Henryk A.; Morokuma, Keiji
2005-09-01
An optimization technique for enhancing the quality of repulsive two-body potentials of the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented and tested. The new, optimized potentials allow for significant improvement of calculated harmonic vibrational frequencies. Mean absolute deviation from experiment computed for a group of 14 hydrocarbons is reduced from 59.0 to 33.2 cm -1 and maximal absolute deviation, from 436.2 to 140.4 cm -1. A drawback of the new family of potentials is a lower quality of reproduced geometrical and energetic parameters.
Accurate hydrogen bond energies within the density functional tight binding method.
Domínguez, A; Niehaus, T A; Frauenheim, T
2015-04-01
The density-functional-based tight-binding (DFTB) approach has been recently extended by incorporating one-center exchange-like terms in the expansion of the multicenter integrals. This goes beyond the Mulliken approximation and leads to a scheme which treats in a self-consistent way the fluctuations of the whole dual density matrix and not only its diagonal elements (Mulliken charges). To date, only the performance of this new formalism to reproduce excited-state properties has been assessed (Domínguez et al. J. Chem. Theory Comput., 2013, 9, 4901-4914). Here we study the effect of our corrections on the computation of hydrogen bond energies for water clusters and water-containing systems. The limitations of traditional DFTB to reproduce hydrogen bonds has been acknowledged often. We compare our results for a set of 22 small water clusters and water-containing systems as well as for five water hexadecamers to those obtained with the DFTB3 method. Additionally, we combine our extension with a third-order energy expansion in the charge fluctuations. Our results show that the new formalisms significantly improve upon original DFTB. PMID:25763597
Calbo, Joaquín; Ortí, Enrique; Sancho-García, Juan C; Aragó, Juan
2015-03-10
In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems. PMID:26579747
Matanovic, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando; Henson, Neil J.
2014-10-05
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of 22.62 and 21.1% for the NAN stretching and RhAH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhAH and NAN stretching modes from the bulk phonons and by solving one- and two-dimensional Schr€odinger equation associated with the RhAH, RhAN, and NAN potential energy we calculated the anharmonic correction for NAN and RhAH stretching modes as 231 cm21 and 277 cm21 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.
Matanović, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando H; Henson, Neil J
2014-10-01
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of -2.62 and -1.1% for the N-N stretching and Rh-H stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the Rh-H and N-N stretching modes from the bulk phonons and by solving one- and two-dimensional Schrödinger equation associated with the Rh-H, Rh-N, and N-N potential energy we calculated the anharmonic correction for N-N and Rh-H stretching modes as -31 cm(-1) and -77 cm(-1) at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments. PMID:25164265
Jiang, Bin; Guo, Hua
2016-08-01
In search for an accurate description of the dissociative chemisorption of water on the Ni(111) surface, we report a new nine-dimensional potential energy surface (PES) based on a large number of density functional theory points using the RPBE functional. Seven-dimensional quantum dynamical calculations have been carried out on the RPBE PES, followed by site averaging and lattice effect corrections, yielding sticking probabilities that are compared with both the previous theoretical results based on a PW91 PES and experiment. It is shown that the RPBE functional increases the reaction barrier, but has otherwise a minor impact on the PES topography. Better agreement with experimental results is obtained with the new PES, but the agreement is still not quantitative. Possible sources of the remaining discrepancies are discussed. PMID:27436348
NASA Astrophysics Data System (ADS)
Zhao, P. W.; Song, L. S.; Sun, B.; Geissel, H.; Meng, J.
2012-12-01
The covariant density functional theory with the point-coupling interaction PC-PK1 is compared with new and accurate experimental masses in the element range from 50 to 91. The experimental data are from a mass measurement performed with the storage ring mass spectrometry at Gesellschaft für Schwerionenforschung (GSI) [Chen , Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2012.03.002 882, 71 (2012)]. Although the microscopic theory contains only 11 parameters, it agrees well with the experimental data. The comparison is characterized by a rms deviation of 0.859 MeV. For even-even nuclei, the theory agrees within about 600 keV. Larger deviations are observed in this comparison for the odd-A and odd-odd nuclei. Improvements and possible reasons for the deviations are discussed in this contribution as well.
Sun, Y. Y.; Kim, Y. H.; Lee, K.; Zhang, S. B.
2008-01-01
Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.
Sutton, Christopher; Gray, Matthew T.; Brunsfeld, Max; Parrish, Robert M.; Sherrill, C. David; Sears, John S.; Brédas, Jean-Luc E-mail: thomas.koerzdoerfer@uni-potsdam.de; Körzdörfer, Thomas E-mail: thomas.koerzdoerfer@uni-potsdam.de
2014-02-07
We investigate the torsion potentials in two prototypical π-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains.
Hammond, J.; Govind, N.; Kowalski, K.; Autschbach, J.; Xantheas, S.; PNNL; Univ. of Buffalo
2009-12-07
The static dipole polarizabilities of water clusters (2 {le} N {le} 12) are determined at the coupled-cluster level of theory (CCSD). For the dipole polarizability of the water monomer it was determined that the role of the basis set is more important than that of electron correlation and that the basis set augmentation converges with two sets of diffuse functions. The CCSD results are used to benchmark a variety of density functionals while the performance of several families of basis sets (Dunning, Pople, and Sadlej) in producing accurate values for the polarizabilities was also examined. The Sadlej family of basis sets was found to produce accurate results when compared to the ones obtained with the much larger Dunning basis sets. It was furthermore determined that the PBE0 density functional with the aug-cc-pVDZ basis set produces overall remarkably accurate polarizabilities at a moderate computational cost.
Kanai, Y; Takeuchi, N
2009-10-14
We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.
Ratcliff, Laura E; Grisanti, Luca; Genovese, Luigi; Deutsch, Thierry; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang; Beljonne, David; Cornil, Jérôme
2015-05-12
A fast and accurate scheme has been developed to evaluate two key molecular parameters (on-site energies and transfer integrals) that govern charge transport in organic supramolecular architecture devices. The scheme is based on a constrained density functional theory (CDFT) approach implemented in the linear-scaling BigDFT code that exploits a wavelet basis set. The method has been applied to model disordered structures generated by force-field simulations. The role of the environment on the transport parameters has been taken into account by building large clusters around the active molecules involved in the charge transfer. PMID:26574411
NASA Astrophysics Data System (ADS)
Wiktor, Julia; Jomard, Gérald; Torrent, Marc
2015-09-01
Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.
NASA Astrophysics Data System (ADS)
Teale, Andrew M.; Lutnæs, Ola B.; Helgaker, Trygve; Tozer, David J.; Gauss, Jürgen
2013-01-01
Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], 10.1063/1.3242081, it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.
Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L
2009-07-14
A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol. PMID:19603962
Get accurate LNG densities with COSTALD
Hankinson, R.W.; Coker, T.A.; Thomson, G.H.
1982-04-01
A fine-tuned version of the COSTALD correlation predicts the densities for 40 LNG-type mixtures at an average absolute error of 0.078%. When tested against 285 points of low-temperature data collected by the US National Bureau of Standards, the average error was 0.199%, compared with a 0.227% error obtained with the NBS's McCarty-Klosek-McKinley technique. The COSTALD correlation relates the saturated molar volume of a liquid to a characteristic volume, the reduced temperature, and, a modified acentric factor for each stream component. The fine-tuning involved adding several interaction parameters dervied from binary density data.
Mardirossian, Narbe; Head-Gordon, Martin
2016-09-13
The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses. PMID:27537680
Precise and Accurate Density Determination of Explosives Using Hydrostatic Weighing
B. Olinger
2005-07-01
Precise and accurate density determination requires weight measurements in air and water using sufficiently precise analytical balances, knowledge of the densities of air and water, knowledge of thermal expansions, availability of a density standard, and a method to estimate the time to achieve thermal equilibrium with water. Density distributions in pressed explosives are inferred from the densities of elements from a central slice.
Accurate Measurement of Bone Density with QCT
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.
Chan, Bun; Radom, Leo
2016-08-01
In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298). PMID:27471908
NASA Astrophysics Data System (ADS)
Kapil, V.; VandeVondele, J.; Ceriotti, M.
2016-02-01
The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.
Kapil, V; VandeVondele, J; Ceriotti, M
2016-02-01
The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats. PMID:26851912
Partition density functional theory
NASA Astrophysics Data System (ADS)
Nafziger, Jonathan
Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.
AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz
Perley, R. A.; Butler, B. J. E-mail: BButler@nrao.edu
2013-02-15
We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.
Molecular adsorption at Pt(111). How accurate are DFT functionals?
Gautier, Sarah; Steinmann, Stephan N; Michel, Carine; Fleurat-Lessard, Paul; Sautet, Philippe
2015-11-21
Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), we study the accuracy, for chemisorption on Pt(111), of five exchange-correlation functionals including one generalized gradient approximation functional (PBE) and four functionals that take into account van der Waals interactions (optPBE-vdW, optB86b-vdW, BEEF-vdW, PBE-dDsC). If the functionals used provide very similar geometries and electronic structures, as shown by projected density of states, they give strikingly different results for the adsorption energy of molecules on Pt(111). Among the set of chemisorption data, the lowest mean absolute deviations (MAD) are obtained with the optPBE-vdW and PBE-dDsC functionals (∼0.2 eV) while PBE and optB86b-vdW give twice larger MAD (∼0.45 eV). BEEF-vdW is intermediate with a MAD of 0.33 eV. For laterally π-bound unsaturated hydrocarbons (cyclohexene, benzene, naphthalene) the PBE and the BEEF-vdW functionals are severally under-bound, while optPBE-vdW and PBE-dDsC provide a good match with experiments. Hence both the incorporation of van der Waals dispersive forces and the choice of the exchange functional have a key influence on the chemisorption energy. Vertically bound ethylidyne and CO are in contrast over-bound with all functionals, the best agreement being obtained with BEEF-vdW. None of the selected functionals hence provides a universally accurate treatment of chemisorption energies. PMID:26455444
Density-dependent covariant energy density functionals
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
Density functional theory: Foundations reviewed
NASA Astrophysics Data System (ADS)
Kryachko, Eugene S.; Ludeña, Eduardo V.
2014-11-01
-geared functionals. These problems are discussed by making reference to ab initio DFT as well as to the local-scaling-transformation version of DFT, LS-DFT. In addition, we examine the question of the accuracy of approximate exchange-correlation functionals in the light of their non-observance of the variational principle. Why do approximate functionals yield reasonable (and accurate) descriptions of many molecular and condensed matter properties? Are the conditions imposed on exchange and correlation functionals sufficiently adequate to produce accurate semi-empirical functionals? In this respect, we consider the question of whether the results reflect a true approach to chemical accuracy or are just the outcome of a virtuoso-like performance which cannot be systematically improved. We discuss the issue of the accuracy of the contemporary DFT results by contrasting them to those obtained by the alternative RDMT and NOFT. We discuss the possibility of improving DFT functionals by applying in a systematic way the N-representability conditions on the 2-RDM. In this respect, we emphasize the possibility of constructing 2-matrices in the context of the local scaling transformation version of DFT to which the N-representability condition of RDM theory may be applied. We end up our revision of HKS-DFT by considering some of the problems related to spin symmetry and discuss some current issues dealing with a proper treatment of open-shell systems. We are particularly concerned, as in the rest of this paper, mostly with foundational issues arising in the construction of functionals. We dedicate the whole Section 4 to the local-scaling transformation version of density functional theory, LS-DFT. The reason is that in this theory some of the fundamental problems that appear in HKS-DFT, have been solved. For example, in LS-DFT the functionals are, in principle, designed to fulfill v- and N-representability conditions from the outset. This is possible because LS-DFT is based on density
Locality of correlation in density functional theory
NASA Astrophysics Data System (ADS)
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-01
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-01
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed. PMID:27497544
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
Fast and accurate Coulomb calculation with Gaussian functions.
Füsti-Molnár, László; Kong, Jing
2005-02-15
Coulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem. It replaces the least efficient part of the previous Coulomb methods with an accurate numerical integration scheme that scales in O(N2) instead of O(N4) with the basis size. The result is a much smaller slope in the linear scaling with respect to the molecular size and we will demonstrate through a series of benchmark calculations that it speeds up the calculation of Coulomb energy by several folds over the efficient existing code, i.e., the combination of CFMM and J-engine, without loss of accuracy. Furthermore, we will show that it is complementary to the latter and together the three methods offer the best performance for Coulomb part of DFT calculations, making the DFT calculations affordable for very large systems involving thousands of basis functions. PMID:15743222
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
Rohmann, Kai; Hölscher, Markus; Leitner, Walter
2016-01-13
The catalytic hydrogenation of cyclohexene and 1-methylcyclohexene is investigated experimentally and by means of density functional theory (DFT) computations using novel ruthenium Xantphos(Ph) (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) and Xantphos(Cy) (4,5-bis(dicyclohexylphosphino)-9,9-dimethylxanthene) precatalysts [Ru(Xantphos(Ph))(PhCO2)(Cl)] (1) and [Ru(Xantphos(Cy))(PhCO2)(Cl)] (2), the synthesis, characterization, and crystal structures of which are reported. The intention of this work is to (i) understand the reaction mechanisms on the microscopic level and (ii) compare experimentally observed activation barriers with computed barriers. The Gibbs free activation energy ΔG(⧧) was obtained experimentally with precatalyst 1 from Eyring plots for the hydrogenation of cyclohexene (ΔG(⧧) = 17.2 ± 1.0 kcal/mol) and 1-methylcyclohexene (ΔG(⧧) = 18.8 ± 2.4 kcal/mol), while the Gibbs free activation energy ΔG(⧧) for the hydrogenation of cyclohexene with precatalyst 2 was determined to be 21.1 ± 2.3 kcal/mol. Plausible activation pathways and catalytic cycles were computed in the gas phase (M06-L/def2-SVP). A variety of popular density functionals (ωB97X-D, LC-ωPBE, CAM-B3LYP, B3LYP, B97-D3BJ, B3LYP-D3, BP86-D3, PBE0-D3, M06-L, MN12-L) were used to reoptimize the turnover determining states in the solvent phase (DF/def2-TZVP; IEF-PCM and/or SMD) to investigate how well the experimentally obtained activation barriers can be reproduced by the calculations. The density functionals B97-D3BJ, MN12-L, M06-L, B3LYP-D3, and CAM-B3LYP reproduce the experimentally observed activation barriers for both olefins very well with very small (0.1 kcal/mol) to moderate (3.0 kcal/mol) mean deviations from the experimental values indicating for the field of hydrogenation catalysis most of these functionals to be useful for in silico catalyst design prior to experimental work. PMID:26713773
Density Functionals with Broad Applicability in Chemistry
Zhao, Yan; Truhlar, Donald G.
2008-02-01
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Although density functional theory is widely used in the computational chemistry community, the most popular density functional, B3LYP, has some serious shortcomings: (i) it is better for main-group chemistry than for transition metals; (ii) it systematically underestimates reaction barrier heights; (iii) it is inaccurate for interactions dominated by mediumrange correlation energy, such as van der Waals attraction, aromatic-aromatic stacking, and alkane isomerization energies. We have developed a variety of databases for testing and designing new density functionals. We used these data to design new density functionals, called M06-class (and, earlier, M05-class) functionals, for which we enforced some fundamental exact constraints such as the uniform-electron-gas limit and the absence of self-correlation energy. Our M06-class functionals depend on spin-up and spin-down electron densities (i.e., spin densities), spin density gradients, spin kinetic energy densities, and, for nonlocal (also called hybrid) functionals, Hartree-Fock exchange. We have developed four new functionals that overcome the above-mentioned difficulties: (a) M06, a hybrid meta functional, is a functional with good accuracy “across-theboard” for transition metals, main group thermochemistry, medium-range correlation energy, and barrier heights; (b) M06- 2X, another hybrid meta functional, is not good for transition metals but has excellent performance for main group chemistry, predicts accurate valence and Rydberg electronic excitation energies, and is an excellent functional for aromatic-aromatic stacking interactions; (c) M06-L is not as accurate as M06 for barrier heights but is the most accurate
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Semiclassical origins of density functionals
NASA Astrophysics Data System (ADS)
Burke, Kieron
By careful numerical analysis of non-relativistic atomic correlation energies, we show that (a) the local density approximation becomes relatively exact for the correlation energy as the atomic number approaches infinity, (b) we find the leading correction, which is about 38.5 milliHartrees per atom, (c) show how this correction dominates for larger atoms and (d) how to construct a generalized gradient approximation that respects this limit (See KB, A. Cancio, T. Gould, S. Pittalis, arXiv:1409.4834). The relevance to density functional calculations will also be explained. Support provided by NSF CHE-1464795.
Density Functional Theory Models for Radiation Damage
NASA Astrophysics Data System (ADS)
Dudarev, S. L.
2013-07-01
Density functional theory models developed over the past decade provide unique information about the structure of nanoscale defects produced by irradiation and about the nature of short-range interaction between radiation defects, clustering of defects, and their migration pathways. These ab initio models, involving no experimental input parameters, appear to be as quantitatively accurate and informative as the most advanced experimental techniques developed for the observation of radiation damage phenomena. Density functional theory models have effectively created a new paradigm for the scientific investigation and assessment of radiation damage effects, offering new insight into the origin of temperature- and dose-dependent response of materials to irradiation, a problem of pivotal significance for applications.
Teaching Density Functional Theory Through Experiential Learning
NASA Astrophysics Data System (ADS)
Narasimhan, Shobhana
2015-09-01
Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school.
Accurate perception of negative emotions predicts functional capacity in schizophrenia.
Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J
2014-04-30
Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947
Density functionals from deep learning
NASA Astrophysics Data System (ADS)
McMahon, Jeffrey
Density-functional theory is a formally exact description of a many-body quantum system in terms of its density; in practice, however, approximations to the universal density functional (DF) are necessary. Machine learning has recently been proposed as a novel approach to discover such a DF (or components of it). Conventional machine learning algorithms, however, are limited in their ability to process data in their raw form, leading to invariance and/or sensitivity issues. In this presentation, an alternative approach based on deep learning will be demonstrated. Deep learning allows computational models that are capable of discovering intricate structure in large and/or high-dimensional data sets with multiple levels of abstraction, and do not suffer from the aforementioned issues. Results from the application of this approach to the prediction of the kinetic-energy DF of noninteracting electrons will be presented. Using theoretical results from computer science, a connection between the underlying model and the theorems of Hohenberg and Kohn will also be suggested.
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Chemistry by Way of Density Functional Theory
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.
]: a density functional theory investigation
NASA Astrophysics Data System (ADS)
Ulian, Gianfranco; Tosoni, Sergio; Valdrè, Giovanni
2014-09-01
In this work, we modelled the structure, the compressional behaviour and the physical properties of talc over a wide range of pressure using a quantum mechanical approach based on periodic boundary conditions. We adopted the density functional theory using the B3LYP-D* functional, which includes a correction for the dispersive forces and all-electron Gaussian-type orbitals basis sets. An atomic level description of the athermal pressure-induced structural modification of talc is provided. From the compression results, we obtained the athermal ( T = 0 K) bulk modulus ( K T0), its first derivative ( K') and the athermal volume at zero pressure ( V 0) by a third-order Birch-Murnaghan equation with parameters K T0 = 56.25 GPa, K' = 5.66 and V 0 = 450.34 Å3. The mechanical behaviour is highly anisotropic, as observed by the axial compressibility. The presented data are in very good agreement with recent experimental results obtained by single-crystal neutron and X-ray diffraction experiments.
Accurate Relations Between the Neutron Current Densities and the Neutron Fluxes
Ronen, Yigal
2004-02-15
Accurate relations between neutron current densities and neutron flux are obtained using the integral transport equation. Using these relations and Fick's Law, diffusion constants can be calculated. These diffusion constants are better than those usually used for the cases in which {sigma}{sub a}/{sigma}{sub s} is not small.
NASA Astrophysics Data System (ADS)
Kasai, Hidetaka; Nishibori, Eiji
2016-04-01
In recent years multiple synchrotron radiation (SR) powder x-ray diffraction profiles have been successfully applied to advanced structural studies such as an accurate charge density study and a structure determination from powder diffraction. The results have been presented with several examples. Abilities and future prospects have been discussed using state of the art powder diffraction data.
Accurate estimators of correlation functions in Fourier space
NASA Astrophysics Data System (ADS)
Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.
2016-08-01
Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.
Improving Density Functionals with Quantum Harmonic Oscillators
NASA Astrophysics Data System (ADS)
Tkatchenko, Alexandre
2013-03-01
Density functional theory (DFT) is the most widely used and successful approach for electronic structure calculations. However, one of the pressing challenges for DFT is developing efficient functionals that can accurately capture the omnipresent long-range electron correlations, which determine the structure and stability of many molecules and materials. Here we show that, under certain conditions, the problem of computing the long-range correlation energy of interacting electrons can be mapped to a system of coupled quantum harmonic oscillators (QHOs). The proposed model allows us to synergistically combine concepts from DFT, quantum chemistry, and the widely discussed random-phase approximation for the correlation energy. In the dipole limit, the interaction energy for a system of coupled QHOs can be calculated exactly, thereby leading to an efficient and accurate model for the many-body dispersion energy of complex molecules and materials. The studied examples include intermolecular binding energies, the conformational hierarchy of DNA structures, the geometry and stability of molecular crystals, and supramolecular host-guest complexes (A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012); R. A. DiStasio Jr., A. von Lilienfeld, A. Tkatchenko, PNAS 109, 14791 (2012); A. Tkatchenko, D. Alfe, K. S. Kim, J. Chem. Theory and Comp. (2012), doi: 10.1021/ct300711r; A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., arXiv:1210.8343v1).
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Sokkar, T Z N; El-Farahaty, K A; El-Bakary, M A; Omar, E Z; Hamza, A A
2016-05-01
A modified method was suggested to improve the performance of the Pluta microscope in its nonduplicated mode in the calculation of the areal craze density especially, for relatively low draw ratio (low areal craze density). This method decreases the error that is resulted from the similarity between the formed crazes and the dark fringes of the interference pattern. Furthermore, an accurate method to calculate the birefringence and the orientation function of the drawn fibers via nonduplicated Pluta polarizing interference microscope for high areal craze density (high draw ratio) was suggested. The advantage of the suggested method is to relate the optomechanical properties of the tested fiber with the areal craze density, for the same region of the fiber material. Microsc. Res. Tech. 79:422-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:26920339
Accurate and fast DFT calculations with the AM05 functional
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.
2008-03-01
The AM05 functional [1] has the same excellent performance for solids as the hybrid density functionals tested in Paier et. al. (J. Chem. Phys 124, 154709 (2006); ibid 125, 249901 (2006)). This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. While hybrid functionals are computationally expensive, preveting them from being used in large systems and/or long molecular dynamics simulations, the AM05 functional is on a regular semi-local GGA form with corresponding computational cost. The performance of AM05 is even superior to an `informed choice' between LDA and PBE. By comparing data from different electronic-structure codes we have determined that the numerical errors in this study are equal to or smaller than corresponding experimental uncertainties. Results for other systems will also be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. [1] R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Unexpected properties of a density functional
Karwowski, J.; Stanke, M.
2005-02-01
An observation on a pathological behavior of an exact density functional derived from either relativistic (Dirac) or nonrelativistic (Levy-Leblond) quantum-mechanical equation is reported. As expected, in the case of a one-electron atom the variational minimum of this functional is equal to the exact ground-state energy. However, apart from the correct density, this minimum is reached also by an infinite set of densities which do not correspond to the exact wave function. This paradoxical property of the functional is related to the multicomponent structure of both Dirac and Levy-Leblond wave functions. In particular, imposing the correct boundary conditions upon the trial densities removes only a part of the fake solutions. The results of this study demonstrate that in density-functional theories derived from models based on multicomponent wave functions, one should not expect any simple relation between the accuracy of the energy and the correctness of the corresponding density.
NASA Astrophysics Data System (ADS)
Bochevarov, Arteum D.; Friesner, Richard A.
2008-01-01
We investigate one of the fundamental observables, electronic charge density, as produced by a number of popular functionals of the density functional theory (DFT): SVWN5, B3LYP, B3LYP, OLYP, O3LYP, BP86, B3P86, O3P86, and PBE using restricted and unrestricted orbitals. Measuring and comparing the quality of the densities could tell us more about the physical soundness of the functional models. The study is performed on the small molecules He, H2, LiH, H4 in an extensive range of correlation-consistent basis sets. We compare DFT densities to those of full configuration interaction (FCI) under the assumption that the FCI density in the largest employed basis set is sufficiently close to the exact one. For LiH and H4, we also compare the DFT densities to those of CCSD. The SVWN5 functional consistently shows the worst performance. The OPTX exchange functional regularly beats the Becke exchange. Among the best performers are all the hybrid functionals, the novel O3P86 being the most accurate in most cases. The popular functional B3LYP was consistently outmatched by O3LYP, and produced, in fact, some of the poorest densities among the hybrids. CCSD was found to produce much more accurate densities than any DFT functional in the case of LiH in equilibrium geometry, but was sometimes outperformed by DFT in the case of slightly stretched H4, where CCSD theory itself starts to break down. Surprisingly, as one stretches the H2 molecule, BP86 and PBE improve the description of density although such behavior is not observed in other systems. We conclude by reasoning how functionals such as B3LYP, despite being quite average for density, could still be very successful in predicting thermodynamic properties.
Surface electron density models for accurate ab initio molecular dynamics with electronic friction
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.
2016-06-01
Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.
Density-functional theory of superconductivity
NASA Astrophysics Data System (ADS)
Gross, E. K. U.
2008-03-01
A prominent challenge of modern condensed-matter theory is to predict reliably material-specific properties of superconductors, such as the critical temperature. The traditional model of Bardeen, Cooper and Schrieffer (BCS) properly describes the universal features that all conventional superconductors have in common, but it is not able to make accurate predictions of material-specific properties. To tackle this problem, a density-functional formalism has been developed [1] which describes superconductors in thermal equilibrium in terms of three quantities: the ordinary density, the superconducting order parameter, and the nuclear N-body density. These three ``densities'' are determined self-consistently through a set of Kohn-Sham equations. Approximations of the universal exchange-correlation functional are derived on the basis of many-body perturbation theory. In this way, a true ab-initio description is achieved which does not contain any adjustable parameters such as the μ* of Eliashberg theory. Numerical results for the critical temperature, the isotope effect, the gap function and the jump of the specific heat will be presented for simple metals, for MgB2 [2] and CaBeSi, and for calcium intercalated graphite (CaC6) [3]. Furthermore, results for Li, Al, K, and H under pressure will be discussed. The calculations explain why Li and Al behave very differently, leading to a strong enhancement of superconductivity for Li and to a clear suppression for Al with increasing pressure [4]. For K we predict a behavior similar to Li, i.e. a strong increase of Tc with increasing pressure. Finally, hydrogen is found to be a three-gap superconductor whose critical temperature increases with increasing pressure until about 100K (at 500 GPa). [1] M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris,G. Profeta, L. Fast, A.Continenza, S. Massidda, E.K.U. Gross, PRB 72, 024545 (2005). [2] A. Floris, G. Profeta, N.N. Lathiotakis, M. Lüders, M.A.L. Marques, C. Franchini, E
Building a Universal Nuclear Energy Density Functional
Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Semiclassical origins of density functional theory
NASA Astrophysics Data System (ADS)
Burke, Kieron
2009-03-01
Until the seminal work of Hohenberg, Kohn, and Sham of the mid 60's, most density functional theory (DFT) was derived from semiclassical approximations. This non-empirical approach shows an intrinsic difference between solids (for which DFT was originally developed) and molecules, and explains many of its more mysterious manifestations. For example, the success of DFT for molecules has nothing to do with the uniform gas. Results include [1] a derivation of the empirical parameter in the B88 exchange functional, [2] PBEsol, a new GGA that restores the exchange gradient expansion and improves lattice constants in solids, [3] a novel approach to ``orbital-free'' DFT that, in preliminary tests, is 40 times more accurate than its DFT counterpart. The talk is aimed at a general theoretical audience. Detailed technical knowledge of DFT is neither needed, nor desirable. [4pt] [1] J.P. Perdew, L.A. Constantin, E. Sagvolden, and KB, Phys. Rev. Lett. 97, 223002 (2006). [0pt] [2] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and KB, Phys. Rev. Lett. 100, 136406 (2008). [0pt] [3] Peter Elliott, Donghyung Lee, Attila Cangi, KB, Phys. Rev. Lett. 100, 256406 (2008).
Universal Nuclear Energy Density Functional
Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-01
An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.
Rationale for switching to nonlocal functionals in density functional theory
NASA Astrophysics Data System (ADS)
Lazić, P.; Atodiresei, N.; Caciuc, V.; Brako, R.; Gumhalter, B.; Blügel, S.
2012-10-01
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
A Safari Through Density Functional Theory
NASA Astrophysics Data System (ADS)
Dreizler, Reiner M.; Lüdde, Cora S.
Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.
Density functional theory for Yukawa fluids
NASA Astrophysics Data System (ADS)
Hatlo, Marius M.; Banerjee, Priyanka; Forsman, Jan; Lue, Leo
2012-08-01
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid−liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
iTagPlot: an accurate computation and interactive drawing tool for tag density plot
Kim, Sung-Hwan; Ezenwoye, Onyeka; Cho, Hwan-Gue; Robertson, Keith D.; Choi, Jeong-Hyeon
2015-01-01
Motivation: Tag density plots are very important to intuitively reveal biological phenomena from capture-based sequencing data by visualizing the normalized read depth in a region. Results: We have developed iTagPlot to compute tag density across functional features in parallel using multicores and a grid engine and to interactively explore it in a graphical user interface. It allows us to stratify features by defining groups based on biological function and measurement, summary statistics and unsupervised clustering. Availability and implementation: http://sourceforge.net/projects/itagplot/. Contact: jechoi@gru.edu and jeochoi@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25792550
Fluctuation-dissipation theorem density-functional theory
NASA Astrophysics Data System (ADS)
Furche, Filipp; Van Voorhis, Troy
2005-04-01
Using the fluctuation-dissipation theorem (FDT) in the context of density-functional theory (DFT), one can derive an exact expression for the ground-state correlation energy in terms of the frequency-dependent density response function. When combined with time-dependent density-functional theory, a new class of density functionals results that use approximations to the exchange-correlation kernel fxc as input. This FDT-DFT scheme holds promise to solve two of the most distressing problems of conventional Kohn-Sham DFT: (i) It leads to correlation energy functionals compatible with exact exchange, and (ii) it naturally includes dispersion. The price is a moderately expensive O(N6) scaling of computational cost and a slower basis set convergence. These general features of FDT-DFT have all been recognized previously. In this paper, we present the first benchmark results for a set of molecules using FDT-DFT beyond the random-phase approximation (RPA)—that is, the first such results with fxc≠0. We show that kernels derived from the adiabatic local-density approximation and other semilocal functionals suffer from an "ultraviolet catastrophe," producing a pair density that diverges at small interparticle distance. Nevertheless, dispersion interactions can be treated accurately if hybrid functionals are employed, as is demonstrated for He2 and HeNe. We outline constraints that future approximations to fxc should satisfy and discuss the prospects of FDT-DFT.
Van der Waals density functional applied to adsorption systems
NASA Astrophysics Data System (ADS)
Hamada, Ikutaro
2013-03-01
The van der Waals density functional (vdW-DF) is a promising density functional to describe the van der Waals forces within density functional theory. However, despite the recent efforts, there is still room for further improvement, especially for describing molecular adsorption on metal surfaces. I will show that by choosing appropriate exchange and nonlocal correlation functionals, it is possible to calculate geometries and electronic structures for adsorption systems accurately within the framework of vdW-DF. Applicability of the present approach will be illustrated with its applications to graphene/metal, fullerene/metal, and water/graphene interfaces. This work is partly supported by a Grant-in-Aid for Scientific Research on Innovative Area (No. 23104501). AIMR was established by the World Premier International Research Center Initiative (WPI), MEXT, Japan.
Exponentially accurate approximations to piece-wise smooth periodic functions
NASA Technical Reports Server (NTRS)
Greer, James; Banerjee, Saheb
1995-01-01
A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.
Improved association in a classical density functional theory for water.
Krebs, Eric J; Schulte, Jeff B; Roundy, David
2014-03-28
We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment. PMID:24697459
Improved association in a classical density functional theory for water
Krebs, Eric J.; Schulte, Jeff B.; Roundy, David
2014-03-28
We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment.
Procedure for accurate fabrication of tissue compensators with high-density material
NASA Astrophysics Data System (ADS)
Mejaddem, Younes; Lax, Ingmar; Adakkai K, Shamsuddin
1997-02-01
An accurate method for producing compensating filters using high-density material (Cerrobend) is described. The procedure consists of two cutting steps in a Styrofoam block: (i) levelling a surface of the block to a reference level; (ii) depth-modulated milling of the levelled block in accordance with pre-calculated thickness profiles of the compensator. The calculated thickness (generated by a dose planning system) can be reproduced within acceptable accuracy. The desired compensator thickness manufactured according to this procedure is reproduced to within 0.1 mm, corresponding to a 0.5% change in dose at a beam quality of 6 MV. The results of our quality control checks performed with the technique of stylus profiling measurements show an accuracy of 0.04 mm in the milling process over an arbitrary profile along the milled-out Styrofoam block.
Range Separation and Local Hybridization in Density Functional Theory†
Henderson, Thomas M.; Janesko, Benjamin G.; Scuseria, Gustavo E.
2016-01-01
Kohn–Sham density functional theory has become a standard method for modeling energetic, spectroscopic, and chemical reactivity properties of large molecules and solids. Density functional theory provides a rigorous theoretical framework for modeling the many-body exchange-correlation effects that dominate the computational cost of traditional wave function approaches. The advent of hybrid exchange-correlation functionals which incorporate a fraction of nonlocal exact exchange has solidified the prominence of density functional theory within computational chemistry. Hybrids provide accurate treatments of properties such as thermochemistry and molecular geometry. But they also exhibit some rather spectacular failures, and often contain multiple empirical parameters. This article reviews our work on developing novel exchange-correlation functionals that build upon the successes of global hybrids. We focus on more flexible functional forms, including local and range-separated hybrid functionals, constructed to obey known exact constraints and (ideally) to incorporate a minimum of empirical parametrization. The article places our work within the context of some other new approximate density functionals and discusses prospects for future work. PMID:19006280
Particle conservation in dynamical density functional theory
NASA Astrophysics Data System (ADS)
de las Heras, Daniel; Brader, Joseph M.; Fortini, Andrea; Schmidt, Matthias
2016-06-01
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.
Particle conservation in dynamical density functional theory.
de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias
2016-06-22
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium. PMID:27115673
Nonlocal kinetic-energy-density functionals
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |
1996-04-01
In this paper we present nonlocal kinetic-energy functionals {ital T}[{ital n}] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. {copyright} {ital 1996 The American Physical Society.}
Hutchins, Patrick M.; Ronsein, Graziella E.; Monette, Jeffrey S.; Pamir, Nathalie; Wimberger, Jake; He, Yi; Anantharamaiah, G.M.; Kim, Daniel Seung; Ranchalis, Jane E.; Jarvik, Gail P.; Vaisar, Tomas; Heinecke, Jay W.
2015-01-01
Background It is critical to develop new metrics to determine whether high density lipoprotein (HDL) is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P) – the size and concentration of HDL in plasma or serum. However, the two methods currently used to determine HDL-P yield concentrations that differ more than 5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA). Methods HDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. A calibration curve constructed with purified proteins was used to correct for the ionization efficiency of HDL particles. Results The concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n=40) and cerebrovascular disease (n=40) subjects, three subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.4±2.4 µM (mean±SD). HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in subjects with cerebrovascular disease, and this difference remained significant after adjustment for HDL cholesterol levels. Conclusions Calibrated IMA accurately and reproducibly determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting the method could accurately quantify HDL particle concentration. Importantly, the estimated stoichiometry of apoA-I determined by calibrated IMA was 3–4 per HDL particle, in excellent agreement with current structural models. Furthermore, HDL-P associated with cardiovascular disease status in a clinical population independently of HDL cholesterol. PMID:25225166
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio
2015-04-21
We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method. PMID:25903880
Connection formulas for thermal density functional theory
NASA Astrophysics Data System (ADS)
Pribram-Jones, A.; Burke, K.
2016-05-01
The adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. We illustrate our results on the uniform electron gas.
External orthogonality in subsystem time-dependent density functional theory.
Chulhai, Dhabih V; Jensen, Lasse
2016-08-01
Subsystem density functional theory (subsystem DFT) is a DFT partitioning method that is exact in principle, but depends on approximations to the kinetic energy density functional (KEDF). One may avoid the use of approximate KEDFs by ensuring that the inter-subsystem molecular orbitals are orthogonal, termed external orthogonality (EO). We present a method that extends a subsystem DFT method, that includes EO, into the time-dependent DFT (TDDFT) regime. This method therefore removes the need for approximations to the kinetic energy potential and kernel, and we show that it can accurately reproduce the supermolecular TDDFT results for weakly and strongly coupled subsystems, and for systems with strongly overlapping densities (where KEDF approximations traditionally fail). PMID:26932176
Koopmans' condition for density-functional theory
Dabo, Ismaila; Ferretti, Andrea; Poilvert, Nicolas; Marzari, Nicola; Li, Yanli; Cococcioni, Matteo
2010-09-15
In approximate Kohn-Sham density-functional theory, self-interaction manifests itself as the dependence of the energy of an orbital on its fractional occupation. This unphysical behavior translates into qualitative and quantitative errors that pervade many fundamental aspects of density-functional predictions. Here, we first examine self-interaction in terms of the discrepancy between total and partial electron removal energies, and then highlight the importance of imposing the generalized Koopmans' condition - that identifies orbital energies as opposite total electron removal energies - to resolve this discrepancy. In the process, we derive a correction to approximate functionals that, in the frozen-orbital approximation, eliminates the unphysical occupation dependence of orbital energies up to the third order in the single-particle densities. This non-Koopmans correction brings physical meaning to single-particle energies; when applied to common local or semilocal density functionals it provides results that are in excellent agreement with experimental data - with an accuracy comparable to that of GW many-body perturbation theory - while providing an explicit total energy functional that preserves or improves on the description of established structural properties.
Generalized local-spin-density-functional theory
NASA Astrophysics Data System (ADS)
Guo, Yufei; Whitehead, M. A.
1991-01-01
An alternative density-functional theory, the generalized local-spin-density-functional (G-LSD) theory, is proposed based on the boundary conditions and sum rule of the Fermi-correlation factor in the Hartree-Fock (HF) limit. It avoids the physical restrictions to the boundary conditions and the sum rule used in the generalized exchange local-spin-density-functional (GX-LSD) theory completely, the homogeneous electron-density approximation in the Hartree-Fock-Slater (HFS) theory and in the Gáspár-Kohn-Sham (GKS) theory partly, and the time-consuming step to search for the optimal exchange parameter for each atom or ion in the Xα and Ξa theories. The alternative G-LSD theory generates the GX-LSD, HFS, GKS, Xα, and Ξa theories, when additional approximations or certain Fermi-hole shapes or high electron-density limit in a system are used. Theoretically, the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and Ξa theories. Numerically, the statistical total energies for atoms in the G-LSD theory are in excellent agreement with the HF results, when the Gopinathan, Whitehead, and Bogdanovic [Phys. Rev. A 14, 1 (1976)] Fermi-hole parameters are used.
Density-functional expansion methods: Grand challenges
Giese, Timothy J.; York, Darrin M.
2016-01-01
We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian. PMID:27293378
Density functional theory studies of etoricoxib
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.
2016-05-01
Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.
NASA Astrophysics Data System (ADS)
Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia
The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.
Nuclear moments in covariant density functional theory
NASA Astrophysics Data System (ADS)
Meng, J.; Zhao, P. W.; Zhang, S. Q.; Hu, J. N.; Li, J.
2014-05-01
Recent progresses on microscopic and self-consistent description of the nuclear moments in covariant density functional theory based on a point-coupling interaction are briefly reviewed. In particular, the electric quadrupole moments of Cd isotopes and the magnetic moments of Pb isotopes are discussed.
Advances in time-dependent current-density functional theory
NASA Astrophysics Data System (ADS)
Berger, Arjan
In this work we solve the problem of the gauge dependence of molecular magnetic properties (magnetizabilities, circular dichroism) using time-dependent current-density functional theory [1]. We also present a new functional that accurately describes the optical absorption spectra of insulators, semiconductors and metals [2] N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger Phys. Rev. Lett. 114, 066404 (2015) J.A. Berger, Phys. Rev. Lett. 115, 137402 (2015) This study has been partially supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the Programme des Investissements d'Avenir.
Probability density function learning by unsupervised neurons.
Fiori, S
2001-10-01
In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals. PMID:11709808
Differentiability of Lieb functional in electronic density functional theory
NASA Astrophysics Data System (ADS)
Lammert, Paul E.
A solid understanding of the Lieb functional FL is important because of its centrality in the foundations of electronic density functional theory. A basic question is whether directional derivatives of FL at an ensemble-V-representable density are given by (minus) the potential. A widely accepted purported proof that FL is Gâteaux differentiable at EV-representable densities would say, ?yes.? But that proof is fallacious, as shown here. FL is not Gâteaux differentiable in the normal sense, nor is it continuous. By means of a constructive approach, however, we are able to show that the derivative of FL at an EV-representable density ?0 in the direction of ?1 is given by the potential if ?0 and ?1 are everywhere strictly greater than zero, and they and the ground state wave function have square integrable derivatives through second order.
The exact density functional for two electrons in one dimension
NASA Astrophysics Data System (ADS)
Cohen, Aron; Mori-Sanchez, Paula
The exact universal density functional F [ ρ ] is calculated for real space two-electron densities in one dimension ρ (x) with a soft-Coulomb interaction. It is calculated by the Levy constrained search F [ ρ ] =minΨ-->ρ < Ψ | \\Tcirc +\\Vcircee | Ψ > over wavefunctions of a two-dimensional Hilbert space Ψ (x1 ,x2) --> ρ (x1) and can be directly visualized. We do an approximate constrained search via density matrices and a direct approximation to natural orbitals. This allows us to make an accurate approximation to the exact functional that is calculated using a search over potentials. We investigate the exact functional and the performance of many approximations on some of the most challenging electronic structure in two-electron systems, from strongly-correlated electron transfer to the description of a localized-delocalized transition. The exact Kohn-Sham potential, vs (x) , and exact Kohn-Sham eigenvalues, ɛi, are calculated and this allows us to discuss the band-gap problem versus the perspective of the exact density functional F [ ρ ] for all numbers of electrons. We calculate the derivative discontinuity of the exact functional in an example of a Mott-Insulator, one-dimensional stretched H2.
Density gradient expansion of correlation functions
NASA Astrophysics Data System (ADS)
van Leeuwen, Robert
2013-04-01
We present a general scheme based on nonlinear response theory to calculate the expansion of correlation functions such as the pair-correlation function or the exchange-correlation hole of an inhomogeneous many-particle system in terms of density derivatives of arbitrary order. We further derive a consistency condition that is necessary for the existence of the gradient expansion. This condition is used to carry out an infinite summation of terms involving response functions up to infinite order from which it follows that the coefficient functions of the gradient expansion can be expressed in terms of the local density profile rather than the background density around which the expansion is carried out. We apply the method to the calculation of the gradient expansion of the one-particle density matrix to second order in the density gradients and recover in an alternative manner the result of Gross and Dreizler [Gross and Dreizler, Z. Phys. AZPAADB0340-219310.1007/BF01413038 302, 103 (1981)], which was derived using the Kirzhnits method. The nonlinear response method is more general and avoids the turning point problem of the Kirzhnits expansion. We further give a description of the exchange hole in momentum space and confirm the wave vector analysis of Langreth and Perdew [Langreth and Perdew, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.21.5469 21, 5469 (1980)] for this case. This is used to derive that the second-order gradient expansion of the system averaged exchange hole satisfies the hole sum rule and to calculate the gradient coefficient of the exchange energy without the need to regularize divergent integrals.
Density-Functional Theory of Thermal Transport
NASA Astrophysics Data System (ADS)
Eich, F. G.; Principi, A.; di Ventra, M.; Vignale, G.
2014-03-01
We have recently introduced a non-equilibrium density-functional theory of local temperature and associated energy density that is suitable for the study of thermoelectric phenomena from first principles. This theory rests on a local temperature field coupled to the energy-density operator. Here we apply the theory to a simple two-terminal setup, in which the terminals are held at different temperatures. We show that our treatment becomes equivalent to the standard Landauer-Büttiker formulation of thermal transport in the non-interacting limit. We gratefully acknowledge support from DOE under Grant No. DE-FG02-05ER46203 (FGE, AP, GV) and DE-FG02-05ER46204 (MD).
Jankowski, K; Nowakowski, K; Grabowski, I; Wasilewski, J
2009-04-28
The problem of linking the dynamic electron correlation effects defined in traditional ab initio methods [or wave function theories (WFTs)] with the structure of the individual density functional theory (DFT) exchange and correlation functionals has been analyzed for the Ne atom, for which nondynamic correlation effects play a negligible role. A density-based approach directly hinged on difference radial-density (DRD) distributions defined with respect the Hartree-Fock radial density has been employed for analyzing the impact of dynamic correlation effects on the density. Attention has been paid to the elimination of basis-set incompleteness errors. The DRD distributions calculated by several ab initio methods have been compared to their DFT counterparts generated for representatives of several generations of broadly used exchange-correlation functionals and for the recently developed orbital-dependent OEP2 exchange-correlation functional [Bartlett et al., J. Chem. Phys. 122, 034104 (2005)]. For the local, generalized-gradient, and hybrid functionals it has been found that the dynamic correlation effects are to a large extend accounted for by densities resulting from exchange-only calculations. Additional calculations with self-interaction corrected exchange potentials indicate that this finding cannot be explained as an artifact caused by the self-interaction error. It has been demonstrated that the VWN5 and LYP correlation functionals do not represent any substantial dynamical correlation effects on the electron density, whereas these effects are well represented by the orbital-dependent OEP2 correlation functional. Critical comparison of the present results with their counterparts reported in literature has been made. Some attention has been paid to demonstrating the differences between the energy- and density-based perspectives. They indicate the usefulness of density-based criteria for developing new exchange-correlation functionals. PMID:19405556
NASA Astrophysics Data System (ADS)
Jankowski, K.; Nowakowski, K.; Grabowski, I.; Wasilewski, J.
2009-04-01
The problem of linking the dynamic electron correlation effects defined in traditional ab initio methods [or wave function theories (WFTs)] with the structure of the individual density functional theory (DFT) exchange and correlation functionals has been analyzed for the Ne atom, for which nondynamic correlation effects play a negligible role. A density-based approach directly hinged on difference radial-density (DRD) distributions defined with respect the Hartree-Fock radial density has been employed for analyzing the impact of dynamic correlation effects on the density. Attention has been paid to the elimination of basis-set incompleteness errors. The DRD distributions calculated by several ab initio methods have been compared to their DFT counterparts generated for representatives of several generations of broadly used exchange-correlation functionals and for the recently developed orbital-dependent OEP2 exchange-correlation functional [Bartlett et al., J. Chem. Phys. 122, 034104 (2005)]. For the local, generalized-gradient, and hybrid functionals it has been found that the dynamic correlation effects are to a large extend accounted for by densities resulting from exchange-only calculations. Additional calculations with self-interaction corrected exchange potentials indicate that this finding cannot be explained as an artifact caused by the self-interaction error. It has been demonstrated that the VWN5 and LYP correlation functionals do not represent any substantial dynamical correlation effects on the electron density, whereas these effects are well represented by the orbital-dependent OEP2 correlation functional. Critical comparison of the present results with their counterparts reported in literature has been made. Some attention has been paid to demonstrating the differences between the energy- and density-based perspectives. They indicate the usefulness of density-based criteria for developing new exchange-correlation functionals.
Density functional calculations on model tyrosyl radicals.
Himo, F; Gräslund, A; Eriksson, L A
1997-01-01
A gradient-corrected density functional theory approach (PWP86) has been applied, together with large basis sets (IGLO-III), to investigate the structure and hyperfine properties of model tyrosyl free radicals. In nature, these radicals are observed in, e.g., the charge transfer pathways in photosystem II (PSII) and in ribonucleotide reductases (RNRs). By comparing spin density distributions and proton hyperfine couplings with experimental data, it is confirmed that the tyrosyl radicals present in the proteins are neutral. It is shown that hydrogen bonding to the phenoxyl oxygen atom, when present, causes a reduction in spin density on O and a corresponding increase on C4. Calculated proton hyperfine coupling constants for the beta-protons show that the alpha-carbon is rotated 75-80 degrees out of the plane of the ring in PSII and Salmonella typhimurium RNR, but only 20-30 degrees in, e.g., Escherichia coli, mouse, herpes simplex, and bacteriophage T4-induced RNRs. Furthermore, based on the present calculations, we have revised the empirical parameters used in the experimental determination of the oxygen spin density in the tyrosyl radical in E. coli RNR and of the ring carbon spin densities, from measured hyperfine coupling constants. Images FIGURE 1 FIGURE 5 PMID:9083661
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students
ERIC Educational Resources Information Center
Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin
2015-01-01
A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…
Electrochemical phase diagrams for Ti oxides from density functional calculations
NASA Astrophysics Data System (ADS)
Huang, Liang-Feng; Rondinelli, James M.
2015-12-01
Developing an accurate simulation method for the electrochemical stability of solids, as well as understanding the physics related with its accuracy, is critically important for improving the performance of compounds and predicting the stability of new materials in aqueous environments. Herein we propose a workflow for the accurate calculation of first-principles electrochemical phase (Pourbaix) diagrams. With this scheme, we study the electrochemical stabilities of Ti and Ti oxides using density-functional theory. First, we find the accuracy of an exchange-correlation functional in predicting formation energies and electrochemical stabilities is closely related with the electronic exchange interaction therein. Second, the metaGGA and hybrid functionals with a more precise description of the electronic exchange interaction lead to a systematic improvement in the accuracy of the Pourbaix diagrams. Furthermore, we show that accurate Ti Pourbaix diagrams also require that thermal effects are included through vibrational contributions to the free energy. We then use these diagrams to explain various experimental electrochemical phenomena for the Ti-O system, and show that if experimental formation energies for Ti oxides, which contain contributions from defects owing to their generation at high (combustion) temperatures, are directly used to predict room temperature Pourbaix diagrams then significant inaccuracies result. In contrast, the formation energies from accurate first-principles calculations, e.g., using metaGGA and hybrid functionals, are found to be more reliable. Finally, to facilitate the future application of our accurate electrochemical phase equilibria diagrams, the variation of the Ti Pourbaix diagrams with aqueous ion concentration is also provided.
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
Excitations and benchmark ensemble density functional theory for two electrons
Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.
2014-05-14
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Properties of the cosmological density distribution function
NASA Astrophysics Data System (ADS)
Bernardeau, Francis; Kofman, Lev
1995-04-01
The properties of the probability distribution function (PDF) of the cosmological continuous density field are studied. We focus our analysis on the quasi-linear regime where various calculations, based on dynamically motivated methods, have been presented: either by using the Zel'dovich approximation (ZA) or by using the perturbation theory to evaluate the behavior of the moments of the distribution function. We show how these two approaches are related to each other and that they can be used in a complementary way. For that respect, the one-dimensional dynamics, where the ZA is exact solution, has first been used as a testing ground. In particular, we show that, when the density PDF obtained with the ZA is regularized, its various moments exhibit the behavior expected by the perturbation theory applied to the ZA. We show that ZA approach can be used for arbitrary initial conditions (not only Gaussian) and that the nonlinear evolution of the moments can be obtained. The perturbation theory can be used for the exact dynamics. We take into account the final filtering of the density field both for ZA and perturbation theory. Applying these techniques, we got the generating function of the moments for the one-dimensional dynamics, the three-dimensional ZA, with and without smoothing effects. We also suggest methods to build PDFs. One is based on the Laplace inverse transform of the moment generating function. The other, the Edgeworth expansion, is obtained when the previous generating function is truncated at a given order and allows evaluation of the PDF out of limited number of moments. It provides insight on the relationship between the moments and the shape of the density PDF. In particular, it provides an alternative method to evaluate the skewness and kurtosis by measuring the PDF around its maximum. Eventually, results obtained from a numerical simulation with cold dark matter initial conditions have been used to validate the accuracy of the considered
Momentum distribution function of the electron gas at metallic densities
NASA Astrophysics Data System (ADS)
Takada, Yasutami; Yasuhara, H.
1991-10-01
The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.
Density functional theory for strongly-correlated ultracold dipolar gases
NASA Astrophysics Data System (ADS)
Malet Giralt, Francesc; Reimann, Stephanie; Gori-Giorgi, Paola; Lund University Collaboration
2014-03-01
We address quasi-one-dimensional strongly-correlated dipolar ultracold gases by means of density functional theory. We make use of an approximation for the Hartree-exchange-correlation that has been shown to be very accurate for electronic systems with coulombic interactions. We show that this approach allows to treat systems with very large particle numbers at relatively low computational cost. This work has been supported by a VIDI grant of the NWO and a Marie Curie grant within the FP7 programme.
Accurate and robust methods for variable density incompressible flows with discontinuities
Rider, W.J.; Kothe, D.B.; Puckett, E.G.
1996-09-01
We are interested in the solution of incompressible flows which are characterized by large density variations, interfacial physics, arbitrary material topologies and strong vortical content. The issues present in constant density incompressible flow are exacerbated by the presence of density discontinuities. A much greater premium requirement is placed the positivity of computed quantities The mechanism of baroclinc vorticity generation exists ({gradient}p x {gradient}p) to further complicate the physics.
Analysis of the local-density approximation of density-functional theory
NASA Astrophysics Data System (ADS)
Sahni, Viraht; Bohnen, K.-P.; Harbola, Manoj K.
1988-03-01
In this paper we perform a configuration-space analysis of the local-density approximation (LDA) for the exchange-correlation energy functional of Kohn-Sham density-functional theory in terms of the corresponding average exchange-correlation charge (hole) and energy densities. According to our analysis, the explanation for the quantitative success of the LDA based on the hole charge-conservation sum rule and the assumed consequent cancellation of errors in the spherical averages of the hole is inadequate. The principal conclusion of our work is that the constraint of charge neutrality is a necessary but not sufficient condition for an approximate energy functional to lead to accurate ground-state energies and ionization potentials. The significant additional requirement for the functional is that it must, at least qualitatively, reproduce correctly the structure of the hole as a function of electron position. We perform our calculations within the exchange-only approximation as applied to atoms and jellium metal surfaces. In atoms the Fermi hole is localized about the nucleus; as a consequence the LDA Fermi hole is accurate only for electron positions close to it. However, we show that the spherically averaged LDA hole is accurate for electron positions in the shell regions; it is substantially in error in the intershell and classically forbidden regions. The fact that the principal contribution to the exchange energy comes from the inner-shell region of the atom, where the LDA hole is accurate, explains why the errors in the LDA ground-state energies are small. However, the ionization potential, which depends on the structure of the hole in the outer regions of the atom, is substantially in error in the LDA since here the LDA hole differs significantly from the exact one. For metallic surfaces, on the other hand, as an electron is pulled from within the metal to infinity outside, the Fermi hole is delocalized and spread throughout the crystal. As a consequence
Pseudospectral time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Ko, Chaehyuk; Malick, David K.; Braden, Dale A.; Friesner, Richard A.; Martínez, Todd J.
2008-03-01
Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.
Self-consistent polarization density functional theory: Application to Argon
Maerzke, Katie A.; Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.; Siepmann, J. I.
2009-03-12
We present a comprehensive set of results for argon, a case study in weak interactions, using the selfconsistent polarization density functional theory (SCP-DFT). With minimal parameterization, SCPDFT is found is give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic (fcc) crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.
Fundamental gap of molecular crystals via constrained density functional theory
NASA Astrophysics Data System (ADS)
Droghetti, Andrea; Rungger, Ivan; Das Pemmaraju, Chaitanya; Sanvito, Stefano
2016-05-01
The energy gap of a molecular crystal is one of the most important properties since it determines the crystal charge transport when the material is utilized in electronic devices. This is, however, a quantity difficult to calculate and standard theoretical approaches based on density functional theory (DFT) have proven unable to provide accurate estimates. In fact, besides the well-known band-gap problem, DFT completely fails in capturing the fundamental gap reduction occurring when molecules are packed in a crystal structures. The failure has to be associated with the inability of describing the electronic polarization and the real space localization of the charged states. Here we describe a scheme based on constrained DFT, which can improve upon the shortcomings of standard DFT. The method is applied to the benzene crystal, where we show that accurate results can be achieved for both the band gap and also the energy level alignment.
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
Recent progress in density functional theory
NASA Astrophysics Data System (ADS)
Truhlar, Donald
2014-03-01
Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.
Modulation Based on Probability Density Functions
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2009-01-01
A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228
Scrutinizing "Invisible" astatine: A challenge for modern density functionals.
Sergentu, Dumitru-Claudiu; David, Grégoire; Montavon, Gilles; Maurice, Rémi; Galland, Nicolas
2016-06-01
The main-group 6p elements did not receive much attention in the development of recent density functionals. In many cases it is still difficult to choose among the modern ones a relevant functional for various applications. Here, we illustrate the case of astatine species (At, Z = 85) and we report the first, and quite complete, benchmark study on several properties concerning such species. Insights on geometries, transition energies and thermodynamic properties of a set of 19 astatine species, for which reference experimental or theoretical data has been reported, are obtained with relativistic (two-component) density functional theory calculations. An extensive set of widely used functionals is employed. The hybrid meta-generalized gradient approximation (meta-GGA) PW6B95 functional is overall the best choice. It is worth noting that the range-separated HSE06 functional as well as the old and very popular B3LYP and PBE0 hybrid-GGAs appear to perform quite well too. Moreover, we found that astatine chemistry in solution can accurately be predicted using implicit solvent models, provided that specific parameters are used to build At cavities. © 2016 Wiley Periodicals, Inc. PMID:27059181
Van der Waals Interactions in Density Functional Theory: Intermolecular Complexes
NASA Astrophysics Data System (ADS)
Kannemann, Felix; Becke, Axel
2010-03-01
Conventional density functional theory (GGA and hybrid functionals) fails to account for dispersion interactions and is therefore not applicable to systems where van der Waals interactions play a dominant role, such as intermolecular complexes and biomolecules. The exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)] corrects for this deficiency. We have previously shown that the XDM dispersion model can be combined with standard GGA functionals (PW86 for exchange and PBE for correlation) to give accurate binding energy curves for rare-gas diatomics [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009)]. Here we present further tests of the GGA-XDM method using benchmark sets including hydrogen bonding, electrostatic, dispersion and stacking interactions, and systems ranging from rare-gas diatomics to biomolecular complexes.
Local spin analyses using density functional theory
NASA Astrophysics Data System (ADS)
Abate, Bayileyegn; Peralta, Juan
Local spin analysis is a valuable technique in computational investigations magnetic interactions on mono- and polynuclear transition metal complexes, which play vital roles in catalysis, molecular magnetism, artificial photosynthesis, and several other commercially important materials. The relative size and complex electronic structure of transition metal complexes often prohibits the use of multi-determinant approaches, and hence, practical calculations are often limited to single-determinant methods. Density functional theory (DFT) has become one of the most successful and widely used computational tools for the electronic structure study of complex chemical systems; transition metal complexes in particular. Within the DFT formalism, a more flexible and complete theoretical modeling of transition metal complexes can be achieved by considering noncollinear spins, in which the spin density is 'allowed to' adopt noncollinear structures in stead of being constrained to align parallel/antiparallel to a universal axis of magnetization. In this meeting, I will present local spin analyses results obtained using different DFT functionals. Local projection operators are used to decompose the expectation value
Garcia-Aldea, David; Alvarellos, J. E.
2008-02-15
We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved.
Fast and accurate probability density estimation in large high dimensional astronomical datasets
NASA Astrophysics Data System (ADS)
Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.
2015-01-01
Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.
Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure
NASA Technical Reports Server (NTRS)
Sibonga, Jean
2009-01-01
We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.
Density functional studies of representative pericyclic reactions
NASA Astrophysics Data System (ADS)
Carpenter, John E.; Sosa, Carlos P.
1994-07-01
Density functional theory (DFT) has traditionally been shunned by computational chemists, but has long seen widespread use in the physics community. Recently, however, DFT has been adopted by the ab initio quantum chemistry community and much activity has been devoted to refining the methodology and exploring the range of its applicability. We investigate the use of DFT (both local (LDF) and non-local (NLDF) spin density approximations) to calculate transition and equilibrium structures for three representative pericyclic reactions: the electrocyclic ring opening reaction of cyclobutene, the [1,5] sigmatropic hydrogen shift reaction in (Z)-1,3-pentadiene, and the Diels-Alder cycloaddition reaction between ethylene and butadiene. LDF theory tends to overemphasize the stability of the ringed structures in each of these reactions. For example, LDF predicts a very low (6 kcal mol -1) barrier to reaction for the Deils-Alder reaction. NLDF theory substantially improves the calculated reaction barrier (20 kcal mol -1), but it is still low with respect to experiment.
Semiconductor Thermochemistry in Density Functional Calculations
Lany, S.
2008-01-01
The local-density and generalized gradient approximations (LDA and GGA) to density functional theory (DFT) exhibit incomplete error cancellation when energy differences are taken between chemically dissimilar systems. This energy inconsistency is manifested, e.g., in the tendency to underestimate the heat (enthalpy) of formation of semiconducting and insulating compounds in LDA and, even more so, in GGA. Considering a set of 61 compounds that can be formed from 14 elements (cations: Cu, Mg, Ca, Zn, Cd, Al, Ga, and In; anions: N, P, As, O, S, and Se), optimized elemental reference energies are determined by least-squares error minimization of an overdetermined set of linear equations. These elemental energies are 'optimally consistent' with the DFT energies of the semiconductor compounds and imply corrections of up to 1 eV compared to the respective LDA or GGA energies. While these 'corrections' are not to be understood to yield the correct absolute total energies of the elements, they are proposed to give appropriate bounds for the chemical potentials for thermodynamic processes in semiconductors and insulators, such as, e.g., defect formation, surface reconstruction, or catalytic processes. The present model allows to evaluate thermodynamic processes using DFT energy differences taken only between systems that are expected to show good error cancellation.
Carrier Modulation Via Waveform Probability Density Function
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2004-01-01
Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.
Carrier Modulation Via Waveform Probability Density Function
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2006-01-01
Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.
Phases of Polonium via Density Functional Theory
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu J.
2010-01-01
The thermodynamical properties of the main phases of metallic polonium are examined using density functional theory. The exceptional nature of the solid-solid phase transition of α to β Po is underlined: it induces a lowering in symmetry, from cubic to rhombohedral, with increasing temperature. This is explained as the result of a delicate balance between bonding and entropic effects. Overall agreement with existing experimental data is good by state-of-the-art standards. The phonons of Po present Kohn anomalies, and it is shown that the effect of spin-orbit interactions is the inverse of that in normal metals: due to the nonspherical nature of the Fermi Surface, spin-orbit effects reduce nesting and harden most phonon frequencies.
Effective potential in density matrix functional theory.
Nagy, A; Amovilli, C
2004-10-01
In the previous paper it was shown that in the ground state the diagonal of the spin independent second-order density matrix n can be determined by solving a single auxiliary equation of a two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a two-particle problem. The effective potential of the two-particle equation contains a term v(p) of completely kinetic origin. Virial theorem and hierarchy of equations are derived for v(p) and simple approximations are proposed. A relationship between the effective potential u(p) of the shape function equation and the potential v(p) is established. PMID:15473719
Towards the island of stability with relativistic energy density functionals
Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.
2012-10-20
Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.
Kohn-Sham density-functional theory and renormalization of many-body perturbation expansions
NASA Astrophysics Data System (ADS)
Valiev, Marat
1998-03-01
Numerous practical applications provide strong evidence that despite its simplicity and crude approximations, density-functional theory leads to a rather accurate description of ground state properties of various condensed matter systems. Although well documented numerically, to our knowledge a theoretical explanation of the accuracy of density-functional theory has not been given. This issue is clarified in this work by demonstrating that density-functional theory represents a particular renormalization procedure of a many-body perturbation expansion. In other words, it is shown that density-functional theory is a many-body perturbation theory whose convergence properties have been optimized. The realization of this fact brings new meaning into density-functional theory and explains the success of density-functional based calculations. For more information go to http://alchemy.ucsd.edu/marat/ .
A method to measure the density of seawater accurately to the level of 10-6
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Wolf, Henning; Hassel, Egon
2016-04-01
A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.
Accurate definition of brain regions position through the functional landmark approach.
Thirion, Bertrand; Varoquaux, Gaël; Poline, Jean-Baptiste
2010-01-01
In many application of functional Magnetic Resonance Imaging (fMRI), including clinical or pharmacological studies, the definition of the location of the functional activity between subjects is crucial. While current acquisition and normalization procedures improve the accuracy of the functional signal localization, it is also important to ensure that functional foci detection yields accurate results, and reflects between-subject variability. Here we introduce a fast functional landmark detection procedure, that explicitly models the spatial variability of activation foci in the observed population. We compare this detection approach to standard statistical maps peak extraction procedures: we show that it yields more accurate results on simulations, and more reproducible results on a large cohort of subjects. These results demonstrate that explicit functional landmark modeling approaches are more effective than standard statistical mapping for brain functional focus detection. PMID:20879321
Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.
Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi
2016-05-19
We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach. PMID:26651840
A density functional for sparse matter
NASA Astrophysics Data System (ADS)
Langreth, D. C.; Lundqvist, B. I.; Chakarova-Käck, S. D.; Cooper, V. R.; Dion, M.; Hyldgaard, P.; Kelkkanen, A.; Kleis, J.; Kong, Lingzhu; Li, Shen; Moses, P. G.; Murray, E.; Puzder, A.; Rydberg, H.; Schröder, E.; Thonhauser, T.
2009-02-01
Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed for the nonlocal correlations between electrons and applied to various relevant molecules and materials, including to those layered systems like graphite, boron nitride and molybdenum sulfide, to dimers of benzene, polycyclic aromatic hydrocarbons (PAHs), doped benzene, cytosine and DNA base pairs, to nonbonding forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators. Comparison with results from wavefunction calculations for the smaller systems and with experimental data for the extended ones show the vdW-DF path to be promising. This could have great ramifications.
NASA Astrophysics Data System (ADS)
Öz, E.; Batsch, F.; Muggli, P.
2016-09-01
A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.
An affordable and accurate conductivity probe for density measurements in stratified flows
NASA Astrophysics Data System (ADS)
Carminati, Marco; Luzzatto-Fegiz, Paolo
2015-11-01
In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.
Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young
2015-07-01
This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-01
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations. PMID:26575912
Density Functional Theory study of the equilibrium density of water at normal conditions
NASA Astrophysics Data System (ADS)
Wang, Jue; Roman-Perez, Guillermo; Soler, Jose M.; Artacho, Emilio; Fernandez-Serra, Marivi
2010-03-01
Ab initio molecular dynamics of liquid water with the use of density functional theory (DFT) currently underperform experimental equilibrium density 1g/cm^3 under room temperature. At constant density, not much is known about the equilibrium density of commonly used GGA functionals in liquid water simulations. We present a DFT-based AIMD study of liquid water at different densities and analyze the structure and diffusivity of water with different exchange and correlation functionals. We show that all current GGA functionals fail to reproduce experimental density, however, the explicit description of long range correlations through a Van der Walls density functional (DRSLL)footnotetextM. Dion, H. Rydberg, E. Schr"oder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004) can potentially transform our current understanding of the structure of liquid water. Our results shows that this new functional improves density, with only 2% error to experiment. But it underperforms GGA functionals in terms of structure.
Flexoelectricity from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano
2013-11-01
We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.
Bone mineral density, adiposity, and cognitive functions
Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.
2015-01-01
Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279
Bone mineral density, adiposity, and cognitive functions.
Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N
2015-01-01
Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279
Density functional theory in the solid state
Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.
2014-01-01
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184
Photostriction in Ferroelectrics from Density Functional Theory
NASA Astrophysics Data System (ADS)
Paillard, Charles; Xu, Bin; Dkhil, Brahim; Geneste, Grégory; Bellaiche, L.
2016-06-01
An ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed ne concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of ne. This method is applied to bulk multiferroic BiFeO3 and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect.
Dynamical density functional theory for microswimmers
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.; Saha, Arnab; Hoell, Christian; Löwen, Hartmut
2016-01-01
Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers, the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state," which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.
Photostriction in Ferroelectrics from Density Functional Theory.
Paillard, Charles; Xu, Bin; Dkhil, Brahim; Geneste, Grégory; Bellaiche, L
2016-06-17
An ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed n_{e} concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of n_{e}. This method is applied to bulk multiferroic BiFeO_{3} and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect. PMID:27367406
NASA Astrophysics Data System (ADS)
Roquet, F.; Madec, G.; McDougall, Trevor J.; Barker, Paul M.
2015-06-01
A new set of approximations to the standard TEOS-10 equation of state are presented. These follow a polynomial form, making it computationally efficient for use in numerical ocean models. Two versions are provided, the first being a fit of density for Boussinesq ocean models, and the second fitting specific volume which is more suitable for compressible models. Both versions are given as the sum of a vertical reference profile (6th-order polynomial) and an anomaly (52-term polynomial, cubic in pressure), with relative errors of ∼0.1% on the thermal expansion coefficients. A 75-term polynomial expression is also presented for computing specific volume, with a better accuracy than the existing TEOS-10 48-term rational approximation, especially regarding the sound speed, and it is suggested that this expression represents a valuable approximation of the TEOS-10 equation of state for hydrographic data analysis. In the last section, practical aspects about the implementation of TEOS-10 in ocean models are discussed.
More accurate fitting of {sup 125}I and {sup 103}Pd radial dose functions
Taylor, R. E. P.; Rogers, D. W. O.
2008-09-15
In this study an improved functional form for fitting the radial dose functions, g(r), of {sup 125}I and {sup 103}Pd brachytherapy seeds is presented. The new function is capable of accurately fitting radial dose functions over ranges as large as 0.05 cm{<=}r{<=}10 cm for {sup 125}I seeds and 0.10 cm{<=}r{<=}10 cm for {sup 103}Pd seeds. The average discrepancies between fit and calculated data are less than 0.5% over the full range of fit and maximum discrepancies are 2% or less. The fitting function is also capable of accounting for the sharp increase in g(r) (upturn) seen for some sources for r<0.1 cm. This upturn has previously been attributed to the breakdown of the approximation of the sources as a line, however, in this study we demonstrate that another contributing factor is the 4.5 keV characteristic x-rays emitted from the Ti seed casing. Radial dose functions are calculated for 18 {sup 125}I seeds and 9 {sup 103}Pd seeds using the EGSnrc Monte Carlo user-code BrachyDose. Fitting coefficients of the new function are tabulated for all 27 seeds. Extrapolation characteristics of the function are also investigated. The new functional form is an improvement over currently used fitting functions with its main strength being the ability to accurately fit the rapidly varying radial dose function at small distances. The new function is an excellent candidate for fitting the radial dose function of all {sup 103}Pd and {sup 125}I brachytherapy seeds and will increase the accuracy of dose distributions calculated around brachytherapy seeds using the TG-43 protocol over a wider range of data. More accurate values of g(r) for r<0.5 cm may be particularly important in the treatment of ocular melanoma.
Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.
Sharma, Ashok K; Gupta, Ankit; Kumar, Sanjiv; Dhakan, Darshan B; Sharma, Vineet K
2015-07-01
Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annotate and classify proteins are extremely slow. Therefore, to achieve faster and accurate functional annotation, we have developed an orthology-based functional classifier 'Woods' by using a combination of machine learning and similarity-based approaches. Woods displayed a precision of 98.79% on independent genomic dataset, 96.66% on simulated metagenomic dataset and >97% on two real metagenomic datasets. In addition, it performed >87 times faster than BLAST on the two real metagenomic datasets. Woods can be used as a highly efficient and accurate classifier with high-throughput capability which facilitates its usability on large metagenomic datasets. PMID:25863333
The Nuclear Energy Density Functional Formalism
NASA Astrophysics Data System (ADS)
Duguet, T.
The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.
Steele, Mark A.; Forrester, Graham E.
2005-01-01
Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats. PMID:16150721
Steele, Mark A; Forrester, Graham E
2005-09-20
Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats. PMID:16150721
LETTER TO THE EDITOR: Mean-field dynamical density functional theory
NASA Astrophysics Data System (ADS)
Dzubiella, J.; Likos, C. N.
2003-02-01
We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini, Bettolo, Marconi and Tarazona (1999 J. Chem. Phys. 110 8032), supplied by an equilibrium excess free energy functional that is essentially exact. We complement our theoretical analysis by carrying out extensive Brownian dynamics simulations. We find excellent agreement between theory and simulations for the whole time evolution of density profiles, demonstrating thereby the validity of the DDFT when an accurate equilibrium free energy functional is employed.
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2013-03-01
The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy. PMID:26574206
A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies
2014-01-01
We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys.1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616
A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies.
Truchon, Jean-François; Pettitt, B Montgomery; Labute, Paul
2014-03-11
We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys. 1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616
A half century of density functional theory
Zangwill, Andrew
2015-07-15
Today’s most popular method for calculating the electronic structure of atoms, molecules, liquids, solids, and plasmas began as a bold hypothesis: The electron density distribution completely characterizes the ground state of a many-electron system.
Fattebert, J.-L.
2010-01-20
An Accelerated Block Preconditioned Gradient (ABPG) method is proposed to solve electronic structure problems in Density Functional Theory. This iterative algorithm is designed to solve directly the non-linear Kohn-Sham equations for accurate discretization schemes involving a large number of degrees of freedom. It makes use of an acceleration scheme similar to what is known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of convergence for large scale applications using a finite difference discretization and multigrid preconditioning.
Building A Universal Nuclear Energy Density Functional (UNEDF)
Joe Carlson; Dick Furnstahl; Mihai Horoi; Rusty Lusk; Witek Nazarewicz; Esmond Ng; Ian Thompson; James Vary
2012-09-30
During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
Goel, Himanshu; Butler, Charles L; Windom, Zachary W; Rai, Neeraj
2016-07-12
Recent developments in dispersion corrected and nonlocal density functionals are aimed at accurately capturing dispersion interactions, a key shortcoming of local and semilocal approximations of density functional theory. These functionals have shown significant promise for dimers and small clusters of molecules as well as crystalline materials. However, their efficacy for predicting vapor liquid equilibria is largely unexplored. In this work, we examine the accuracy of dispersion-corrected and nonlocal van der Waals functionals by computing the vapor liquid coexistence curves (VLCCs) of hydrofluoromethanes. Our results indicate that the PBE-D3 functional performs significantly better in predicting saturated liquid densities than the rVV10 functional. With the PBE-D3 functional, we also find that as the number of fluorine atoms increase in the molecule, the accuracy of saturated liquid density prediction improves as well. All the functionals significantly underpredict the saturated vapor densities, which also result in an underprediction of saturated vapor pressure of all compounds. Despite the differences in the bulk liquid densities, the local microstructures of the liquid CFH3 and CF2H2 are relatively insensitive to the density functional employed. For CF3H, however, rVV10 predicts slightly more structured liquid than the PBE-D3 functional. PMID:27295451
Peverati, Roberto; Truhlar, Donald G.
2012-01-01
The recently developed SOGGA11 and M11-L density functionals have been tested for the prediction of bandgaps and lattice constants by comparing to databases containing 31 bandgaps and 34 lattice constants. To make a comparative assessment we also test several other density functionals against the same databases; in particular, we test the local spin density approximation, PBE, PBEsol, SOGGA, TPSS, revTPSS, and M06-L local density functionals and the HSE screened-exchange hybrid nonlocal density functional; and for a subset of 13 lattice constants we also compare the mean errors to those of the AM05 and WC local density functionals and the HISS and HSEsol nonlocal density functionals. The tests show that, of the ten functionals tested against all 65 data, the SOGGA, PBEsol, and HSE functionals are the most accurate for lattice constants, whereas the HSE, M11-L, and M06-L density functionals are the most accurate for bandgaps. However, the SOGGA11 density functional is the most accurate generalized gradient approximation for bandgaps. PMID:22482577
a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.
NASA Astrophysics Data System (ADS)
Cowan, Mark Timothy
The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.
NASA Astrophysics Data System (ADS)
Peng, Liang-You; Gong, Qihuang
2010-12-01
The accurate computations of hydrogenic continuum wave functions are very important in many branches of physics such as electron-atom collisions, cold atom physics, and atomic ionization in strong laser fields, etc. Although there already exist various algorithms and codes, most of them are only reliable in a certain ranges of parameters. In some practical applications, accurate continuum wave functions need to be calculated at extremely low energies, large radial distances and/or large angular momentum number. Here we provide such a code, which can generate accurate hydrogenic continuum wave functions and corresponding Coulomb phase shifts at a wide range of parameters. Without any essential restrict to angular momentum number, the present code is able to give reliable results at the electron energy range [10,10] eV for radial distances of [10,10] a.u. We also find the present code is very efficient, which should find numerous applications in many fields such as strong field physics. Program summaryProgram title: HContinuumGautchi Catalogue identifier: AEHD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1233 No. of bytes in distributed program, including test data, etc.: 7405 Distribution format: tar.gz Programming language: Fortran90 in fixed format Computer: AMD Processors Operating system: Linux RAM: 20 MBytes Classification: 2.7, 4.5 Nature of problem: The accurate computation of atomic continuum wave functions is very important in many research fields such as strong field physics and cold atom physics. Although there have already existed various algorithms and codes, most of them can only be applicable and reliable in a certain range of parameters. We present here an accurate FORTRAN program for
Assumed Probability Density Functions for Shallow and Deep Convection
NASA Astrophysics Data System (ADS)
Bogenschutz, Peter A.; Krueger, Steven K.; Khairoutdinov, Marat
2010-04-01
The assumed joint probability density function (PDF) between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS) parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PDF families are based on the double Gaussian form and the remaining two are the single Gaussian and a Double Delta Function (analogous to a mass flux model). The assumed PDF method is tested for grid sizes as small as 0.4 km to as large as 204.8 km. In addition, studies are performed for PDF sensitivity to errors in the input moments and for how well the PDFs diagnose some higher-order moments. In general, the double Gaussian PDFs more accurately represent SGS cloud structure and turbulence moments in the boundary layer compared to the single Gaussian and Double Delta Function PDFs for the range of grid sizes tested. This is especially true for small SGS cloud fractions. While the most complex PDF, Lewellen-Yoh, better represents shallow convective cloud properties (cloud fraction and liquid water mixing ratio) compared to the less complex Analytic Double Gaussian 1 PDF, there appears to be no advantage in implementing Lewellen-Yoh for deep convection. However, the Analytic Double Gaussian 1 PDF better represents the liquid water flux, is less sensitive to errors in the input moments, and diagnoses higher order moments more accurately. Between the Lewellen-Yoh and Analytic Double Gaussian 1 PDFs, it appears that neither family is distinctly better at representing cloudy layers. However, due to the reduced computational cost and fairly robust results, it appears that the Analytic Double Gaussian 1 PDF could be an ideal family for SGS cloud and turbulence representation in coarse
Fermionic density functional at a Feshbach resonance
Seidl, Michael; Bhaduri, Rajat K.
2007-05-15
We consider a dilute gas of neutral unpolarized fermionic atoms at zero temperature. The atoms interact via a short-range (tunable) attractive interaction. We demonstrate analytically a curious property of the gas at unitarity. Namely, the correlation energy of the gas, evaluated by second-order perturbation theory, has the same density dependence as the first-order exchange energy, and the two almost exactly cancel each other at a Feshbach resonance irrespective of the shape of the potential, provided ({mu}r{sub s})>>1. Here ({mu}){sup -1} is the range of the two-body potential, and r{sub s} is defined through the number density, n=3/(4{pi}r{sub s}{sup 3}). The implications of this result for universality are discussed.
Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo
2015-05-28
A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range. PMID:26026447
Molecular dynamics simulation of liquid water: Hybrid density functionals
Todorova, T; Seitsonen, A; Hutter, J; Kuo, W; Mundy, C
2005-09-12
The structure, dynamical and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta functional, four gradient corrected functionals, the local density and Hartree-Fock approximation. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and under-structured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller averaged numbers of hydrogen bonds and similar hydrogen bond populations as pure density functionals. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than from the corresponding pure density functionals.
Designing Meaningful Density Functional Theory Calculations in Materials Science
NASA Astrophysics Data System (ADS)
Mattsson, A. E.
2005-07-01
Density functional theory (DFT) methods for calculating the quantum mechanical ground states of condensed matter systems are now a common and significant component of materials research. These methods are also increasingly used in Equation of State work, in particular in the warm dense matter regime. The growing importance of DFT reflects the development of sufficiently accurate functionals, efficient algorithms, and continuing improvements in computing capabilities. As the materials problems to which DFT is applied have become large and complex, so have the sets of calculations necessary to investigate a given problem. Highly versatile, powerful codes exist to serve the practitioner, but designing useful simulations is a complicated task, involving intricate manipulation of many variables, with many pitfalls for the unwary and the inexperienced. We give an overview of DFT and discuss several of the most important issues that go into designing a meaningful DFT calculation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Phonons in nonlocal van der Waals density functional theory
NASA Astrophysics Data System (ADS)
Sabatini, Riccardo; Küçükbenli, Emine; Pham, Cong Huy; de Gironcoli, Stefano
2016-06-01
We extend the formulation of density functional perturbation theory to treat nonlocal density functionals, accounting for van der Waals interactions, in a rigorous and efficient way. We provide a general formalism, suitable for any functional in this family, and give specific equations for the most widely used ones. We then study the lattice dynamics of graphite, comparing several nonlocal functionals and the local density approximation, showing that our recent revision of the VV10 functional [R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013), 10.1103/PhysRevB.87.041108] gives the best comparison with experiments.
Exact conditions on the temperature dependence of density functionals
NASA Astrophysics Data System (ADS)
Burke, K.; Smith, J. C.; Grabowski, P. E.; Pribram-Jones, A.
2016-05-01
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Density-potential mapping in time-dependent density-functional theory
Maitra, N. T.; Todorov, T. N.; Woodward, C.; Burke, K.
2010-04-15
The key questions of uniqueness and existence in time-dependent density-functional theory are usually formulated only for potentials and densities that are analytic in time. Simple examples, standard in quantum mechanics, lead, however, to nonanalyticities. We reformulate these questions in terms of a nonlinear Schroedinger equation with a potential that depends nonlocally on the wave function.
Spin constraints on nuclear energy density functionals
NASA Astrophysics Data System (ADS)
Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.
2014-02-01
The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parametrization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill suited to satisfy the spin constraint. In particular, the Gogny parametrization of the three-body interaction has the spin dependence opposite to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction that can take into better account the different spin-isospin channels of the interaction.
Introduction to Classical Density Functional Theory by a Computational Experiment
ERIC Educational Resources Information Center
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Double-hybrid density-functional theory with meta-generalized-gradient approximations
Souvi, Sidi M. O. Sharkas, Kamal; Toulouse, Julien; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.
NASA Astrophysics Data System (ADS)
Skone, Jonathan; Govoni, Marco; Galli, Giulia
2015-03-01
Building upon a recently proposed self-consistent hybrid (sc-hybrid) functional, where the optimal dielectric screening is included self-consistently, we propose an improved form by incorporating range-separation of the exchange part. We discuss the choice of the non-empirical parameters defining range separation, and we present results for condensed media including semiconductors, amorphous insulators, and molecular crystals. We find that the range-separated sc-hybrid functional further improves upon the electronic gaps obtained with full-range sc-hybrids, thus providing an accurate functional for high throughput band gap engineering. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and ARL Grant Number W911NF-12-2-0023.
Nuclear collective excitations: A relativistic density functional approach
NASA Astrophysics Data System (ADS)
Piekarewicz, J.
2015-08-01
Density functional theory provides the most promising, and likely unique, microscopic framework to describe nuclear systems ranging from finite nuclei to neutron stars. Properly optimized energy density functionals define a new paradigm in nuclear theory where predictive capability is possible and uncertainty quantification is demanded. Moreover, density functional theory offers a consistent approach to the linear response of the nuclear ground state. In this paper, we review the fundamental role played by nuclear collective modes in uncovering novel excitations and in guiding the optimization of the density functional. Indeed, without collective excitations the determination of the density functional remains incomplete. Without collective excitations, the equation of state of neutron-rich matter continues to be poorly constrained. We conclude with a discussion of some of the remaining challenges in this field and propose a path forward to address these challenges.
Phase-function normalization for accurate analysis of ultrafast collimated radiative transfer.
Hunter, Brian; Guo, Zhixiong
2012-04-20
The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which conserves a phase-function asymmetry factor as well as scattered energy for the Henyey-Greenstein phase function in steady-state diffuse radiative transfer analysis, is applied to the general Legendre scattering phase function in ultrafast collimated radiative transfer. Heat flux profiles in a model tissue cylinder are generated for various phase functions and compared to those generated when normalization of the collimated phase function is neglected. Energy deposition in the medium is also investigated. Lack of conservation of scattered energy and the asymmetry factor for the collimated scattering phase function causes overpredictions in both heat flux and energy deposition for highly anisotropic scattering media. In addition, a discussion is presented to clarify the time-dependent formulation of divergence of radiative heat flux. PMID:22534933
NASA Astrophysics Data System (ADS)
Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Miguel A.
2016-01-01
An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though density-functional-theory-based first-principles methods have the potential to provide the accuracy and computational efficiency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quantification of the errors introduced. In this work, we present a quantum Monte Carlo (QMC) -based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC-based force estimators and use them to gain insight into how well the local liquid structure is captured by different density functionals. We find that TPSS, BLYP, and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative differences exhibited by the major classes of functionals, and we estimate the magnitudes of these effects when possible.
Do Bond Functions Help for the Calculation of Accurate Bond Energies?
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1998-01-01
The bond energies of 8 chemically bound diatomics are computed using several basis sets with and without bond functions (BF). The bond energies obtained using the aug-pVnZ+BF basis sets (with a correction for basis set superposition error, BSSE) tend to be slightly smaller that the results obtained using the aug-pV(n+I)Z basis sets, but slightly larger than the BSSE corrected aug-pV(n+I)Z results. The aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond energies, but, in most cases, these results cannot be considered highly accurate. Extrapolation of the results obtained with basis sets including bond functions appears to be inferior to the results obtained by extrapolation using atom-centered basis sets. Therefore bond functions do not appear to offer a path for obtaining highly accurate results for chemically bound systems at a lower computational cost than atom centered basis sets.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The
NASA Astrophysics Data System (ADS)
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ˜26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ˜27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ˜24 on 30 processors. The
Density Functional Approximation for Non-Hard Sphere Fluids Subjected to External Fields
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
A theoretical way is proposed, by which any hard sphere density functional approximation (DFA) can be applied to non-hard sphere fluids for the calculation of density profile in the framework of density functional theory (DFT). Used as examples, the present formalism is combined respectively with two recently proposed hard sphere DFAs to predict the density profile of Lennard-Jones (LJ) fluid, hard core square well (SW) fluid and penetrable potenial fluid subjected to diverse external fields. Extensive comparison between theoretical predictions and corresponding simulation results shows that the present theoretical way, when combined with an accurate hard sphere DFA, can perform well for calculating the density profile of the non-uniform fluids of the above mentioned potentials. Concretely speaking, for LJ and hard core SW fluid, even a less accurate FEDFA is sufficient, while for extreme potential such as the penetrable potenial, a more accurate adjustable parameter free version of LTDFA is needed to combine with the present theoretical way to predict density profile satisfactorily. The advantage of the proposed theoretical way is that the resultant DFA is applicable to both subcritical and supercritical temperature cases, thereby overcoming the disadvantages of previous two categories of DFT approach.
Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan
2014-05-14
A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented. PMID:24718295
Structures and vibrational frequencies of FOOF and FONO using density functional theory
NASA Astrophysics Data System (ADS)
Amos, Roger D.; Murray, Christopher W.; Handy, Nicholas C.
1993-02-01
Calculations of the equilibrium structure and vibrational frequencies of FOOF using the local density approximation are in good agreement with experimental results. However using a theoretically more accurate gradient corrected (non-local) density functional produces a worse structure. Three isomers of FONO are also studied. The geometry of C 2v isomer FNO 2 is predicted accurately by the local density approximation, with gradient corrected functions again giving a poorer structure, but better vibrational frequencies. The structure of the trans-isomer of FONO is in agreement with recent coupled cluster studies, however calculations on cis-FONO disagree with the coupled cluster results, but may be in better agreement with the experimental geometry.
Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.
2015-04-02
The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K_{1 }values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO_{2}^{2+} complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K_{1} values are significantly overestimated. Accurate predictions of the absolute log K_{1} values (root mean square deviation from experiment < 1.0 for log K_{1} values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.
Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.
2015-04-02
The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less
Efficiency issues related to probability density function comparison
Kelly, P.M.; Cannon, M.; Barros, J.E.
1996-03-01
The CANDID project (Comparison Algorithm for Navigating Digital Image Databases) employs probability density functions (PDFs) of localized feature information to represent the content of an image for search and retrieval purposes. A similarity measure between PDFs is used to identify database images that are similar to a user-provided query image. Unfortunately, signature comparison involving PDFs is a very time-consuming operation. In this paper, we look into some efficiency considerations when working with PDFS. Since PDFs can take on many forms, we look into tradeoffs between accurate representation and efficiency of manipulation for several data sets. In particular, we typically represent each PDF as a Gaussian mixture (e.g. as a weighted sum of Gaussian kernels) in the feature space. We find that by constraining all Gaussian kernels to have principal axes that are aligned to the natural axes of the feature space, computations involving these PDFs are simplified. We can also constrain the Gaussian kernels to be hyperspherical rather than hyperellipsoidal, simplifying computations even further, and yielding an order of magnitude speedup in signature comparison. This paper illustrates the tradeoffs encountered when using these constraints.
Predicting stability constants for uranyl complexes using density functional theory.
Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S
2015-04-20
The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578
A probability density function method for acoustic field uncertainty analysis
NASA Astrophysics Data System (ADS)
James, Kevin R.; Dowling, David R.
2005-11-01
Acoustic field predictions, whether analytical or computational, rely on knowledge of the environmental, boundary, and initial conditions. When knowledge of these conditions is uncertain, acoustic field predictions will also be uncertain, even if the techniques for field prediction are perfect. Quantifying acoustic field uncertainty is important for applications that require accurate field amplitude and phase predictions, like matched-field techniques for sonar, nondestructive evaluation, bio-medical ultrasound, and atmospheric remote sensing. Drawing on prior turbulence research, this paper describes how an evolution equation for the probability density function (PDF) of the predicted acoustic field can be derived and used to quantify predicted-acoustic-field uncertainties arising from uncertain environmental, boundary, or initial conditions. Example calculations are presented in one and two spatial dimensions for the one-point PDF for the real and imaginary parts of a harmonic field, and show that predicted field uncertainty increases with increasing range and frequency. In particular, at 500 Hz in an ideal 100 m deep underwater sound channel with a 1 m root-mean-square depth uncertainty, the PDF results presented here indicate that at a range of 5 km, all phases and a 10 dB range of amplitudes will have non-negligible probability. Evolution equations for the two-point PDF are also derived.
Many-electron expansion: A density functional hierarchy for strongly correlated systems
NASA Astrophysics Data System (ADS)
Zhu, Tianyu; de Silva, Piotr; van Aggelen, Helen; Van Voorhis, Troy
2016-05-01
Density functional theory (DFT) is the de facto method for the electronic structure of weakly correlated systems. But for strongly correlated materials, common density functional approximations break down. Here, we derive a many-electron expansion (MEE) in DFT that accounts for successive one-, two-, three-, ... particle interactions within the system. To compute the correction terms, the density is first decomposed into a sum of localized, nodeless one-electron densities (ρi). These one-electron densities are used to construct relevant two- (ρi+ρj ), three- (ρi+ρj+ρk ), ... electron densities. Numerically exact results for these few-particle densities can then be used to correct an approximate density functional via any of several many-body expansions. We show that the resulting hierarchy gives accurate results for several important model systems: the Hubbard and Peierls-Hubbard models in 1D and the pure Hubbard model in 2D. We further show that the method is numerically convergent for strongly correlated systems: applying successively higher order corrections leads to systematic improvement of the results. MEE thus provides a hierarchy of density functional approximations that applies to both weakly and strongly correlated systems.
Molecular density functional theory of water including density-polarization coupling.
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2016-06-22
We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities. PMID:27116250
The benchmark of gutzwiller density functional theory in hydrogen systems
Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming
2012-02-23
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.
The Benchmark of Gutzwiller Density Functional Theory in Hydrogen Systems
Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming
2011-01-13
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Generalized van der Waals density functional theory for nonuniform polymers
Patra, Chandra N.; Yethiraj, Arun
2000-01-15
A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
McKechnie, Scott; Booth, George H; Cohen, Aron J; Cole, Jacqueline M
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared. PMID:26001454
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.
2005-01-01
Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.
Exact maps in density functional theory for lattice models
NASA Astrophysics Data System (ADS)
Dimitrov, Tanja; Appel, Heiko; Fuks, Johanna I.; Rubio, Angel
2016-08-01
In the present work, we employ exact diagonalization for model systems on a real-space lattice to explicitly construct the exact density-to-potential and graphically illustrate the complete exact density-to-wavefunction map that underly the Hohenberg–Kohn theorem in density functional theory. Having the explicit wavefunction-to-density map at hand, we are able to construct arbitrary observables as functionals of the ground-state density. We analyze the density-to-potential map as the distance between the fragments of a system increases and the correlation in the system grows. We observe a feature that gradually develops in the density-to-potential map as well as in the density-to-wavefunction map. This feature is inherited by arbitrary expectation values as functional of the ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the correlation entropy as functionals of the ground-state density. All of them show this exact feature that sharpens as the coupling of the fragments decreases and the correlation grows. We denominate this feature as intra-system steepening and discuss how it relates to the well-known inter-system derivative discontinuity. The inter-system derivative discontinuity is an exact concept for coupled subsystems with degenerate ground state. However, the coupling between subsystems as in charge transfer processes can lift the degeneracy. An important conclusion is that for such systems with a near-degenerate ground state, the corresponding cut along the particle number N of the exact density functionals is differentiable with a well-defined gradient near integer particle number.
Postfragmentation density function for bacterial aggregates in laminar flow
NASA Astrophysics Data System (ADS)
Byrne, Erin; Bortz, David M.; Dzul, Steve; Solomon, Michael; Younger, John
2011-04-01
The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation.
Integration, Continuity and a Connection with Probability Density Functions
ERIC Educational Resources Information Center
Samuels, M.
2006-01-01
This note considers functions of two variables which are continuous on a possibly unbounded closed region in [vertical bar]R[squared], and the functions of one variable obtained by integrating out the other variable over this region. The question of continuity of these functions is investigated, as are connections with joint density and marginal…
SIFTER search: a web server for accurate phylogeny-based protein function prediction.
Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E
2015-07-01
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264
Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A
2016-05-01
The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available. PMID:27013261
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
Testing for parity violation in nuclei using spin density matrices for nuclear density functionals
NASA Astrophysics Data System (ADS)
Barrett, B. R.; Giraud, B. G.
2015-06-01
The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.
NASA Astrophysics Data System (ADS)
Jolivet, L.; Cohen, M.; Ruas, A.
2015-08-01
Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual's behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.
Charge and spin fluctuations in the density functional theory
Gyoerffy, B.L.; Barbieri, A. . H.H. Wills Physics Lab.); Staunton, J.B. . Dept. of Physics); Shelton, W.A.; Stocks, G.M. )
1990-01-01
We introduce a conceptual framework which allow us to treat charge and spin fluctuations about the Local density Approximation (LDA) to the Density Functional Theory (DFT). We illustrate the approach by explicit study of the Disordered Local Moment (DLM) state in Fe above the Curie Temperature {Tc} and the Mott insulating state in MnO. 27 refs., 6 figs.
Density Functional Model for Nondynamic and Strong Correlation.
Kong, Jing; Proynov, Emil
2016-01-12
A single-term density functional model for the left-right nondynamic/strong electron correlation is presented based on single-determinant Kohn-Sham density functional theory. It is derived from modeling the adiabatic connection for kinetic correlation energy based on physical arguments, with the correlation potential energy based on the Becke'13 model ( Becke, A.D. J. Chem. Phys . 2013 , 138 , 074109 ). This functional satisfies some known scaling relationships for correlation functionals. The fractional spin error is further reduced substantially with a new density-functional correction. Preliminary tests with self-consistent-field implementation show that the model, with only three empirical parameters, recovers the majority of left-right nondynamic/strong correlation upon bond dissociation and performs reasonably well for atomization energies and singlet-triplet energy splittings. This study also demonstrates the feasibility of developing DFT functionals for nondynamic and strong correlation within the single-determinant KS scheme. PMID:26636190
Density and Spin Response Functions in Ultracold Fermionic Atom Gases
Mihaila, Bogdan; Blagoev, Krastan B.; Balatsky, Alexander V.; Smith, Darryl L.; Gaudio, Sergio; Littlewood, Peter B.
2005-08-26
We propose a new method of detecting the onset of superfluidity in a two-component ultracold fermionic gas of atoms governed by an attractive short-range interaction. By studying the two-body correlation functions we find that a measurement of the momentum distribution of the density and spin-response functions allows one to access separately the normal and anomalous densities. The change in sign at low momentum transfer of the normal-ordered part of the density response function signals the transition between a BEC and a BCS regime, characterized by small and large pairs, respectively. This change in sign of the density response function represents an unambiguous signature of the BEC-to-BCS crossover. Spin rotational symmetry breaking due to the magnetic field, if observed, can be used to validate the one-channel model.
Density Functional Theory with Dissipation: Transport through Single Molecules
Kieron Burke
2012-04-30
A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.
Gutzwiller density functional theory for correlated electron systems
Ho, K. M.; Schmalian, J.; Wang, C. Z.
2008-02-04
We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.
Preface: Special Topic on Advances in Density Functional Theory
Yang, Weitao
2014-05-14
This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.
Preface: Special topic on advances in density functional theory.
Yang, Weitao
2014-05-14
This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering. PMID:24832306
Reflection-Asymmetric Nuclear Deformations within the Density Functional Theory
Olsen, E; Erler, J; Nazarewicz, W.; Stoitsov, M
2012-01-01
Within the nuclear density functional theory (DFT) we study the effect of reflection- asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver axialhfb that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even- even isotopes of radium and thorium.
Shells of charge: a density functional theory for charged hard spheres.
Roth, Roland; Gillespie, Dirk
2016-06-22
A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect 'functionalizes' the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences. PMID:27116385
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-28
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH(+) ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations. PMID:24697449
NASA Astrophysics Data System (ADS)
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-01
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.
Energy Densities in the Strong-Interaction Limit of Density Functional Theory.
Mirtschink, André; Seidl, Michael; Gori-Giorgi, Paola
2012-09-11
We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots (Hooke's atoms) are compared with available approximations defined in the same gauge. The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn-Sham, the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb-Oxford bound, widely used in the construction of approximate exchange-correlation functionals. PMID:26605721
Comments on the locality in density-functional theory
Lindgren, Ingvar; Salomonson, Sten
2003-05-01
The 'locality hypothesis' in density-functional theory (DFT), implying that the functional derivative is equivalent to a multiplicative local function, forms the basis of models of Kohn-Sham type. This has been generally accepted by the community since the advent of the model, and has later been formally proved for a large class of functionals. The hypothesis has recently been questioned by Nesbet [Phys. Rev. A 58, R12 (1998) and Phys. Rev. A 65, 010502 (2001)], who claims that it fails for the kinetic-energy functional for a system with more than two noninteracting electrons with a nondegenerate ground state. This conclusion has been questioned by Gal [Phys. Rev. A 62, 044501 (2000)] and by Holas and March [Phys. Rev. A 64, 016501 (2001)]. We claim that the arguments of Nesbet are incorrect, since the orbital functional used for the kinetic energy is not a unique functional of the total density in the domain of unnormalized orbitals. We have demonstrated that with a proper definition of the kinetic energy, which is a unique density functional also in the unnormalized region, the derivative can be represented by a single local multiplicative function for all v-representable densities. Therefore, we consider the controversy connected with the issue raised by Nesbet as resolved. We believe that the proof of the differentiability given here can be extended to larger groups of DFT functionals, and works along these lines are in progress.
Density functional theory for polymeric systems in 2D
NASA Astrophysics Data System (ADS)
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343
Franca, Vivian V.; D'Amico, Irene
2011-04-15
We derive an analytical density functional for the single-site entanglement of the one-dimensional homogeneous Hubbard model by means of an approximation to the linear entropy. We show that this very simple density functional reproduces quantitatively the exact results. We then use this functional as input for a local-density approximation to the single-site entanglement of inhomogeneous systems. We illustrate the power of this approach in a harmonically confined system, which could simulate recent experiments with ultracold atoms in optical lattices as well as in a superlattice and in an impurity system. The impressive quantitative agreement with numerical calculations--which includes reproducing subtle signatures of the particle density stages--shows that our density functional can provide entanglement calculations for actual experiments via density measurements. Next we use our functional to calculate the entanglement in disordered systems. We find that, in contrast with the expectation that disorder destroys the entanglement, there exist regimes for which the entanglement remains almost unaffected by the presence of disordered impurities.
Reactivity of Graphene Investigated by Density-Functional Theory
NASA Astrophysics Data System (ADS)
Soni, Himadri; Gebhardt, Julian; Görling, Andreas; Chair of Theoretical Chemistry Team
Using spin-polarized density-functional theory, we study the adsorption and reaction of hydrogen and fluorine with graphene. Graphene has a bipartite lattice with two different sublattices and hence, due to Lieb's theorem, the inequality between two sublattices should lead to a net magnetic moment upon adsorption of hydrogen or fluorine. Our calculations using density-functional theory with the generalized gradient approximation predict a magnetic moment of 1 µB for a single hydrogen adsorbed on graphene but not for a single fluorine atom adsorbed on graphene. Switching to hybrid density-functional theory with the HSE functional, we obtain a magnetic moment of 1 µB for of a single fluorine atom adsorption on graphene. This is in line with work of Kim et al., who also found in density-functional theory calculations with the HSE exchange-correlation functional spin-polarization for a fluorine adatom on graphene. Here, we present a systematic study of the reactivity and relevant adsorption mechanism for single-sided graphene, i.e., a graphene sheet which is accessible by an adsorbate from only one side with hydrogen and fluorine using hybrid density-functional theory. German Research Council (DFG) by the Collaborative Research Center 953.
Excitons in solids with time-dependent density-functional theory: the bootstrap kernel and beyond
NASA Astrophysics Data System (ADS)
Byun, Young-Moo; Yang, Zeng-Hui; Ullrich, Carsten
Time-dependent density-functional theory (TDDFT) is an efficient method to describe the optical properties of solids. Lately, a series of bootstrap-type exchange-correlation (xc) kernels have been reported to produce accurate excitons in solids, but different bootstrap-type kernels exist in the literature, with mixed results. In this presentation, we reveal the origin of the confusion and show a new empirical TDDFT xc kernel to compute excitonic properties of semiconductors and insulators efficiently and accurately. Our method can be used for high-throughput screening calculations and large unit cell calculations. Work supported by NSF Grant DMR-1408904.
Filtered density function approach for reactive transport in groundwater
NASA Astrophysics Data System (ADS)
Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter
2016-04-01
Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater
Optimal-transport formulation of electronic density-functional theory
NASA Astrophysics Data System (ADS)
Buttazzo, Giuseppe; De Pascale, Luigi; Gori-Giorgi, Paola
2012-06-01
The most challenging scenario for Kohn-Sham density-functional theory, that is, when the electrons move relatively slowly trying to avoid each other as much as possible because of their repulsion (strong-interaction limit), is reformulated here as an optimal transport (or mass transportation theory) problem, a well-established field of mathematics and economics. In practice, we show that to solve the problem of finding the minimum possible internal repulsion energy for N electrons in a given density ρ(r) is equivalent to find the optimal way of transporting N-1 times the density ρ into itself, with the cost function given by the Coulomb repulsion. We use this link to set the strong-interaction limit of density-functional theory on firm ground and to discuss the potential practical aspects of this reformulation.
Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.
2016-01-19
An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less
Shells of charge: a density functional theory for charged hard spheres
NASA Astrophysics Data System (ADS)
Roth, Roland; Gillespie, Dirk
2016-06-01
A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect ‘functionalizes’ the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences.
Optimization of an exchange-correlation density functional for water.
Fritz, Michelle; Fernández-Serra, Marivi; Soler, José M
2016-06-14
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems. PMID:27305990
Optimization of an exchange-correlation density functional for water
NASA Astrophysics Data System (ADS)
Fritz, Michelle; Fernández-Serra, Marivi; Soler, José M.
2016-06-01
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.
Michalopoulou, Zoi-Heleni; Pole, Andrew
2016-07-01
The dispersion pattern of a received signal is critical for understanding physical properties of the propagation medium. The objective of this work is to estimate accurately sediment sound speed using modal arrival times obtained from dispersion curves extracted via time-frequency analysis of acoustic signals. A particle filter is used that estimates probability density functions of modal frequencies arriving at specific times. Employing this information, probability density functions of arrival times for modal frequencies are constructed. Samples of arrival time differences are then obtained and are propagated backwards through an inverse acoustic model. As a result, probability density functions of sediment sound speed are estimated. Maximum a posteriori estimates indicate that inversion is successful. It is also demonstrated that multiple frequency processing offers an advantage over inversion at a single frequency, producing results with reduced variance. PMID:27475202
Density functional for ternary non-additive hard sphere mixtures.
Schmidt, Matthias
2011-10-19
Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. PMID:21946780
Modal density function and number of propagating modes in ducts
NASA Technical Reports Server (NTRS)
Rice, E. J.
1976-01-01
Often raised questions in duct sound propagation studies involve the total number of propagating modes, the number of propagating radial modes for a particular spinning lobe number, and the number of modes possible between two given values of cutoff ratio or eigenvalue. These questions can be answered approximately by using the modal distribution function which is the integral of the modal density function for ducts in a manner similar to that previously published for architectural acoustics. The modal density functions are derived for rectangular and circular ducts with a uniform steady flow. Results from this continuous theory are compared to the actual (discrete) modal distributions.
Force Density Function Relationships in 2-D Granular Media
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.
2004-01-01
An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms
Hatt, Mathieu; Cheze le Rest, Catherine; Descourt, Patrice; Dekker, Andre; De Ruysscher, Dirk; Oellers, Michel; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2010-05-01
Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may facilitate dose painting for dosimetry optimization. Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homogeneous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomogeneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and heterogeneous activity distributions were used to assess the algorithm's accuracy. Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold (T{sub bckg}) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% +- 8% on the simulated tumors, whereas binary-only implementation led to errors of 15% +- 11%. T{sub bckg} and FCM led to mean errors of 20% +- 12% and 17% +- 14%, respectively. 3-FLAB also led to more robust estimation of the maximum diameters of tumors with histology measurements, with <6% standard deviation, whereas binary FLAB, T{sub bckg} and FCM lead to 10%, 12%, and 13%, respectively. Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation.
Methane dissociation on Pt(111): Searching for a specific reaction parameter density functional
NASA Astrophysics Data System (ADS)
Nattino, Francesco; Migliorini, Davide; Bonfanti, Matteo; Kroes, Geert-Jan
2016-01-01
The theoretical description of methane dissociating on metal surfaces is a current frontier in the field of gas-surface dynamics. Dynamical models that aim at achieving a highly accurate description of this reaction rely on potential energy surfaces based on density functional theory calculations at the generalized gradient approximation. We focus here on the effect that the exchange-correlation functional has on the reactivity of methane on a metal surface, using CHD3 + Pt(111) as a test case. We present new ab initio molecular dynamics calculations performed with various density functionals, looking also at functionals that account for the van der Waals (vdW) interaction. While searching for a semi-empirical specific reaction parameter density functional for this system, we find that the use of a weighted average of the PBE and the RPBE exchange functionals together with a vdW-corrected correlation functional leads to an improved agreement with quantum state-resolved experimental data for the sticking probability, compared to previous PBE calculations. With this semi-empirical density functional, we have also investigated the surface temperature dependence of the methane dissociation reaction and the influence of the rotational alignment on the reactivity, and compared our results with experiments.
Density functional theory modeling of multilayer "epitaxial" graphene oxide.
Zhou, Si; Bongiorno, Angelo
2014-11-18
CONSPECTUS: Graphene oxide (GO) is a complex material of both fundamental and applied interest. Elucidating the structure of GO is crucial to achieve control over its properties and technological applications. GO is a nonstoichiometric and hygroscopic material with a lamellar structure, and its physical chemical properties depend critically on synthesis procedures and postsynthesis treatments. Numerous efforts are in place to both understand and exploit this versatile layered carbon material. This Account reports on recent density functional theory (DFT) studies of "epitaxial" graphene oxide (hereafter EGO), a type of GO obtained by oxidation of graphene films grown epitaxially on silicon carbide. Here, we rely on selected X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), and X-ray diffraction (XRD) measurements of EGO, and we discuss in great detail how we utilized DFT-based techniques to project out from the experimental data basic atomistic information about the chemistry and structure of these films. This Account provides an example as to how DFT modeling can be used to elucidate complex materials such as GO from a limited set of experimental information. EGO exhibits a uniform layered structure, consisting of a stack of graphene planes hosting predominantly epoxide and hydroxyl groups, and water molecules intercalated between the oxidized carbon layers. Here, we first focus on XPS measurements of EGO, and we use DFT to generate realistic model structures, calculate core-level chemical shifts, and through the comparison with experiment, gain insight on the chemical composition and metastability characteristics of EGO. DFT calculations are then used to devise a simplistic but accurate simulation scheme to study thermodynamic and kinetic stability and to predict the intralayer structure of EGO films aged at room temperature. Our simulations show that aged EGO encompasses layers with nanosized oxidized domains presenting a high concentration of
Addressing spectroscopic quality of covariant density functional theory
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.
2015-03-01
The spectroscopic quality of covariant density functional theory has been accessed by analyzing the accuracy and theoretical uncertainties in the description of spectroscopic observables. Such analysis is first presented for the energies of the single-particle states in spherical and deformed nuclei. It is also shown that the inclusion of particle-vibration coupling improves the description of the energies of predominantly single-particle states in medium and heavy-mass spherical nuclei. However, the remaining differences between theory and experiment clearly indicate missing physics and missing terms in covariant energy density functionals. The uncertainties in the predictions of the position of two-neutron drip line sensitively depend on the uncertainties in the prediction of the energies of the single-particle states. On the other hand, many spectroscopic observables in well deformed nuclei at ground state and finite spin only weakly depend on the choice of covariant energy density functional.
Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions
Marois, C; Lafreniere, D; Macintosh, B; Doyon, R
2006-02-07
For ground-based adaptive optics point source imaging, differential atmospheric refraction and flexure introduce a small drift of the point spread function (PSF) with time, and seeing and sky transmission variations modify the PSF flux. These effects need to be corrected to properly combine the images and obtain optimal signal-to-noise ratios, accurate relative astrometry and photometry of detected companions as well as precise detection limits. Usually, one can easily correct for these effects by using the PSF core, but this is impossible when high dynamic range observing techniques are used, like coronagraphy with a non-transmissive occulting mask, or if the stellar PSF core is saturated. We present a new technique that can solve these issues by using off-axis satellite PSFs produced by a periodic amplitude or phase mask conjugated to a pupil plane. It will be shown that these satellite PSFs track precisely the PSF position, its Strehl ratio and its intensity and can thus be used to register and to flux normalize the PSF. This approach can be easily implemented in existing adaptive optics instruments and should be considered for future extreme adaptive optics coronagraph instruments and in high-contrast imaging space observatories.
Ruggiero, Michael T; Gooch, Jonathan; Zubieta, Jon; Korter, Timothy M
2016-02-18
The problem of nonlocal interactions in density functional theory calculations has in part been mitigated by the introduction of range-corrected functional methods. While promising solutions, the continued evaluation of range corrections in the structural simulations of complex molecular crystals is required to judge their efficacy in challenging chemical environments. Here, three pyridinium-based crystals, exhibiting a wide range of intramolecular and intermolecular interactions, are used as benchmark systems for gauging the accuracy of several range-corrected density functional techniques. The computational results are compared to low-temperature experimental single-crystal X-ray diffraction and terahertz spectroscopic measurements, enabling the direct assessment of range correction in the accurate simulation of the potential energy surface minima and curvatures. Ultimately, the simultaneous treatment of both short- and long-range effects by the ωB97-X functional was found to be central to its rank as the top performer in reproducing the complex array of forces that occur in the studied pyridinium solids. These results demonstrate that while long-range corrections are the most commonly implemented range-dependent improvements to density functionals, short-range corrections are vital for the accurate reproduction of forces that rapidly diminish with distance, such as quadrupole-quadrupole interactions. PMID:26814572
van der Waals Density Functional Theory vdW-DFq for Semihard Materials
NASA Astrophysics Data System (ADS)
Peng, Qing; de, Suvranu
There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials includes energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β-cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1 . 05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and 3 typical layered van der Waals crystals. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.
Kinetic-energy density functional: Atoms and shell structure
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |
1996-09-01
We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. {copyright} {ital 1996 The American Physical Society.}
Exploration of a modified density dependence in the Skyrme functional
Erler, J.; Reinhard, P.-G.; Kluepfel, P.
2010-10-15
A variant of the basic Skyrme-Hartree-Fock functional is considered dealing with a new form of density dependence. It employs only integer powers and thus will allow a more sound basis for projection schemes (particle number, angular momentum). We optimize the new functional with exactly the same adjustment strategy as used in an earlier study with a standard Skyrme functional. This allows direct comparisons of the performance of the new functional relative to the standard one. We discuss various observables: bulk properties of finite nuclei, nuclear matter, giant resonances, superheavy elements, and energy systematics. The new functional performs at least as well as the standard one, but offers a wider range of applicability (e.g., for projection) and more flexibility in the regime of high densities.
Assessment of a New Semilocal Density Functional on Molecules and Solids
NASA Astrophysics Data System (ADS)
Mo, Yuxiang; Tao, Jianmin
We have recently developed a new semilocal density functional based on the exchange hole (localized under a general coordinate transformation) from density matrix expansion, instead of imposing energy constraints to the functional or fitting it to a training set of properties. This functional is comprehensively evaluated on diverse properties of molecules and solids, including atomization energies for G2/97 (148 molecules), enthalpies of formation for G3-3 (75 molecules), ionization potentials for G3/99 (86 species), electron affinities for G3/99 (58 species), proton affinities (8 molecules), bond lengths for T-96R (96 molecules), vibrational frequencies for T-82F (82 molecules), 10 hydrogen bonded complexes, as well as lattice constants, bulk moduli, and cohesive energies for solids. Our tests show that the functional is remarkably accurate for these wide-ranging properties. This work was supported by NSF under Grant No. CHE-1261918.
Gaussian basis density functional theory for systems periodic in two or three dimensions
Hess, A.C.; Lin, Zijing; Clerc, D.G.
1996-12-31
We will present the formulation and results of a new, fully self-consistent all electron density functional theory that utilizes localized Gaussian basis functions to treat systems possessing 3- and 2- dimensional periodicity. Our method extends, in a fully rigorous fashion, many of the concepts commonly found in molecular density functional theories and can accurately be described as an {open_quotes}ab initio or first principles{close_quotes} approach. Results will be presented for several illustrative spin paired and unpaired insulating and semi-conducting bulk crystalline systems. The effect of employing local and non-local exchange and correlation functionals on the geometric, elastic, and electronic properties of diamond, silicon, silicon carbide, magnesium oxide and beryllium oxide will also be presented. Finally, the geometric and electronic structure of several oxide and semi-conducting surfaces will also be presented.
SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters.
Hui, Kerwin; Chai, Jeng-Da
2016-01-28
By incorporating the nonempirical strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction problems and noncovalent interactions. In particular, SCAN0-2, which includes about 79% of Hartree-Fock exchange and 50% of second-order Møller-Plesset correlation, is shown to be reliably accurate for a very diverse range of applications, such as thermochemistry, kinetics, noncovalent interactions, and self-interaction problems. PMID:26827209
Nonlinear eigenvalue problems in Density Functional Theory calculations
Fattebert, J
2009-08-28
Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.
Constrained Density Functional Calculations of alpha and delta Pu
NASA Astrophysics Data System (ADS)
Eriksson, Olle
2002-03-01
The electronic structure of α and δ Pu are described using a modified density functional theory that incorporates localization effects of the 5f shell. It is argued that a Russel-Saunders coupled state involving a 5f^4 multiplet, together with one itinerant 5f electron explains most of the observed ground state properties of δ Pu (equilibrium volume, elastic constants, near degeneracy with the alpha phase). This 5f electrons in the α phase are argued to form itinerant states, that are well described in density functional theory. The two distinctly different electronic ground states give rise to different excitation spectra and a comparison with experimental data is made.
Spectroscopic and thermal properties of minerals from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Refson, K.
2003-12-01
Ab-initio calculations based on density-functional theory have provento give a highly accurate description of structural and elastic properties of minerals under pressure. To evaluate spectroscopic, dielectric and thermal properties it is necessary to compute the second derivatives of the energy with respect to a displacement or electric field perturbation. While the Hellman-Feynmann theorem makes the computation of forces (first derivatives of the energy) straightforward, second derivatives depend on the linear response of the orbitals and density to the perturbation. I will sketch the variational formulation of density-function perturbation theory, and it's implementation in the CASTEP plane-wave code. The capabilities will be illustrated with calculation of the full phonon dispersion spectra and dielectric properties of a-quartz, ZrO2 and NaHF2.
Assessment of density functional methods for calculating thermochemistries of Si-H-Cl compounds
Hay, P.J.
1996-01-04
The performance of the gradient-corrected BLYP density functional and the hybrid B3LYP functional has been studied in calculations of bond energies of Si-H-Cl containing molecules involved in thermal chemical vapor deposition processes of silicon. Calculated atomization energies using the BLYP and B3LYP functionals are in better agreement with experiment (typically within 10 kcal/mol) compared to more computationally demanding methods such as MP4. Comparisons are also made with more accurate theoretical methods including corrected MP4 approaches. While predictions of thermochemical properties for second-row compounds from BLYP approaches are slightly less accurate than for first-row compounds, these techniques still represent a promising approach of obtaining theoretical estimates for thermochemical properties. 37 refs., 6 tabs.
Direct propagation of probability density functions in hydrological equations
NASA Astrophysics Data System (ADS)
Kunstmann, Harald; Kastens, Marko
2006-06-01
Sustainable decisions in hydrological risk management require detailed information on the probability density function ( pdf) of the model output. Only then probabilities for the failure of a specific management option or the exceedance of critical thresholds (e.g. of pollutants) can be derived. A new approach of uncertainty propagation in hydrological equations is developed that directly propagates the probability density functions of uncertain model input parameters into the corresponding probability density functions of model output. The basics of the methodology are presented and central applications to different disciplines in hydrology are shown. This work focuses on the following basic hydrological equations: (1) pumping test analysis (Theis-equation, propagation of uncertainties in recharge and transmissivity), (2) 1-dim groundwater contaminant transport equation (Gauss-equation, propagation of uncertainties in decay constant and dispersivity), (3) evapotranspiration estimation (Penman-Monteith-equation, propagation of uncertainty in roughness length). The direct propagation of probability densities is restricted to functions that are monotonically increasing or decreasing or that can be separated in corresponding monotonic branches so that inverse functions can be derived. In case no analytic solutions for inverse functions could be derived, semi-analytical approximations were used. It is shown that the results of direct probability density function propagation are in perfect agreement with results obtained from corresponding Monte Carlo derived frequency distributions. Direct pdf propagation, however, has the advantage that is yields exact solutions for the resulting hydrological pdfs rather than approximating discontinuous frequency distributions. It is additionally shown that the type of the resulting pdf depends on the specific values (order of magnitude, respectively) of the standard deviation of the input pdf. The dependency of skewness and kurtosis
Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors
Shin, Ilgyou; Carter, Emily A.
2014-05-14
We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.
Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors
NASA Astrophysics Data System (ADS)
Shin, Ilgyou; Carter, Emily A.
2014-05-01
We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.
On the Evolution of the Density Probability Density Function in Strongly Self-gravitating Systems
NASA Astrophysics Data System (ADS)
Girichidis, Philipp; Konstandin, Lukas; Whitworth, Anthony P.; Klessen, Ralf S.
2014-02-01
The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form PV (ρ)vpropρ-1.54 for the (volume-weighted) PDF and PM (ρ)vpropρ-0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.
On the evolution of the density probability density function in strongly self-gravitating systems
Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.
2014-02-01
The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P{sub V} (ρ)∝ρ{sup –1.54} for the (volume-weighted) PDF and P{sub M} (ρ)∝ρ{sup –0.54} for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.
NASA Astrophysics Data System (ADS)
Perdew, John P.; Staroverov, Viktor N.; Tao, Jianmin; Scuseria, Gustavo E.
2008-11-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a “normal” region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1 . These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly varying density or because of error cancellation between exchange and correlation. “Abnormal” regions, where nonlocality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high density, and rapidly varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1 . Regions between these extremes are described by a hybrid functional mixing exact and semilocal exchange energy densities locally, i.e., with a mixing fraction that is a function of position r and a functional of the density. Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters, corresponding roughly to the four kinds of abnormal regions. Our local hybrid functional is perhaps the first accurate fourth-rung density functional or hyper-generalized gradient approximation, with full exact exchange
Subsystem real-time time dependent density functional theory
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-01
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Applying Density Functional Theory for Atomic Vacancies in Solids
NASA Astrophysics Data System (ADS)
Zhou, Xiaolan; Perdew, John P.
2008-03-01
We use a new generalized gradient approximation of density functional theory -- PBEsol, a revised Perdew-Burke-Ernzerhof GGA, to calculate the vacancy formation energies and other properties of metals and semiconductors: Al, Pt, Pd, GaN [1], etc. By restoring the gradient expansion over a wide range of density gradients, PBEsol [2] yields excellent jellium exchange and correlation surface energies. We expect that this new functional will improve the description of vacancies in real materials, since the vacancy formation energy is essentially the work needed to create an interior surface. [1] Thomas R.Mattsson and Ann E. Mattson. Phys. Rev. B 66, 214410 (2002). [2] John P. Perdew, Adrienn Ruzsinszky, Gabor I. Csonka, Oleg A. Vydrov, Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou, and Kieron Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, http://arxiv.org/abs/0711.0156
Chen, Qiang; Yang, Bicheng
2016-01-01
By means of weight functions and Hermite-Hadamard's inequality, and introducing a discrete interval variable, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of arc tangent function and a best possible constant factor is given, which is an extension of a published result. The equivalent forms and the operator expressions are also considered. PMID:27563512
Catalytic activities of platinum nanotubes: a density functional study
NASA Astrophysics Data System (ADS)
Mukherjee, Prajna; Gupta, Bikash C.; Jena, Puru
2015-10-01
In this work we investigate the catalytic properties of platinum nanotubes using density functional theory based calculations. In particular, we study the dissociation of hydrogen and oxygen molecules as well as oxidation of CO molecules. The results indicate that platinum nanotubes have good catalytic properties and can be effectively used in converting CO molecule to CO2.
NASA Astrophysics Data System (ADS)
Manzhos, Sergei
2016-01-01
A comparative DFTB (density functional tight binding)-DFT (density functional theory) study of several adsorption modes of 2-anthroic acid on titania is presented. Two parameterizations of DFTB previously used for dye-TiO2 interfaces are tested. DFTB predicts adsorption energies which differ from those computed by DFT not only in magnitude (by up to 0.5 eV) but also in the order among different configurations. The band alignment computed with DFTB is not consistent with DFT results and with experimental data. The strategy of geometry optimization with DFTB followed by single-point DFT calculations also does not necessarily result in plausible adsorption energies.
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N; Scuseria, Gustavo E
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints
Hubert, Mickaël; Hedegård, Erik D; Jensen, Hans Jørgen Aa
2016-05-10
Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2, NEVPT2, and the coupled cluster based CC2 and CC3. PMID:27058733
NASA Astrophysics Data System (ADS)
Tian, Li-Yun; Levämäki, Henrik; Ropo, Matti; Kokko, Kalevi; Nagy, Ágnes; Vitos, Levente
2016-08-01
Semilocal density functional approximations occupy the second rung of the Jacob's ladder model and are thus expected to have certain limits to their applicability. A recent study [Y. Zhang, G. Kresse, and C. Wolverton, Phys. Rev. Lett. 112, 075502 (2014)] hypothesizes that the formation energy, being one of the key quantities in alloy theory, would be beyond the grasp of semilocal density functional theory (DFT). Here, we explore the physics of semilocal DFT formation energies and shed light on the connection between the accuracy of the formation energy and the ability of a semilocal approximation to produce accurate lattice constants. We demonstrate that semilocal functionals designed to perform well for alloy constituents can concomitantly solve the problem of alloy formation energies.
Tian, Li-Yun; Levämäki, Henrik; Ropo, Matti; Kokko, Kalevi; Nagy, Ágnes; Vitos, Levente
2016-08-01
Semilocal density functional approximations occupy the second rung of the Jacob's ladder model and are thus expected to have certain limits to their applicability. A recent study [Y. Zhang, G. Kresse, and C. Wolverton, Phys. Rev. Lett. 112, 075502 (2014)] hypothesizes that the formation energy, being one of the key quantities in alloy theory, would be beyond the grasp of semilocal density functional theory (DFT). Here, we explore the physics of semilocal DFT formation energies and shed light on the connection between the accuracy of the formation energy and the ability of a semilocal approximation to produce accurate lattice constants. We demonstrate that semilocal functionals designed to perform well for alloy constituents can concomitantly solve the problem of alloy formation energies. PMID:27541469
Reduced density-matrix functionals applied to the Hubbard dimer
NASA Astrophysics Data System (ADS)
Kamil, Ebad; Schade, Robert; Pruschke, Thomas; Blöchl, Peter E.
2016-02-01
Common density-matrix functionals, the Müller and the power functional, have been benchmarked for the half-filled Hubbard dimer, which allows us to model the bond dissociation problem and the transition from the weakly to the strongly correlated limit. Unbiased numerical calculations are combined with analytical results. Despite the well known successes of the Müller functional, the ground state is degenerate with a one-dimensional manifold of ferromagnetic solutions. The resulting infinite magnetic susceptibility indicates another qualitative flaw of the Müller functional. The derivative discontinuity with respect to particle number is not present indicating an incorrect metal-like behavior. The power functional actually favors the ferromagnetic state for weak interaction. Analogous to the Hartree-Fock approximation, the power functional undergoes a transition beyond a critical interaction strength, in this case, however, to a noncollinear antiferromagnetic state.
Density Functional Study of Perovskite Superconductor MgCNi3
NASA Astrophysics Data System (ADS)
Kumar, Jagdish; Sharma, Devina; Kumar, Ranjan; Awana, V. P. S.; Ahluwalia, P. K.
2011-12-01
We here report the first principle density functional study of MgCNi3 which crystallize in cubic perovskite structure having critical transition temperature of 8 K. The interesting aspect of this compound is that in normal state it is non magnetic in nature despite conduction electrons in it are derived from partially filled Ni d states, which typically lead to ferromagnetism in metallic Ni and many Ni-based binary alloys. To investigate the detailed microscopic origin of the non magnetic nature we have done density functional based calculations on this compound. The lattice constant is calculated using minimum energy criteria from total energy versus lattice constant plot. By taking the calculated values of lattice constant we have done the precise calculations on the compound using Full Potential Linear Augmented Plane Wave (FP-LAPW) method implemented in ELK code. The electronic density of states is found spin degenerate that corresponds to a non-magnetic ground state. The density of states (DOS) at Fermi level, N(EF) is dominated by Ni-d states. The sharp peak observed just below Fermi level corresponds to van Hove singularity (vHs). The projected density of states (PDOS) suggests a strong hybridization of Ni-3d and C-2p states which is responsible for the observed non magnetic nature of MgCNi3.
Density functional calculations of point defects in InAs
NASA Astrophysics Data System (ADS)
Moussa, Jonathan; Schultz, Peter
2013-03-01
Standard semilocal density functionals do not generate a gap in the Kohn-Sham eigenvalues for InAs, a semiconductor with an experimental gap of 0.4 eV. Without a theoretical band gap, it becomes difficult to identify, specify, and characterize pure localized states of point defects with energy levels within the experimental band gap. The bulk band gap problem can be alleviated with screened hybrid density functionals, such as the Heyd-Scuseria-Ernzerhof (HSE) functional, that open the generalized Kohn-Sham eigenvalue gap of InAs to near the experimental value. However, even without a Kohn-Sham gap, the local moment countercharge (LMCC) method [Phys. Rev. Lett. 96, 246401 (2006)] is able to predict charge transition energy levels of localized defect states, using standard semi-local functionals. We present an LMCC-based study of standard point defects in InAs using semilocal density functionals and compare the results to HSE-based calculations to assess the validity of LMCC calculations in this situation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Density Functional Theory of Biologically Relevant Metal Centers
NASA Astrophysics Data System (ADS)
Siegbahn, Per E. M.; Blomberg, Margareta R. A.
1999-10-01
Recent applications of density functional theory to biologically relevant metal centers are reviewed. The emphasis is on reaction mechanisms, structures, and modeling. The accuracy of different functionals is discussed for standard benchmark tests of first- and second-row molecules and for transition metal systems. Modeling aspects of the protein metal complexes are discussed regarding both the size of the model being treated quantum mechanically and the treatment of the protein surrounding it. To illustrate the effects, structures computed without the effects of the protein are compared with experimental structures from enzymes, and results from simple dielectric models of the protein for electron transfer processes are described. The choice of spin state is discussed for multimetal complexes. Examples of mechanisms studied recently by density functional theory are described, such as O2 and methane activation in methane monooxygenase and O2 formation in photosystem II.
Ab initio derivation of model energy density functionals
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2016-08-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
Perspective: Fundamental aspects of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less
Modal density function and number of propagating modes in ducts
NASA Technical Reports Server (NTRS)
Rice, E. J.
1976-01-01
The question of the number of propagating modes within a small range of mode cut off ratio was raised. The population density of modes were shown to be greatest near cut off and least for the well propagating modes. It was shown that modes of nearly the same cut off ratio behave nearly the same in a sound absorbing duct as well as in the way they propagate to the far. Handling all of the propagating modes individually, they can be grouped into several cut off ratio ranges. It is important to know the modal density function to estimate acoustic power distribution.
Towards improved local hybrid functionals by calibration of exchange-energy densities
Arbuznikov, Alexei V. E-mail: martin.kaupp@tu-berlin.de; Kaupp, Martin E-mail: martin.kaupp@tu-berlin.de
2014-11-28
A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.
Towards improved local hybrid functionals by calibration of exchange-energy densities
NASA Astrophysics Data System (ADS)
Arbuznikov, Alexei V.; Kaupp, Martin
2014-11-01
A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.
Numerical density-to-potential inversions in time-dependent density functional theory.
Jensen, Daniel S; Wasserman, Adam
2016-08-01
We treat the density-to-potential inverse problem of time-dependent density functional theory as an optimization problem with a partial differential equation constraint. The unknown potential is recovered from a target density by applying a multilevel optimization method controlled by error estimates. We employ a classical optimization routine using gradients efficiently computed by the discrete adjoint method. The inverted potential has both a real and imaginary part to reduce reflections at the boundaries and other numerical artifacts. We demonstrate this method on model one-dimensional systems. The method can be straightforwardly extended to a variety of numerical solvers of the time-dependent Kohn-Sham equations and to systems in higher dimensions. PMID:26984427
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Averkiev, Boris B; Zhao, Yan; Truhlar, Donald G
2010-06-01
The structures of Pd(PH₃)₂ and Pt(PH₃)₂ complexes with ethene and conjugated CnH_{n+2} systems (n=4, 6, 8, and 10) were studied. Their binding energies were calculated using both wave function theory (WFT) and density functional theory (DFT). Previously it was reported that the binding energy of the alkene to the transition metal does not depend strongly on the size of the conjugated C_{n}H_{n+2} ligand, but that DFT methods systematically underestimate the binding energy more and more significantly as the size of the conjugated system is increased. Our results show that recently developed density functionals predict the binding energy for these systems much more accurately. New benchmark calculations carried out by the coupled cluster method based on Brueckner orbitals with double excitations and a quasiperturbative treatment of connected triple excitations (BCCD(T)) with a very large basis set agree even better with the DFT predictions than do the previous best estimates. The mean unsigned error in absolute and relative binding energies of the alkene ligands to Pd(PH₃)₂ is 2.5 kcal/mol for the ωB97 and M06 density functionals and 2.9 kcal/mol for the M06-L functional. Adding molecular mechanical damped dispersion yields even smaller mean unsigned errors: 1.3 kcal/mol for the M06-D functional, 1.5 kcal/mol for M06- L-D, and 1.8 kcal/mol for B97-D and ωB97X-D. The new functionals also lead to improved accuracy for the analogous Pt complexes. These results show that recently developed density functionals may be very useful for studying catalytic systems involving Pd d¹º centers and alkenes.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-01
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade. PMID:26571349
Computational complexity of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Whitfield, J. D.; Yung, M.-H.; Tempel, D. G.; Boixo, S.; Aspuru-Guzik, A.
2014-08-01
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds.
Density-functional theory of elastic moduli: Hard-sphere and Lennard-Jones crystals
NASA Astrophysics Data System (ADS)
Jarić, Marko V.; Mohanty, Udayan
1988-03-01
We propose a density-functional method for calculating elastic moduli of crystalline solids. The method is based on the second-order Ramakrishnan-Yussouff (RY) expansion of the variational grand-canonical potential around a uniform liquid state. The densities of the strained and unstrained crystal are represented as sums of narrow Gaussians. We express the crystal moduli in terms of the liquid structure factor its first and second derivatives evaluated at the reciprocal-lattice points of the crystal. We evaluate the elastic moduli for fcc hard-sphere and Lennard-Jones crystals using the Percus-Yevick and computer-simulation liquid structure factors, respectively. An indirect comparison with available experimental and theoretical values shows that although our calculated moduli are accurate to an order of magnitude, higher-order terms in the RY expansion might be significant. We find important contributions from density equilibration within the strained unit cell.
NASA Astrophysics Data System (ADS)
Xia, Junchao
Orbital-free (OF) density functional theory (DFT) is a powerful and numerically efficient first principles quantum mechanics method. Its application has contributed to understanding a diverse set of materials properties in recent decades. However, most previous studies were confined to simple metals. In this thesis, we focus on extending OFDFT to describe covalently-bonded materials and aiming for a balance between accuracy and efficiency. We first apply OFDFT to study diatomic molecules, with the Huang-Carter (HC) kinetic energy density functional (KEDF). OFDFT predicts reasonable equilibrium bond lengths, bond dissociation energies, and vibrational frequencies compared to Kohn-Sham (KS) DFT benchmarks. This work indicates significant progress of OFDFT in describing molecules. However, we find that the HC KEDF is computationally expensive and thus inapplicable for large-scale simulations. Consequently, we propose an electron density decomposition formalism for covalent materials. Based on local density information, the total density is decomposed into localized and delocalized electron densities, which are then described by different KEDF models separately. The resulting Wang--Govind--Carter-decomposition (WGCD) KEDF gives accurate properties for bulk semiconductors and isolated molecules. Furthermore, it offers far superior numerical efficiency compared to the previous HC KEDF. We then test the HC and WGCD KEDFs on Li-Si alloys and obtain accurate structures and bulk properties. The OFDFT Li adsorption energies on the Si(100) surface are also close to KSDFT values. OFDFT is thus promising to study mechanical properties of Li-Si alloys and the mixing mechanism during lithiation and delithiation processes. We next focus on single-point KEDFs for localized densities and pointwise quantities including the local kinetic energy density (KED) and the electron localization function (ELF). Based on a transferable correlation between the reduced density and the KED
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Rex, M.; Löwen, H.
2009-02-01
A dynamical density functional theory (DDFT) for translational Brownian dynamics is derived which includes hydrodynamic interactions. The theory reduces to the simple Brownian DDFT proposed by Marconi and Tarazona (U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); J. Phys.: Condens. Matter 12, A413 (2000)) when hydrodynamic interactions are neglected. The derivation is based on Smoluchowski’s equation for the time evolution of the probability density with pairwise hydrodynamic interactions. The theory is applied to hard-sphere colloids in an oscillating spherical optical trap which switches periodically in time from a stable confining to an unstable potential. Rosenfeld’s fundamental measure theory for the equilibrium density functional is used and hydrodynamics are incorporated on the Rotne-Prager level. The results for the time-dependent density profiles are compared to extensive Brownian dynamics simulations which are performed on the same Rotne-Prager level and excellent agreement is obtained. It is further found that hydrodynamic interactions damp and slow the dynamics of the confined colloid cluster in comparison to the same situation with neglected hydrodynamic interactions.
Precise effective masses from density functional perturbation theory
NASA Astrophysics Data System (ADS)
Laflamme Janssen, J.; Gillet, Y.; Poncé, S.; Martin, A.; Torrent, M.; Gonze, X.
2016-05-01
The knowledge of effective masses is a key ingredient to analyze numerous properties of semiconductors, like carrier mobilities, (magneto)transport properties, or band extrema characteristics yielding carrier densities and density of states. Currently, these masses are usually calculated using finite-difference estimation of density functional theory (DFT) electronic band curvatures. However, finite differences require an additional convergence study and are prone to numerical noise. Moreover, the concept of effective mass breaks down at degenerate band extrema. We assess the former limitation by developing a method that allows to obtain the Hessian of DFT bands directly, using density functional perturbation theory. Then, we solve the latter issue by adapting the concept of "transport equivalent effective mass" to the k .p ̂ framework. The numerical noise inherent to finite-difference methods is thus eliminated, along with the associated convergence study. The resulting method is therefore more general, more robust, and simpler to use, which makes it especially appropriate for high-throughput computing. After validating the developed techniques, we apply them to the study of silicon, graphane, and arsenic. The formalism is implemented into the abinit software and supports the norm-conserving pseudopotential approach, the projector augmented-wave method, and the inclusion of spin-orbit coupling. The derived expressions also apply to the ultrasoft pseudopotential method.
Level densities and radiative strength functions in ^116,117Sn
NASA Astrophysics Data System (ADS)
Agvaanluvsan, U.; Mitchell, G. E.; Chankova, R.; Guttormsen, M.; Sunde, A.-C.; Becker, J. A.; Bernstein, L. A.; Schiller, A.; Voinov, A.
2003-10-01
Level densities and radiative strength functions are important for understanding nuclear properties in general, for an accurate knowledge of nuclear reaction rates in particular. A recently developed method to extract level densities and radiative strength functions from ^3He induced reactions is applied to ^117Sn. Level densities and radiative strength functions in ^116,117Sn from ground state up to the neutron binding energy are obtained from ^3He and α channels. Spectra of the first γ-rays emitted from each excitation energy bin are obtained via sequential extraction. The emission probability of these γ-rays is proportional to the product of the radiative strength function and the final state level density. This so-called Oslo method has been applied extensively to rare-earth nuclei. The method has also been applied to lighter nuclei such as Fe and Mo. The measurement of ^116,117Sn is intended to provide information on nuclei intermediate between the lighter and heavier nuclei that show quite different behavior.
Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions
NASA Astrophysics Data System (ADS)
Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun
2015-10-01
We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case.
Semilocal density functional theory with correct surface asymptotics
NASA Astrophysics Data System (ADS)
Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio
2016-03-01
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.
Analyzing the financial crisis using the entropy density function
NASA Astrophysics Data System (ADS)
Oh, Gabjin; Kim, Ho-yong; Ahn, Seok-Won; Kwak, Wooseop
2015-02-01
The risk that is created by nonlinear interactions among subjects in economic systems is assumed to increase during an abnormal state of a financial market. Nevertheless, investigating the systemic risk in financial markets following the global financial crisis is not sufficient. In this paper, we analyze the entropy density function in the return time series for several financial markets, such as the S&P500, KOSPI, and DAX indices, from October 2002 to December 2011 and analyze the variability in the entropy value over time. We find that the entropy density function of the S&P500 index during the subprime crisis exhibits a significant decrease compared to that in other periods, whereas the other markets, such as those in Germany and Korea, exhibit no significant decrease during the market crisis. These findings demonstrate that the S&P500 index generated a regular pattern in the return time series during the financial crisis.
Covariant density functional theory: The role of the pion
Lalazissis, G. A.; Karatzikos, S.; Serra, M.; Otsuka, T.; Ring, P.
2009-10-15
We investigate the role of the pion in covariant density functional theory. Starting from conventional relativistic mean field (RMF) theory with a nonlinear coupling of the {sigma} meson and without exchange terms we add pions with a pseudovector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the noncentral contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.
Neutrinoless double-beta decay in covariant density functional theory
Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.
2015-10-15
We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME’s) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME’s can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.
Density-functional theory of inhomogeneous systems of hard spherocylinders
Velasco; Mederos; Sullivan
2000-09-01
The smectic-A phase boundaries of a hard-spherocylinder fluid are calculated using a density-functional theory based on one proposed earlier by Somoza and Tarazona [Phys. Rev. A 41, 965 (1990)]. Our calculations do not employ the translation-rotation decoupling approximation used in previous density-functional theories. The calculated phase boundaries agree well with computer simulation results up to aspect ratios L/D approximately 5 and are in better agreement with the simulations than are previous theories. We generalize the model fluid by including long-range interactions with quadrupolar orientational symmetry, which are taken into account by mean-field approximation. For sufficiently large strength, these interactions produce a smectic-C phase, which undergoes either a continuous or weakly first-order transition to the smectic-A phase. The theory and numerical methods discussed here can be applied to the analysis of interfacial phenomena. PMID:11088887
Neutrinoless double-beta decay in covariant density functional theory
NASA Astrophysics Data System (ADS)
Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.
2015-10-01
We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME's) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME's can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.
Improving the orbital-free density functional theory description of covalent materials
NASA Astrophysics Data System (ADS)
Zhou, Baojing; Ligneres, Vincent L.; Carter, Emily A.
2005-01-01
The essential challenge in orbital-free density functional theory (OF-DFT) is to construct accurate kinetic energy density functionals (KEDFs) with general applicability (i.e., transferability). During the last decade, several linear-response (LR)-based KEDFs have been proposed. Among them, the Wang-Govind-Carter (WGC) KEDF, containing a density-dependent response kernel, is one of the most accurate that still affords a linear scaling algorithm. For nearly-free-electron-like metals such as Al and its alloys, OF-DFT employing the WGC KEDF produces bulk properties in good agreement with orbital-based Kohn-Sham (KS) DFT predictions. However, when OF-DFT, using the WGC KEDF combined with a recently proposed bulk-derived local pseudopotential (BLPS), was applied to semiconducting and metallic phases of Si, problems arose with convergence of the self-consistent density and energy, leading to poor results. Here we provide evidence that the convergence problem is very likely caused by the use of a truncated Taylor series expansion of the WGC response kernel. Moreover, we show that a defect in the ansatz for the first-order reduced density matrix underlying the LR KEDFs limits the accuracy of these KEDFs. By optimizing the two free parameters involved in the WGC KEDF, the two-body Fermi wave vector mixing parameter γ and the reference density ρ* used in the Taylor expansion, OF-DFT calculations with the BLPS can achieve semiquantitative results for nine phases of bulk silicon. These new parameters are recommended whenever the WGC KEDF is used to study nonmetallic systems.
Density versus spin-density functional in DFT+U and DFT+DMFT
NASA Astrophysics Data System (ADS)
Park, Hyowon; Millis, Andrew; Marianetti, Chris
2015-03-01
The construction of multi-variable effective action theories such as DFT+U and DFT+DMFT requires the choice of a local subspace of correlated orbitals and an additional variable being either the charge density or spin density. This talk examines the differences between using charge-only and spin-dependent exchange-correlation functionals with the aim of providing guidance for constructing more sophisticated beyond-density functional theories. The widely used spin-dependent approximations to the exchange-correlation functional are found to lead to a large and in some cases unphysical effective exchange coupling within the correlated subspace. Additionally, the differences between Wannier and Projector based definitions of the correlated orbitals are examined, and only small differences are found provided that the orbitals are orthonormal and strongly localized. These results are documented in the context of the rare earth nickelates. This work is supported under the Grant DOE-ER-046169 and under the FAME grant, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Autoionization in time-dependent density-functional theory
NASA Astrophysics Data System (ADS)
Kapoor, V.
2016-06-01
We compute the exact exchange-correlation potential of the time-dependent density-functional theory (TDDFT) for the correlated process of autoionization. The potential develops barriers which regulate the autoionization rate. TDDFT employing known and practicable exchange-correlation potentials does not capture any autoionization dynamics. Approximate exchange-correlation potentials capturing such dynamics would necessarily require memory effects and are unlikely to be developed, as will be illustrated.
Density functional theory across chemistry, physics and biology
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-01-01
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg–Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181
Association between lung function and airway wall density
NASA Astrophysics Data System (ADS)
Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.
2009-02-01
Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.
Probability Density Function Method for Langevin Equations with Colored Noise
Wang, Peng; Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.
2013-04-05
We present a novel method to derive closed-form, computable PDF equations for Langevin systems with colored noise. The derived equations govern the dynamics of joint or marginal probability density functions (PDFs) of state variables, and rely on a so-called Large-Eddy-Diffusivity (LED) closure. We demonstrate the accuracy of the proposed PDF method for linear and nonlinear Langevin equations, describing the classical Brownian displacement and dispersion in porous media.
Density functional theory across chemistry, physics and biology.
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-03-13
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181
Probability density function modeling for sub-powered interconnects
NASA Astrophysics Data System (ADS)
Pater, Flavius; Amaricǎi, Alexandru
2016-06-01
This paper proposes three mathematical models for reliability probability density function modeling the interconnect supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed analysis aims at determining the most appropriate fitting for the switching delay - probability of correct switching for sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of interconnects for 45 nm CMOS technology supplied at 0.25V.
Next generation high density self assembling functional protein arrays
Ramachandran, Niroshan; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Fuentes, Manuel G.; Rolfs, Andreas; Hu, Yanhui; LaBaer, Joshua
2009-01-01
We report a high-density self assembling protein microarray that displays thousands of proteins, produced and captured in situ from immobilized cDNA templates. Over 1500 unique cDNAs were tested with > 90% success with nearly all proteins displaying yields within 2 fold of the mean, minimal sample variation and good day to day reproducibility. The displayed proteins revealed selective protein interactions. This method will enable various experimental approaches to study protein function in high throughput. PMID:18469824
Plato: A localised orbital based density functional theory code
NASA Astrophysics Data System (ADS)
Kenny, S. D.; Horsfield, A. P.
2009-12-01
The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available
Thermal Corrections to Density Functional Simulations of Warm Dense Matter
NASA Astrophysics Data System (ADS)
Smith, Justin; Pribram-Jones, Aurora; Burke, Kieron
Present density functional calculations of warm dense matter often use the Mermin-Kohn-Sham (MKS) scheme at finite temperature, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable non-trivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies, the exact Mermin-Kohn-Sham functionals for this system, and extract the exact XC free energy. For moderate temperatures and weak correlation, we show this approximation is excellent, but fails for stronger correlations. Additionally, we use this system to test various conditions that must be satisfied.
Linear Scaling Density Functional Calculations with Gaussian Orbitals
NASA Technical Reports Server (NTRS)
Scuseria, Gustavo E.
1999-01-01
Recent advances in linear scaling algorithms that circumvent the computational bottlenecks of large-scale electronic structure simulations make it possible to carry out density functional calculations with Gaussian orbitals on molecules containing more than 1000 atoms and 15000 basis functions using current workstations and personal computers. This paper discusses the recent theoretical developments that have led to these advances and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational quantum chemistry programs for the prediction of molecular structure and properties.
Conformational Analysis of Thioether Musks Using Density Functional Theory
Setzer, William N.
2009-01-01
A conformational analysis of nine macrocyclic thioether musks has been carried out using molecular mechanics (MMFF), density functional theory (DFT) using both B3LYP and M06 functionals, as well as Hartree-Fock and post-Hartree-Fock (MP2) ab initio methods. 6-Thia-, 10-thia- and 4-methyl-5-thia-14-tetradecananolide, 4-thia-, 7-thia-, 11-thia- and 12-thia-15-pentadecanolide and 6-thia- and 12-thia-16-hexadecanolide were modeled. Unfortunately, there was little agreement between the computational methods at the levels of theory used in this study. PMID:20111690
Atomistic force field for alumina fit to density functional theory
Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul
2013-11-28
We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. PMID:26723661
Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
A Wigner Monte Carlo approach to density functional theory
NASA Astrophysics Data System (ADS)
Sellier, J. M.; Dimov, I.
2014-08-01
In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn-Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales very well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn-Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.
Density functional theory and chromium: Insights from the dimers
Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael; Walter, Michael
2015-03-28
The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences between functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.
Curvature and Frontier Orbital Energies in Density Functional Theory
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi
2012-12-20
Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.
Van der Waals Density Functional Theory with Applications
NASA Astrophysics Data System (ADS)
Langreth, David C.
2004-03-01
We discuss the development of electronic density functionals that are applicable for weakly bound systems where the van der Waals interaction and its ramifications become important. Our current functionals approach the correct asymptotic dependence at large distances and are seamless at small distances. The first form of the functional, appropriate for layered systems, has been recently applied to graphite, boron nitride, and molybdenum sulfide [H. Rydberg et al., Phys. Rev. Lett. 91, 126402 (2003) and D. C. Langreth, Int. J. Quant. Chem. (submitted), see http//:www.physics.rutgers.edu/ ˜langreth/preprints/dft2003.pdf]. The second form of the functional [M. Dion it et al. (to be published)] is appropriate for arbitrary geometries. Recent results on rare gas dimers and the benzene dimer suggest promise for this method as well.
González, Iveth J.; Polley, Spencer D.; Bell, David; Shakely, Delér; Msellem, Mwinyi I.; Björkman, Anders; Mårtensson, Andreas
2014-01-01
Background Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots. Methods and Findings Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6–782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94–99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0–4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1–98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2–99.9) and 76.9% (95%CI 46.2–95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1–100) in both study groups. Conclusion Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low-density
NASA Astrophysics Data System (ADS)
Mardirossian, Narbe; Head-Gordon, Martin
2015-02-01
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 1010 choices carved out of a functional space of almost 1040 possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.
Mardirossian, Narbe; Head-Gordon, Martin
2015-02-21
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10{sup 10} choices carved out of a functional space of almost 10{sup 40} possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.
Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
Soniat, Marielle; Rogers, David M; Rempe, Susan B
2015-07-14
A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment. PMID:26575733
Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.
Sharma, Rupali; Zhang, Jie; Ohlin, C André
2016-03-21
We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832
Generalized Pauli constraints in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Marques, Miguel A. L.
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
Density-dependence of functional spiking networks in vitro
Ham, Michael I; Gintautuas, Vadas; Rodriguez, Marko A; Bettencourt, Luis M A; Bennett, Ryan; Santa Maria, Cara L
2008-01-01
During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.
Downlink Probability Density Functions for EOS-McMurdo Sound
NASA Technical Reports Server (NTRS)
Christopher, P.; Jackson, A. H.
1996-01-01
The visibility times and communication link dynamics for the Earth Observations Satellite (EOS)-McMurdo Sound direct downlinks have been studied. The 16 day EOS periodicity may be shown with the Goddard Trajectory Determination System (GTDS) and the entire 16 day period should be simulated for representative link statistics. We desire many attributes of the downlink, however, and a faster orbital determination method is desirable. We use the method of osculating elements for speed and accuracy in simulating the EOS orbit. The accuracy of the method of osculating elements is demonstrated by closely reproducing the observed 16 day Landsat periodicity. An autocorrelation function method is used to show the correlation spike at 16 days. The entire 16 day record of passes over McMurdo Sound is then used to generate statistics for innage time, outage time, elevation angle, antenna angle rates, and propagation loss. The levation angle probability density function is compared with 1967 analytic approximation which has been used for medium to high altitude satellites. One practical result of this comparison is seen to be the rare occurrence of zenith passes. The new result is functionally different than the earlier result, with a heavy emphasis on low elevation angles. EOS is one of a large class of sun synchronous satellites which may be downlinked to McMurdo Sound. We examine delay statistics for an entire group of sun synchronous satellites ranging from 400 km to 1000 km altitude. Outage probability density function results are presented three dimensionally.
Revealing the density of encoded functions in a viral RNA
Patel, Nikesh; Dykeman, Eric C.; Coutts, Robert H. A.; Lomonossoff, George P.; Rowlands, David J.; Phillips, Simon E. V.; Ranson, Neil; Twarock, Reidun; Tuma, Roman; Stockley, Peter G.
2015-01-01
We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogens. PMID:25646435
Current density partitioning in time-dependent current density functional theory
Mosquera, Martín A.; Wasserman, Adam; Department of Physics, Purdue University, West Lafayette, Indiana 47907
2014-05-14
We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.
Stoessel, J.P.; Wolynes, P.G.
1989-01-01
With analogy to the ''highly accurate'' summation of cluster diagrams for hard sphere fluids a la Carnahan-Starling, we present a simple, real space free energy density functional for arbitrary potential systems, based on the generalization of the second virial coefficient to inhomogeneous systems which, when applied to hard sphere, soft-sphere, and Lennard-Jones freezing, yield melting characteristics in remarkable agreement with experiment. Implications for the liquid-glass transition in all three potential systems are also presented. 45 refs., 7 figs., 1 tab.
Time-dependent Density Functional Results for the Dynamic Hyperpolarizability of C{sub 60}
van Gisbergen, S.; Snijders, J.; Baerends, E.
1997-04-01
The experimental, as well as theoretical, values for the frequency-dependent hyperpolarizability of C{sub 60} differ by orders of magnitude. We present the first density functional calculation of a molecular frequency-dependent hyperpolarizability. Our implementation is very economical, enabling the treatment of molecules of this size, in a potentially much more accurate way than can be obtained with alternative methods. Our results strongly support the recent results by Geng and Wright, who report much lower experimental values than previous authors. {copyright} {ital 1997} {ital The American Physical Society}
Orbital-free density functional theory study of crystalline Li-Si alloys
NASA Astrophysics Data System (ADS)
Xia, Junchao; Carter, Emily A.
2014-05-01
Li-Si interactions are of great interest currently due to the potential use of silicon anodes in Li-ion batteries. As a first step toward eventual nanoscale characterization of lithiation of silicon, here we study the crystalline Li-Si alloys LiSi, Li12Si7, Li7Si3, Li13Si4, Li15Si4, and Li22Si5 using orbital-free density functional theory (OFDFT). The recently proposed Wang-Govind-Carter decomposition (WGCD) and Huang-Carter (HC) kinetic energy density functionals (KEDFs) are used to evaluate the electron kinetic energy. Both KEDFs predict accurate cell lattice vectors, equilibrium volumes, bulk moduli, and ground-state densities when compared to Kohn-Sham density functional theory (KSDFT) benchmarks. Elastic constants and alloy formation energies calculated with the WGCD KEDF also agree reasonably well with KSDFT. Finally, Li atom adsorption energies on the Si(100) - 2 × 1 surface are calculated as a simple initial test of the Li-Si mixing process during lithiation of silicon. The OFDFT adsorption energies again are fairly close to KSDFT values. The results in this work demonstrate the accuracy of the WGCD and HC KEDFs for materials with mixed covalent-metallic character and their considerable transferability under different chemical environments. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena.
Density functional theory: Its origins, rise to prominence, and future
NASA Astrophysics Data System (ADS)
Jones, R. O.
2015-07-01
In little more than 20 years, the number of applications of the density functional (DF) formalism in chemistry and materials science has grown in an astonishing fashion. The number of publications alone shows that DF calculations make up a huge success story, and many younger colleagues are surprised to learn that the widespread application of density functional methods, particularly in chemistry, began only after 1990. This is indeed unexpected, because the origins are usually traced to the papers of Hohenberg, Kohn, and Sham more than a quarter of a century earlier. The DF formalism, its applications, and prospects were reviewed for this journal in 1989. About the same time, the combination of DF calculations with molecular dynamics promised to provide an efficient way to study structures and reactions in molecules and extended systems. This paper reviews the development of density-related methods back to the early years of quantum mechanics and follows the breakthrough in their application after 1990. The two examples from biochemistry and materials science are among the many current applications that were simply far beyond expectations in 1990. The reasons why—50 years after its modern formulation and after two decades of rapid expansion—some of the most cited practitioners in the field are concerned about its future are discussed.
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated. PMID:25903875
A new class of atomic basis functions for accurate electronic structure calculations of molecules
NASA Astrophysics Data System (ADS)
Laikov, Dimitri N.
2005-11-01
A new general approach is developed for obtaining systematic sequences of atomic single-particle basis sets for use in correlated electronic structure calculations of molecules. All the constituent functions are defined as the solutions of variational problems and are of three types: a minimal Hartree-Fock set, additional functions to represent low-lying excited configurations, and general functions for describing electron correlation. The latter are determined to minimize a functional derived from the closed-shell second-order correlation energy expression. Generally-contracted Gaussian expansions are developed to approximate these general functions in the non-relativistic case and within a scalar-relativistic approximation.
Empirical relaxation function and spectral density for underdamped vibrations at low temperatures
NASA Astrophysics Data System (ADS)
Toutounji, Mohamad
2009-03-01
A new relaxation function which accounts for electronic dephasing (electronic phase loss and excited state lifetime) is presented, whose applicability for underdamped motion at low temperatures is examined in detail. This new empirical relaxation function φ(t ) yields linear and nonlinear spectral/temporal profiles that render accurate dephasing time in the underdamped regime. The relaxation function φ(t ) is normally expressed in terms of the coupling functions Mj' and Mj″ on which the time evolution of the vibrational modes in question depends. The corresponding spectral density, which is a central quantity in probing dynamics, is derived and compared to that of the multimode Brownian oscillator model. Derivation and discussion of the new position and momentum autocorrelation functions in terms of our new spectral density are presented. While the position autocorrelation function plays a key role in representing solvation structure in polar or nonpolar medium, the momentum correlation function projects out the molecular vibrational motion. The Liouville space generating function (LGF) for harmonic and anharmonic systems is expressed in terms of our new empirical φ(t ) and spectral density, leading to more physical observation. Several statistical quantities are derived from the position and momentum correlation function, which in turn contribute to LGF. Model calculations reflecting the infinite population decay in the low temperature limit in linear and nonlinear spectroscopic signals are presented. The herein quantum dipole moment correlation function is compared to that derived in [M. Toutounji, J. Chem. Phys. 118, 5319 (2003)] using mixed quantum-classical dynamics framework, yielding reasonable results, in fact identical at higher temperatures. The results herein are found to be informative, useful, and consistent with experiments.
Empirical relaxation function and spectral density for underdamped vibrations at low temperatures.
Toutounji, Mohamad
2009-03-01
A new relaxation function which accounts for electronic dephasing (electronic phase loss and excited state lifetime) is presented, whose applicability for underdamped motion at low temperatures is examined in detail. This new empirical relaxation function phi(t) yields linear and nonlinear spectral/temporal profiles that render accurate dephasing time in the underdamped regime. The relaxation function phi(t) is normally expressed in terms of the coupling functions M(j) (') and M(j) (") on which the time evolution of the vibrational modes in question depends. The corresponding spectral density, which is a central quantity in probing dynamics, is derived and compared to that of the multimode Brownian oscillator model. Derivation and discussion of the new position and momentum autocorrelation functions in terms of our new spectral density are presented. While the position autocorrelation function plays a key role in representing solvation structure in polar or nonpolar medium, the momentum correlation function projects out the molecular vibrational motion. The Liouville space generating function (LGF) for harmonic and anharmonic systems is expressed in terms of our new empirical phi(t) and spectral density, leading to more physical observation. Several statistical quantities are derived from the position and momentum correlation function, which in turn contribute to LGF. Model calculations reflecting the infinite population decay in the low temperature limit in linear and nonlinear spectroscopic signals are presented. The herein quantum dipole moment correlation function is compared to that derived in [M. Toutounji, J. Chem. Phys. 118, 5319 (2003)] using mixed quantum-classical dynamics framework, yielding reasonable results, in fact identical at higher temperatures. The results herein are found to be informative, useful, and consistent with experiments. PMID:19275403
Applications of large-scale density functional theory in biology
NASA Astrophysics Data System (ADS)
Cole, Daniel J.; Hine, Nicholas D. M.
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Applications of large-scale density functional theory in biology.
Cole, Daniel J; Hine, Nicholas D M
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095
NASA Astrophysics Data System (ADS)
Ghasemi, S. Alireza; Hofstetter, Albert; Saha, Santanu; Goedecker, Stefan
2015-07-01
Based on an analysis of the short-range chemical environment of each atom in a system, standard machine-learning-based approaches to the construction of interatomic potentials aim at determining directly the central quantity, which is the total energy. This prevents, for instance, an accurate description of the energetics of systems in which long-range charge transfer or ionization is important. We propose therefore not to target directly with machine-learning methods the total energy but an intermediate physical quantity, namely, the charge density, which then in turn allows us to determine the total energy. By allowing the electronic charge to distribute itself in an optimal way over the system, we can describe not only neutral but also ionized systems with unprecedented accuracy. We demonstrate the power of our approach for both neutral and ionized NaCl clusters where charge redistribution plays a decisive role for the energetics. We are able to obtain chemical accuracy, i.e., errors of less than a millihartree per atom compared to the reference density functional results for a huge data set of configurations with large structural variety. The introduction of physically motivated quantities which are determined by the short-range atomic environment via a neural network also leads to an increased stability of the machine-learning process and transferability of the potential.
Self-consistent van der Waals density functional study of benzene adsorption on Si(100)
NASA Astrophysics Data System (ADS)
Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Morikawa, Yoshitada
2016-06-01
The adsorption of benzene on the Si(100) surface is studied theoretically using the self-consistent van der Waals density functional (vdW-DF) method. The adsorption energies of two competing adsorption structures, butterfly (BF) and tight-bridge (TB) structures, are calculated with several vdW-DFs at saturation coverage. Our results show that recently proposed vdW-DFs with high accuracy all prefer TB to BF, in accord with more accurate calculations based on exact exchange and correlation within the random-phase approximation. Detailed analyses reveal the important roles played by the molecule-surface interaction and molecular deformation upon adsorption, and we suggest that their precise description is a prerequisite for accurate prediction of the most stable adsorption structure of organic molecules on semiconductor surfaces.
Dipole polarizability of 120Sn and nuclear energy density functionals
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Krumbholz, A. M.; Reinhard, P.-G.; Tamii, A.; von Neumann-Cosel, P.; Adachi, T.; Aoi, N.; Bertulani, C. A.; Fujita, H.; Fujita, Y.; GanioÇ§lu, E.; Hatanaka, K.; Ideguchi, E.; Iwamoto, C.; Kawabata, T.; Khai, N. T.; Krugmann, A.; Martin, D.; Matsubara, H.; Miki, K.; Neveling, R.; Okamura, H.; Ong, H. J.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Sakaguchi, H.; Shimbara, Y.; Shimizu, Y.; Simonis, J.; Smit, F. D.; Süsoy, G.; Suzuki, T.; Thies, J. H.; Yosoi, M.; Zenihiro, J.
2015-09-01
The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at the Research Center for Nuclear Physics, Osaka, from polarization transfer observables measured in proton inelastic scattering at E0=295 MeV and forward angles including 0∘. Combined with photoabsorption data, a highly precise electric dipole polarizability αD(120Sn) =8.93 (36 ) fm3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on nuclear symmetry energy and its density dependence. The correlation of the new value with the well-established αD(208Pb) serves as a test of its prediction by nuclear energy density functionals. Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.
Dynamic density functional theory of solid tumor growth: Preliminary models.
Chauviere, Arnaud; Hatzikirou, Haralambos; Kevrekidis, Ioannis G; Lowengrub, John S; Cristini, Vittorio
2012-03-01
Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth. PMID:22489279
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2015-01-21
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.
Hubbard operator density functional theory for Fermionic lattice models
NASA Astrophysics Data System (ADS)
Cheng, Zhengqian; Marianetti, Chris
We formulate an effective action as a functional of Hubbard operator densities whose stationary point delivers all local static information of the interacting lattice model. Using the variational principle, we get a self-consistent equation for Hubbard operator densities. The computational cost of our approach is set by diagonalizing the local Fock space. We apply our method to the one and two band Hubbard model (including crystal field and on-site exchange) in infinite dimensions where the exact solution is known. Excellent agreement is obtained for the one-band model. In the two-band model, good agreement is obtained in the metallic region of the phase diagram in addition to the metal-insulator transition. While our approach does not address frequency dependent observables, it has a negligible computational cost as compared to dynamical mean field theory and could be highly applicable in the context total energies of strongly correlated materials and molecules.
Density Functional Calculations for Atoms, Molecules and Clusters
NASA Astrophysics Data System (ADS)
Gunnarsson, O.; Jones, R. O.
1980-01-01
The density functional formalism provides a framework for including exchange and correlation effects in the calculation of ground state properties of many-electron systems. The reduction of the problem to the solution of single-particle equations leads to important numerical advantages over other ab initio methods of incorporating correlation effects. The essential features of the scheme are outlined and results obtained for atomic and molecular systems are surveyed. The local spin density (LSD) approximation gives generally good results for systems where the bonding involves s and p electrons, but results are less satisfactory for d-bonded systems. Non-local modifications to the LSD approximation have been tested on atomic systems yielding much improved total energies.
Relativistic density functional theory for finite nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Piekarewicz, Jorge
In 1939 Oppenheimer and Volkoff demonstrated using Einstein's theory of general relativity that a neutron star supported exclusively by neutron degeneracy pressure will collapse into a black hole if its mass exceeds seven tenths of a solar mass. Seventy five years after such a pioneering prediction the existence of neutron stars with masses as large as two solar masses has been firmly established. This fact alone highlights the critical role that nuclear interactions play in explaining the structure of neutron stars. Indeed, a neutron star is a gold mine for the study of nuclear phenomena that span an enormous range of densities and neutron-proton asymmetries. Physical phenomena over such diverse scales are best described by a formalism based on Relativistic Density Functional Theory. In this contribution I focus on the synergy between theory, experiment, and observation that is needed to elucidate the myriad of exotic states of matter that are believed to exist in a neutron star.
Nuclear chiral and magnetic rotation in covariant density functional theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Zhao, Pengwei
2016-05-01
Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC–CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.
Progress at the interface of wave-function and density-functional theories
Gidopoulos, Nikitas I.
2011-04-15
The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.
Characterizing the Spatial Density Functions of Neural Arbors
NASA Astrophysics Data System (ADS)
Teeter, Corinne Michelle
Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within
SUMO1 Affects Synaptic Function, Spine Density and Memory
Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E.
2015-01-01
Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678
SUMO1 Affects Synaptic Function, Spine Density and Memory.
Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E
2015-01-01
Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678
Dynamic density functional theory with hydrodynamic interactions and fluctuations.
Donev, Aleksandar; Vanden-Eijnden, Eric
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, "Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps," Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, "A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law," J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions. PMID:24952531
Dynamic density functional theory with hydrodynamic interactions and fluctuations
NASA Astrophysics Data System (ADS)
Donev, Aleksandar; Vanden-Eijnden, Eric
2014-06-01
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, "Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps," Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, "A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law," J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.
Dynamic density functional theory with hydrodynamic interactions and fluctuations
Donev, Aleksandar Vanden-Eijnden, Eric
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.
Graphene oxide and adsorption of chloroform: A density functional study
NASA Astrophysics Data System (ADS)
Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth
2016-05-01
Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.
Graphene oxide and adsorption of chloroform: A density functional study.
Kuisma, Elena; Hansson, C Fredrik; Lindberg, Th Benjamin; Gillberg, Christoffer A; Idh, Sebastian; Schröder, Elsebeth
2016-05-14
Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study. PMID:27179497
Relativistic cosmology number densities and the luminosity function
NASA Astrophysics Data System (ADS)
Iribarrem, A. S.; Lopes, A. R.; Ribeiro, M. B.; Stoeger, W. R.
2012-03-01
Aims: This paper studies the connection between the relativistic number density of galaxies down the past light cone in a Friedmann-Lemaître-Robertson-Walker spacetime with non-vanishing cosmological constant and the galaxy luminosity function (LF) data. It extends the redshift range of previous results presented in Albani et al. (2007, ApJ, 657, 760), where the galaxy distribution was studied out to z = 1. Observational inhomogeneities were detected at this range. This research also searches for LF evolution in the context of the framework advanced by Ribeiro and Stoeger (2003, ApJ, 592, 1), further developing the theory linking relativistic cosmology theory and LF data. Methods: Selection functions are obtained using the Schechter parameters and redshift parametrization of the galaxy LF obtained from an I-band selected dataset of the FORS deep field galaxy survey in the redshift range 0.5 ≤ z ≤ 5.0 for its blue bands and 0.75 ≤ z ≤ 3.0 for its red ones. Differential number counts, densities and other related observables are obtained, and then used with the calculated selection functions to study the empirical radial distribution of the galaxies in a fully relativistic framework. Results: The redshift range of the dataset used in this work, which is up to five times larger than the one used in previous studies, shows an increased relevance of the relativistic effects of expansion when compared to the evolution of the LF at the higher redshifts. The results also agree with the preliminary ones presented in Albani et al., suggesting a power-law behavior of relativistic densities at high redshifts when they are defined in terms of the luminosity distance.
Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
Nuclear clustering in the energy density functional approach
Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.
2015-10-15
Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1997-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+(sub n), MNO+, and MCO+(sub 2). The DFT works well for frequencies and geometries, even in cases with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of the successes as well as failures of DFT will be given.
Quantification of Uncertainties in Nuclear Density Functional Theory
Schunck, N.; McDonnell, J.D.; Higdon, D.; Sarich, J.; Wild, S.
2015-01-15
Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
Density functional study of the cysteine adsorption on Au nanoclusters
NASA Astrophysics Data System (ADS)
Pérez, L. A.; López-Lozano, X.; Garzón, I. L.
2009-04-01
The adsorption of the cysteine amino acid (H-SCβH2-CαH-NH2-COOH) on the Au55 cluster is investigated through density functional theory calculations. Two isomers, with icosahedral (Ih) and chiral (C1) geometries, of the Au55 cluster are used to calculate the adsorption energy of the cysteine on different facets of these isomers. Results, only involving the S(thiolate)-Au bonding show that the higher adsorption energies are obtained when the sulfur atom is bonded to an asymmetrical bridge site at the facet containing Au atoms with the lowest coordination of the C1 cluster isomer.
Nuclear clustering in the energy density functional approach
NASA Astrophysics Data System (ADS)
Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.
2015-10-01
Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.
Density Functional Study of the structural properties in Tamoxifen
NASA Astrophysics Data System (ADS)
de Coss-Martinez, Romeo; Tapia, Jorge A.; Quijano-Quiñones, Ramiro F.; Canto, Gabriel I.
2013-03-01
Using the density functional theory, we have studied the structural properties of Tamoxifen. The calculations were performed with two methodological approaches, which were implemented in SIESTA and Spartan codes. For SIESTA, we considerate a linear combination of atomic orbitals method, using pseudopotentials and the van der Waals approximation for the exchange-correlation potential. Here we analyzed and compared the atomic structure between our results and other theoretical study. We found differences in the bond lengths between the results, that could be attributed to code approaches in each one. This work was supported under Grant FOMIX 2011-09 N: 170297 of Ph.D. A. Tapia.
Determining Ionospheric Irregularity Spectral Density Function from Japan GEONET
NASA Astrophysics Data System (ADS)
Lay, E. H.; Light, M. E.; Parker, P. A.; Carrano, C. S.; Haaser, R. A.
2015-12-01
Japan's GEONET GPS network is the densest GPS monitoring network in the world, with 1200+ receivers over the area of Japan. Measuring and calibrating the integrated total electron content (TEC) from each station has been done in many cases to provide detailed maps of ionospheric disturbances over Japan. We use TEC measurements from Japan's GEONET array to determine an empirically derived description of the 2-dimensional scale sizes of spatial irregularities above Japan. The contributions from various scale sizes will be included in a statistical description for the irregularity spectral density (ISD) function. We will compare the statistics of the spatial irregularities between calm and moderately scintillated conditions.
Density functional theory calculations of Rh-β-diketonato complexes.
Conradie, J
2015-01-28
Density functional theory (DFT) results on the geometry, energies and charges of selected Rh-β-diketonato reactants, products and transition states are discussed. Various DFT techniques are used to increase our understanding of the orientation of ligands coordinated to Rh, to identify the lowest energy geometry of possible geometrical isomers and to get a molecular orbital understanding of ground and transition states. Trends and relationships obtained between DFT calculated energies and charges, experimentally measured values and electronic parameters describing the electron donating power of groups and ligands, enable the design of ligands and complexes of specific reactivity. PMID:25429658
Relativistic Energy Density Functionals: Exotic modes of excitation
Vretenar, D.; Paar, N.; Marketin, T.
2008-11-11
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
DENSITY-FUNCTIONAL STUDY OF Zr-BASED ACTINIDE ALLOYS
Landa, A; Soderlind, P; Turchi, P; Vitos, L; Ruban, A
2008-06-26
Density-functional formalism is applied to study the phase equilibria in the U-Zr system. The obtained ground-state properties of the {gamma} (bcc) and {delta} (C32) phases are in good agreement with experimental data. The decomposition curve for the {gamma}-based U-Zr solutions is calculated. We argue that stabilization of the {delta}-UZr{sub 2} phase relative to the {alpha}-Zr (hcp) structure is due to an increase of the Zr d-band occupancy that occurs when U is alloyed with Zr.
Strained graphene: tight-binding and density functional calculations
NASA Astrophysics Data System (ADS)
Ribeiro, R. M.; Pereira, Vitor M.; Peres, N. M. R.; Briddon, P. R.; Castro Neto, A. H.
2009-11-01
We determine the band structure of graphene under strain using density functional calculations. The ab initio band structure is then used to extract the best fit to the tight-binding hopping parameters used in a recent microscopic model of strained graphene. It is found that the hopping parameters may increase or decrease upon increasing strain, depending on the orientation of the applied stress. The fitted values are compared with an available parameterization for the dependence of the orbital overlap on the distance separating the two carbon atoms. It is also found that strain does not induce a gap in graphene, at least for deformations up to 10%.
Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities
Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz
2005-03-01
Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP.
Actinide electronic structure based on the Dirac equation and density functional theory
NASA Astrophysics Data System (ADS)
Wills, John M.; Mattsson, Ann E.
2013-03-01
Density functional theory (DFT) provides a formally predictive basis for predicting the structural properties of actinides. Although available approximations to the exchange/correlation functional provide accurate predictions for many materials, they fail qualitatively and sometimes quantitatively when applied to actinides. Major contributors to this deficiency are an inadequate treatment of confinement physics and an incomplete treatment of relativity in the underlying equations. The development of a functional correctly incorporating confinement physics with a proper treatment of relativity would provide definitive, internally consistent predictions of actinide properties. To enable the development of such a functional and quantify the predictions of currently available functionals, we have developed an efficient first-principles electronic structure method based on the Dirac equation. Results are compared with current methods, and the implications for relativistic density functionals discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory.
Pellegrini, Camilla; Flick, Johannes; Tokatly, Ilya V; Appel, Heiko; Rubio, Angel
2015-08-28
We propose an orbital exchange-correlation functional for applying time-dependent density functional theory to many-electron systems coupled to cavity photons. The time nonlocal equation for the electron-photon optimized effective potential (OEP) is derived. In the static limit our OEP energy functional reduces to the Lamb shift of the ground state energy. We test the new approximation in the Rabi model. It is shown that the OEP (i) reproduces quantitatively the exact ground-state energy from the weak to the deep strong coupling regime and (ii) accurately captures the dynamics entering the ultrastrong coupling regime. The present formalism opens the path to a first-principles description of correlated electron-photon systems, bridging the gap between electronic structure methods and quantum optics for real material applications. PMID:26371646
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra
2007-09-01
We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80<=T*<=1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available.
NASA Astrophysics Data System (ADS)
Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Zuo, Chen; Li, ZhengJi
2016-01-01
Three-dimensional (3D) structures are useful for studying the spatial structures and physical properties of porous media. A 3D structure can be reconstructed from a single two-dimensional (2D) training image (TI) by using mathematical modeling methods. Among many reconstruction algorithms, an optimal-based algorithm was developed and has strong stability. However, this type of algorithm generally uses an autocorrelation function (which is unable to accurately describe the morphological features of porous media) as its objective function. This has negatively affected further research on porous media. To accurately reconstruct 3D porous media, a pattern density function is proposed in this paper, which is based on a random variable employed to characterize image patterns. In addition, the paper proposes an original optimal-based algorithm called the pattern density function simulation; this algorithm uses a pattern density function as its objective function, and adopts a multiple-grid system. Meanwhile, to address the key point of algorithm reconstruction speed, we propose the use of neighborhood statistics, the adjacent grid and reversed phase method, and a simplified temperature-controlled mechanism. The pattern density function is a high-order statistical function; thus, when all grids in the reconstruction results converge in the objective functions, the morphological features and statistical properties of the reconstruction results will be consistent with those of the TI. The experiments include 2D reconstruction using one artificial structure, and 3D reconstruction using battery materials and cores. Hierarchical simulated annealing and single normal equation simulation are employed as the comparison algorithms. The autocorrelation function, linear path function, and pore network model are used as the quantitative measures. Comprehensive tests show that 3D porous media can be reconstructed accurately from a single 2D training image by using the method proposed
Lithium adsorption on graphite from density functional theory calculations.
Valencia, Felipe; Romero, Aldo H; Ancilotto, Francesco; Silvestrelli, Pier Luigi
2006-08-01
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes. PMID:16869593
Constrained Density Functional Theory by Imaginary Time-Step Method
NASA Astrophysics Data System (ADS)
Kidd, Daniel
Constrained Density Functional Theory (CDFT) has been a popular choice within the last decade for sidestepping the self interaction problem within long-range charge transfer calculations. Typically an inner constraint loop is added within the self-consistent field iterations of DFT in order to enforce this charge transfer state by means of a Lagrange multiplier method. In this work, an alternate implementation of CDFT is introduced, that of the imaginary time-step method, which lends itself more readily to real space calculations in the ability to solve numerically for 3D local external potentials which enforce arbitrary given densities. This method has been shown to reproduce the proper 1 / R dependence of charge transfer systems in real space calculations as well as the ability to generate useful constraint potentials. As an example application, this method is shown to be capable of describing defects within periodic systems using finite calculations by constraining the 3D density to that of the periodically calculated perfect system at the boundaries.
Antisites in III-V semiconductors: Density functional theory calculations
NASA Astrophysics Data System (ADS)
Chroneos, A.; Tahini, H. A.; Schwingenschlögl, U.; Grimes, R. W.
2014-07-01
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites ( III V q) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites ( V I I I q) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III V q defects dominate under III-rich conditions and V I I I q under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.
A numerical efficient way to minimize classical density functional theory
NASA Astrophysics Data System (ADS)
Edelmann, Markus; Roth, Roland
2016-02-01
The minimization of the functional of the grand potential within the framework of classical density functional theory in three spatial dimensions can be numerically very demanding. The Picard iteration, that is often employed, is very simple and robust but can be rather slow. While a number of different algorithms for optimization problems have been suggested, there is still great need for additional strategies. Here, we present an approach based on the limited memory Broyden algorithm that is efficient and relatively simple to implement. We demonstrate the performance of this algorithm with the minimization of an inhomogeneous bulk structure of a fluid with competing interactions. For the problems we studied, we find that the presented algorithm improves performance by roughly a factor of three.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
Density functional theory an effective method to model polythiophenes
NASA Astrophysics Data System (ADS)
Venkateswaran, S.
The luminescent polymer, poly[2-(3-thienyl)ethanol butoxycarbonyl-methyl urethane, called popularly as PURET, has rekindled research interests due to the recent discovery of its ability for detection of explosives at trace levels of molecules in their vapor phase. In this computational study, Hartree-Fock and/or Density Functional Theory (DFT) methods are applied, using Gaussian09 W software, for calculating the HOMO-LUMO energy levels, the Dipole Moment, and the UV-Vis and IR spectra for the Oligomers of PURET monomer, dimer, and trimer. Similar calculations for a few other Thiophene derivatives, such as TAA. TMA, 3HT, and TTZ, are also shown. DFT-based calculations, employing especially the B3LYP functional, are shown to systematically converge to experimental levels of accuracy for PURET Oligomers.
Density functional theory study of rutile VO2 surfaces
NASA Astrophysics Data System (ADS)
Mellan, Thomas A.; Grau-Crespo, Ricardo
2012-10-01
We present the results of a density functional theory investigation of the surfaces of rutile-like vanadium dioxide, VO2(R). We calculate the surface energies of low Miller index planes and find that the most stable surface orientation is the (110). The equilibrium morphology of a VO2(R) particle has an acicular shape, laterally confined by (110) planes and topped by (011) planes. The redox properties of the (110) surface are investigated by calculating the relative surface free energies of the non-stoichiometric compositions as a function of oxygen chemical potential. It is found that the VO2(110) surface is oxidized with respect to the stoichiometric composition, not only at ambient conditions but also at the more reducing conditions under which bulk VO2 is stable in comparison with bulk V2O5. The adsorbed oxygen forms surface vanadyl species much more favorably than surface peroxo species.
Electronic properties of graphene nanoribbons: A density functional investigation
Kumar, Sandeep Sharma, Hitesh
2015-05-15
Density functional theory calculations have been performed on graphene nano ribbons (GNRs) to investigate the electronic properties as a function of chirality, size and hydrogenation on the edges. The calculations were performed on GNRs with armchair and zigzag configurations with 28, 34, 36, 40, 50, 56, 62, 66 carbon atoms. The structural stability of AGNR and ZGNR increases with the size of nanoribbon where as hydrogenation of GNR tends to lowers their structural stability. All GNRs considered have shown semiconducting behavior with HOMO-LUMO gap decreasing with the increase in the GNR size. The hydrogenation of GNR decreases its HOMO-LUMO gap significantly. The results are in agreement with the available experimental and theoretical results.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)
Nazarewicz, Witold
2012-07-01
The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian
2014-06-14
Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets for interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.
Advantages and limitations of density functional theory in block copolymer directed self-assembly
NASA Astrophysics Data System (ADS)
Liu, Jimmy; Laachi, Nabil; Delaney, Kris T.; Fredrickson, Glenn H.
2015-03-01
A major challenge in the application of block copolymer directed self-assembly (DSA) to advanced lithography is the exploration of large design spaces, including the selection of confinement shape and size, surface chemistry to affect wetting conditions, copolymer chain length and block fraction. To sweep such large spaces, a computational model is ideally both fast and accurate. In this study, we investigate various incarnations of the density functional theory (DFT) approach and evaluate their suitability to DSA applications. We introduce a new optimization scheme to capitalize on the speed advantages of DFT, while minimizing loss of accuracy relative to the benchmark of self-consistent field theory (SCFT). Although current DFT models afford a 100-fold reduction in computational complexity over SCFT, even the best optimized models fail to match SCFT density profiles and make extremely poor predictions of commensurability windows and defect energetics. These limitations suggest that SCFT will remain the gold standard for DSA simulations in the near future.
NASA Astrophysics Data System (ADS)
Makhov, D. V.; Lewis, Laurent J.
2005-05-01
The positron lifetimes for various vacancy clusters in silicon are calculated within the framework of the two-component electron-positron density functional theory. The effect of the trapped positron on the electron density and on the relaxation of the structure is investigated. Our calculations show that, contrary to the usual assumption, the positron-induced forces do not compensate in general for electronic inward forces. Thus, geometry optimization is required in order to determine positron lifetime accurately. For the monovacancy and the divacancy, the results of our calculations are in good agreement with the experimental positron lifetimes, suggesting that this approach gives good estimates of positron lifetimes for larger vacancy clusters, required for their correct identification with positron annihilation spectroscopy. As an application, our calculations show that fourfold trivacancies and symmetric fourfold tetravacancies have positron lifetimes similar to monovacancies and divacancies, respectively, and can thus be confused in the interpretation of positron annihilation experiments.
Density functional theory description of electronic properties of wurtzite zinc oxide
NASA Astrophysics Data System (ADS)
Franklin, L.; Ekuma, C. E.; Zhao, G. L.; Bagayoko, D.
2013-05-01
We report calculated, electronic properties of wurtzite zinc oxide (w-ZnO). We solved self-consistently the two inherently coupled equations of density functional theory (DFT), following the Bagayoko, Zhao, and Williams (BZW) method as enhanced by the work of Ekuma and Franklin (BZW-EF). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). Most of the calculated, electronic properties of w-ZnO are in excellent agreement with experiment, including our zero temperature band gap of 3.39 eV and the electron effective mass. The doubly self-consistent approach utilized in this work points to the ability of theory to predict accurately key properties of semiconductors and hence to inform and to guide the design and fabrication of semiconductor-based devices.
Hybrid Density Functionals Tuned towards Fulfillment of Fundamental DFT Conditions
NASA Astrophysics Data System (ADS)
Scheffler, Matthias
2014-03-01
Hybrid exchange-correlation functionals (XC), e.g. PBE0 and HSE, have significantly improved the theoretical description of molecules and solids. Their degree of exact-exchange admixture (α) is in principle a functional of the electron density, but the functional form is not known. In this talk, I will discuss fundamental conditions of exact density-functional theory (DFT) that enable us to find the optimal choice of α for ground-state calculations. In particular, I will discuss the fact that the highest occupied Kohn-Sham level of an N-electron system (ɛHOMO(N)) should be constant for fractional particle numbers between N and N-1 and equals the ionization potential (IP), as given by the total-energy difference. In practice, we realize this in three different ways. XC(α) will be optimized (opt-XC) until it (i) fulfills the condition: ɛHOMO(N) =ɛHOMO (N-1/2) or the Kohn-Sham HOMO agrees with the ionization potential computed in a more sophisticated approach ɛHOMO(N) = IP such as (ii) the G0W0 @opt-XC method or (iii) CCSD(T) or full CI. Using such an opt-XC is essential for describing electron transfer between (organic) molecules, as exemplified by the TTF/TCNQ dimer. It also yields vertical ionization energies of the G2 test set of quantum chemistry with a mean absolute percentage error of only ~3%. Furthermore, our approach removes the starting-point uncertainty of GW calculations and thus bears some resemblance to the consistent starting point scheme and quasiparticle self-consistent GW. While our opt-XC approach yields large α values for small molecules in the gas phase, we find that α needs to be 0.25 or less for organic molecules adsorbed on metals. Work performed in collaboration with V. Atalla, N.A. Richter, S.V. Levchenko, and P. Rinke
Hydroxyl functionalized thermosensitive microgels with quadratic crosslinking density distribution.
Elmas, Begum; Tuncel, Murvet; Senel, Serap; Patir, S; Tuncel, Ali
2007-09-01
N-isopropylacrylamide (NIPA) based uniform thermosensitive microgels were synthesized by dispersion polymerization by using relatively hydrophilic crosslinking agents with hydroxyl functionality. Glycerol dimethacrylate (GDMA), pentaerythritol triacrylate (PETA) and pentaerythritol propoxylate triacrylate (PEPTA) were used as crosslinking agents with different hydrophilicities. A protocol was first proposed to determine the crosslinking density distribution in the thermosensitive microgel particles by confocal laser scanning microscopy (CLSM). The microgels were fluorescently labeled by using hydroxyl group of the crosslinking agent. The CLSM observations performed with the microgels synthesized by three different crosslinking agents showed that the crosslinking density exhibited a quadratic decrease with the increasing radial distance in the spherical microgel particles. This structure led to the formation of more loose gel structure on the particle surface with respect to the center. Then the use of hydrophilic crosslinking agents in the dispersion polymerization of NIPA made possible the synthesis of thermosensitive microgels carrying long, flexible and chemically derivatizable (i.e., hydroxyl functionalized) fringes on the surface by a single-stage dispersion polymerization. The microgels with all crosslinking agents exhibited volume phase transition with the increasing temperature. The microgel obtained by the most hydrophilic crosslinking agent, GDMA exhibited higher hydrodynamic diameters in the fully swollen form at low temperatures than those obtained by PETA and PEPTA. Higher hydrodynamic size decrease from fully swollen form to the fully shrunken form was also observed with the same microgel. PMID:17532327
Probability density function transformation using seeded localized averaging
Dimitrov, N. B.; Jordanov, V. T.
2011-07-01
Seeded Localized Averaging (SLA) is a spectrum acquisition method that averages pulse-heights in dynamic windows. SLA sharpens peaks in the acquired spectra. This work investigates the transformation of the original probability density function (PDF) in the process of applying SLA procedure. We derive an analytical expression for the resulting probability density function after an application of SLA. In addition, we prove the following properties: 1) for symmetric distributions, SLA preserves both the mean and symmetry. 2) for uni-modal symmetric distributions, SLA reduces variance, sharpening the distributions peak. Our results are the first to prove these properties, reinforcing past experimental observations. Specifically, our results imply that in the typical case of a spectral peak with Gaussian PDF the full width at half maximum (FWHM) of the transformed peak becomes narrower even with averaging of only two pulse-heights. While the Gaussian shape is no longer preserved, our results include an analytical expression for the resulting distribution. Examples of the transformation of other PDFs are presented. (authors)
Density functional study of silver defects in telluride thermoelectric materials
NASA Astrophysics Data System (ADS)
Ryu, Byungki; Oh, Min-Wook; Park, Su-Dong
2015-03-01
Silver impurity in telluride thermoelectric materials forms various defect and impurity structures, such as AgSb rich nanoregion in Ag-Sb-Pb-Te, Ag2Te and metallic silver in PbTe. To understand the atomic, electronic, energetic, and diffusion properties of silver impurities in telluride systems, we have performed the density functional theory and density functional perturbation theory calculations of silver doped PbTe. Under Te and Ag rich condition, silver telluride impurity phase or Ag-dimer defects are expected to be easily formed. Under Te poor condition, silver point defects are calculated to be easily formed and they are more stable than native point defects of PbTe, implying that silver point defect might be the major dopant responsible for the carrier generation in PbTe. We also calculated the diffusion coefficient and diffusion length of silver point defect in PbTe. Based on the results, we discussed the electrical and thermoelectric properties of silver doped PbTe. This work was supported by the National Institute of Supercomputing and Network/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2014-C1-022).
Direct Neutron Capture Calculations with Covariant Density Functional Theory Inputs
NASA Astrophysics Data System (ADS)
Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, Michael S.; Arbanas, Goran; Kozub, Ray L.
2014-09-01
Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Supported by the U.S. Dept. of Energy, Office of Nuclear Physics.
NASA Astrophysics Data System (ADS)
Zaitsevskii, Andréi; van Wüllen, Christoph; Titov, Anatoly V.
2010-02-01
The applicability of the relativistic density functional theory (RDFT) with conventional generalized gradient and hybrid exchange-correlation functionals to the description of the interactions of element 112 (Cn) and its lighter homolog Hg with a gold surface is assessed. The comparison of Cn-Au (Hg-Au) bond properties for two simple models of adsorption complexes on Au(111) surface obtained by RDFT and accurate many-body calculations indicates a strong underestimation of binding energies by conventional RDFT schemes. This effect provides a possible explanation of the discrepancies between the RDFT-based theoretical and experimental data concerning the thermochromatographic registration of the α-decay chain element 114→Cn.
Accurate and efficient calculation of discrete correlation functions and power spectra
NASA Astrophysics Data System (ADS)
Xu, Y. F.; Liu, J. M.; Zhu, W. D.
2015-07-01
Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate
Zaki, S.K.; Bretan, P.N.; Go, R.T.; Rehm, P.K.; Streem, S.B.; Novick, A.C. )
1990-06-01
Orthoiodohippurate renal scanning has proved to be a reliable, noninvasive method for the evaluation and followup of renal allograft function. However, a standardized system for grading renal function with this test is not available. We propose a simple grading system to distinguish the different functional phases of hippurate scanning in renal transplant recipients. This grading system was studied in 138 patients who were evaluated 1 week after renal transplantation. There was a significant correlation between the isotope renographic functional grade and clinical correlates of allograft function such as the serum creatinine level (p = 0.0001), blood urea nitrogen level (p = 0.0001), urine output (p = 0.005) and need for hemodialysis (p = 0.007). We recommend this grading system as a simple and accurate method to interpret orthoiodohippurate renal scans in the evaluation and followup of renal allograft recipients.
An extended set of yeast-based functional assays accurately identifies human disease mutations.
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E; Vidal, Marc; Andrews, Brenda J; Boone, Charles; Dolinski, Kara; Roth, Frederick P
2016-05-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
An extended set of yeast-based functional assays accurately identifies human disease mutations
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.
2016-01-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
Towards simple orbital-dependent density functionals for molecular dissociation
NASA Astrophysics Data System (ADS)
Zhang, Igor Ying; Richter, Patrick; Scheffler, Matthias
2015-03-01
Density functional theory (DFT) is one of the leading first-principles electronic-structure theories. However, molecular dissociation remains a challenge, because it requires a well-balanced description of the drastically different electronic structure at different bond lengths. One typical and well-documented case is the dissociation of both H2+ and H2, for which all popular DFT functionals fail. We start from the Bethe-Goldstone equation to propose a simple orbital-dependent correlation functional which generalizes the linear adiabatic connection approach. The resulting scheme is based on second-order perturbation theory (PT2), but includes the self-consistent coupling of electron-hole pairs, which ensures the correct H2 dissociation limit and gives a finite correlation energy for systems with a (near)-degenerate energy gap. This coupling PT2-like (CPT2) approximation delivers a significant improvement over all existing functionals for both H2 and H2+ dissociation. We will demonstrate the reason for this improvement analytically for H2 in a minimal basis.
Medium density polyethylene composites with functionalized carbon nanotubes
NASA Astrophysics Data System (ADS)
Pulikkathara, Merlyn X.; Kuznetsov, Oleksandr V.; Peralta, Ivana R. G.; Wei, Xin; Khabashesku, Valery N.
2009-05-01
A strong interface between the single-walled carbon nanotubes (SWNTs) and polymer matrix is necessary to achieve enhanced mechanical properties of composites. In this work a series of sidewall-functionalized SWNTs have been investigated in order to evaluate the effect of functionalization on SWNT aspect ratio and composite interfacial chemistry and their role on mechanical properties of a medium density polyethylene (MDPE) matrix. Fluorinated nanotubes (F-SWNTs) were used as precursors for subsequent sidewall functionalization with long chain alkyl groups to produce an F-SWNT- C11H23 derivative. The latter was refluorinated to yield a new perfluorinated derivative, F-SWNT- C11FxHy. The functionalized SWNTs as well as the pristine SWNTs were integrated into an MDPE matrix at a 1 wt% loading. The nanotubes and composite materials were characterized with FTIR, Raman spectroscopy, NMR, XPS, AFM, SEM, TGA, DSC and tensile tests. When incorporated into polyethylene, the new perfluorinated derivative, F-SWNT- C11FxHy, yielded the highest tensile strength value among all nanotube/MDPE composite samples, showing a 52% enhancement in comparison with the neat MDPE. The 1 wt% SWNT/MDPE composite contained nanotubes with a larger aspect ratio but, due to a lack of interfacial chemistry, it resulted in less improvement in mechanical properties compared to the composites made with the fluorinated SWNT derivatives.
Medium density polyethylene composites with functionalized carbon nanotubes.
Pulikkathara, Merlyn X; Kuznetsov, Oleksandr V; Peralta, Ivana R G; Wei, Xin; Khabashesku, Valery N
2009-05-13
A strong interface between the single-walled carbon nanotubes (SWNTs) and polymer matrix is necessary to achieve enhanced mechanical properties of composites. In this work a series of sidewall-functionalized SWNTs have been investigated in order to evaluate the effect of functionalization on SWNT aspect ratio and composite interfacial chemistry and their role on mechanical properties of a medium density polyethylene (MDPE) matrix. Fluorinated nanotubes (F-SWNTs) were used as precursors for subsequent sidewall functionalization with long chain alkyl groups to produce an F-SWNT- C(11)H(23) derivative. The latter was refluorinated to yield a new perfluorinated derivative, F-SWNT- C(11)F(x)H(y). The functionalized SWNTs as well as the pristine SWNTs were integrated into an MDPE matrix at a 1 wt% loading. The nanotubes and composite materials were characterized with FTIR, Raman spectroscopy, NMR, XPS, AFM, SEM, TGA, DSC and tensile tests. When incorporated into polyethylene, the new perfluorinated derivative, F-SWNT- C(11)F(x)H(y), yielded the highest tensile strength value among all nanotube/MDPE composite samples, showing a 52% enhancement in comparison with the neat MDPE. The 1 wt% SWNT/MDPE composite contained nanotubes with a larger aspect ratio but, due to a lack of interfacial chemistry, it resulted in less improvement in mechanical properties compared to the composites made with the fluorinated SWNT derivatives. PMID:19420641
Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.
Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu
2016-05-01
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing. PMID:26830769
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems. PMID:24880269
Daubechies wavelets for linear scaling density functional theory
Mohr, Stephan; Ratcliff, Laura E.; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Boulanger, Paul; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10 000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
Structural stability and functional remodeling of high-density lipoproteins.
Gursky, Olga
2015-09-14
Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease. PMID:25749369
NASA Astrophysics Data System (ADS)
Gong, Sai; Liu, Bang-Gui
2012-05-01
TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors. In fact, it has been widely used for a long time as white pigment and sunscreen because of its whiteness, high refractive index, and excellent optical properties. However, its electronic structures and the related properties have not been satisfactorily understood. Here, we use Tran and Blaha's modified Becke-Johnson (TB-mBJ) exchange potential (plus a local density approximation correlation potential) within the density functional theory to investigate electronic structures and optical properties of rutile and anatase TiO2. Our comparative calculations show that the energy gaps obtained from mBJ method agree better with the experimental results than that obtained from local density approximation (LDA) and generalized gradient approximation (GGA), in contrast with substantially overestimated values from many-body perturbation (GW) calculations. As for optical dielectric functions (both real and imaginary parts), refractive index, and extinction coefficients as functions of photon energy, our mBJ calculated results are in excellent agreement with the experimental curves. Our further analysis reveals that these excellent improvements are achieved because mBJ potential describes accurately the energy levels of Ti 3d states. These results should be helpful to understand the high temperature ferromagnetism in doped TiO2. This approach can be used as a standard to understand electronic structures and the related properties of such materials as TiO2.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2007-06-01
Atomistic simulations employing Density Functional Theory (DFT) have recently emerged as a powerful way of increasing our understanding of materials and processes in high energy density physics. Knowledge of the properties of water (equation of state, electrical conductivity, diffusion, low-energy opacity) is essential for correctly describing the physics of giant planets as well as shock waves in water. Although a qualitative picture of water electrical conductivity has emerged, the necessary quantitative information is scarce over a wide range of temperature and density. Since experiments can only access certain areas of phase space, and often require modeling as a part of the analysis, Quantum Molecular Dynamics simulations play a vital role. Using finite-temperature density functional theory (FT-DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/ superionic/ electronic liquid). The ionic contribution to the conduction is calculated from proton diffusion and the electronic contribution is calculated using the Kubo-Greenwood formula. The calculations are performed with VASP, a plane-wave pseudo-potential code. There is a rapid transition to ionic conduction at 2000 K and 2 g/cm^3, whereas electronic conduction dominates at temperatures at and above 6000 K&[tilde;1]. Contrary to earlier results using the Car-Parrinello method&[tilde;2], we predict that the fluid bordering the superionic phase is conducting above 4000 K and 100 GPa. Our comprehensive use of FT-DFT explains the new findings. The calculated conductivity is compared to experimental data. I gratefully acknowledge Mike Desjarlais, my collaborator in this effort. The LDRD office at Sandia supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena
2015-06-15
Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps with a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.
Interaction of boron with graphite: A van der Waals density functional study
NASA Astrophysics Data System (ADS)
Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng
2016-08-01
Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.
A method for the accurate and smooth approximation of standard thermodynamic functions
NASA Astrophysics Data System (ADS)
Coufal, O.
2013-01-01
A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are
Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.
Ma, Chi; Varghese, Tomy
2014-06-01
Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 λ by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D
NASA Astrophysics Data System (ADS)
Jones, Jasmine; Zhang, Rui; Heins, David; Castle, Katherine
In postmastectomy radiotherapy, an increasing number of patients have tissue expanders inserted subpectorally when receiving immediate breast reconstruction. These tissue expanders are composed of silicone and are inflated with saline through an internal metallic port; this serves the purpose of stretching the muscle and skin tissue over time, in order to house a permanent implant. The issue with administering radiation therapy in the presence of a tissue expander is that the port's magnetic core can potentially perturb the dose delivered to the Planning Target Volume, causing significant artifacts in CT images. Several studies have explored this problem, and suggest that density corrections must be accounted for in treatment planning. However, very few studies accurately calibrated commercial TP systems for the high density material used in the port, and no studies employed fusion imaging to yield a more accurate contour of the port in treatment planning. We compared depth dose values in the water phantom between measurement and TPS calculations, and we were able to overcome some of the inhomogeneities presented by the image artifact by fusing the KVCT and MVCT images of the tissue expander together, resulting in a more precise comparison of dose calculations at discrete locations. We expect this method to be pivotal in the quantification of dose distribution in the PTV. Research funded by the LS-AMP Award.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Density functional theory based generalized effective fragment potential method.
Nguyen, Kiet A; Pachter, Ruth; Day, Paul N
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes. PMID:24985612
NASA Astrophysics Data System (ADS)
Schoonmaker, Robert; Clark, Stewart; Lancaster, Tom; Frawley, Thomas; Hatton, Peter
Iron arsenide intersects interesting physics between novel superconductors and other helical magnetic ordering in Pnma metal arsenide materials. Recent diffraction data has found a more complex ordering than a simple helical incommensurate spin density wave. Instead iron arsenide exhibits a definite chirality to the helimagnetism, an ellipticity in the spiral not aligned with the crystal axis, and resonant diffraction peaks forbidden by the Pnma symmetry. From non-magnetic and collinear density functional theory calculations we present insight into the mechanisms for the formation of this helimagnetic state. We find that ferromagnetic superexchange is a likely mechanism for the spin ordering and that the noncollinear ordering under this regime is caused by the spins on neighbouring irons arranging to minimise direct exchange between iron atoms, and also minimize disruption of the ferromagnetic superexchange between priveleged iron-arsenic pairs. To explain the forbidden peaks in the diffraction we have performed second-order spin-orbit perturbation calculations on the nonmagnetic calculation, which finds that the orbital ordering on the iron atoms coupled to the helimagnetism will lead to the otherwise symmetry-forbidden peaks.
Specification of optical components using the power spectral density function
Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.
1995-06-20
This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.
Effective quadrupole-quadrupole interaction from density functional theory
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Bertsch, G. F.; Fang, L.; Sabbey, B.
2006-09-01
The density functional theory of nuclear structure provides a many-particle wave function that is useful for static properties, but an extension of the theory is necessary to describe correlation effects or other dynamic properties. We propose a procedure to extend the theory by mapping the properties of a self-consistent mean-field theory onto an effective shell-model Hamiltonian with quadrupole-quadrupole interaction. In this initial study, we consider the sd-shell nuclei Ne20, Mg24, Si28, and Ar36. The method is first tested with the USD shell-model Hamiltonian, using its mean-field approximation to construct an effective Hamiltonian and partially recover correlation effects. We find that more than half of the correlation energy is due to the quadrupole interaction. We then follow a similar procedure but using the SLy4 Skyrme energy functional as our starting point and truncating the space to the spherical sd shell. The constructed shell-model Hamiltonian is found to satisfy minimal consistency requirements to reproduce the properties of the mean-field solution. The quadrupolar correlation energies computed with the mapped Hamiltonian are reasonable compared with those computed by other methods. The method also provides a well-defined renormalization of the quadrupole operator in the shell-model space, the “effective charge” of the phenomenological shell model.
Density-functional theory: time to move up?
NASA Astrophysics Data System (ADS)
Marzari, Nicola
2013-03-01
Materials' simulations based on density-functional theory (DFT) have become an extremely powerful and widely used tool for scientific discovery and technological advancement. Still, in the current approximations, they remain an imperfect tool for predicting materials' properties, with open and urgent challenges in the quest towards qualitative and quantitative accuracy. Several of these challenges stem from the remnants of self-interaction in the electronic-structure framework, leading to qualitative failures in describing some of the fundamental processes involved e.g. in energy applications - from charge-transfer excitations to photoemission spectra to the structure and reactivity of transition-metal complexes. I'll discuss these challenges in realistic case studies, and present a brief overview of some of our suggestions for possible solutions - including constrained DFT, DFT + onsite and intersite Hubbard terms, and Koopmans' compliant energy functionals. In particular, I'll highlight how Koopmans' compliant functionals point to a beyond-DFT formulation where both total energies and spectroscopic properties can be accounted for. Such framework will be illustrated with applications to real systems and with simplified models that can be solved exactly. Work done in collaboration with Patrick H-L Sit, Heather Kulik, Damian Scherlis, Matteo Cococcioni, Ismaila Dabo, Andrea Ferretti, Nicolas Poilvert, Cheol-Hwan Park, Giovanni Borghi, and Linh Nguyen.
Probability Density Functions of Observed Rainfall in Montana
NASA Technical Reports Server (NTRS)
Larsen, Scott D.; Johnson, L. Ronald; Smith, Paul L.
1995-01-01
The question of whether a rain rate probability density function (PDF) can vary uniformly between precipitation events is examined. Image analysis on large samples of radar echoes is possible because of advances in technology. The data provided by such an analysis easily allow development of radar reflectivity factors (and by extension rain rate) distribution. Finding a PDF becomes a matter of finding a function that describes the curve approximating the resulting distributions. Ideally, one PDF would exist for all cases; or many PDF's that have the same functional form with only systematic variations in parameters (such as size or shape) exist. Satisfying either of theses cases will, validate the theoretical basis of the Area Time Integral (ATI). Using the method of moments and Elderton's curve selection criteria, the Pearson Type 1 equation was identified as a potential fit for 89 percent of the observed distributions. Further analysis indicates that the Type 1 curve does approximate the shape of the distributions but quantitatively does not produce a great fit. Using the method of moments and Elderton's curve selection criteria, the Pearson Type 1 equation was identified as a potential fit for 89% of the observed distributions. Further analysis indicates that the Type 1 curve does approximate the shape of the distributions but quantitatively does not produce a great fit.
A Density Functional Theory Study of Formaldehyde Adsorption on Ceria
Mei, Donghai; Deskins, N. Aaron; Dupuis, Michel
2007-11-01
Molecular adsorption of formaldehyde on the stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory. Two adsorption modes (strong chemisorbed and weak physisorbed) were identified on both surfaces. This is consistent with recent experimental observations. On the (111) surface, formaldehyde strongly chemisorbs with an adsorption energy of 0.86 eV to form a dioxymethylene-like structure, in which a surface O lifts from the surface to bind with the C of formaldehyde. A weak physisorbed state with adsorption energy of 0.28 eV was found with the O of formaldehyde interacting with a surface Ce. On the (110) surface, dioxymethyelene formation was also observed, with an adsorption energy of 1.31 eV. The weakly adsorbed state of formaldehyde on the (110) surface was energetically comparable to the weak adsorption state on the (111) surface, but adsorption occurred through a formaldehyde C and surface O interaction. Analysis of the local density of states and charge density differences after adsorption shows that strong covalent bonding occurs between the C of formaldehyde and surface O when dioxymethylene forms. Calculated vibrational frequencies also confirm dioxymethylene formation. Our results also show that as the coverage increases, the adsorption of formaldehyde on the (111) surface becomes weak, but is nearly unaffected on the (110) surface. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. Computing time was made under a Computational Grand Challenge “Computational Catalysis”. Part of the computing time was also granted by the National Energy Research Scientific Computing
Hierarchy of equations for the energy functional of the density-functional theory
NASA Astrophysics Data System (ADS)
Nagy, Á.
1993-04-01
A hierarchy of equations has been derived for the energy functionals of the density-functional theory using the virial theorem and the Levy-Perdew relation. In the local-density approximation, the solution of the equations of hierarchy for the kinetic and exchange energies provides the well-known Thomas-Fermi expression for the kinetic energy and the Slater-Gáspár-Kohn-Sham expression for the exchange. The truncation of the hierarchies of the kinetic and exchange energies results in rigorous lower bounds to the kinetic energy and upper bounds to the exchange energy in the plane-wave approximation.
Ionospheric mapping functions based on electron density fields
NASA Astrophysics Data System (ADS)
Zus, Florian; Deng, Zhiguo; Heise, Stefan; Wickert, Jens
2016-04-01
We developed an ionospheric Mapping Function (MF) for the Global Navigation Satellite System (GNSS) which is based on the electron density field of the International Reference Ionosphere (IRI). The station specific MF utilizes a look-up table which contains a set of ray-traced ionospheric delays. Hence, unlike the simple MFs that are currently in use, the developed MF depends on the time, location, elevation and azimuth angle. Ray-bending is taken into account, which implies that the MF depends on the carrier frequency as well. This frequency dependency of the MF can be readily used to examine higher-order ionospheric effects due to ray-bending. We compare the proposed MF with the so-called single layer model MF and find significant differences in particular around the equatorial anomaly. In so-far as the proposed MF is based on a realistic electron density field (IRI) our comparison shows the potential error of the single-layer model MF in practice. We conclude that the developed MF concept might be valuable in the GNSS Total Electron Content estimation. The frequency dependency of the MF can be used to mitigate higher-order ionospheric effects.
Density functional theory and phytochemical study of 8-hydroxyisodiospyrin
NASA Astrophysics Data System (ADS)
Ullah, Zakir; Ata-ur-Rahman; Fazl-i-Sattar; Rauf, Abdur; Yaseen, Muhammad; Hassan, Waseem; Tariq, Muhammad; Ayub, Khurshid; Tahir, Asif Ali; Ullah, Habib
2015-09-01
Comprehensive theoretical and experimental studies of a natural product, 8-hydroxyisodiospyrin (HDO) have been carried out. Based on the correlation of experimental and theoretical data, an appropriate computational model was developed for obtaining the electronic, spectroscopic, and thermodynamic parameters of HDO. First of all, the exact structure of HDO is confirmed from the nice correlation of theory and experiment, prior to determination of its electroactive nature. Hybrid density functional theory (DFT) is employed for all theoretical simulations. The experimental and predicted IR and UV-vis spectra [B3LYP/6-31+G(d,p) level of theory] have excellent correlation. Inter-molecular non-covalent interaction of HDO with different gases such as NH3, CO2, CO, H2O is investigated through geometrical counterpoise (gCP) i.e., B3LYP-gCP-D3/6-31G∗ method. Furthermore, the inter-molecular interaction is also supported by geometrical parameters, electronic properties, thermodynamic parameters and charge analysis. All these characterizations have corroborated each other and confirmed the electroactive nature (non-covalent interaction ability) of HDO for the studied gases. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap of HDO have been estimated for the first time theoretically.
Density functional theory for protein transfer free energy.
Mills, Eric A; Plotkin, Steven S
2013-10-24
We cast the problem of protein transfer free energy within the formalism of density functional theory (DFT), treating the protein as a source of external potential that acts upon the solvent. Solvent excluded volume, solvent-accessible surface area, and temperature dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified "back of the envelope" models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5 to 10 kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged interactions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective interaction potentials between protein backbone or side chains and TMAO are obtained, assuming a simple backbone/side chain two-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy δg shows significant entropy: d(δg)/dT ≈ 20 kB for a 100-residue protein. The application of DFT to effective solvent forces for use in implicit-solvent molecular dynamics is also developed. The simplest DFT expressions for implicit-solvent forces contain both depletion interactions and an "impeded-solvation" repulsive force at larger distances. PMID:23944753
Kinetic Density Functional Theory: A Microscopic Approach to Fluid Mechanics
NASA Astrophysics Data System (ADS)
Umberto Marini Bettolo, Marconi; Simone, Melchionna
2014-10-01
In the present paper we give a brief summary of some recent theoretical advances in the treatment of inhomogeneous fluids and methods which have applications in the study of dynamical properties of liquids in situations of extreme confinement, such as nanopores, nanodevices, etc. The approach obtained by combining kinetic and density functional methods is microscopic, fully self-consistent and allows to determine both configurational and flow properties of dense fluids. The theory predicts the correct hydrodynamic behavior and provides a practical and numerical tool to determine how the transport properties are modified when the length scales of the confining channels are comparable with the size of the molecules. The applications range from the dynamics of simple fluids under confinement, to that of neutral binary mixtures and electrolytes where the theory in the limit of slow gradients reproduces the known phenomenological equations such as the Planck—Nernst—Poisson and the Smolochowski equations. The approach here illustrated allows for fast numerical solution of the evolution equations for the one-particle phase-space distributions by means of the weighted density lattice Boltzmann method and is particularly useful when one considers flows in complex geometries.
Otero-de-la-Roza, A; Johnson, Erin R; DiLabio, Gino A
2014-12-01
Halogen bonds are formed when a Lewis base interacts with a halogen atom in a different molecule, which acts as an electron acceptor. Due to its charge transfer component, halogen bonding is difficult to model using many common density-functional approximations because they spuriously overstabilize halogen-bonded dimers. It has been suggested that dispersion-corrected density functionals are inadequate to describe halogen bonding. In this work, we show that the exchange-hole dipole moment (XDM) dispersion correction coupled with functionals that minimize delocalization error (for instance, BH&HLYP, but also other half-and-half functionals) accurately model halogen-bonded interactions, with average errors similar to other noncovalent dimers with less charge-transfer effects. The performance of XDM is evaluated for three previously proposed benchmarks (XB18 and XB51 by Kozuch and Martin, and the set proposed by Bauzá et al.) spanning a range of binding energies up to ∼50 kcal/mol. The good performance of BH&HLYP-XDM is comparable to M06-2X, and extends to the "extreme" cases in the Bauzá set. This set contains anionic electron donors where charge transfer occurs even at infinite separation, as well as other charge transfer dimers belonging to the pnictogen and chalcogen bonding classes. We also show that functional delocalization error results in an overly delocalized electron density and exact-exchange hole. We propose intermolecular Bader delocalization indices as an indicator of both the donor-acceptor character of an intermolecular interaction and the delocalization error coming from the underlying functional. PMID:26583227
Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory.
Hinohara, Nobuo; Nazarewicz, Witold
2016-04-15
We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the T=1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing-rotational moments of inertia and demonstrate the mixing of the neutron and proton pairing-rotational modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing energy density functional. PMID:27127964
Nitrotyrosine adsorption on defective graphene: A density functional theory study
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2015-06-01
We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.
Band Anticrossing in Dilute Germanium Carbides Using Hybrid Density Functionals
NASA Astrophysics Data System (ADS)
Stephenson, Chad A.; O'brien, William A.; Qi, Meng; Penninger, Michael; Schneider, William F.; Wistey, Mark A.
2016-04-01
Dilute germanium carbides (Ge1- x C x ) offer a direct bandgap for compact silicon photonics, but widely varying properties have been reported. This work reports improved band structure calculations for Ge1- x C x using ab initio simulations that employ the HSE06 exchange-correlation density functional. Contrary to Vegard's law, the conduction band minimum at Γ is consistently found to decrease with increasing C content, while L and X valleys change much more slowly. The calculated Ge bandgap is within 11% of experimental values. A decrease in energy at the Γ conduction band valley of (170 meV ± 50)/%C is predicted, leading to a direct bandgap for x > 0.008. These results indicate a promising material for Group IV lasers.
Native defects in Tl6SI4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges andmore » large static dielectric constant, which provides effective screening of charged defects and impurities.« less
Periodic Density Functional Theory Solver using Multiresolution Analysis with MADNESS
NASA Astrophysics Data System (ADS)
Harrison, Robert; Thornton, William
2011-03-01
We describe the first implementation of the all-electron Kohn-Sham density functional periodic solver (DFT) using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n-e-s-s). The multiresolution nature of a multi-wavelet basis allows for fast computation with guaranteed precision. By reformulating the Kohn-Sham eigenvalue equation into the Lippmann-Schwinger equation, we can avoid using the derivative operator which allows better control of overall precision for the all-electron problem. Other highlights include the development of periodic integral operators with low-rank separation, an adaptable model potential for nuclear potential, and an implementation for Hartree Fock exchange. This work was supported by NSF project OCI-0904972 and made use of resources at the Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725.
β -decay study within multireference density functional theory and beyond
NASA Astrophysics Data System (ADS)
Konieczka, M.; Bączyk, P.; Satuła, W.
2016-04-01
A pioneering study of Gamow-Teller (GT) and Fermi matrix elements (MEs) using no-core-configuration-interaction formalism rooted in multireference density functional theory is presented. After a successful test performed for 6He→6Liβ decay, the model is applied to compute MEs in the s d - and p f -shell T =1 /2 mirror nuclei. The calculated GT MEs and the isospin-symmetry-breaking corrections to the Fermi branch are found to be in very good agreement with shell-model predictions in spite of fundamental differences between these models concerning model space, treatment of correlations, or inclusion of a core. This result indirectly supports the two-body-current-based scenarios behind the quenching of the axial-vector coupling constant.
Native defects in Tl6SI4: Density functional calculations
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Du, Mao-Hua
2015-05-01
Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.
Density functional calculations of Hubbard parameter in actinide series
Puri, A.; Sen, K.D.
1993-05-01
The calculations of Hubbard parameter, U, which defines the polar state formation energy of the reaction 2(5f{sup n} 6d{sup 1} 7d{sup 2}) {yields} 5f{sup n-1} 6d{sup 2}7s{sup 2} + 5f{sup n+1} 7s{sup 2} for the actinide atoms, Th-No, have been carried out using the self-interaction-corrected (SIC) quasi-relativistic local spin density (LSD) functional due to Perdew and Zunger. Based on the available bandwidth calculations for the 5f metals and its monotonically decreasing trend with increasing nuclear charge it is predicted that the 5f state is iterent in Th-Np beyond which it becomes localized. These calculations agree with the conclusions drawn earlier by Johansson using the semiempirical data.
Density Functional Exploration of C4H3N Isomers.
Custer, Thomas; Szczepaniak, Urszula; Gronowski, Marcin; Fabisiewicz, Emilia; Couturier-Tamburelli, Isabelle; Kołos, Robert
2016-07-28
Molecules having C4H3N stoichiometry are of astrophysical interest. Two of these, methylcyanoacetylene (CH3C3N) and its structural isomer allenyl cyanide (H2CCCHN), have been observed in interstellar space, while several more have been examined in laboratories. Here we describe, for a broad range of C4H3N isomers, density functional calculations (B3LYP/aug-cc-pVTZ) of molecular parameters including the energetics, geometries, rotational constants, electric dipole moments, polarizabilities, vibrational IR frequencies, IR absorption intensities, and Raman activities. Singlet-triplet splittings as well as singlet vertical electronic excitation energies are given for selected species. The identification of less stable C4H3N molecules, generated in ongoing spectroscopic experiments, relies heavily on these quantum chemical predictions. PMID:27341606
Reproducibility in density functional theory calculations of solids.
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn; Blaha, Peter; Blügel, Stefan; Blum, Volker; Caliste, Damien; Castelli, Ivano E; Clark, Stewart J; Dal Corso, Andrea; de Gironcoli, Stefano; Deutsch, Thierry; Dewhurst, John Kay; Di Marco, Igor; Draxl, Claudia; Dułak, Marcin; Eriksson, Olle; Flores-Livas, José A; Garrity, Kevin F; Genovese, Luigi; Giannozzi, Paolo; Giantomassi, Matteo; Goedecker, Stefan; Gonze, Xavier; Grånäs, Oscar; Gross, E K U; Gulans, Andris; Gygi, François; Hamann, D R; Hasnip, Phil J; Holzwarth, N A W; Iuşan, Diana; Jochym, Dominik B; Jollet, François; Jones, Daniel; Kresse, Georg; Koepernik, Klaus; Küçükbenli, Emine; Kvashnin, Yaroslav O; Locht, Inka L M; Lubeck, Sven; Marsman, Martijn; Marzari, Nicola; Nitzsche, Ulrike; Nordström, Lars; Ozaki, Taisuke; Paulatto, Lorenzo; Pickard, Chris J; Poelmans, Ward; Probert, Matt I J; Refson, Keith; Richter, Manuel; Rignanese, Gian-Marco; Saha, Santanu; Scheffler, Matthias; Schlipf, Martin; Schwarz, Karlheinz; Sharma, Sangeeta; Tavazza, Francesca; Thunström, Patrik; Tkatchenko, Alexandre; Torrent, Marc; Vanderbilt, David; van Setten, Michiel J; Van Speybroeck, Veronique; Wills, John M; Yates, Jonathan R; Zhang, Guo-Xu; Cottenier, Stefaan
2016-03-25
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements. PMID:27013736
Descriptions of carbon isotopes within the energy density functional theory
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Time-Dependent Density Functional Theory for Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Tempel, David
2015-03-01
In this talk, I will discuss how the theorems of TDDFT can be applied to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, I will discuss how TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions.
Density functional theory studies of HCOOH decomposition on Pd(111)
NASA Astrophysics Data System (ADS)
Scaranto, Jessica; Mavrikakis, Manos
2016-08-01
The investigation of formic acid (HCOOH) decomposition on transition metal surfaces is important to derive useful insights for vapor phase catalysis involving HCOOH and for the development of direct HCOOH fuel cells (DFAFC). Here we present the results obtained from periodic, self-consistent, density functional theory (DFT-GGA) calculations for the elementary steps involved in the gas-phase decomposition of HCOOH on Pd(111). Accordingly, we analyzed the minimum energy paths for HCOOH dehydrogenation to CO2 + H2 and dehydration to CO + H2O through the carboxyl (COOH) and formate (HCOO) intermediates. Our results suggest that HCOO formation is easier than COOH formation, but HCOO decomposition is more difficult than COOH decomposition, in particular in the presence of co-adsorbed O and OH species. Therefore, both paths may contribute to HCOOH decomposition. CO formation goes mainly through COOH decomposition.
Kappa distribution and Probability Density Functions in Solar Wind
NASA Astrophysics Data System (ADS)
Jurac, S.
2004-12-01
A signature of a statistical intermittency is the presence of large deviations from the average value: this increased probability of finding extreme deviations is characterized by Probability Density Functions (PDFs) which exhibit non Gaussian power-law tails. Such power-law distributions were observed over decades in biology, chemistry, finance and other fields. Known examples include heartbeat histograms, price distribution, turbulent fluid flow and many other non-equilibrium systems. It is shown that the Kappa distribution represents a good description of PDFs observed in Solar wind. The asymmetric fluctuations in variance over time observed in solar wind PDFs are Gamma distributed. It is shown that, by assuming such a distribution of variance, the Kappa distribution can be analitically derived.
Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory
NASA Astrophysics Data System (ADS)
Hinohara, Nobuo; Nazarewicz, Witold
2016-04-01
We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the T =1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing-rotational moments of inertia and demonstrate the mixing of the neutron and proton pairing-rotational modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing energy density functional.
How to Extend the Bridge Density Functional Approximation to the Confined Non-hard Sphere Fluid
NASA Astrophysics Data System (ADS)
Zhou, Shi-qi
2006-08-01
A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simple, quantitatively accurate in a wide range of coexistence phase and external field parameters. Especially, the DFT approach only needs a second order direct correlation function (DCF) of the coexistence bulk fluid as input, and is therefore applicable to the subcritical temperature region. The present theoretical method can be regarded as a non-uniform counterpart of the thermodynamic perturbation theory, in which it is not at the level of the free energy but at the level of the second order DCF.
The diene isomerization energies dataset: A difficult test for double-hybrid density functionals?
NASA Astrophysics Data System (ADS)
Wykes, M.; Pérez-Jiménez, A. J.; Adamo, C.; Sancho-García, J. C.
2015-06-01
We have systematically analyzed the performance of some representative double-hybrid density functionals (including PBE0-DH, PBE-QIDH, PBE0-2, XYG3, XYGJ-OS, and xDH-PBE0) for a recently introduced database of diene isomerization energies. Double-hybrid models outperform their corresponding hybrid forms (for example, PBE0-DH, PBE0-2, and PBE-QIDH are more accurate than PBE0) and the XYG3, XYGJ-OS, and xDH-PBE0 functionals perform excellently, providing root mean square deviation values within "calibration accuracy." XYGJ-OS and xDH-PBE0 also rival the best performing post-Hartree-Fock methods at a substantially lower cost.
Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation
Zhang, Gang; Mendez, Blanca Lopez; Sedgwick, Garry G.; Nilsson, Jakob
2016-01-01
The BubR1/Bub3 complex is an important regulator of chromosome segregation as it facilitates proper kinetochore–microtubule interactions and is also an essential component of the spindle assembly checkpoint (SAC). Whether BubR1/Bub3 localization to kinetochores in human cells stimulates SAC signalling or only contributes to kinetochore–microtubule interactions is debated. Here we show that two distinct pools of BubR1/Bub3 exist at kinetochores and we uncouple these with defined BubR1/Bub3 mutants to address their function. The major kinetochore pool of BubR1/Bub3 is dependent on direct Bub1/Bub3 binding and is required for chromosome alignment but not for the SAC. A distinct pool of BubR1/Bub3 localizes by directly binding to phosphorylated MELT repeats on the outer kinetochore protein KNL1. When we prevent the direct binding of BubR1/Bub3 to KNL1 the checkpoint is weakened because BubR1/Bub3 is not incorporated into checkpoint complexes efficiently. In conclusion, kinetochore localization supports both known functions of BubR1/Bub3. PMID:27457023
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise. PMID:9236985
Martínez-Araya, Jorge I
2016-09-30
By means of the conceptual density functional theory, the so-called dual descriptor (DD) has been adapted to be used in any closed-shell molecule that presents degeneracy in its frontier molecular orbitals. The latter is of paramount importance because a correct description of local reactivity will allow to predict the most favorable sites on a molecule to undergo nucleophilic or electrophilic attacks; on the contrary, an incomplete description of local reactivity might have serio us consequences, particularly for those experimental chemists that have the need of getting an insight about reactivity of chemical reagents before using them in synthesis to obtain a new compound. In the present work, the old approach based only on electronic densities of frontier molecular orbitals is replaced by the most accurate procedure that implies the use of total electronic densities thus keeping consistency with the essential principle of the DFT in which the electronic density is the fundamental variable and not the molecular orbitals. As a result of the present work, the DD will be able to properly describe local reactivities only in terms of total electronic densities. To test the proposed operational formula, 12 very common molecules were selected as the original definition of the DD was not able to describe their local reactivities properly. The ethylene molecule was additionally used to test the capability of the proposed operational formula to reveal a correct local reactivity even in absence of degeneracy in frontier molecular orbitals. © 2016 Wiley Periodicals, Inc. PMID:27443264
Origin of anomeric effect: A density functional steric analysis
Huang, Ying; Zhong, Ai-Guo; Yang, Qinsong; Liu, Shubin
2011-01-01
The anomeric effect (the tendency of heteroatomic substituents adjacent to a heteroatom within the cyclohexane ring to prefer the axial orientation instead of the sterically less hindered equatorial position) is traditionally explained through either the dipole moment repulsion or the hyperconjugation effect. In this work, by employing our recent work in density functional steric analysis, we provide a novel two-component explanation, which is consistent with the common belief in chemistry that the effect has a stereoelectronic origin. With α-D-glucopyranose as the prototype, we systematically explore its conformational space and generate 32 isomers, leading to a total of 80 axial–equatorial conformation pairs. The energy difference analysis of these pairs shows that while statistically speaking the tendency is valid, the anomeric effect is not always true and can be violated. Three energy components, exchange–correlation, classical electrostatic, and density functional steric, are found to be directly proportional to the total energy difference between axial and equatorial isomers. We also found that the total dipole moment change, not the hyperconjugation effect, is a reasonable indicator of the total energy difference. However, all these correlations alone are not strong enough to provide a compellingly convincing explanation for the general validity of the effect. With the help of strong correlations between energy components, an explanation with two energy components, steric and electrostatic, was proposed in this work. We show that the axial–equatorial energy difference in general, with the anomeric effect as a special case, is dictated by two factors of the stereoelectronic origin, steric hindrance and classical electrostaticinteractions, synchronously working together. Another explanation in terms of exchange–correlation and electrostaticinteractions has also been obtained in this work.
Experimental assessment of presumed filtered density function models
NASA Astrophysics Data System (ADS)
Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.
2015-06-01
Measured filtered density functions (FDFs) as well as assumed beta distribution model of mixture fraction and "subgrid" scale (SGS) scalar variance z '' 2 ¯ , used typically in large eddy simulations, were studied by analysing experimental data, obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling turbulent flows at a constant Reynolds number of 29 000 for different swirl numbers (0.3, 0.58, and 1.07). Two-dimensional spatial filtering, by using a box filter, was performed in order to obtain the filtered variables, namely, resolved mean and "subgrid" scale scalar variance. These were used as inputs for assumed beta distribution of mixture fraction and top-hat FDF shape estimates. The presumed beta distribution model, top-hat FDF, and the measured filtered density functions were used to integrate a laminar flamelet solution in order to calculate the corresponding resolved temperature. The experimentally measured FDFs varied with the flow swirl number and both axial and radial positions in the flow. The FDFs were unimodal at flow regions with low SGS scalar variance, z '' 2 ¯ < 0.01, and bimodal at regions with high SGS variance, z '' 2 ¯ > 0.02. Bimodal FDF could be observed for a filter size of approximately 1.5-2 times the Batchelor scale. Unimodal FDF could be observed for a filter size as large as four times the Batchelor scale under well-mixed conditions. In addition, two common computational models (a gradient assumption and a scale similarity model) for the SGS scalar variance were used with the aim to evaluate their validity through comparison with the experimental data. It was found that the gradient assumption model performed generally better than the scale similarity one.
Shen, Yan; Lou, Shuqin; Wang, Xin
2014-03-20
The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters. PMID:24663461
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-01
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively. PMID:26722961
No need for external orthogonality in subsystem density-functional theory.
Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R
2016-08-01
Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes. PMID:26878703
A density functional for core-valence correlation energy
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-01
A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.
Reduced density-matrix functional theory: Correlation and spectroscopy
Di Sabatino, S.; Romaniello, P.; Berger, J. A.; Reining, L.
2015-07-14
In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.
A density functional for core-valence correlation energy.
Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A
2015-12-01
A density functional, εCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of εLY P (corr)(ρc), εV WN5 (corr)(ρc, ρv), εPBE (corr)(ρc, ρv), εSlater (ex)(ρc, ρv), εHCTH (ex)(ρc, ρv), εHF (ex)(ρc, ρv), and FCV-DFTNi,Zi, a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from εCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the εCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory. PMID:26646873
Radial distribution function of penetrable sphere fluids to the second order in density
NASA Astrophysics Data System (ADS)
Santos, Andrés; Malijevský, Alexandr
2007-02-01
The simplest bounded potential is that of penetrable spheres, which takes a positive finite value γ if the two spheres are overlapped, being zero otherwise. In this paper we derive the cavity function to second order in density and the fourth virial coefficient as functions of T*≡kBT/γ (where kB is the Boltzmann constant and T is the temperature) for penetrable sphere fluids. The expressions are exact, except for the function represented by an elementary diagram inside the core, which is approximated by a polynomial form in excellent agreement with accurate results obtained by Monte Carlo integration. Comparison with the hypernetted-chain (HNC) and Percus-Yevick (PY) theories shows that the latter is better than the former for T*≲1 only. However, even at zero temperature (hard sphere limit), the PY solution is not accurate inside the overlapping region, where no practical cancellation of the neglected diagrams takes place. The exact fourth virial coefficient is positive for T*≲0.73 , reaches a minimum negative value at T*≈1.1 , and then goes to zero from below as 1/T*4 for high temperatures. These features are captured qualitatively, but not quantitatively, by the HNC and PY predictions. In addition, in both theories the compressibility route is the best one for T*≲0.7 , while the virial route is preferable if T*≳0.7 .
The QTP family of consistent functionals and potentials in Kohn-Sham density functional theory.
Jin, Yifan; Bartlett, Rodney J
2016-07-21
This manuscript presents the second, consistent density functional in the QTP (Quantum Theory Project) family, that is, the CAM-QTP(01). It is a new range-separated exchange-correlation functional in which the non-local exchange contribution is 100% at large separation. It follows the same basic principles of this family that the Kohn-Sham eigenvalues of the occupied orbitals approximately equal the vertical ionization energies, which is not fulfilled by most of the traditional density functional methods. This new CAM-QTP(01) functional significantly improves the accuracy of the vertical excitation energies especially for the Rydberg states in the test set. It also reproduces many other properties such as geometries, reaction barrier heights, and atomization energies. PMID:27448874
Marelli, Damián; Baumgartner, Robert; Majdak, Piotr
2015-01-01
Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930
Metallophilic interactions from dispersion-corrected density-functional theory
Otero-de-la-Roza, Alberto Mallory, Joel D.; Johnson, Erin R.
2014-05-14
In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH{sub 3}){sub 4}]{sup +} cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal.
Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins
Chadwick, Alexandra C.; Holme, Rebecca L.; Chen, Yiliang; Thomas, Michael J.; Sorci-Thomas, Mary G.; Silverstein, Roy L.; Pritchard, Kirkwood A.; Sahoo, Daisy
2015-01-01
High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway. PMID:25849485
Density functional steric analysis of linear and branched alkanes.
Ess, Daniel H; Liu, Shubin; De Proft, Frank
2010-12-16
Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes. PMID:21086970
Effects of Methylation on Zebularine Studied by Density Functional Theory
NASA Astrophysics Data System (ADS)
Selvam, Lalitha; Vasilyev, Vladislav; Wang, Feng; Vasilyev, Vladislav
2009-06-01
1-(β -D-ribofuranosyl)-2-pyrimidone (zebularine or zeb) and 1-(β -D-ribofuranosyl)-5-methyl-2-pyrimidinone (d5) are effective inhibitors of cytidine deaminases (CDA). Methyl modification of zeb at the C(5) position in the base moiety produces d5. A density functional theory (DFT) study reveals the impact of the methyl group on the electronic structures and spectra of the nucleoside pair. It is found that the addition of methyl group has little effect on the geometry of the nucleosides as well as their sugar puckering, but affects anisotropic properties such as dihedral angles, condensed Fukui functions and charge distribution can be seen in their molecular electrostatic potentials (MEPs). Electron spectra serve as the fingerprint for the methyl group. The valence spectra clearly indicate that the molecular pair is related in the inner valence space of IP > 20 eV, whereas the outer valence space reveals the methyl associated electronic structural modifications of the molecular pair. In the present study, the molecular orbitals (MO) such as MO8, MO18 and MO37 (HOMO as MO1) are identified as the fingerprint MOs for methyl, whereas other MOs marked in the figure are secondary methyl related MOs. Chemical shift in the inner shell and their spectra are also calculated. It reveals the similarities and differences of methyl effect to large nucleosides and small amino acids such as L-alanine.
Physical basis for constrained lattice density functional theory.
Men, Yumei; Zhang, Xianren
2012-03-28
To study nucleation phenomena in an open system, a constrained lattice density functional theory (LDFT) method has been developed before to identify the unstable directions of grand potential functional and to stabilize nuclei by imposing a suitable constraint. In this work, we answer several questions about the method on a fundamental level, and give a firmer basis for the constrained LDFT method. First, we demonstrate that the nucleus structure and free energy barrier from a volume constraint method are equivalent to those from a surface constraint method. Then, we show that for the critical nucleus, the constrained LDFT method in fact produces a bias-free solution for both the nucleus structure and nucleation barrier. Finally, we give a physical interpretation of the Lagrange multiplier in the constraint method, which provides the generalized force to stabilize a nucleus in an open system. The Lagrange multiplier is found to consist of two parts: part I of the constraint produces an effective pressure, and part II imposes a constraint to counteract the supersaturation. PMID:22462885
Self-interaction corrections in density functional theory
Tsuneda, Takao; Hirao, Kimihiko
2014-05-14
Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.
Antisites in III-V semiconductors: Density functional theory calculations
Chroneos, A.; Tahini, H. A.; Schwingenschlögl, U.; Grimes, R. W.
2014-07-14
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.
Metallophilic interactions from dispersion-corrected density-functional theory.
Otero-de-la-Roza, Alberto; Mallory, Joel D; Johnson, Erin R
2014-05-14
In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH3)4](+) cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal. PMID:24832312
Density Functional Steric Analysis of Linear and Branched Alkanes
Ess, Daniel H.; Liu, Shubin; De Proft, Frank
2010-11-18
Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E_{e}[[ρ]), an electrostatic energy term (E_{e}[ρ]), and a fermionic quantum energy term (E_{q}[[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.
Augmented Lagrangian formulation of orbital-free density functional theory
Suryanarayana, Phanish Phanish, Deepa
2014-10-15
We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-order finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.
Lischner, Johannes; Arias, T A
2008-11-21
The Gordian knot of density-functional theories for classical molecular liquids remains finding an accurate free-energy functional in terms of the densities of the atomic sites of the molecules. Following Kohn and Sham, we show how to solve this problem by considering noninteracting molecules in a set of effective potentials. This shift in perspective leads to an accurate and computationally tractable description in terms of simple three-dimensional functions. We also treat both the linear- and saturation- dielectric responses of polar systems, presenting liquid hydrogen chloride as a case study. PMID:19113431
A solvation-free-energy functional: a reference-modified density functional formulation.
Sumi, Tomonari; Mitsutake, Ayori; Maruyama, Yutaka
2015-07-01
The three-dimensional reference interaction site model (3D-RISM) theory, which is one of the most applicable integral equation theories for molecular liquids, overestimates the absolute values of solvation-free-energy (SFE) for large solute molecules in water. To improve the free-energy density functional for the SFE of solute molecules, we propose a reference-modified density functional theory (RMDFT) that is a general theoretical approach to construct the free-energy density functional systematically. In the RMDFT formulation, hard-sphere (HS) fluids are introduced as the reference system instead of an ideal polyatomic molecular gas, which has been regarded as the appropriate reference system of the interaction-site-model density functional theory for polyatomic molecular fluids. We show that using RMDFT with a reference HS system can significantly improve the absolute values of the SFE for a set of neutral amino acid side-chain analogues as well as for 504 small organic molecules. PMID:26032201
NASA Astrophysics Data System (ADS)
Callsen, Martin; Hamada, Ikutaro
2015-05-01
The precise description of chemical bonds with different natures is a prerequisite for an accurate electronic structure method. The van der Waals density functional is a promising approach that meets such a requirement. Nevertheless, the accuracy should be assessed for a variety of materials to test the robustness of the method. We present benchmark calculations for weakly interacting molecular complexes and rare-gas systems as well as covalently bound molecular systems, in order to assess the accuracy and applicability of rev-vdW-DF2, a recently proposed variant [I. Hamada, Phys. Rev. B 89, 121103 (2014), 10.1103/PhysRevB.89.121103] of the van der Waals density functional. It is shown that although the calculated atomization energies for small molecules are less accurate rev-vdW-DF2 describes the interaction energy curves for the weakly interacting molecules and rare-gas complexes, as well as the bond lengths of diatomic molecules, reasonably well.
Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.
2014-11-03
In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.
Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C
2014-12-01
Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. PMID:26583215
Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.
Corminboeuf, Clemence
2014-11-18
CONSPECTUS: Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this success, the commonly used semilocal approximations have difficulties in properly describing attractive dispersion interactions that decay with R(-6) at large intermolecular distances. Even in the short to medium range, most semilocal density functionals fail to give an accurate description of weak interactions. The omnipresence of dispersion interactions, which are neglected in the most popular electronic structure framework, has stimulated intense developments during the past decade. In this Account, we summarize our effort to develop and implement dispersion corrections that dramatically reduce the failures of both inter- and intramolecular interaction energies. The proposed schemes range from improved variants of empirical atom pairwise dispersion correction (e.g., dD10) to robust formulations dependent upon the electron density. Emphasis has been placed on introducing more physics into a modified Tang and Toennies damping function and deriving accurate dispersion coefficients. Our most sophisticated and established density-dependent correction, dDsC, is based on a simple generalized gradient approximation (GGA)-like reformulation of the exchange hole dipole moment introduced by Becke and Johnson. Akin to its empirical precursor, dDsC dramatically improves the interaction energy of a variety of standard density functionals simultaneously for typical intermolecular complexes and shorter-range interactions occurring within molecules. The broad applicability and robustness of the dDsC scheme is demonstrated on various representative reaction energies, geometries, and molecular dynamic simulations. The suitability of the a posteriori correction is also established through comparisons with the more
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-14
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Understanding density functional theory (DFT) and completing it in practice
Bagayoko, Diola
2014-12-15
We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent. PMID:27243962
NASA Astrophysics Data System (ADS)
Pham, Thinh H.; Ramprasad, Rampi; Nguyen, Huy-Viet
2016-06-01
Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional — a revised version of vdW-DF functional — to obtain a high-fidelity prediction of structural and other properties of polymeric materials.
Pham, Thinh H; Ramprasad, Rampi; Nguyen, Huy-Viet
2016-06-01
Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional - a revised version of vdW-DF functional - to obtain a high-fidelity prediction of structural and other properties of polymeric materials. PMID:27276968
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2002-01-01
A recently developed variationally stable quasi-relativistic method, which is based on the low-order approximation to the method of normalized elimination of the small component, was incorporated into density functional theory (DFT). The new method was tested for diatomic molecules involving Ag, Cd, Au, and Hg by calculating equilibrium bond lengths, vibrational frequencies, and dissociation energies. The method is easy to implement into standard quantum chemical programs and leads to accurate results for the benchmark systems studied.
SCAN+rVV10: A promising van der Waals density functional
NASA Astrophysics Data System (ADS)
Peng, Haowei; Yang, Zeng-Hui; Sun, Jianwei; Perdew, John
The newly developed ``strongly constrained and appropriately normed'' (SCAN) meta-generalized-gradient approximation (meta-GGA) can generally improve over the non-empirical Perdew-Burke-Ernzerhof (PBE) GGA not only for strong chemical bonding, but also for the intermediate-range van der Waals (vdW) interaction. However, the long-range vdW interaction is still missing. To remedy this, we propose here pairing SCAN with the non-local correlation part from the rVV10 vdW density functional, with only two empirical parameters. The resulting SCAN+rVV10 yields excellent geometric and energetic results not only for molecular systems, but also for solids and layered-structure materials, as well as the adsorption of benzene on coinage metal surfaces. Especially, SCAN+rVV10 outperforms all current methods with comparable computational efficiencies, accurately reproducing the three most fundamental parameters--the inter-layer binding energies, inter-, and intra-layer lattice constants--for 28 layered-structure materials. Hence, we have achieved with SCAN+rVV10 a promising vdW density functional for general geometries, with minimal empiricism. This work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #.DE-SC0012575.
Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals
NASA Astrophysics Data System (ADS)
Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.
2016-05-01
Acene molecular crystals are of current interest in organic optoelectronics, both as active materials and for exploring and understanding new phenomena. Phonon scattering can be an important facilitator and dissipation mechanism in charge separation and carrier transport processes. Here, we carry out density functional theory (DFT) calculations of the structure and the full phonon dispersion of crystalline naphthalene, a well-characterized acene crystal for which detailed neutron-diffraction measurements, as well as infrared and Raman spectroscopy, are available. We evaluate the performance, relative to experiments, of DFT within the local density approximation (LDA); the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van der Waals-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1%. Intermolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced within 7.8% and 1%, respectively. As expected, LDA (PBE) underestimates (overestimates) the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrating their shortcomings for predictive calculations of weakly bound materials. If the unit cell is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon frequencies. Our study provides a detailed understanding of the phonon spectrum of naphthalene, and highlights the importance of including van der Waals dispersion interactions in predictive calculations of lattice parameters and phonon frequencies of molecular crystals and related organic materials.
Density Functional Modeling of the Local Structure of Kaolinite Subjected to Thermal Dehydroxylation
White, Claire E.; Provis, John L.; Proffen, Thomas; Riley, Daniel P.; van Deventer, Jannie S.J.
2010-11-19
Understanding the atomic-level changes that occur as kaolinite is converted (thermally dehydroxylated) to metakaolin is critical to the optimization of this large-scale industrial process. Metakaolin is X-ray amorphous; therefore, conventional crystallographic techniques do not reveal the changes in local structure during its formation. Local structure-based experimental techniques are useful in understanding the atomic structure but do not provide the thermodynamic information which is necessary to ensure plausibility of refined structures. Here, kaolinite dehydroxylation is modeled using density functional theory, and a stepwise methodology, where several water molecules are removed from the structure, geometry optimization is carried out, and then the process is repeated. Hence, the structure remains in an energetically and thermodynamically feasible state while transitioning from kaolinite to metakaolin. The structures generated during the dehydroxylation process are validated by comparison with X-ray and neutron pair distribution function data. Thus, this study illustrates one possible route by which dehydroxylation of kaolinite can take place, revealing a chemically, energetically, and experimentally plausible structure of metakaolin. This methodology of density functional modeling of the stepwise changes in a material is not limited in application to kaolinite or other aluminosilicates and provides an accurate representation of the local structural changes occurring in materials used in industrially important processes.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Kwak, Dochan (Technical Monitor)
2002-01-01
The CCSD(T) method has been used to compute a highly accurate quartic force field and fundamental frequencies for all N-14 and N-15 isotopomers of the high energy density material T(sub d)N(sub 4). The computed fundamental frequencies show beyond doubt that the bands observed in a matrix isolation experiment by Radziszewski and coworkers are not due to different isotopomers of T(sub d)N(sub 4). The most sophisticated thermochemical calculations to date yield a N(sub 4) -> 2N(sub 2) heat of reaction of 182.22 +/- 0.5 kcal/mol at 0 K (180.64 +/- 0.5 at 298 K). It is hoped that the data reported herein will aid in the ultimate detection of T(sub d)N(sub 4).
NASA Astrophysics Data System (ADS)
Adidharma, Hertanto; Tan, Sugata P.
2016-07-01
Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T∗ ≤ 1.20) and high densities (0.96 ≤ ρ∗ ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.
Spin propensities of octahedral complexes from density functional theory.
Mortensen, Sara R; Kepp, Kasper P
2015-04-30
The fundamental balance between high- and low-spin states of transition metal systems depends on both the metal ion and the ligands surrounding it, as often visualized by the spectrochemical series. Most density functionals do not reproduce this balance, and real spin state propensities depend on orbital pairing and vibrational entropies absent in the spectrochemical series. Thus, we systematically computed the tendency toward high or low spin of "text-book" octahedral metal complexes versus ligand and metal type, using eight density functionals. Dispersion effects were generally <5 kJ/mol, favoring low-spin states. Zero-point energies favored high-spin states up to 33 kJ/mol for strong ligands, but down to a few kilojoules per mole for weak ligands. Vibrational entropy also favored high-spin states up to 40 kJ/mol, most for strong ligands. Jahn-Teller distortion in Co(II) low-spin states, particularly stable d(6) low-spin states, and entropy corrections were consistent with experiment. Entropy and zero-point energy corrections were markedly lower for Co(II) and Mn(III), viz., the differential ligand field stabilization energy, and can only be ignored for weak ligands. The data enable simple assessment of spin state propensities versus ligand and metal type and reveal, e.g., that CN(-) is consistently weaker than CO for M(II) but stronger than CO for M(III) and SCN(-) and NCS(-) change order in M(II) versus M(III) complexes. Contrary to expectation based on the spectrochemical series, Cl(-) and Br(-) are very close in spin state propensity because the pairing penalty for low spin is smaller in Br(-). Thus, for the M(II) complexes, we find a consensus order of Br(-) ∼ Cl(-) < H2O < SCN(-) < NCS(-) ∼ NH3 < CN(-) < CO, whereas for the M(III) complexes, an approximate order is Br(-) ∼ Cl(-) < H2O ∼ NCS(-) ∼ SCN(-)< NH3 < CO < CN(-). PMID:25856244
Wilken, F.; Bauer, D.
2006-11-17
The ionization of a one-dimensional model helium atom in short laser pulses using time-dependent density-functional theory is investigated. We calculate ionization probabilities as a function of laser intensity by approximating the correlation function of the system adiabatically with an explicit dependence on the fractional number of bound electrons. For the correlation potential we take the derivative discontinuity at integer numbers of bound electrons explicitly into account. This approach reproduces ionization probabilities from the solution of the time-dependent Schroedinger equation, in particular, the so-called knee due to nonsequential ionization.
Mardirossian, Narbe; Head-Gordon, Martin
2015-02-21
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10(10) choices carved out of a functional space of almost 10(40) possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights. PMID:25702006
Tensor part of the Skyrme energy density functional: Spherical nuclei
NASA Astrophysics Data System (ADS)
Lesinski, T.; Bender, M.; Bennaceur, K.; Duguet, T.; Meyer, J.
2007-07-01
the single-particle spectra in doubly-magic nuclei is deteriorated, which can be traced back to features of the single-particle spectra that are not related to the tensor terms. We conclude that the currently used central and spin-orbit parts of the Skyrme energy density functional are not flexible enough to allow for the presence of large tensor terms.
Global and local curvature in density functional theory
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide. PMID:27497541
Density-functional theory study of gramicidin A ion channel geometry and electronic properties
Todorović, Milica; Bowler, David R.; Gillan, Michael J.; Miyazaki, Tsuyoshi
2013-01-01
Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A (gA), whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground state geometry and electronic properties of the channel in vacuum, focusing on their dependence on the side chains of the amino acids. We find that the side chains affect the ground state geometry, while the electrostatic potential of the pore is independent of the side chains. This study is also in preparation for a full, linear scaling DFT study of gA in a lipid bilayer with surrounding water. We demonstrate that linear scaling DFT methods can accurately model the system with reasonable computational cost. Linear scaling DFT allows ab initio calculations with 10 000–100 000 atoms and beyond, and will be an important new tool for biomolecular simulations. PMID:24068174
Mukamel, Shaul
2005-02-01
Time-ordered superoperators are used to develop a unified description of nonlinear density response and spontaneous fluctuations of many-electron systems. The pth-order density response functions are decomposed into 2{sup p+1} non-causal Liouville space pathways. Individual pathways are symmetric to the interchange of their space, time, and superoperator indices and can thus be calculated as functional derivatives. Other combinations of these pathways represent spontaneous density fluctuations and the response of such fluctuations to an external field. The resolution of the causality paradox of time-dependent density-functional theory (TDDFT) is shown to be intimately connected with the nonretarded nature of fluctuations.