Science.gov

Sample records for accurate diagnostic methods

  1. SOPROLIFE System: An Accurate Diagnostic Enhancer

    PubMed Central

    Zeitouny, Mona; Feghali, Mireille; Nasr, Assaad; Abou-Samra, Philippe; Saleh, Nadine; Bourgeois, Denis; Farge, Pierre

    2014-01-01

    Objectives. The aim of this study was to evaluate a light-emitting diode fluorescence tool, the SOPROLIFE light-induced fluorescence evaluator, and compare it to the international caries detection and assessment system-II (ICDAS-II) in the detection of occlusal caries. Methods. A total of 219 permanent posterior teeth in 21 subjects, with age ranging from 15 to 65 years, were examined. An intraclass correlation coefficient (ICC) was computed to assess the reliability between the two diagnostic methods. Results. The results showed a high reliability between the two methods (ICC = 0.92; IC = 0.901–0.940; P < 0.001). The SOPROLIFE blue fluorescence mode had a high sensitivity (87%) and a high specificity (99%) when compared to ICDAS-II. Conclusion. Compared to the most used visual method in the diagnosis of occlusal caries lesions, the finding from this study suggests that SOPROLIFE can be used as a reproducible and reliable assessment tool. At a cut-off point, categorizing noncarious lesions and visual change in enamel, SOPROLIFE shows a high sensitivity and specificity. We can conclude that financially ICDAS is better than SOPROLIFE. However SOPROLIFE is easier for clinicians since it is a simple evaluation of images. Finally in terms of efficiency SOPROLIFE is not superior to ICDAS but tends to be equivalent with the same advantages. PMID:25401161

  2. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  3. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  4. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  5. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  6. Genetic Diagnostic Methods for Inherited Eye Diseases

    PubMed Central

    Gabriel, Luis A. R.; Traboulsi, Elias I.

    2011-01-01

    Accurate molecular diagnosis of genetic eye diseases has proven to be of great importance because of the prognostic and therapeutic value of an accurate ascertainment of the underlying genetic mutation. Efforts continue in diagnostic laboratories to develop strategies that allow the discovery of responsible gene/mutations in the individual patient using the least number of assays and economizing on the expenses and time involved in the process. Once the ophthalmologist has made the best possible clinical diagnosis, blood samples are obtained for genetic testing. In this paper we will review the basic laboratory methods utilized to identify the chromosomal or mutational etiology of genetic diseases that affect the eye. PMID:21572730

  7. Diagnostic methodology is critical for accurately determining the prevalence of ichthyophonus infections in wild fish populations

    USGS Publications Warehouse

    Kocan, R.; Dolan, H.; Hershberger, P.

    2011-01-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus, particularly when the exposure history of the population is not known.

  8. Diagnostic methodology is critical for accurately determining the prevalence of Ichthyophonus infections in wild fish populations.

    PubMed

    Kocan, Richard; Dolan, Heather; Hershberger, Paul

    2011-04-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus , particularly when the exposure history of the population is not known. PMID:21506773

  9. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  10. Ascitic Fluid Calprotectin and Serum Procalcitonin as Accurate Diagnostic Markers for Spontaneous Bacterial Peritonitis

    PubMed Central

    Abdel-Razik, Ahmed; Mousa, Nasser; Elhammady, Dina; Elhelaly, Rania; Elzehery, Rasha; Elbaz, Sherif; Eissa, Mohamed; El-Wakeel, Niveen; Eldars, Waleed

    2016-01-01

    Background/Aims The diagnosis of spontaneous bacterial peritonitis (SBP) is based on a polymorphonuclear leukocytes (PMNs) exceeding 250/μL in ascitic fluid. The aim of the study was to evaluate serum procalcitonin and ascitic fluid calprotectin as accurate diagnostic markers for detecting SBP. Methods Seventy-nine patients with cirrhotic ascites were included. They were divided into a SBP group, including 52 patients, and a non-SBP group of 27 patients. Serum procalcitonin, ascitic calprotectin, and serum and ascitic levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were measured using an enzyme-linked immunosorbent assay. Results Serum procalcitonin and ascitic calprotectin were significantly higher in SBP patients than in non-SBP patients. Significant increases in both serum and ascitic levels of TNF-α and IL-6 were observed in SBP patients versus non-SBP patients. At a cutoff value of 0.94 ng/mL, serum procalcitonin had 94.3% sensitivity and 91.8% specificity for detecting SBP. In addition, at a cutoff value of 445 ng/mL, ascitic calprotectin had 95.4% sensitivity and 85.2% specificity for detecting SBP. Both were positively correlated with ascitic fluid proteins, PMN count, TNF-α, and IL-6. Conclusions According to our findings, determination of serum procalcitonin levels and ascitic calprotectin appears to provide satisfactory diagnostic markers for the diagnosis of SBP. PMID:26601826

  11. Myasthenia Gravis: Tests and Diagnostic Methods

    MedlinePlus

    ... Affiliations Foundation Focus Newsletter E-Update Test & Diagnostic methods In addition to a complete medical and neurological ... How can I help? About MGFA Test & Diagnostic methods Treatment for MG FAQ's Upcoming Events Spring 2016 ...

  12. Accurate wavelength calibration method for flat-field grating spectrometers.

    PubMed

    Du, Xuewei; Li, Chaoyang; Xu, Zhe; Wang, Qiuping

    2011-09-01

    A portable spectrometer prototype is built to study wavelength calibration for flat-field grating spectrometers. An accurate calibration method called parameter fitting is presented. Both optical and structural parameters of the spectrometer are included in the wavelength calibration model, which accurately describes the relationship between wavelength and pixel position. Along with higher calibration accuracy, the proposed calibration method can provide information about errors in the installation of the optical components, which will be helpful for spectrometer alignment. PMID:21929865

  13. Accurate Point-of-Care Detection of Ruptured Fetal Membranes: Improved Diagnostic Performance Characteristics with a Monoclonal/Polyclonal Immunoassay

    PubMed Central

    Rogers, Linda C.; Scott, Laurie; Block, Jon E.

    2016-01-01

    OBJECTIVE Accurate and timely diagnosis of rupture of membranes (ROM) is imperative to allow for gestational age-specific interventions. This study compared the diagnostic performance characteristics between two methods used for the detection of ROM as measured in the same patient. METHODS Vaginal secretions were evaluated using the conventional fern test as well as a point-of-care monoclonal/polyclonal immunoassay test (ROM Plus®) in 75 pregnant patients who presented to labor and delivery with complaints of leaking amniotic fluid. Both tests were compared to analytical confirmation of ROM using three external laboratory tests. Diagnostic performance characteristics were calculated including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. RESULTS Diagnostic performance characteristics uniformly favored ROM detection using the immunoassay test compared to the fern test: sensitivity (100% vs. 77.8%), specificity (94.8% vs. 79.3%), PPV (75% vs. 36.8%), NPV (100% vs. 95.8%), and accuracy (95.5% vs. 79.1%). CONCLUSIONS The point-of-care immunoassay test provides improved diagnostic accuracy for the detection of ROM compared to fern testing. It has the potential of improving patient management decisions, thereby minimizing serious complications and perinatal morbidity. PMID:27199579

  14. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  15. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  16. Using Copula Distributions to Support More Accurate Imaging-Based Diagnostic Classifiers for Neuropsychiatric Disorders

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.

    2014-01-01

    Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging

  17. Hospital discharge diagnostic and procedure codes for upper gastro-intestinal cancer: how accurate are they?

    PubMed Central

    2012-01-01

    Background Population-level health administrative datasets such as hospital discharge data are used increasingly to evaluate health services and outcomes of care. However information about the accuracy of Australian discharge data in identifying cancer, associated procedures and comorbidity is limited. The Admitted Patients Data Collection (APDC) is a census of inpatient hospital discharges in the state of New South Wales (NSW). Our aim was to assess the accuracy of the APDC in identifying upper gastro-intestinal (upper GI) cancer cases, procedures for associated curative resection and comorbidities at the time of admission compared to data abstracted from medical records (the ‘gold standard’). Methods We reviewed the medical records of 240 patients with an incident upper GI cancer diagnosis derived from a clinical database in one NSW area health service from July 2006 to June 2007. Extracted case record data was matched to APDC discharge data to determine sensitivity, positive predictive value (PPV) and agreement between the two data sources (κ-coefficient). Results The accuracy of the APDC diagnostic codes in identifying site-specific incident cancer ranged from 80-95% sensitivity. This was comparable to the accuracy of APDC procedure codes in identifying curative resection for upper GI cancer. PPV ranged from 42-80% for cancer diagnosis and 56-93% for curative surgery. Agreement between the data sources was >0.72 for most cancer diagnoses and curative resections. However, APDC discharge data was less accurate in reporting common comorbidities - for each condition, sensitivity ranged from 9-70%, whilst agreement ranged from κ = 0.64 for diabetes down to κ < 0.01 for gastro-oesophageal reflux disorder. Conclusions Identifying incident cases of upper GI cancer and curative resection from hospital administrative data is satisfactory but under-ascertained. Linkage of multiple population-health datasets is advisable to maximise case ascertainment and

  18. Ultrasensitive microanalytical diagnostic methods for rickettsial pathogens

    SciTech Connect

    Hatch, A. V.

    2012-03-01

    A strategic CRADA was established between Sandia National Laboratories (SNL) and the University of Texas Medical Branch (UTMB) at Galveston to address pressing needs for US protection against biological weapons of mass destruction (WMD) and emerging infectious diseases. The combination of unique expertise and facilities at UTMB and SNL enabled interdisciplinary research efforts in the development of rapid and accurate diagnostic methods for early detection of trace priority pathogen levels. Outstanding postdoctoral students were also trained at both institutions to help enable the next generation of scientists to tackle the challenging interdisciplinary problems in the area of biodefense and emerging infectious diseases. Novel approaches to diagnostics were developed and the both the speed of assays as well as the detection sensitivity were improved by over an order of magnitude compared to traditional methods. This is a significant step toward more timely and specific detection of dangerous infections. We developed in situ polymerized porous polymer monoliths that can be used as (1) size exclusion elements for capture and processing of rickettsial infected cells from a sample, (2) photopatternable framework for grafting high densities of functionalized antibodies/fluorescent particles using novel monolith chemistry. Grafting affinity reagents specific to rickettsial particles enables rapid, ultra-sensitive assays by overcoming transport limitations of traditional planar assay approaches. We have selectively trapped particles and bacteria at the cell trap and have also detected picomolar mouse IL-6 captured with only 20 minutes total incubation times using the densely patterned monolith framework. As predicted, the monolith exhibits >10x improvements in both capture speed and capture density compared to traditional planar approaches. The most significant advancements as part of this CRADA is the optimization of techniques allowing the detection of <10 rickettsial

  19. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  20. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  1. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  2. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  3. Accurate method for determining adhesion of cantilever beams

    SciTech Connect

    de Boer, M.P.; Michalske, T.A.

    1999-07-01

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying. {copyright} {ital 1999 American Institute of Physics.}

  4. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  5. Exploring accurate Poisson–Boltzmann methods for biomolecular simulations

    PubMed Central

    Wang, Changhao; Wang, Jun; Cai, Qin; Li, Zhilin; Zhao, Hong-Kai; Luo, Ray

    2013-01-01

    Accurate and efficient treatment of electrostatics is a crucial step in computational analyses of biomolecular structures and dynamics. In this study, we have explored a second-order finite-difference numerical method to solve the widely used Poisson–Boltzmann equation for electrostatic analyses of realistic bio-molecules. The so-called immersed interface method was first validated and found to be consistent with the classical weighted harmonic averaging method for a diversified set of test biomolecules. The numerical accuracy and convergence behaviors of the new method were next analyzed in its computation of numerical reaction field grid potentials, energies, and atomic solvation forces. Overall similar convergence behaviors were observed as those by the classical method. Interestingly, the new method was found to deliver more accurate and better-converged grid potentials than the classical method on or nearby the molecular surface, though the numerical advantage of the new method is reduced when grid potentials are extrapolated to the molecular surface. Our exploratory study indicates the need for further improving interpolation/extrapolation schemes in addition to the developments of higher-order numerical methods that have attracted most attention in the field. PMID:24443709

  6. Tomographic methods in flow diagnostics

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1993-01-01

    This report presents a viewpoint of tomography that should be well adapted to currently available optical measurement technology as well as the needs of computational and experimental fluid dynamists. The goals in mind are to record data with the fastest optical array sensors; process the data with the fastest parallel processing technology available for small computers; and generate results for both experimental and theoretical data. An in-depth example treats interferometric data as it might be recorded in an aeronautics test facility, but the results are applicable whenever fluid properties are to be measured or applied from projections of those properties. The paper discusses both computed and neural net calibration tomography. The report also contains an overview of key definitions and computational methods, key references, computational problems such as ill-posedness, artifacts, missing data, and some possible and current research topics.

  7. Accurate projector calibration method by using an optical coaxial camera.

    PubMed

    Huang, Shujun; Xie, Lili; Wang, Zhangying; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2015-02-01

    Digital light processing (DLP) projectors have been widely utilized to project digital structured-light patterns in 3D imaging systems. In order to obtain accurate 3D shape data, it is important to calibrate DLP projectors to obtain the internal parameters. The existing projector calibration methods have complicated procedures or low accuracy of the obtained parameters. This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera. The optical coaxial geometry is realized by a plate beam splitter, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface is used to calibrate the projector. The corresponding projector pixel coordinate of each marker on the plate is determined by projecting vertical and horizontal sinusoidal fringe patterns on the plate surface and calculating the absolute phase. The internal parameters of the DLP projector are obtained by the corresponding point pair between the projector pixel coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method can accurately calibrate the internal parameters of a DLP projector. PMID:25967789

  8. [Syndrome of diabetic foot: modern diagnostic methods].

    PubMed

    Plekhanov, A N; Markevich, P S

    2014-01-01

    We summarize the literature data on diagnostics of diabetic foot syndrome including clinical examination and special invasive and non-invasive studies of the vascular system. The main methods are ultrasound dopplerography, X-ray contrast angiography, and ultrasound duplex scanning. Special attention is given to instrumental diagnostics of diabetic neuropathies. The golden standard for the evaluation of the function of the peripheral nervous system is electroneuromyography. Methods for the study of diabetic foot complications, such as osteoarthropathy and trophic ulcers, are discussed. PMID:25782303

  9. Reverse radiance: a fast accurate method for determining luminance

    NASA Astrophysics Data System (ADS)

    Moore, Kenneth E.; Rykowski, Ronald F.; Gangadhara, Sanjay

    2012-10-01

    Reverse ray tracing from a region of interest backward to the source has long been proposed as an efficient method of determining luminous flux. The idea is to trace rays only from where the final flux needs to be known back to the source, rather than tracing in the forward direction from the source outward to see where the light goes. Once the reverse ray reaches the source, the radiance the equivalent forward ray would have represented is determined and the resulting flux computed. Although reverse ray tracing is conceptually simple, the method critically depends upon an accurate source model in both the near and far field. An overly simplified source model, such as an ideal Lambertian surface substantially detracts from the accuracy and thus benefit of the method. This paper will introduce an improved method of reverse ray tracing that we call Reverse Radiance that avoids assumptions about the source properties. The new method uses measured data from a Source Imaging Goniometer (SIG) that simultaneously measures near and far field luminous data. Incorporating this data into a fast reverse ray tracing integration method yields fast, accurate data for a wide variety of illumination problems.

  10. Accurate method of modeling cluster scaling relations in modified gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-hua; Li, Baojiu

    2016-06-01

    We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.

  11. Trends in Laboratory Diagnostic Methods in Periodontology.

    PubMed

    Bolerázska, Beáta; Mareková, Mária; Markovská, Neda

    2016-01-01

    This work presents a summary of current knowledge on the laboratory diagnosis of periodontitis. It focuses on the theoretical foundations and is supplemented with new knowledge. It subsequently describes specifically the laboratory diagnosis methods of periodontitis: the protein expression of inflammation, oral microbiology and molecular diagnostics. Periodontitis is a serious disease worldwide and its confirmed association with systemic diseases means its severity is increasing. Its laboratory diagnosis has the potential to rise to the level of clinical and diagnostic imaging. The transfer of diagnostic methods from laboratory to clinical use is increasingly used in the prevention and monitoring of the exacerbation and treatment of periodontal disease, as well as of its impact on systemic disease. PMID:27131349

  12. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  13. Accurate optical CD profiler based on specialized finite element method

    NASA Astrophysics Data System (ADS)

    Carrero, Jesus; Perçin, Gökhan

    2012-03-01

    As the semiconductor industry is moving to very low-k1 patterning solutions, the metrology problems facing process engineers are becoming much more complex. Choosing the right optical critical dimension (OCD) metrology technique is essential for bridging the metrology gap and achieving the required manufacturing volume throughput. The critical dimension scanning electron microscope (CD-SEM) measurement is usually distorted by the high aspect ratio of the photoresist and hard mask layers. CD-SEM measurements cease to correlate with complex three-dimensional profiles, such as the cases for double patterning and FinFETs, thus necessitating sophisticated, accurate and fast computational methods to bridge the gap. In this work, a suite of computational methods that complement advanced OCD equipment, and enabling them to operate at higher accuracies, are developed. In this article, a novel method for accurately modeling OCD profiles is presented. A finite element formulation in primal form is used to discretize the equations. The implementation uses specialized finite element spaces to solve Maxwell equations in two dimensions.

  14. Novel dispersion tolerant interferometry method for accurate measurements of displacement

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Maria, Michael; Leick, Lasse; Podoleanu, Adrian G.

    2015-05-01

    We demonstrate that the recently proposed master-slave interferometry method is able to provide true dispersion free depth profiles in a spectrometer-based set-up that can be used for accurate displacement measurements in sensing and optical coherence tomography. The proposed technique is based on correlating the channelled spectra produced by the linear camera in the spectrometer with previously recorded masks. As such technique is not based on Fourier transformations (FT), it does not require any resampling of data and is immune to any amounts of dispersion left unbalanced in the system. In order to prove the tolerance of technique to dispersion, different lengths of optical fiber are used in the interferometer to introduce dispersion and it is demonstrated that neither the sensitivity profile versus optical path difference (OPD) nor the depth resolution are affected. In opposition, it is shown that the classical FT based methods using calibrated data provide less accurate optical path length measurements and exhibit a quicker decays of sensitivity with OPD.

  15. Accurate camera calibration method specialized for virtual studios

    NASA Astrophysics Data System (ADS)

    Okubo, Hidehiko; Yamanouchi, Yuko; Mitsumine, Hideki; Fukaya, Takashi; Inoue, Seiki

    2008-02-01

    Virtual studio is a popular technology for TV programs, that makes possible to synchronize computer graphics (CG) to realshot image in camera motion. Normally, the geometrical matching accuracy between CG and realshot image is not expected so much on real-time system, we sometimes compromise on directions, not to come out the problem. So we developed the hybrid camera calibration method and CG generating system to achieve the accurate geometrical matching of CG and realshot on virtual studio. Our calibration method is intended for the camera system on platform and tripod with rotary encoder, that can measure pan/tilt angles. To solve the camera model and initial pose, we enhanced the bundle adjustment algorithm to fit the camera model, using pan/tilt data as known parameters, and optimizing all other parameters invariant against pan/tilt value. This initialization yields high accurate camera position and orientation consistent with any pan/tilt values. Also we created CG generator implemented the lens distortion function with GPU programming. By applying the lens distortion parameters obtained by camera calibration process, we could get fair compositing results.

  16. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  17. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  18. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  19. An Integrative Method for Accurate Comparative Genome Mapping

    PubMed Central

    Swidan, Firas; Rocha, Eduardo P. C; Shmoish, Michael; Pinter, Ron Y

    2006-01-01

    We present MAGIC, an integrative and accurate method for comparative genome mapping. Our method consists of two phases: preprocessing for identifying “maximal similar segments,” and mapping for clustering and classifying these segments. MAGIC's main novelty lies in its biologically intuitive clustering approach, which aims towards both calculating reorder-free segments and identifying orthologous segments. In the process, MAGIC efficiently handles ambiguities resulting from duplications that occurred before the speciation of the considered organisms from their most recent common ancestor. We demonstrate both MAGIC's robustness and scalability: the former is asserted with respect to its initial input and with respect to its parameters' values. The latter is asserted by applying MAGIC to distantly related organisms and to large genomes. We compare MAGIC to other comparative mapping methods and provide detailed analysis of the differences between them. Our improvements allow a comprehensive study of the diversity of genetic repertoires resulting from large-scale mutations, such as indels and duplications, including explicitly transposable and phagic elements. The strength of our method is demonstrated by detailed statistics computed for each type of these large-scale mutations. MAGIC enabled us to conduct a comprehensive analysis of the different forces shaping prokaryotic genomes from different clades, and to quantify the importance of novel gene content introduced by horizontal gene transfer relative to gene duplication in bacterial genome evolution. We use these results to investigate the breakpoint distribution in several prokaryotic genomes. PMID:16933978

  20. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    PubMed Central

    Dingari, Narahara Chari; Horowitz, Gary L.; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future. PMID:22393405

  1. Method and system for diagnostics of apparatus

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2012-01-01

    Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.

  2. Non-invasive diagnostic methods in dentistry

    NASA Astrophysics Data System (ADS)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  3. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  4. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    NASA Astrophysics Data System (ADS)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  5. Current status of diagnostic methods for henipavirus.

    PubMed

    Tamin, A; Rota, P A

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are the causative agents of emerging transboundary animal disease in pigs and horses. They also cause fatal disease in humans. NiV has a case fatality rate of 40 - 100%. In the initial NiV outbreak in Malaysia in 1999, about 1.1 million pigs had to be culled. The economic impact was estimated to be approximately US$450 million. Worldwide, HeV has caused more than 60 deaths in horses with 7 human cases and 4 deaths. Since the initial outbreak, HeV spillovers from Pteropus bats to horses and humans continue. This article presents a brief review on the currently available diagnostic methods for henipavirus infections, including advances achieved since the initial outbreak, and a gap analysis of areas needing improvement. PMID:23689891

  6. A method for producing large, accurate, economical female molds

    SciTech Connect

    Guenter, A.; Guenter, B.

    1996-11-01

    A process in which lightweight, highly accurate, economical molds can be produced for prototype and low production runs of large parts for use in composites molding has been developed. This has been achieved by developing existing milling technology, using new materials and innovative material applications to CNC mill large female molds directly. Any step that can be eliminated in the mold building process translates into savings in tooling costs through reduced labor and material requirements.

  7. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  8. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  9. Comparison of Diagnostic Methods for Asperger Syndrome

    ERIC Educational Resources Information Center

    Kopra, Kristiina; von Wendt, Lennart; Nieminen-von Wendt, Taina; Paavonen, E. Julia

    2008-01-01

    Several different diagnostic sets of criteria exist for Asperger syndrome (AS), but there is no agreement on a gold standard. The aim of this study was to compare four diagnostic sets of criteria for AS: the ICD-10, the DSM-IV, the Gillberg & Gillberg, and the Szatmari criteria. The series consists of 36 children who had been referred to two…

  10. Validation of Three Early Ejaculation Diagnostic Tools: A Composite Measure Is Accurate and More Adequate for Diagnosis by Updated Diagnostic Criteria

    PubMed Central

    Jern, Patrick; Piha, Juhana; Santtila, Pekka

    2013-01-01

    Purpose To validate three early ejaculation diagnostic tools, and propose a new tool for diagnosis in line with proposed changes to diagnostic criteria. Significant changes to diagnostic criteria are expected in the near future. Available screening tools do not necessarily reflect proposed changes. Materials and Methods Data from 148 diagnosed early ejaculation patients (Mage = 42.8) and 892 controls (Mage = 33.1 years) from a population-based sample were used. Participants responded to three different questionnaires (Premature Ejaculation Profile; Premature Ejaculation Diagnostic Tool; Multiple Indicators of Premature Ejaculation). Stopwatch measured ejaculation latency times were collected from a subsample of early ejaculation patients. We used two types of responses to the questionnaires depending on the treatment status of the patients 1) responses regarding the situation before starting pharmacological treatment and 2) responses regarding current situation. Logistic regressions and Receiver Operating Characteristics were used to assess ability of both the instruments and individual items to differentiate between patients and controls. Results All instruments had very good precision (Areas under the Curve ranging from .93-.98). A new five-item instrument (named CHecklist for Early Ejaculation Symptoms – CHEES) consisting of high-performance variables selected from the three instruments had validity (Nagelkerke R2 range .51-.79 for backwards/forwards logistic regression) equal to or slightly better than any individual instrument (i.e., had slightly higher validity statistics, but these differences did not achieve statistical significance). Importantly, however, this instrument was more in line with proposed changes to diagnostic criteria. Conclusions All three screening tools had good validity. A new 5-item diagnostic tool (CHEES) based on the three instruments had equal or somewhat more favorable validity statistics compared to the other three tools, but is

  11. RT-PCR is a more accurate diagnostic tool for detection of BCR-ABL rearrangement

    SciTech Connect

    Zehnbauer, B.A.; Allen, A.P.; McGrath, S.D.

    1994-09-01

    Detection of the Philadelphia chromosome (Ph1) or genomic Southern hybridization for clonal gene rearrangement (GSH-R) has provided very specific identification of BCR-ABL gene rearrangement. Reverse transcriptase-polymerase chain reaction (RT-PCR) is diagnostic for patterns of BCR-ABL expression which are undetected by GSH-R and/or Ph1 and provides increased sensitivity both at diagnosis and in detection of minimal residual leukemia. Fifty-three specimens (of 150 tested from 119 consecutive leukemia patients) were RT-PCR positive for BCR-ABL gene expression confirmed by hybridization of PCR products with b{sub 3}a{sub 2}, b{sub 2}a{sub 2}, or e{sub 1}a{sub 2} junction-specific oligonucleotides. In 6 cases of CML with GSH-R{sup {minus}}at diagnosis, RT-PCR provided specific BCR-ABL identification. Deletion of BCR regions, low mitotic index, or e{sub 1}a{sub 2} expression caused failure to detect GSH-R or Ph1 translocation.

  12. The development of accurate and efficient methods of numerical quadrature

    NASA Technical Reports Server (NTRS)

    Feagin, T.

    1973-01-01

    Some new methods for performing numerical quadrature of an integrable function over a finite interval are described. Each method provides a sequence of approximations of increasing order to the value of the integral. Each approximation makes use of all previously computed values of the integrand. The points at which new values of the integrand are computed are selected in such a way that the order of the approximation is maximized. The methods are compared with the quadrature methods of Clenshaw and Curtis, Gauss, Patterson, and Romberg using several examples.

  13. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  14. Diagnostic Methods in Primary Ciliary Dyskinesia.

    PubMed

    Lucas, Jane S; Paff, Tamara; Goggin, Patricia; Haarman, Eric

    2016-03-01

    Diagnosing primary ciliary dyskinesia is difficult. With no reference standard, a combination of tests is needed; most tests require expensive equipment and specialist scientists. We review the advances in diagnostic testing over the past hundred years, with emphasis on recent advances. We particularly focus on use of high-speed video analysis, transmission electron microscopy, nasal nitric oxide and genetic testing. We discuss the international efforts that are in place to advance the evidence base for diagnostic tests. PMID:26362507

  15. Construction of higher order accurate vortex and particle methods

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1986-01-01

    The standard point vortex method has recently been shown to be of high order of accuracy for problems on the whole plane, when using a uniform initial subdivision for assigning the vorticity to the points. If obstacles are present in the flow, this high order deteriorates to first or second order. New vortex methods are introduced which are of arbitrary accuracy (under regularity assumptions) regardless of the presence of bodies and the uniformity of the initial subdivision.

  16. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  17. How Accurately Do Spectral Methods Estimate Effective Elastic Thickness?

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Lowry, A. R.; Watts, A. B.; Velicogna, I.

    2002-12-01

    The effective elastic thickness, Te, is an important parameter that has the potential to provide information on the long-term thermal and mechanical properties of the the lithosphere. Previous studies have estimated Te using both forward and inverse (spectral) methods. While there is generally good agreement between the results obtained using these methods, spectral methods are limited because they depend on the spectral estimator and the window size chosen for analysis. In order to address this problem, we have used a multitaper technique which yields optimal estimates of the bias and variance of the Bouguer coherence function relating topography and gravity anomaly data. The technique has been tested using realistic synthetic topography and gravity. Synthetic data were generated assuming surface and sub-surface (buried) loading of an elastic plate with fractal statistics consistent with real data sets. The cases of uniform and spatially varying Te are examined. The topography and gravity anomaly data consist of 2000x2000 km grids sampled at 8 km interval. The bias in the Te estimate is assessed from the difference between the true Te value and the mean from analyzing 100 overlapping windows within the 2000x2000 km data grids. For the case in which Te is uniform, the bias and variance decrease with window size and increase with increasing true Te value. In the case of a spatially varying Te, however, there is a trade-off between spatial resolution and variance. With increasing window size the variance of the Te estimate decreases, but the spatial changes in Te are smeared out. We find that for a Te distribution consisting of a strong central circular region of Te=50 km (radius 600 km) and progressively smaller Te towards its edges, the 800x800 and 1000x1000 km window gave the best compromise between spatial resolution and variance. Our studies demonstrate that assumed stationarity of the relationship between gravity and topography data yields good results even in

  18. Interviewing Children Versus Tossing Coins: Accurately Assessing the Diagnosticity of Children’s Disclosures of Abuse

    PubMed Central

    LYON, THOMAS D.; AHERN, ELIZABETH C.; SCURICH, NICHOLAS

    2014-01-01

    We describe a Bayesian approach to evaluating children’s abuse disclosures and review research demonstrating that children’s disclosure of genital touch can be highly probative of sexual abuse, with the probative value depending on disclosure spontaneity and children’s age. We discuss how some commentators understate the probative value of children’s disclosures by: confusing the probability of abuse given disclosure with the probability of disclosure given abuse, assuming that children formally questioned about sexual abuse have a low prior probability of sexual abuse, misstating the probative value of abuse disclosure, and confusing the distinction between disclosure and nondisclosure with the distinction between true and false disclosures. We review interviewing methods that increase the probative value of disclosures, including interview instructions, narrative practice, noncontingent reinforcement, and questions about perpetrator/caregiver statements and children’s reactions to the alleged abuse. PMID:22339423

  19. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  20. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  1. NMR method for accurate quantification of polysorbate 80 copolymer composition.

    PubMed

    Zhang, Qi; Wang, Aifa; Meng, Yang; Ning, Tingting; Yang, Huaxin; Ding, Lixia; Xiao, Xinyue; Li, Xiaodong

    2015-10-01

    (13)C NMR spectroscopic integration employing short relaxation delays and a 30° pulse width was evaluated as a quantitative tool for analyzing the components of polysorbate 80. (13)C NMR analysis revealed that commercial polysorbate 80 formulations are a complex oligomeric mixture of sorbitan polyethoxylate esters and other intermediates, such as isosorbide polyethoxylate esters and poly(ethylene glycol) (PEG) esters. This novel approach facilitates the quantification of the component ratios. In this study, the ratios of the three major oligomers in polysorbate 80 were measured and the PEG series was found to be the major component of commercial polysorbate 80. The degree of polymerization of -CH2CH2O- groups and the ratio of free to bonded -CH2CH2O- end groups, which correlate with the hydrophilic/hydrophobic nature of the polymer, were analyzed, and were suggested to be key factors for assessing the likelihood of adverse biological reactions to polysorbate 80. The (13)C NMR data suggest that the feed ratio of raw materials and reaction conditions in the production of polysorbate 80 are not well controlled. Our results demonstrate that (13)C NMR is a universal, powerful tool for polysorbate analysis. Such analysis is crucial for the synthesis of a high-quality product, and is difficult to obtain by other methods. PMID:26356097

  2. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  3. [Diagnostic methods of nasal respiratory function].

    PubMed

    Mlynski, G; Beule, A

    2008-01-01

    Objective assessment of nasal obstruction may help with preoperative planning for rhinosurgery and indicate different aspects of endonasal pathology. To improve quality control, preoperative and postoperative objective assessment is desirable. This review presents objective functional diagnostic tools and explains their appropriate uses, the information obtained, and their limitations. An algorithm is presented for analysing nasal obstruction by means of objective functional assessment. Examples illustrate how to use this information for preoperative planning in rhinosurgery. PMID:18210011

  4. Novel scanner characterization method for color measurement and diagnostics applications

    NASA Astrophysics Data System (ADS)

    Lee, Bong-Sun; Bala, Raja; Sharma, Gaurav

    2006-02-01

    We propose a novel scanner characterization approach for applications requiring color measurement of hardcopy output in printer calibration, characterization, and diagnostic applications. It is assumed that a typical printed medium comprises the three basic colorants C, M, Y. The proposed method is particularly advantageous when additional colorants are used in the print (e.g. black (K)). A family of scanner characterization targets is constructed, each varying in C, M, Y and at a fixed level of K. A corresponding family of 3-D scanner characterizations is derived, one for each level of K. Each characterization maps scanner RGB to a colorimetric representation such as CIELAB, using standard characterization techniques. These are then combined into a single 4-D characterization mapping RGBK to CIELAB. A refinement of the technique improves performance significantly by using a function of the scanned values for K (e.g. the scanner's green channel response to printed K) instead of the digital K value directly. This makes this new approach more robust with respect to variations in printed K over time. Secondly it enables, with a single scanner characterization, accurate color measurement of prints from different printers within the same family. Results show that the 4-D characterization technique can significantly outperform standard 3-D approaches especially in cases where the image being scanned is a patch target made up of unconstrained CMYK combinations. Thus the algorithm finds particular use in printer characterization and diagnostic applications. The method readily generalizes to printed media containing other (e.g "hi-fi") colorants, and also to other image capture devices such as digital cameras.

  5. Diagnostic methods for CW laser damage testing

    NASA Astrophysics Data System (ADS)

    Stewart, Alan F.; Shah, Rashmi S.

    2004-06-01

    High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels will be presented. The diagnostics used in this type of nondestructive testing and the analysis of the data demonstrates the evolution of test methodology. Comparison of performance data under load to the predictions of thermal and optical models shows excellent agreement. These tests serve to anchor the models and validate the performance of the materials and coatings.

  6. Pertussis: the disease and new diagnostic methods.

    PubMed Central

    Friedman, R L

    1988-01-01

    Bordetella pertussis, the causative agent of whooping cough, produces an acute and chronic respiratory infection in infants and young children. B. pertussis is still a major health problem of young children throughout the world even though effective immunization against whooping cough is available. While predominantly a childhood disease, it has been reported also to be a cause of persistent cough in adults. This review discusses the numerous bacterial virulence factors that may play roles in the pathogenesis of pertussis and in immunity to infection. The present problems with pertussis diagnosis, recent advances, and future prospects for new and improved rapid diagnostics tests also are explored. PMID:2906814

  7. Does ultrasonography accurately diagnose acute cholecystitis? Improving diagnostic accuracy based on a review at a regional hospital

    PubMed Central

    Hwang, Hamish; Marsh, Ian; Doyle, Jason

    2014-01-01

    Background Acute cholecystitis is one of the most common diseases requiring emergency surgery. Ultrasonography is an accurate test for cholelithiasis but has a high false-negative rate for acute cholecystitis. The Murphy sign and laboratory tests performed independently are also not particularly accurate. This study was designed to review the accuracy of ultrasonography for diagnosing acute cholecystitis in a regional hospital. Methods We studied all emergency cholecystectomies performed over a 1-year period. All imaging studies were reviewed by a single radiologist, and all pathology was reviewed by a single pathologist. The reviewers were blinded to each other’s results. Results A total of 107 patients required an emergency cholecystectomy in the study period; 83 of them underwent ultrasonography. Interradiologist agreement was 92% for ultrasonography. For cholelithiasis, ultrasonography had 100% sensitivity, 18% specificity, 81% positive predictive value (PPV) and 100% negative predictive value (NPV). For acute cholecystitis, it had 54% sensitivity, 81% specificity, 85% PPV and 47% NPV. All patients had chronic cholecystitis and 67% had acute cholecystitis on histology. When combined with positive Murphy sign and elevated neutrophil count, an ultrasound showing cholelithiasis or acute cholecystitis yielded a sensitivity of 74%, specificity of 62%, PPV of 80% and NPV of 53% for the diagnosis of acute cholecystitis. Conclusion Ultrasonography alone has a high rate of false-negative studies for acute cholecystitis. However, a higher rate of accurate diagnosis can be achieved using a triad of positive Murphy sign, elevated neutrophil count and an ultrasound showing cholelithiasis or cholecystitis. PMID:24869607

  8. Diagnostic Methods for Bile Acid Malabsorption in Clinical Practice

    PubMed Central

    Vijayvargiya, Priya; Camilleri, Michael; Shin, Andrea; Saenger, Amy

    2013-01-01

    Altered bile acid (BA) concentrations in the colon may cause diarrhea or constipation. BA malabsorption (BAM) accounts for >25% of patients with irritable bowel syndrome (IBS) with diarrhea and chronic diarrhea in Western countries. As BAM is increasingly recognized, proper diagnostic methods are desired in clinical practice to help direct the most effective treatment course for the chronic bowel dysfunction. This review appraises the methodology, advantages and disadvantages of 4 tools that directly measure BAM: 14C-glycocholate breath and stool test, 75Selenium HomotauroCholic Acid Test (SeHCAT), 7 α-hydroxy-4-cholesten-3-one (C4) and fecal BAs. 14C-glycocholate is a laborious test no longer widely utilized. 75SeHCAT is validated, but not available in the United States. Serum C4 is a simple, accurate method that is applicable to a majority of patients, but requires further clinical validation. Fecal measurements to quantify total and individual fecal BAs are technically cumbersome and not widely available. Regrettably, none of these tests are routinely available in the U.S., and a therapeutic trial with a BA binder is used as a surrogate for diagnosis of BAM. Recent data suggest there is an advantage to studying fecal excretion of the individual BAs and their role in BAM; this may constitute a significant advantage of the fecal BA method over the other tests. Fecal BA test could become a routine addition to fecal fat measurement in patients with unexplained diarrhea. In summary, availability determines the choice of test among C4, SeHCAT and fecal BA; more widespread availability of such tests would enhance clinical management of these patients. PMID:23644387

  9. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  10. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  11. Diagnostic Value of Halitosis Examination Methods.

    PubMed

    Aydin, Murat; Bollen, Curd M L; Özen, Murat Eren

    2016-03-01

    There are many methods and varied protocols for examining halitosis. Chemical and enzymatic tests determine the presence of bacterial species and their metabolic products or enzymes in the mouth, while halitometers precisely quantify gases but not halitosis itself. Examinations by the human nose (ie, self assessment, feedback from others, or organoleptic test by an examiner) directly target halitosis, however organoleptic examination alone is insufficient for a definitive diagnosis when the individual has no complaints about halitosis. The underlying reasons why patients seek consultation concerning halitosis are usually based on their own assessment and the opinion of others, even if those assessments are not correlated with oral odorous gas measurements. This article seeks to summarize findings and review methods of examining halitosis to determine their usefulness. PMID:26977897

  12. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  13. Potentials and limitations of molecular diagnostic methods in food safety

    PubMed Central

    Mariani, Paola O.

    2008-01-01

    Molecular methods allow the detection of pathogen nucleic acids (DNA and RNA) and, therefore, the detection of contamination in food is carried out with high selectivity and rapidity. In the last 2 decades molecular methods have accompanied traditional diagnostic methods in routine pathogen detection, and might replace them in the upcoming future. In this review the implementation in diagnostics of four of the most used molecular techniques (PCR, NASBA, microarray, LDR) are described and compared, highlighting advantages and limitations of each of them. Drawbacks of molecular methods with regard to traditional ones and the difficulties encountered in pathogen detection from food or clinical specimen are also discussed. Moreover, criteria for the choice of the target sequence for a secure detection and classification of pathogens and possible developments in molecular diagnostics are also proposed. PMID:19067016

  14. Differential temperature integrating diagnostic method and apparatus

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1976-01-01

    A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.

  15. Examinations of electron temperature calculation methods in Thomson scattering diagnostics

    SciTech Connect

    Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin

    2012-10-15

    Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. {chi}-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the {chi}-square test are examined and scale factor test is proposed as an alternative method.

  16. High-order accurate monotone difference schemes for solving gasdynamic problems by Godunov's method with antidiffusion

    NASA Astrophysics Data System (ADS)

    Moiseev, N. Ya.

    2011-04-01

    An approach to the construction of high-order accurate monotone difference schemes for solving gasdynamic problems by Godunov's method with antidiffusion is proposed. Godunov's theorem on monotone schemes is used to construct a new antidiffusion flux limiter in high-order accurate difference schemes as applied to linear advection equations with constant coefficients. The efficiency of the approach is demonstrated by solving linear advection equations with constant coefficients and one-dimensional gasdynamic equations.

  17. A new automatic blood pressure kit auscultates for accurate reading with a smartphone: A diagnostic accuracy study.

    PubMed

    Wu, Hongjun; Wang, Bingjian; Zhu, Xinpu; Chu, Guang; Zhang, Zhi

    2016-08-01

    The widely used oscillometric automated blood pressure (BP) monitor was continuously questioned on its accuracy. A novel BP kit named Accutension which adopted Korotkoff auscultation method was then devised. Accutension worked with a miniature microphone, a pressure sensor, and a smartphone. The BP values were automatically displayed on the smartphone screen through the installed App. Data recorded in the phone could be played back and reconfirmed after measurement. They could also be uploaded and saved to the iCloud. The accuracy and consistency of this novel electronic auscultatory sphygmomanometer was preliminarily verified here. Thirty-two subjects were included and 82 qualified readings were obtained. The mean differences ± SD for systolic and diastolic BP readings between Accutension and mercury sphygmomanometer were 0.87 ± 2.86 and -0.94 ± 2.93 mm Hg. Agreements between Accutension and mercury sphygmomanometer were highly significant for systolic (ICC = 0.993, 95% confidence interval (CI): 0.989-0.995) and diastolic (ICC = 0.987, 95% CI: 0.979-0.991). In conclusion, Accutension worked accurately based on our pilot study data. The difference was acceptable. ICC and Bland-Altman plot charts showed good agreements with manual measurements. Systolic readings of Accutension were slightly higher than those of manual measurement, while diastolic readings were slightly lower. One possible reason was that Accutension captured the first and the last korotkoff sound more sensitively than human ear during manual measurement and avoided sound missing, so that it might be more accurate than traditional mercury sphygmomanometer. By documenting and analyzing of variant tendency of BP values, Accutension helps management of hypertension and therefore contributes to the mobile heath service. PMID:27512876

  18. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  19. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  20. A method for knowledge acquisition in diagnostic expert system.

    PubMed

    Li, Weishi; Li, Aiping; Li, Shudong

    2015-01-01

    Knowledge acquisition plays very important role in the diagnostic expert system. It usually takes a long period to acquire disease knowledge using the traditional methods. To solve this problem, this paper describes relations between rough set theory and rule-based description of diseases, which corresponds to the process of knowledge acquisition of diagnostic expert system. Then the exclusive rules, inclusive rules and disease images of disease are built based on the PDES diagnosis model, and the definition of probability rule is put forward. At last, the paper presents the rule-based automated induction reasoning method, including exhaustive search, post-processing procedure, estimation for statistic test and the bootstrap and resampling methods. We also introduce automated induction of the rule-based description, which is used in our diseases diagnostic expert system. The experimental results not only show that rough set theory gives a very suitable framework to represent processes of uncertain knowledge extraction, but also that this method induces diagnostic rules correctly. This method can act as the assistant tool for development of diagnosis expert system, and has an extensive application in intelligent information systems. PMID:26410329

  1. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    SciTech Connect

    Thakur, M.L.

    1991-04-30

    This patent describes a method for directly labeling proteins with radionuclides for use in diagnostic imaging and therapy. It comprises: the steps of incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein-containing solution and incubating.

  2. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  3. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  4. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis

    PubMed Central

    Carranza-Rodríguez, Cristina; Pérez-Arellano, José Luis; Vicente, Belén; López-Abán, Julio; Muro, Antonio

    2015-01-01

    Background Urogenital schistosomiasis due to Schistosoma haematobium is a serious underestimated public health problem affecting 112 million people - particularly in sub-Saharan Africa. Microscopic examination of urine samples to detect parasite eggs still remains as definitive diagnosis. This work was focussed on developing a novel loop-mediated isothermal amplification (LAMP) assay for detection of S. haematobium DNA in human urine samples as a high-throughput, simple, accurate and affordable diagnostic tool to use in diagnosis of urogenital schistosomiasis. Methodology/Principal Findings A LAMP assay targeting a species specific sequence of S. haematobium ribosomal intergenic spacer was designed. The effectiveness of our LAMP was assessed in a number of patients´ urine samples with microscopy confirmed S. haematobium infection. For potentially large-scale application in field conditions, different DNA extraction methods, including a commercial kit, a modified NaOH extraction method and a rapid heating method were tested using small volumes of urine fractions (whole urine, supernatants and pellets). The heating of pellets from clinical samples was the most efficient method to obtain good-quality DNA detectable by LAMP. The detection limit of our LAMP was 1 fg/µL of S. haematobium DNA in urine samples. When testing all patients´ urine samples included in our study, diagnostic parameters for sensitivity and specificity were calculated for LAMP assay, 100% sensitivity (95% CI: 81.32%-100%) and 86.67% specificity (95% CI: 75.40%-94.05%), and also for microscopy detection of eggs in urine samples, 69.23% sensitivity (95% CI: 48.21% -85.63%) and 100% specificity (95% CI: 93.08%-100%). Conclusions/Significance We have developed and evaluated, for the first time, a LAMP assay for detection of S. haematobium DNA in heated pellets from patients´ urine samples using no complicated requirement procedure for DNA extraction. The procedure has been named the Rapid

  5. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOEpatents

    Thakur, Mathew L.

    1994-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  6. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOEpatents

    Thakur, Mathew L.

    1991-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  7. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  8. Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Shang, H. M.; Liaw, Paul; Hutt, J.

    1993-01-01

    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm.

  9. [The comparative characteristic of methods of laboratory diagnostic of opisthorchiasis].

    PubMed

    Starostina, O Iu; Paniushkina, I I

    2014-04-01

    The analysis of samples of blood serums and copromaterial from patients was carried out to evaluate effectiveness of diagnostic of opisthorchiasis invasion. The Kato-Miura technique of thick film under cellophane layer and sedimentation technique of acetic etheric precipitation were applied for parasitologic diagnostic. The technique of immunoenzymometric analysis was applied for serological diagnostic. The analysis of detection rate of eggs of opistorchis in copromaterial and level of anti-opistorchis antibodies in samples of blood serum of patients demonstrated the presence of strong direct correlation relationship between these indicators. It is demonstrated that for laboratory diagnostic of opisthorchiasis it is impossible to limit oneself to some single technique. It is established that on the territories with middle and low level of population infection rate of opistorchis it is appropriate to apply complex of methods including analysis of blood serum for presence of specific immunoglobulins to antigens of opistorchis and twice or thrice analysis of feces with copro-ovoscopic methods. PMID:25080800

  10. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses.

    PubMed

    Chen, Haifeng; Hu, Yuan

    2016-01-01

    Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses. PMID:27335620

  11. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses

    PubMed Central

    Chen, Haifeng; Hu, Yuan

    2016-01-01

    Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses. PMID:27335620

  12. Fast and accurate determination of the Wigner rotation matrices in the fast multipole method.

    PubMed

    Dachsel, Holger

    2006-04-14

    In the rotation based fast multipole method the accurate determination of the Wigner rotation matrices is essential. The combination of two recurrence relations and the control of the error accumulations allow a very precise determination of the Wigner rotation matrices. The recurrence formulas are simple, efficient, and numerically stable. The advantages over other recursions are documented. PMID:16626188

  13. The U.S. Department of Agriculture Automated Multiple-Pass Method accurately assesses sodium intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and practical methods to monitor sodium intake of the U.S. population are critical given current sodium reduction strategies. While the gold standard for estimating sodium intake is the 24 hour urine collection, few studies have used this biomarker to evaluate the accuracy of a dietary ins...

  14. Second-order accurate finite volume method for well-driven flows

    NASA Astrophysics Data System (ADS)

    Dotlić, M.; Vidović, D.; Pokorni, B.; Pušić, M.; Dimkić, M.

    2016-02-01

    We consider a finite volume method for a well-driven fluid flow in a porous medium. Due to the singularity of the well, modeling in the near-well region with standard numerical schemes results in a completely wrong total well flux and an inaccurate hydraulic head. Local grid refinement can help, but it comes at computational cost. In this article we propose two methods to address the well singularity. In the first method the flux through well faces is corrected using a logarithmic function, in a way related to the Peaceman model. Coupling this correction with a non-linear second-order accurate two-point scheme gives a greatly improved total well flux, but the resulting scheme is still inconsistent. In the second method fluxes in the near-well region are corrected by representing the hydraulic head as a sum of a logarithmic and a linear function. This scheme is second-order accurate.

  15. Accurate determination of specific heat at high temperatures using the flash diffusivity method

    NASA Technical Reports Server (NTRS)

    Vandersande, J. W.; Zoltan, A.; Wood, C.

    1989-01-01

    The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.

  16. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGESBeta

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  17. Patenting genetic diagnostic methods: NGS, GWAS, SNPs and patents.

    PubMed

    Lawson, Charles

    2015-06-01

    This article reviews the problems posed by patent claims to genetic diagnostic methods associated with genome-wide association studies (GWAS) adopting methodologies using next-generation sequencing (NGS) and single nucleotide polymorphisms (SNP). These problems are essentially about experimental reproducibility and the credibility and veracity of reported developments. An analysis of the relevant law demonstrates that the current Australian and United States laws about suitable patentable subject matter differ, and that the current reproducibility (sufficiency, enablement and inutility) standards are unlikely to address these problems. The article concludes that following the United States approach excluding these genetic diagnostic method claims from patenting is one solution. Failing this, improving analysis and quality controls that are now being adopted in the basic research will reduce the nature of the problems, although this will remain problematic for patent examiners and the broader public. PMID:26349382

  18. An improved method for estimating the entrance exposure in diagnostic radiographic examinations.

    PubMed

    Zamenhof, R G; Shahabi, S; Morgan, H T

    1987-09-01

    There is currently a widespread consensus on the importance of monitoring patient radiation exposures during radiographic examinations. Diagnostic facilities under federal jurisdiction already legislate maximum patient exposure limits for various diagnostic radiologic examinations, while an increasing number of state legislatures have instituted such regulations. Compliance requires that institutions be capable of assessing each patient's entrance exposures. A method is proposed that would facilitate the acquisition of such patient exposure information in a relatively straightforward and accurate manner, requiring a minimum number of measurements and access to a suitable programmable calculator. A standardized set of exposure measurements obtained on an accurately calibrated three-phase radiographic unit has been fitted by an analytic function. The average accuracy of the fit between the limits of 40-140 kVp and 2.5- to 6.0-mm aluminum filtration was 0.3%. The concept of linear scaling was employed to allow the analytic function to accurately reproduce the exposure outputs of different radiographic units. Validation experiments on patients indicated that an overall accuracy of 10% can be expected when using well-calibrated radiographic equipment. The method described permits institutions to verify their compliance with federal and/or state regulations and to confirm that their radiation exposures are consistent with national averages. PMID:3497556

  19. Alternative Confidence Interval Methods Used in the Diagnostic Accuracy Studies

    PubMed Central

    Gülhan, Orekıcı Temel

    2016-01-01

    Background/Aim. It is necessary to decide whether the newly improved methods are better than the standard or reference test or not. To decide whether the new diagnostics test is better than the gold standard test/imperfect standard test, the differences of estimated sensitivity/specificity are calculated with the help of information obtained from samples. However, to generalize this value to the population, it should be given with the confidence intervals. The aim of this study is to evaluate the confidence interval methods developed for the differences between the two dependent sensitivity/specificity values on a clinical application. Materials and Methods. In this study, confidence interval methods like Asymptotic Intervals, Conditional Intervals, Unconditional Interval, Score Intervals, and Nonparametric Methods Based on Relative Effects Intervals are used. Besides, as clinical application, data used in diagnostics study by Dickel et al. (2010) has been taken as a sample. Results. The results belonging to the alternative confidence interval methods for Nickel Sulfate, Potassium Dichromate, and Lanolin Alcohol are given as a table. Conclusion. While preferring the confidence interval methods, the researchers have to consider whether the case to be compared is single ratio or dependent binary ratio differences, the correlation coefficient between the rates in two dependent ratios and the sample sizes. PMID:27478491

  20. A Novel Method for the Accurate Evaluation of Poisson's Ratio of Soft Polymer Materials

    PubMed Central

    Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S.; Kang, Dong-Joong; Park, Sungchan

    2013-01-01

    A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6–47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials. PMID:23737733

  1. A calibration-independent method for accurate complex permittivity determination of liquid materials

    SciTech Connect

    Hasar, U. C.

    2008-08-15

    This note presents a calibration-independent method for accurate complex permittivity determination of liquid materials. There are two main advantages of the proposed method over those in the literature, which require measurements of two cells with different lengths loaded by the same liquid material. First, it eliminates any inhomogeneity or impurity present in the second sample and decreases the uncertainty in sample thickness. Second, it removes the undesired impacts of measurement plane deterioration on measurements of liquid materials. For validation of the proposed method, we measure the complex permittivity of distilled water and compare its extracted permittivity with the theoretical datum obtained from the Debye equation.

  2. Formation of accurate 1-nm gaps using the electromigration method during metal deposition

    NASA Astrophysics Data System (ADS)

    Naitoh, Yasuhisa; Wei, Qingshuo; Mukaida, Masakazu; Ishida, Takao

    2016-03-01

    We investigate the origin of fabricated nanogap width variations using the electromigration method during metal deposition. This method also facilitates improved control over the nanogap width. A large suppression in the variation is achieved by sample annealing at 373 K during the application of bias voltages for electromigration, which indicates that the variation is caused by structural changes. This electromigration method during metal deposition for the fabrication of an accurate 1-nm gap electrode is useful for single-molecule-sized electronics. Furthermore, it opens the door for future research on integrated sub-1-nm-sized nanogap devices.

  3. Accurate numerical verification of the instanton method for macroscopic quantum tunneling: Dynamics of phase slips

    SciTech Connect

    Danshita, Ippei; Polkovnikov, Anatoli

    2010-09-01

    We study the quantum dynamics of supercurrents of one-dimensional Bose gases in a ring optical lattice to verify instanton methods applied to coherent macroscopic quantum tunneling (MQT). We directly simulate the real-time quantum dynamics of supercurrents, where a coherent oscillation between two macroscopically distinct current states occurs due to MQT. The tunneling rate extracted from the coherent oscillation is compared with that given by the instanton method. We find that the instanton method is quantitatively accurate when the effective Planck's constant is sufficiently small. We also find phase slips associated with the oscillations.

  4. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  5. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    SciTech Connect

    Groeneboom, N. E.; Dahle, H.

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  6. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method.

    PubMed

    Osher, Lawrence; Blazer, Marie Mantini; Buck, Stacie; Biernacki, Tomasz

    2014-01-01

    Several published studies have explained in detail how to measure relative metatarsal protrusion on the plain film anteroposterior pedal radiograph. These studies have demonstrated the utility of relative metatarsal protrusion measurement in that it correlates with distal forefoot deformity or pathologic features. The method currently preferred by practitioners in podiatric medicine and surgery often presents one with the daunting challenge of obtaining an accurate measurement when the intermetatarsal 1-2 angle is small. The present study illustrates a novel mathematical solution to this problem that is simple to master, relatively quick to perform, and yields accurate results. Our method was tested and proven by 4 trained observers with varying degrees of clinical skill who independently measured the same 10 radiographs. PMID:24933656

  7. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  8. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-04-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong (2014, BA14), extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded image of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies/second/core with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multi-band observations; and joint inference of photometric redshifts and lensing tomography.

  9. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  10. [Clinical importance and diagnostic methods of minimal hepatic encephalopathy].

    PubMed

    Stawicka, Agnieszka; Zbrzeźniak, Justyna; Świderska, Aleksandra; Kilisińska, Natalia; Świderska, Magdalena; Jaroszewicz, Jerzy; Flisiak, Robert

    2016-02-01

    Minimal hepatic encephalopathy (MHE) encompasses a number of neuropsychological and neurophysiological disorders in patients suffering from liver cirrhosis, who do not display abnormalities during a medical interview or physical examination. A negative influence of MHE on the quality of life of patients suffering from liver cirrhosis was confirmed, which include retardation of ability of operating motor vehicles and disruption of multiple health-related areas, as well as functioning in the society. The data on frequency of traffic offences and accidents amongst patients diagnosed with MHE in comparison to patients diagnosed with liver cirrhosis without MHE, as well as healthy persons is alarming. Those patients are unaware of their disorder and retardation of their ability to operate vehicles, therefore it is of utmost importance to define this group. The term minimal hepatic encephalopathy (formerly "subclinical" encephalopathy) erroneously suggested the unnecessity of diagnostic and therapeutic procedures in patients with liver cirrhosis. Diagnosing MHE is an important predictive factor for occurrence of overt encephalopathy - more than 50% of patients with this diagnosis develop overt encephalopathy during a period of 30 months after. Early diagnosing MHE gives a chance to implement proper treatment which can be a prevention of overt encephalopathy. Due to continuing lack of clinical research there exist no commonly agreed-upon standards for definition, diagnostics, classification and treatment of hepatic encephalopathy. This article introduces the newest findings regarding the importance of MHE, scientific recommendations and provides detailed descriptions of the most valuable diagnostic methods. PMID:27000818

  11. Post- and prenatal diagnostic methods for the homocystinurias.

    PubMed

    Fowler, B; Jakobs, C

    1998-04-01

    Diagnosis of the homozygous homocystinurias can be performed by investigations at the metabolite, enzyme and DNA level. The existence of variant forms due to the wide range of genetic variation may result in only small differences in various parameters between controls and affected subjects. 1. Sulphur amino acid concentrations in plasma, especially total homocysteine, are useful in first line diagnostic investigations. 2. Cystathionine-beta-synthase (CBS), methylenetetrahydrofolate reductase (MTHFR) and methylfolate homocysteine methyltransferase (MFMT) can be directly assayed in many tissues including fibroblasts (each) and blood cells (except CBS). Indirect whole cell assays which measure pathway activity dependent on a particular enzyme can provide useful diagnostic information. 3. Direct analysis of mutations is available for CBS, MTHFR and recently also for MFMT deficiencies. However the existence of a larger number of very rare, often private, mutations limits the usefulness of this approach in routine diagnosis. The above diagnostic approaches can generally be applied to prenatal diagnosis. Measurement of methylmalonic acid and other metabolites in amniotic fluid by stable isotope dilution / gas chromatography-mass spectrometry is well established for the methylmalonic acidurias. This method has also been applied to combined homocystinuria/methylmalonic aciduria supported by enzyme assays in cultured cells. Total homocysteine measurement in cell free amniotic fluid is also possible, performed so far in 14 cases with two affected fetuses. The indirect assay of methionine formation from [14C] labelled formate in intact cultured amniotic fluid cells has been for prenatal diagnosis of the remethylation defects. PMID:9587033

  12. Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections

    PubMed Central

    Arvanitis, Marios; Anagnostou, Theodora; Fuchs, Beth Burgwyn; Caliendo, Angela M.

    2014-01-01

    SUMMARY Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the β-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use. PMID:24982319

  13. Comparison of methods for accurate end-point detection of potentiometric titrations

    NASA Astrophysics Data System (ADS)

    Villela, R. L. A.; Borges, P. P.; Vyskočil, L.

    2015-01-01

    Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.

  14. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  15. A second order accurate embedded boundary method for the wave equation with Dirichlet data

    SciTech Connect

    Kreiss, H O; Petersson, N A

    2004-03-02

    The accuracy of Cartesian embedded boundary methods for the second order wave equation in general two-dimensional domains subject to Dirichlet boundary conditions is analyzed. Based on the analysis, we develop a numerical method where both the solution and its gradient are second order accurate. We avoid the small-cell stiffness problem without sacrificing the second order accuracy by adding a small artificial term to the Dirichlet boundary condition. Long-time stability of the method is obtained by adding a small fourth order dissipative term. Several numerical examples are provided to demonstrate the accuracy and stability of the method. The method is also used to solve the two-dimensional TM{sub z} problem for Maxwell's equations posed as a second order wave equation for the electric field coupled to ordinary differential equations for the magnetic field.

  16. [Comparative diagnostic value of Helicobacter pylori infection testing methods].

    PubMed

    Girdalidze, A M; Elisabedashvili, G V; Sharvadze, L G; Dzhorbenadze, T A

    2013-12-01

    In 213 patients with gastric and duodenal pathology, including received surgery, comparative estimation of results of Helicobacter pylori (Hp) infection testing with invasive and noninvasive methods, were performed. Material for invasive endoscopic biopsy test (EBT), including rapid urease test (RUT) for rapid Hp identification by determination of urease activity, smear cytology and histology was extracted on endoscopy or intraoperationally. RUT was carried out with the help of URE-HP test kit. Serological test for Hp antibodies IgG and IgA class was performed by IFA using kit ELISA. 13С urea breath test (UBT) was made by determination of 13/12CO2 in breath samples on infrared spectroscope. Based on 5 different methods of Hp infection testing Hp positivity in 172 (80,8%) and Hp negativity in 41 (19,2%) from 213 examined patients was revealed. 13С-UBT revealed the highest diagnostic value (accuracy-97,5%, sensibility-97,0%, specificity-100%) in Hp infection diagnostics. In treatment efficiency control this parameters of 13С-UBT are also much high (96,7%, 90,0% and 100% respectively). In spite of high sensitivity of serological test (100%), it had comparative low specificity (71,0%) with high probability of false positive results in treated patients (antibodies titer to Hp after eradication retains for a long time). Thought, this test may be successfully used only in primary patients and in epidemiological studies. Among three methods of EBT, Hp infection detection with RUT revealed the best results (accuracy-94,8%, sensibility-95,0%, specificity-100%). Correlation of RUT and UBT results and much higher diagnostic value of UBT, necessitate RUT with histological study of stomach body mucosa to perform in patients over 45 year, with prolonged anamnesis and dangerous symptoms of disease. In Hp positive patients correlation of index DOB‰ of breath test with results of RUT was revealed. This can serve the index DOB‰ of 13С-UBT as a marker of Hp infection rate. The

  17. Accurate near-field calculation in the rigorous coupled-wave analysis method

    NASA Astrophysics Data System (ADS)

    Weismann, Martin; Gallagher, Dominic F. G.; Panoiu, Nicolae C.

    2015-12-01

    The rigorous coupled-wave analysis (RCWA) is one of the most successful and widely used methods for modeling periodic optical structures. It yields fast convergence of the electromagnetic far-field and has been adapted to model various optical devices and wave configurations. In this article, we investigate the accuracy with which the electromagnetic near-field can be calculated by using RCWA and explain the observed slow convergence and numerical artifacts from which it suffers, namely unphysical oscillations at material boundaries due to the Gibbs phenomenon. In order to alleviate these shortcomings, we also introduce a mathematical formulation for accurate near-field calculation in RCWA, for one- and two-dimensional straight and slanted diffraction gratings. This accurate near-field computational approach is tested and evaluated for several representative test-structures and configurations in order to illustrate the advantages provided by the proposed modified formulation of the RCWA.

  18. Real-time caries diagnostics by optical PNC method

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-11-01

    The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC-method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be sued as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.

  19. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  20. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  1. Accurate Wind Characterization in Complex Terrain Using the Immersed Boundary Method

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K; Kosovic, B

    2009-09-30

    This paper describes an immersed boundary method (IBM) that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Two different interpolation methods, trilinear and inverse distance weighting, are used at the core of the IBM algorithm. Functional aspects of the algorithm's implementation and the accuracy of results are considered. Simulations of flow over a three-dimensional hill with shallow terrain slopes are preformed with both WRF's native terrain-following coordinate and with both IB methods. Comparisons of flow fields from the three simulations show excellent agreement, indicating that both IB methods produce accurate results. However, when ease of implementation is considered, inverse distance weighting is superior. Furthermore, inverse distance weighting is shown to be more adept at handling highly complex urban terrain, where the trilinear interpolation algorithm breaks down. This capability is demonstrated by using the inverse distance weighting core of the IBM to model atmospheric flow in downtown Oklahoma City.

  2. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942

  3. Compression-based distance (CBD): a simple, rapid, and accurate method for microbiota composition comparison

    PubMed Central

    2013-01-01

    Background Perturbations in intestinal microbiota composition have been associated with a variety of gastrointestinal tract-related diseases. The alleviation of symptoms has been achieved using treatments that alter the gastrointestinal tract microbiota toward that of healthy individuals. Identifying differences in microbiota composition through the use of 16S rRNA gene hypervariable tag sequencing has profound health implications. Current computational methods for comparing microbial communities are usually based on multiple alignments and phylogenetic inference, making them time consuming and requiring exceptional expertise and computational resources. As sequencing data rapidly grows in size, simpler analysis methods are needed to meet the growing computational burdens of microbiota comparisons. Thus, we have developed a simple, rapid, and accurate method, independent of multiple alignments and phylogenetic inference, to support microbiota comparisons. Results We create a metric, called compression-based distance (CBD) for quantifying the degree of similarity between microbial communities. CBD uses the repetitive nature of hypervariable tag datasets and well-established compression algorithms to approximate the total information shared between two datasets. Three published microbiota datasets were used as test cases for CBD as an applicable tool. Our study revealed that CBD recaptured 100% of the statistically significant conclusions reported in the previous studies, while achieving a decrease in computational time required when compared to similar tools without expert user intervention. Conclusion CBD provides a simple, rapid, and accurate method for assessing distances between gastrointestinal tract microbiota 16S hypervariable tag datasets. PMID:23617892

  4. Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method

    PubMed Central

    Burger, Lukas; van Nimwegen, Erik

    2008-01-01

    Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381

  5. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  6. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms.

    PubMed

    Saccà, Alessandro

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes' principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of 'unellipticity' introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  7. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  8. Methods in virus diagnostics: from ELISA to next generation sequencing.

    PubMed

    Boonham, Neil; Kreuze, Jan; Winter, Stephan; van der Vlugt, René; Bergervoet, Jan; Tomlinson, Jenny; Mumford, Rick

    2014-06-24

    Despite the seemingly continuous development of newer and ever more elaborate methods for detecting and identifying viruses, very few of these new methods get adopted for routine use in testing laboratories, often despite the many and varied claimed advantages they possess. To understand why the rate of uptake of new technologies is so low, requires a strong understanding of what makes a good routine diagnostic tool to begin. This can be done by looking at the two most successfully established plant virus detection methods: enzyme-linked immunosorbant assay (ELISA) and more recently introduced real-time polymerase chain reaction (PCR). By examining the characteristics of this pair of technologies, it becomes clear that they share many benefits, such as an industry standard format and high levels of repeatability and reproducibility. These combine to make methods that are accessible to testing labs, which are easy to establish and robust in their use, even with new and inexperienced users. Hence, to ensure the establishment of new techniques it is necessary to not only provide benefits not found with ELISA or real-time PCR, but also to provide a platform that is easy to establish and use. In plant virus diagnostics, recent developments can be clustered into three core areas: (1) techniques that can be performed in the field or resource poor locations (e.g., loop-mediated isothermal amplification LAMP); (2) multiplex methods that are able to detect many viruses in a single test (e.g., Luminex bead arrays); and (3) methods suited to virus discovery (e.g., next generation sequencing, NGS). Field based methods are not new, with Lateral Flow Devices (LFDs) for the detection being available for a number of years now. However, the widespread uptake of this technology remains poor. LAMP does offer significant advantages over LFDs, in terms of sensitivity and generic application, but still faces challenges in terms of establishment. It is likely that the main barrier to the

  9. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  10. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  11. A fast GNU method to draw accurate scientific illustrations for taxonomy.

    PubMed

    Montesanto, Giuseppe

    2015-01-01

    Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP). This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given. PMID:26261449

  12. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  13. A fast GNU method to draw accurate scientific illustrations for taxonomy

    PubMed Central

    Montesanto, Giuseppe

    2015-01-01

    Abstract Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP). This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given. PMID:26261449

  14. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking.

    PubMed

    Barbosa, Marconi; James, Andrew C

    2014-08-01

    A range of applications in visual science rely on accurate tracking of the human pupil's movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust. PMID:25136477

  15. A new cation-exchange method for accurate field speciation of hexavalent chromium

    USGS Publications Warehouse

    Ball, J.W.; McCleskey, R.B.

    2003-01-01

    A new method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The method consists of passing a water sample through strong acid cation-exchange resin at the field site, where Cr(III) is retained while Cr(VI) passes into the effluent and is preserved for later determination. The method is simple, rapid, portable, and accurate, and makes use of readily available, inexpensive materials. Cr(VI) concentrations are determined later in the laboratory using any elemental analysis instrument sufficiently sensitive to measure the Cr(VI) concentrations of interest. The new method allows measurement of Cr(VI) concentrations as low as 0.05 ??g 1-1, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. Cr(VI) can be separated from Cr(III) between pH 2 and 11 at Cr(III)/Cr(VI) concentration ratios as high as 1000. The new method has demonstrated excellent comparability with two commonly used methods, the Hach Company direct colorimetric method and USEPA method 218.6. The new method is superior to the Hach direct colorimetric method owing to its relative sensitivity and simplicity. The new method is superior to USEPA method 218.6 in the presence of Fe(II) concentrations up to 1 mg 1-1 and Fe(III) concentrations up to 10 mg 1-1. Time stability of preserved samples is a significant advantage over the 24-h time constraint specified for USEPA method 218.6.

  16. Nebulizer calibration using lithium chloride: an accurate, reproducible and user-friendly method.

    PubMed

    Ward, R J; Reid, D W; Leonard, R F; Johns, D P; Walters, E H

    1998-04-01

    Conventional gravimetric (weight loss) calibration of jet nebulizers overestimates their aerosol output by up to 80% due to unaccounted evaporative loss. We examined two methods of measuring true aerosol output from jet nebulizers. A new adaptation of a widely available clinical assay for lithium (determined by flame photometry, LiCl method) was compared to an existing electrochemical method based on fluoride detection (NaF method). The agreement between the two methods and the repeatability of each method were examined. Ten Mefar jet nebulizers were studied using a Mefar MK3 inhalation dosimeter. There was no significant difference between the two methods (p=0.76) with mean aerosol output of the 10 nebulizers being 7.40 mg x s(-1) (SD 1.06; range 5.86-9.36 mg x s(-1)) for the NaF method and 7.27 mg x s(-1) (SD 0.82; range 5.52-8.26 mg x s(-1)) for the LiCl method. The LiCl method had a coefficient of repeatability of 13 mg x s(-1) compared with 3.7 mg x s(-1) for the NaF method. The LiCl method accurately measured true aerosol output and was considerably easier to use. It was also more repeatable, and hence more precise, than the NaF method. Because the LiCl method uses an assay that is routinely available from hospital biochemistry laboratories, it is easy to use and, thus, can readily be adopted by busy respiratory function departments. PMID:9623700

  17. Consisitent and Accurate Finite Volume Methods for Coupled Flow and Geomechanics

    NASA Astrophysics Data System (ADS)

    Nordbotten, J. M.

    2014-12-01

    We introduce a new class of cell-centered finite volume methods for elasticity and poro-elasticity. As compared to lowest-order finite element discretizations, the new discretization has no additional degrees of freedom, and yet gives more accurate stress and flow fields. This finite volume discretization methods has furthermore the advantage that the mechanical discretization is fully compatible (in terms of grid and variables) with the standard cell-centered finite volume discretizations that are prevailing for commercial simulation of multi-phase flows in porous media. Theoretical analysis proves the convergence of the method. We give results showing that so-called numerical locking is avoided for a large class of structured and unstructured grids. The results are valid in both two and three spatial dimensions. The talk concludes with applications to problems with coupled multi-phase flow, transport and deformation, together with fractured porous media.

  18. An improved method to accurately calibrate the gantry angle indicators of the radiotherapy linear accelerators

    NASA Astrophysics Data System (ADS)

    Chang, Liyun; Ho, Sheng-Yow; Du, Yi-Chun; Lin, Chih-Ming; Chen, Tainsong

    2007-06-01

    The calibration of the gantry angle indicator is an important and basic quality assurance (QA) item for the radiotherapy linear accelerator. In this study, we propose a new and practical method, which uses only the digital level, V-film, and general solid phantoms. By taking the star shot only, we can accurately calculate the true gantry angle according to the geometry of the film setup. The results on our machine showed that the gantry angle was shifted by -0.11° compared with the digital indicator, and the standard deviation was within 0.05°. This method can also be used for the simulator. In conclusion, this proposed method could be adopted as an annual QA item for mechanical QA of the accelerator.

  19. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.

    PubMed

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan

    2015-10-01

    Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality. PMID:26480062

  20. Quick and accurate estimation of the elastic constants using the minimum image method

    NASA Astrophysics Data System (ADS)

    Tretiakov, Konstantin V.; Wojciechowski, Krzysztof W.

    2015-04-01

    A method for determining the elastic properties using the minimum image method (MIM) is proposed and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic constants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC) method in the NVT and NPT ensembles. The simulation results show that when determining the elastic constants, the contribution of long-range interactions cannot be ignored, because that would lead to erroneous results. In addition, the simulations have revealed that the inclusion of further interactions of each particle with all its minimum image neighbors even in case of small systems leads to results which are very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and accurate estimation of the elastic constants using very small samples.

  1. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  2. A composite likelihood method for bivariate meta-analysis in diagnostic systematic reviews

    PubMed Central

    Liu, Yulun; Ning, Jing; Nie, Lei; Zhu, Hongjian; Chu, Haitao

    2014-01-01

    Diagnostic systematic review is a vital step in the evaluation of diagnostic technologies. In many applications, it involves pooling pairs of sensitivity and specificity of a dichotomized diagnostic test from multiple studies. We propose a composite likelihood method for bivariate meta-analysis in diagnostic systematic reviews. This method provides an alternative way to make inference on diagnostic measures such as sensitivity, specificity, likelihood ratios and diagnostic odds ratio. Its main advantages over the standard likelihood method are the avoidance of the non-convergence problem, which is non-trivial when the number of studies are relatively small, the computational simplicity and some robustness to model mis-specifications. Simulation studies show that the composite likelihood method maintains high relative efficiency compared to that of the standard likelihood method. We illustrate our method in a diagnostic review of the performance of contemporary diagnostic imaging technologies for detecting metastases in patients with melanoma. PMID:25512146

  3. Diagnostic methods of solar cells in dependence on temperature

    NASA Astrophysics Data System (ADS)

    Dolensky, J.; Vesely, A.; Vanek, J.; Hrozek, J.

    2009-08-01

    This study is focused on testing methods determining quality of solar cells. Nowadays the development of solar cells is much faster and there is still necessary to increase their quality by removing causes of materials defects and also defects in a process of their production. Non-destructive methods are used for correct determination of defects by using of recombination effect of charge carrier in PN junction. Due to these methods can be the solar cell diagnosed and described. By using of various temperatures during the testing we can receive more objective results thanks to simulated operation conditions. Peltier cells are used for graditional change of temperature. Cooling system with liquid nitro - LN2 is used to reach the very low temperature. Diagnostic and testing methods described in this study are based on emission of light and the recombination processes in PN junction. It is especially electroluminescence and photoluminescence method. For comparison it is used the observation of emitted light from microplasma method. Described methods detect materials and process defects due to use of lownoise and very sensitive CCD camera.

  4. New Methods and Transducer Designs for Ultrasonic Diagnostics and Therapy

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.; Sapozhnikov, O. A.; Khokhlova, V. A.

    Recent advances in the field of physical acoustics, imaging technologies, piezoelectric materials, and ultrasonic transducer design have led to emerging of novel methods and apparatus for ultrasonic diagnostics, therapy and body aesthetics. The paper presents the results on development and experimental study of different high intensity focused ultrasound (HIFU) transducers. Technological peculiarities of the HIFU transducer design as well as theoretical and numerical models of such transducers and the corresponding HIFU fields are discussed. Several HIFU transducers of different design have been fabricated using different advanced piezoelectric materials. Acoustic field measurements for those transducers have been performed using a calibrated fiber optic hydrophone and an ultrasonic measurement system (UMS). The results of ex vivo experiments with different tissues as well as in vivo experiments with blood vessels are presented that prove the efficacy, safety and selectivity of the developed HIFU transducers and methods.

  5. Parente2: a fast and accurate method for detecting identity by descent

    PubMed Central

    Rodriguez, Jesse M.; Bercovici, Sivan; Huang, Lin; Frostig, Roy; Batzoglou, Serafim

    2015-01-01

    Identity-by-descent (IBD) inference is the problem of establishing a genetic connection between two individuals through a genomic segment that is inherited by both individuals from a recent common ancestor. IBD inference is an important preceding step in a variety of population genomic studies, ranging from demographic studies to linking genomic variation with phenotype and disease. The problem of accurate IBD detection has become increasingly challenging with the availability of large collections of human genotypes and genomes: Given a cohort’s size, a quadratic number of pairwise genome comparisons must be performed. Therefore, computation time and the false discovery rate can also scale quadratically. To enable accurate and efficient large-scale IBD detection, we present Parente2, a novel method for detecting IBD segments. Parente2 is based on an embedded log-likelihood ratio and uses a model that accounts for linkage disequilibrium by explicitly modeling haplotype frequencies. Parente2 operates directly on genotype data without the need to phase data prior to IBD inference. We evaluate Parente2’s performance through extensive simulations using real data, and we show that it provides substantially higher accuracy compared to previous state-of-the-art methods while maintaining high computational efficiency. PMID:25273070

  6. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA.

    PubMed

    Liu, Haiyun; Li, Lu; Wang, Qian; Duan, Lili; Tang, Bo

    2014-06-01

    MicroRNAs (miRNAs) play significant roles in a diverse range of biological progress and have been regarded as biomarkers and therapeutic targets in cancer treatment. Sensitive and accurate detection of miRNAs is crucial for better understanding their roles in cancer cells and further validating their function in clinical diagnosis. Here, we developed a stable, sensitive, and specific miRNAs detection method on the basis of cooperative amplification combining with the graphene oxide (GO) fluorescence switch-based circular exponential amplification and the multimolecules labeling of SYBR Green I (SG). First, the target miRNA is adsorbed on the surface of GO, which can protect the miRNA from enzyme digest. Next, the miRNA hybridizes with a partial hairpin probe and then acts as a primer to initiate a strand displacement reaction to form a complete duplex. Finally, under the action of nicking enzyme, universal DNA fragments are released and used as triggers to initiate next reaction cycle, constituting a new circular exponential amplification. In the proposed strategy, a small amount of target miRNA can be converted to a large number of stable DNA triggers, leading to a remarkable amplification for the target. Moreover, compared with labeling with a 1:1 stoichiometric ratio, multimolecules binding of intercalating dye SG to double-stranded DNA (dsDNA) can induce significant enhancement of fluorescence signal and further improve the detection sensitivity. The extraordinary fluorescence quenching of GO used here guarantees the high signal-to-noise ratio. Due to the protection for target miRNA by GO, the cooperative amplification, and low fluorescence background, sensitive and accurate detection of miRNAs has been achieved. The strategy proposed here will offer a new approach for reliable quantification of miRNAs in medical research and early clinical diagnostics. PMID:24823448

  7. An adaptive, formally second order accurate version of the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Griffith, Boyce E.; Hornung, Richard D.; McQueen, David M.; Peskin, Charles S.

    2007-04-01

    Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509-534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75-105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves

  8. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU. PMID:26699060

  9. Accurate calculation of Coulomb sums: Efficacy of Pade-like methods

    SciTech Connect

    Sarkar, B. ); Bhattacharyya, K. )

    1993-09-01

    The adequacy of numerical sequence accelerative transforms in providing accurate estimates of Coulomb sums is considered, referring particularly to distorted lattices. Performance of diagonal Pade approximants (DPA) in this context is critically assessed. Failure in the case of lattice vacancies is also demonstrated. The method of multiple-point Pade approximants (MPA) has been introduced for slowly convergent sequences and is shown to work well for both regular and distorted lattices, the latter being due either to impurities or vacancies. Viability of the two methods is also compared. In divergent situations with distortions owing to vacancies, a strategy of obtaining reliable results by separate applications of both DPA and MPA at appropriate places is also sketched. Representative calculations involve two basic cubic-lattice sums, one slowly convergent and the other divergent, from which very good quality estimates of Madelung constants for a number of common lattices follow.

  10. Accurate and rapid optical characterization of an anisotropic guided structure based on a neural method.

    PubMed

    Robert, Stéphane; Battie, Yann; Jamon, Damien; Royer, Francois

    2007-04-10

    Optimal performances of integrated optical devices are obtained by the use of an accurate and reliable characterization method. The parameters of interest, i.e., optical indices and thickness of the waveguide structure, are calculated from effective indices by means of an inversion procedure. We demonstrate how an artificial neural network can achieve such a process. The artificial neural network used is a multilayer perceptron. The first result concerns a simulated anisotropic waveguide. The accuracy in the determination of optical indices and waveguide thickness is 5 x 10(-5) and 4 nm, respectively. Then an experimental application on a silica-titania thin film is performed. In addition, effective indices are measured by m-lines spectroscopy. Finally, a comparison with a classical optimization algorithm demonstrates the robustness of the neural method. PMID:17384718

  11. RAId_DbS: Method for Peptide ID using Database Search with Accurate Statistics

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey; Yu, Yi-Kuo

    2007-03-01

    The key to proteomics studies, essential in systems biology, is peptide identification. Under tandem mass spectrometry, each spectrum generated consists of a list of mass/charge peaks along with their intensities. Software analysis is then required to identify from the spectrum peptide candidates that best interpret the spectrum. The library search, which compares the spectral peaks against theoretical peaks generated by each peptide in a library, is among the most popular methods. This method, although robust, lacks good quantitative statistical underpinning. As we show, many library search algorithms suffer from statistical instability. The need for a better statistical basis prompted us to develop RAId_DbS. Taking into account the skewness in the peak intensity distribution while scoring peptides, RAId_DbS provides an accurate statistical significance assignment to each peptide candidate. RAId_DbS will be a valuable tool especially when one intends to identify proteins through peptide identifications.

  12. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-induced Combustion Instability

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Radhakrishnan, Krishnan

    1994-01-01

    A new fully implicit, time accurate algorithm suitable for chemically reacting, viscous flows in the transonic-to-hypersonic regime is described. The method is based on a class of Total Variation Diminishing (TVD) schemes and uses successive Gauss-Siedel relaxation sweeps. The inversion of large matrices is avoided by partitioning the system into reacting and nonreacting parts, but still maintaining a fully coupled interaction. As a result, the matrices that have to be inverted are of the same size as those obtained with the commonly used point implicit methods. In this paper we illustrate the applicability of the new algorithm to hypervelocity unsteady combustion applications. We present a series of numerical simulations of the periodic combustion instabilities observed in ballistic-range experiments of blunt projectiles flying at subdetonative speeds through hydrogen-air mixtures. The computed frequencies of oscillation are in excellent agreement with experimental data.

  13. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal. PMID:26752013

  14. Highly accurate retrieval method of Japanese document images through a combination of morphological analysis and OCR

    NASA Astrophysics Data System (ADS)

    Katsuyama, Yutaka; Takebe, Hiroaki; Kurokawa, Koji; Saitoh, Takahiro; Naoi, Satoshi

    2001-12-01

    We have developed a method that allows Japanese document images to be retrieved more accurately by using OCR character candidate information and a conventional plain text search engine. In this method, the document image is first recognized by normal OCR to produce text. Keyword areas are then estimated from the normal OCR produced text through morphological analysis. A lattice of candidate- character codes is extracted from these areas, and then character strings are extracted from the lattice using a word-matching method in noun areas and a K-th DP-matching method in undefined word areas. Finally, these extracted character strings are added to the normal OCR produced text to improve document retrieval accuracy when u sing a conventional plain text search engine. Experimental results from searches of 49 OHP sheet images revealed that our method has a high recall rate of 98.2%, compared to 90.3% with a conventional method using only normal OCR produced text, while requiring about the same processing time as normal OCR.

  15. An Analysis of Inhalation Injury Diagnostic Methods and Patient Outcomes.

    PubMed

    Ching, Jessica A; Ching, Yiu-Hei; Shivers, Steven C; Karlnoski, Rachel A; Payne, Wyatt G; Smith, David J

    2016-01-01

    The purpose of this study was to compare patient outcomes according to the method of diagnosing burn inhalation injury. After approval from the American Burn Association, the National Burn Repository Dataset Version 8.0 was queried for patients with a diagnosis of burn inhalation injury. Subgroups were analyzed by diagnostic method as defined by the National Burn Repository. All diagnostic methods listed for each patient were included, comparing mortality, hospital days, intensive care unit (ICU) days, and ventilator days (VDs). Z-tests, t-tests, and linear regression were used with a statistical significance of P value of less than .05. The database query yielded 9775 patients diagnosed with inhalation injury. The greatest increase in mortality was associated with diagnosis by bronchoscopy or carbon monoxide poisoning. A relative increase in hospital days was noted with diagnosis by bronchoscopy (9 days) or history (2 days). A relative increase in ICU days was associated with diagnosis according to bronchoscopy (8 days), clinical findings (2 days), or history (2 days). A relative increase in VDs was associated with diagnosis by bronchoscopy (6 days) or carbon monoxide poisoning (3 days). The combination of diagnosis by bronchoscopy and clinical findings increased the relative difference across all comparison measures. The combination of diagnosis by bronchoscopy and carbon monoxide poisoning exhibited decreased relative differences when compared with bronchoscopy alone. Diagnosis by laryngoscopy showed no mortality or association with poor outcomes. Bronchoscopic evidence of inhalation injury proved most useful, predicting increased mortality, hospital, ICU, and VDs. A combined diagnosis determined by clinical findings and bronchoscopy should be considered for clinical practice. PMID:26594867

  16. [A New Method of Accurately Extracting Spectral Values for Discrete Sampling Points].

    PubMed

    Lü, Zhen-zhen; Liu, Guang-ming; Yang, Jin-song

    2015-08-01

    In the establishment of remote sensing information inversion model, the actual measured data of discrete sampling points and the corresponding spectrum data to pixels of remote sensing image, are used to establish the relation, thus to realize the goal of information retrieval. Accurate extraction of spectrum value is very important to establish the remote sensing inversion mode. Converting target spot layer to ROI (region of interest) and then saving the ROI as ASCII is one of the methods that researchers often used to extract the spectral values. Analyzing the coordinate and spectrum values extracted using original coordinate in ENVI, we found that the extracted and original coordinate were not inconsistent and part of spectrum values not belong to the pixel containing the sampling point. The inversion model based on the above information cannot really reflect relationship between the target properties and spectral values; so that the model is meaningless. We equally divided the pixel into four parts and summed up the law. It was found that only when the sampling points distributed in the upper left corner of pixels, the extracted values were correct. On the basis of the above methods, this paper systematically studied the principle of extraction target coordinate and spectral values, and summarized the rule. A new method for extracting spectral parameters of the pixel that sampling point located in the environment of ENVI software. Firstly, pixel sampling point coordinates for any of the four corner points were extracted by the sample points with original coordinate in ENVI. Secondly, the sampling points were judged in which partition of pixel by comparing the absolute values of difference longitude and latitude of the original and extraction coordinates. Lastly, all points were adjusted to the upper left corner of pixels by symmetry principle and spectrum values were extracted by the same way in the first step. The results indicated that the extracted spectrum

  17. Fibre Diffraction Analysis of Skin Offers a Very Early and Extremely Accurate Diagnostic Test for Prostate Cancer

    DOE PAGESBeta

    James, Veronica J.; O’Malley Ford, Judith M.

    2014-01-01

    Double blind analysis of a batch of thirty skin tissue samples from potential prostate cancer sufferers correctly identified all “control” patients, patients with high and low grade prostate cancers, the presence of benign prostate hyperplasia (BPH), perineural invasions, and the one lymphatic invasion. Identification was by analysis of fibre diffraction patterns interpreted using a schema developed from observations in nine previous studies. The method, schema, and specific experiment results are reported in this paper, with some implications then drawn.

  18. An accurate clone-based haplotyping method by overlapping pool sequencing.

    PubMed

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-07-01

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. PMID:27095193

  19. Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations

    SciTech Connect

    Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg

    2007-08-10

    In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.

  20. An accurate clone-based haplotyping method by overlapping pool sequencing

    PubMed Central

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-01-01

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. PMID:27095193

  1. A highly accurate method for the determination of mass and center of mass of a spacecraft

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.; Egwuatu, A.

    1978-01-01

    An extremely accurate method for the measurement of mass and the lateral center of mass of a spacecraft has been developed. The method was needed for the Voyager spacecraft mission requirement which limited the uncertainty in the knowledge of lateral center of mass of the spacecraft system weighing 750 kg to be less than 1.0 mm (0.04 in.). The method consists of using three load cells symmetrically located at 120 deg apart on a turntable with respect to the vertical axis of the spacecraft and making six measurements for each load cell. These six measurements are taken by cyclic rotations of the load cell turntable and of the spacecraft, about the vertical axis of the measurement fixture. This method eliminates all alignment, leveling, and load cell calibration errors for the lateral center of mass determination, and permits a statistical best fit of the measurement data. An associated data reduction computer program called MASCM has been written to implement this method and has been used for the Voyager spacecraft.

  2. Helicobacter pylori identification: a diagnostic/confirmatory method for evaluation.

    PubMed

    Mesquita, B; Gonçalves, M J; Pacheco, P; Lopes, J; Salazar, F; Relvas, M; Coelho, C; Pacheco, J J; Velazco, C

    2014-09-01

    The Helicobacter pylori extra gastric reservoir is probably the oral cavity. In order to evaluate the presence of this bacterium in patients with periodontitis and suspicious microbial cultures, saliva was collected from these and non-periodontitis subjects. PCRs targeting 16S rRNA gene and a 860 bp specific region were performed, and digested with the restriction enzyme DdeI. We observed that the PCR-RFLP approach augments the accuracy from 26.2 % (16/61), found in the PCR-based results, to 42.6 % (26/61), which is an excellent indicator for the establishment of this low-cost procedure as a diagnostic/confirmatory method for H. pylori evaluation. PMID:24715050

  3. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  4. A Method for Accurate in silico modeling of Ultrasound Transducer Arrays

    PubMed Central

    Guenther, Drake A.; Walker, William F.

    2009-01-01

    This paper presents a new approach to improve the in silico modeling of ultrasound transducer arrays. While current simulation tools accurately predict the theoretical element spatio-temporal pressure response, transducers do not always behave as theorized. In practice, using the probe's physical dimensions and published specifications in silico, often results in unsatisfactory agreement between simulation and experiment. We describe a general optimization procedure used to maximize the correlation between the observed and simulated spatio-temporal response of a pulsed single element in a commercial ultrasound probe. A linear systems approach is employed to model element angular sensitivity, lens effects, and diffraction phenomena. A numerical deconvolution method is described to characterize the intrinsic electro-mechanical impulse response of the element. Once the response of the element and optimal element characteristics are known, prediction of the pressure response for arbitrary apertures and excitation signals is performed through direct convolution using available tools. We achieve a correlation of 0.846 between the experimental emitted waveform and simulated waveform when using the probe's physical specifications in silico. A far superior correlation of 0.988 is achieved when using the optimized in silico model. Electronic noise appears to be the main effect preventing the realization of higher correlation coefficients. More accurate in silico modeling will improve the evaluation and design of ultrasound transducers as well as aid in the development of sophisticated beamforming strategies. PMID:19041997

  5. Diagnostic Methods for Platelet Bacteria Screening: Current Status and Developments

    PubMed Central

    Störmer, Melanie; Vollmer, Tanja

    2014-01-01

    Summary Bacterial contamination of blood components and the prevention of transfusion-associated bacterial infection still remains a major challenge in transfusion medicine. Over the past few decades, a significant reduction in the transmission of viral infections has been achieved due to the introduction of mandatory virus screening. Platelet concentrates (PCs) represent one of the highest risks for bacterial infection. This is due to the required storage conditions for PCs in gas-permeable containers at room temperature with constant agitation, which support bacterial proliferation from low contamination levels to high titers. In contrast to virus screening, since 1997 in Germany bacterial testing of PCs is only performed as a routine quality control or, since 2008, to prolong the shelf life to 5 days. In general, bacterial screening of PCs by cultivation methods is implemented by the various blood services. Although these culturing systems will remain the gold standard, the significance of rapid methods for screening for bacterial contamination has increased over the last few years. These new methods provide powerful tools for increasing the bacterial safety of blood components. This article summarizes the course of policies and provisions introduced to increase bacterial safety of blood components in Germany. Furthermore, we give an overview of the different diagnostic methods for bacterial screening of PCs and their current applicability in routine screening processes. PMID:24659944

  6. Aeroacoustic Flow Phenomena Accurately Captured by New Computational Fluid Dynamics Method

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    2002-01-01

    One of the challenges in the computational fluid dynamics area is the accurate calculation of aeroacoustic phenomena, especially in the presence of shock waves. One such phenomenon is "transonic resonance," where an unsteady shock wave at the throat of a convergent-divergent nozzle results in the emission of acoustic tones. The space-time Conservation-Element and Solution-Element (CE/SE) method developed at the NASA Glenn Research Center can faithfully capture the shock waves, their unsteady motion, and the generated acoustic tones. The CE/SE method is a revolutionary new approach to the numerical modeling of physical phenomena where features with steep gradients (e.g., shock waves, phase transition, etc.) must coexist with those having weaker variations. The CE/SE method does not require the complex interpolation procedures (that allow for the possibility of a shock between grid cells) used by many other methods to transfer information between grid cells. These interpolation procedures can add too much numerical dissipation to the solution process. Thus, while shocks are resolved, weaker waves, such as acoustic waves, are washed out.

  7. A more accurate method for measurement of tuberculocidal activity of disinfectants.

    PubMed Central

    Ascenzi, J M; Ezzell, R J; Wendt, T M

    1987-01-01

    The current Association of Official Analytical Chemists method for testing tuberculocidal activity of disinfectants has been shown to be inaccurate and to have a high degree of variability. An alternate test method is proposed which is more accurate, more precise, and quantitative. A suspension of Mycobacterium bovis BCG was exposed to a variety of disinfectant chemicals and a kill curve was constructed from quantitative data. Data are presented that show the discrepancy between current claims, determined by the Association of Official Analytical Chemists method, of selected commercially available products and claims generated by the proposed method. The effects of different recovery media were examined. The data indicated that Mycobacteria 7H11 and Middlebrook 7H10 agars were equal in recovery of the different chemically treated cells, with Lowenstein-Jensen agar having approximately the same recovery rate but requiring incubation for up to 3 weeks longer for countability. The kill curves generated for several different chemicals were reproducible, as indicated by the standard deviations of the slopes and intercepts of the linear regression curves. PMID:3314707

  8. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure. PMID:17510203

  9. Temperature dependent effective potential method for accurate free energy calculations of solids

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Steneteg, Peter; Abrikosov, I. A.; Simak, S. I.

    2013-03-01

    We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on ab initio molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in detail. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within ab initio and classical molecular dynamics frameworks. In particular, we examine from first principles the behavior of force constants upon the dynamical stabilization of the body centered phase of Zr, and show that they become more localized. We also calculate the phase diagram for 4He modeled with the Aziz potential and obtain results which are in favorable agreement both with respect to experiment and established techniques.

  10. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  11. An Inexpensive, Accurate, and Precise Wet-Mount Method for Enumerating Aquatic Viruses

    PubMed Central

    Cunningham, Brady R.; Brum, Jennifer R.; Schwenck, Sarah M.; Sullivan, Matthew B.

    2015-01-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the “filter mount” method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5 × 107 viruses ml−1. The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17 × 106 to 1.37 × 108 viruses ml−1 when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1 × 106 viruses ml−1) encountered in field and laboratory samples. PMID:25710369

  12. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  13. Vaccines and diagnostic methods for bovine mastitis: fact and fiction.

    PubMed

    Yancey, R J

    1999-01-01

    A number of problems are uniquely associated with vaccination of dairy cows for mastitis. One of these is that the number of mastitis pathogens is numerous and heterogeneous. Vaccine efforts have concentrated mainly on the major mastitis pathogens. While at least one S. aureus bacterin has been commercially available for a number of years, no large-scale, independent field trials have been published in refereed journals which support the efficacy of this vaccine. Experimental vaccines for S. aureus composed of pseudocapsule-enriched bacterins supplemented with alpha- and/or beta-toxoids appear promising, but none of these has been commercialized. With S. uberis, some protection against homologous strain challenges was reported recently with a live strain and a bacterin, but other data from the same laboratory showed this vaccine would not protect against heterologous challenge strains. At this time there is only one highly effective vaccine for mastitis, the core-antigen vaccine for coliform mastitis. All of the commercially available vaccines for this indication are bacterins of rough mutants of E. coli strain J5 or Salmonella spp. Preliminary success with an experimental vaccine based on the plasminogen activator of S. uberis is a very different approach for a mastitis vaccine. Little success has been reported with vaccination against other mastitis pathogens. For diagnostic methods, the high somatic cell count, as measured by direct count or indirect assays, remains the cornerstone of mastitis diagnosis. However, for subclinical mastitis, bacterial cell culture is a reliable diagnostic method. Pathogen identification may rely on older biochemical testing methods or newer commercial identification systems, depending on the laboratory budget. ELISA assays also have been used to assess herd infection status. Epidemiologic studies have used DNA fingerprinting and ribotyping, but none of these methods has yet produced an easily utilized commercial format. Within the

  14. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  15. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  16. An accurate and nondestructive GC method for determination of cocaine on US paper currency.

    PubMed

    Zuo, Yuegang; Zhang, Kai; Wu, Jingping; Rego, Christopher; Fritz, John

    2008-07-01

    The presence of cocaine on US paper currency has been known for a long time. Banknotes become contaminated during the exchange, storage, and abuse of cocaine. The analysis of cocaine on various denominations of US banknotes in the general circulation can provide law enforcement circles and forensic epidemiologists objective and timely information on epidemiology of illicit drug use and on how to differentiate money contaminated in the general circulation from banknotes used in drug transaction. A simple, nondestructive, and accurate capillary gas chromatographic method has been developed for the determination of cocaine on various denominations of US banknotes in this study. The method comprises a fast ultrasonic extraction using water as a solvent followed by a SPE cleanup process with a C(18) cartridge and capillary GC separation, identification, and quantification. This nondestructive analytical method has been successfully applied to determine the cocaine contamination in US paper currency of all denominations. Standard calibration curve was linear over the concentration range from the LOQ (2.00 ng/mL) to 100 microg/mL and the RSD less than 2.0%. Cocaine was detected in 67% of the circulated banknotes collected in Southeastern Massachusetts in amounts ranging from approximately 2 ng to 49.4 microg per note. On average, $5, 10, 20, and 50 denominations contain higher amounts of cocaine than $1 and 100 denominations of US banknotes. PMID:18646272

  17. A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images

    PubMed Central

    Xiong, Huahui; Huang, Xiaoqing; Li, Yong; Li, Jianhong; Xian, Junfang; Huang, Yaqi

    2015-01-01

    Objective The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications. Methods MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes. Results A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA. Conclusions A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately. PMID:26066461

  18. Conservative high-order-accurate finite-difference methods for curvilinear grids

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Chakrvarthy, Sukumar

    1993-01-01

    Two fourth-order-accurate finite-difference methods for numerically solving hyperbolic systems of conservation equations on smooth curvilinear grids are presented. The first method uses the differential form of the conservation equations; the second method uses the integral form of the conservation equations. Modifications to these schemes, which are required near boundaries to maintain overall high-order accuracy, are discussed. An analysis that demonstrates the stability of the modified schemes is also provided. Modifications to one of the schemes to make it total variation diminishing (TVD) are also discussed. Results that demonstrate the high-order accuracy of both schemes are included in the paper. In particular, a Ringleb-flow computation demonstrates the high-order accuracy and the stability of the boundary and near-boundary procedures. A second computation of supersonic flow over a cylinder demonstrates the shock-capturing capability of the TVD methodology. An important contribution of this paper is the dear demonstration that higher order accuracy leads to increased computational efficiency.

  19. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  20. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  1. Blood Pressure over Height Ratios: Simple and Accurate Method of Detecting Elevated Blood Pressure in Children.

    PubMed

    Galescu, Ovidiu; George, Minu; Basetty, Sudhakar; Predescu, Iuliana; Mongia, Anil; Ten, Svetlana; Bhangoo, Amrit

    2012-01-01

    Background. Blood pressure (BP) percentiles in childhood are assessed according to age, gender, and height. Objective. To create a simple BP/height ratio for both systolic BP (SBP) and diastolic BP (DBP). To study the relationship between BP/height ratios and corresponding BP percentiles in children. Methods. We analyzed data on height and BP from 2006-2007 NHANES data. BP percentiles were calculated for 3775 children. Receiver-operating characteristic (ROC) curve analyses were performed to calculate sensitivity and specificity of BP/height ratios as diagnostic tests for elevated BP (>90%). Correlation analysis was performed between BP percentiles and BP/height ratios. Results. The average age was 12.54 ± 2.67 years. SBP/height and DBP/height ratios strongly correlated with SBP & DBP percentiles in both boys (P < 0.001, R(2) = 0.85, R(2) = 0.86) and girls (P < 0.001, R(2) = 0.85, R(2) = 0.90). The cutoffs of SBP/height and DBP/height ratios in boys were ≥0.75 and ≥0.46, respectively; in girls the ratios were ≥0.75 and ≥0.48, respectively with sensitivity and specificity in range of 83-100%. Conclusion. BP/height ratios are simple with high sensitivity and specificity to detect elevated BP in children. These ratios can be easily used in routine medical care of children. PMID:22577400

  2. Blood Pressure over Height Ratios: Simple and Accurate Method of Detecting Elevated Blood Pressure in Children

    PubMed Central

    Galescu, Ovidiu; George, Minu; Basetty, Sudhakar; Predescu, Iuliana; Mongia, Anil; Ten, Svetlana; Bhangoo, Amrit

    2012-01-01

    Background. Blood pressure (BP) percentiles in childhood are assessed according to age, gender, and height. Objective. To create a simple BP/height ratio for both systolic BP (SBP) and diastolic BP (DBP). To study the relationship between BP/height ratios and corresponding BP percentiles in children. Methods. We analyzed data on height and BP from 2006-2007 NHANES data. BP percentiles were calculated for 3775 children. Receiver-operating characteristic (ROC) curve analyses were performed to calculate sensitivity and specificity of BP/height ratios as diagnostic tests for elevated BP (>90%). Correlation analysis was performed between BP percentiles and BP/height ratios. Results. The average age was 12.54 ± 2.67 years. SBP/height and DBP/height ratios strongly correlated with SBP & DBP percentiles in both boys (P < 0.001, R2 = 0.85, R2 = 0.86) and girls (P < 0.001, R2 = 0.85, R2 = 0.90). The cutoffs of SBP/height and DBP/height ratios in boys were ≥0.75 and ≥0.46, respectively; in girls the ratios were ≥0.75 and ≥0.48, respectively with sensitivity and specificity in range of 83–100%. Conclusion. BP/height ratios are simple with high sensitivity and specificity to detect elevated BP in children. These ratios can be easily used in routine medical care of children. PMID:22577400

  3. A Weight-Averaged Interpolation Method for Coupling Time-Accurate Rarefied and Continuum Flows

    NASA Astrophysics Data System (ADS)

    Diaz, Steven William

    A novel approach to coupling rarefied and continuum flow regimes as a single, hybrid model is introduced. The method borrows from techniques used in the simulation of spray flows to interpolate Lagrangian point-particles onto an Eulerian grid in a weight-averaged sense. A brief overview of traditional methods for modeling both rarefied and continuum domains is given, and a review of the literature regarding rarefied/continuum flow coupling is presented. Details of the theoretical development of the method of weighted interpolation are then described. The method evaluates macroscopic properties at the nodes of a CFD grid via the weighted interpolation of all simulated molecules in a set surrounding the node. The weight factor applied to each simulated molecule is the inverse of the linear distance between it and the given node. During development, the method was applied to several preliminary cases, including supersonic flow over an airfoil, subsonic flow over tandem airfoils, and supersonic flow over a backward facing step; all at low Knudsen numbers. The main thrust of the research centered on the time-accurate expansion of a rocket plume into a near-vacuum. The method proves flexible enough to be used with various flow solvers, demonstrated by the use of Fluent as the continuum solver for the preliminary cases and a NASA-developed Large Eddy Simulation research code, WRLES, for the full lunar model. The method is applicable to a wide range of Mach numbers and is completely grid independent, allowing the rarefied and continuum solvers to be optimized for their respective domains without consideration of the other. The work presented demonstrates the validity, and flexibility of the method of weighted interpolation as a novel concept in the field of hybrid flow coupling. The method marks a significant divergence from current practices in the coupling of rarefied and continuum flow domains and offers a kernel on which to base an ongoing field of research. It has the

  4. Computer methods for ITER-like materials LIBS diagnostics

    NASA Astrophysics Data System (ADS)

    Łepek, Michał; GÄ sior, Paweł

    2014-11-01

    Recent development of Laser-Induced Breakdown Spectroscopy (LIBS) caused that this method is considered as the most promising for future diagnostic applications for characterization of the deposited materials in the International Thermonuclear Experimental Reactor (ITER), which is currently under construction. In this article the basics of LIBS are shortly discussed and the software for spectra analyzing is presented. The main software function is to analyze measured spectra with respect to the certain element lines presence. Some program operation results are presented. Correct results for graphite and aluminum are obtained although identification of tungsten lines is a problem. The reason for this is low tungsten lines intensity, and thus low signal to noise ratio of the measured signal. In the second part artificial neural networks (ANNs) as the next step for LIBS spectra analyzing are proposed. The idea is focused on multilayer perceptron network (MLP) with backpropagation learning method. The potential of ANNs for data processing was proved through application in several LIBS-related domains, e.g. differentiating ancient Greek ceramics (discussed). The idea is to apply an ANN for determination of W, Al, C presence on ITER-like plasma-facing materials.

  5. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  6. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods.

    PubMed

    Knight, Joseph W; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, J Vincent; Rinke, Patrick; Körzdörfer, Thomas; Marom, Noa

    2016-02-01

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments. PMID:26731609

  7. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    SciTech Connect

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  8. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-01-01

    A process for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H.sub.2 O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg.sub.2 Cl.sub.2. The method for doing this involves dissolving a precise amount of Hg.sub.2 Cl.sub.2 in an electrolyte solution comprised of concentrated HCl and H.sub.2 O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg.

  9. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  10. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    NASA Astrophysics Data System (ADS)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  11. Accurate method to study static volume-pressure relationships in small fetal and neonatal animals.

    PubMed

    Suen, H C; Losty, P D; Donahoe, P K; Schnitzer, J J

    1994-08-01

    We designed an accurate method to study respiratory static volume-pressure relationships in small fetal and neonatal animals on the basis of Archimedes' principle. Our method eliminates the error caused by the compressibility of air (Boyle's law) and is sensitive to a volume change of as little as 1 microliters. Fetal and neonatal rats during the period of rapid lung development from day 19.5 of gestation (term = day 22) to day 3.5 postnatum were studied. The absolute lung volume at a transrespiratory pressure of 30-40 cmH2O increased 28-fold from 0.036 +/- 0.006 (SE) to 0.994 +/- 0.042 ml, the volume per gram of lung increased 14-fold from 0.39 +/- 0.07 to 5.59 +/- 0.66 ml/g, compliance increased 12-fold from 2.3 +/- 0.4 to 27.3 +/- 2.7 microliters/cmH2O, and specific compliance increased 6-fold from 24.9 +/- 4.5 to 152.3 +/- 22.8 microliters.cmH2O-1.g lung-1. This technique, which allowed us to compare changes during late gestation and the early neonatal period in small rodents, can be used to monitor and evaluate pulmonary functional changes after in utero pharmacological therapies in experimentally induced abnormalities such as pulmonary hypoplasia, surfactant deficiency, and congenital diaphragmatic hernia. PMID:8002489

  12. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  13. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  14. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    NASA Astrophysics Data System (ADS)

    Shu, Yu-Chen; Chern, I.-Liang; Chang, Chien C.

    2014-10-01

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule (1D63) which is double-helix shape and composed of hundreds of atoms.

  15. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  16. A New Method for Accurate Treatment of Flow Equations in Cylindrical Coordinates Using Series Expansions

    NASA Technical Reports Server (NTRS)

    Constantinescu, G.S.; Lele, S. K.

    2000-01-01

    The motivation of this work is the ongoing effort at the Center for Turbulence Research (CTR) to use large eddy simulation (LES) techniques to calculate the noise radiated by jet engines. The focus on engine exhaust noise reduction is motivated by the fact that a significant reduction has been achieved over the last decade on the other main sources of acoustic emissions of jet engines, such as the fan and turbomachinery noise, which gives increased priority to jet noise. To be able to propose methods to reduce the jet noise based on results of numerical simulations, one first has to be able to accurately predict the spatio-temporal distribution of the noise sources in the jet. Though a great deal of understanding of the fundamental turbulence mechanisms in high-speed jets was obtained from direct numerical simulations (DNS) at low Reynolds numbers, LES seems to be the only realistic available tool to obtain the necessary near-field information that is required to estimate the acoustic radiation of the turbulent compressible engine exhaust jets. The quality of jet-noise predictions is determined by the accuracy of the numerical method that has to capture the wide range of pressure fluctuations associated with the turbulence in the jet and with the resulting radiated noise, and by the boundary condition treatment and the quality of the mesh. Higher Reynolds numbers and coarser grids put in turn a higher burden on the robustness and accuracy of the numerical method used in this kind of jet LES simulations. As these calculations are often done in cylindrical coordinates, one of the most important requirements for the numerical method is to provide a flow solution that is not contaminated by numerical artifacts. The coordinate singularity is known to be a source of such artifacts. In the present work we use 6th order Pade schemes in the non-periodic directions to discretize the full compressible flow equations. It turns out that the quality of jet-noise predictions

  17. BREAST: a novel method to improve the diagnostic efficacy of mammography

    NASA Astrophysics Data System (ADS)

    Brennan, P. C.; Tapia, K.; Ryan, J.; Lee, W.

    2013-03-01

    High quality breast imaging and accurate image assessment are critical to the early diagnoses, treatment and management of women with breast cancer. Breast Screen Reader Assessment Strategy (BREAST) provides a platform, accessible by researchers and clinicians world-wide, which will contain image data bases, algorithms to assess reader performance and on-line systems for image evaluation. The platform will contribute to the diagnostic efficacy of breast imaging in Australia and beyond on two fronts: reducing errors in mammography, and transforming our assessment of novel technologies and techniques. Mammography is the primary diagnostic tool for detecting breast cancer with over 800,000 women X-rayed each year in Australia, however, it fails to detect 30% of breast cancers with a number of missed cancers being visible on the image [1-6]. BREAST will monitor the mistakes, identify reasons for mammographic errors, and facilitate innovative solutions to reduce error rates. The BREAST platform has the potential to enable expert assessment of breast imaging innovations, anywhere in the world where experts or innovations are located. Currently, innovations are often being assessed by limited numbers of individuals who happen to be geographically located close to the innovation, resulting in equivocal studies with low statistical power. BREAST will transform this current paradigm by enabling large numbers of experts to assess any new method or technology using our embedded evaluation methods. We are confident that this world-first system will play an important part in the future efficacy of breast imaging.

  18. Dental and dental hygiene students' diagnostic accuracy in oral radiology: effect of diagnostic strategy and instructional method.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2014-09-01

    There has been much debate surrounding diagnostic strategies and the most appropriate training models for novices in oral radiology. It has been argued that an analytic approach, using a step-by-step analysis of the radiographic features of an abnormality, is ideal. Alternative research suggests that novices can successfully employ non-analytic reasoning. Many of these studies do not take instructional methodology into account. This study evaluated the effectiveness of non-analytic and analytic strategies in radiographic interpretation and explored the relationship between instructional methodology and diagnostic strategy. Second-year dental and dental hygiene students were taught four radiographic abnormalities using basic science instructions or a step-by-step algorithm. The students were tested on diagnostic accuracy and memory immediately after learning and one week later. A total of seventy-three students completed both immediate and delayed sessions and were included in the analysis. Students were randomly divided into two instructional conditions: one group provided a diagnostic hypothesis for the image and then identified specific features to support it, while the other group first identified features and then provided a diagnosis. Participants in the diagnosis-first condition (non-analytic reasoning) had higher diagnostic accuracy then those in the features-first condition (analytic reasoning), regardless of their learning condition. No main effect of learning condition or interaction with diagnostic strategy was observed. Educators should be mindful of the potential influence of analytic and non-analytic approaches on the effectiveness of the instructional method. PMID:25179924

  19. Diagnostic Methods for Detection of Blood-Borne Candidiasis.

    PubMed

    Clancy, Cornelius J; Nguyen, M Hong

    2016-01-01

    β-D-glucan (Fungitell) and polymerase chain reaction-based (T2Candida) assays of blood samples are FDA-approved adjuncts to cultures for diagnosing candidemia and other types of invasive candidiasis, but their clinical roles are unclear. In this chapter, we describe laboratory protocols for performing Fungitell and T2Candida assays. We then discuss step-by-step methods for interpreting test results at the bedside using a Bayesian framework, and for incorporating assays into rational patient management strategies. Prior to interpreting results, clinicians must recognize that test performance varies based on the type of invasive candidiasis being diagnosed. In general, the type of invasive candidiasis that is most likely in a given patient can be identified, and the pretest likelihood of disease estimated. From there, positive and negative predictive values (PPV, NPV) for an assay can be calculated. At a population level, tests can be incorporated into screening strategies for antifungal treatment. NPV and PPV thresholds can be defined for discontinuing antifungal prophylaxis or initiating preemptive treatment, respectively. Using the thresholds, it is possible to assign windows of pretest likelihood for invasive candidiasis (and corresponding patient populations) in which tests are most likely to valuable. At the individual patient level, tests may be useful outside of the windows proposed for screening populations. The interpretive and clinical decision-making processes we discuss will be applicable to other diagnostic assays as they enter the clinic, and to existing assays as more data emerge from various populations. PMID:26519076

  20. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  1. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  2. Accurate methods for computing inviscid and viscous Kelvin-Helmholtz instability

    NASA Astrophysics Data System (ADS)

    Chen, Michael J.; Forbes, Lawrence K.

    2011-02-01

    The Kelvin-Helmholtz instability is modelled for inviscid and viscous fluids. Here, two bounded fluid layers flow parallel to each other with the interface between them growing in an unstable fashion when subjected to a small perturbation. In the various configurations of this problem, and the related problem of the vortex sheet, there are several phenomena associated with the evolution of the interface; notably the formation of a finite time curvature singularity and the ‘roll-up' of the interface. Two contrasting computational schemes will be presented. A spectral method is used to follow the evolution of the interface in the inviscid version of the problem. This allows the interface shape to be computed up to the time that a curvature singularity forms, with several computational difficulties overcome to reach that point. A weakly compressible viscous version of the problem is studied using finite difference techniques and a vorticity-streamfunction formulation. The two versions have comparable, but not identical, initial conditions and so the results exhibit some differences in timing. By including a small amount of viscosity the interface may be followed to the point that it rolls up into a classic ‘cat's-eye' shape. Particular attention was given to computing a consistent initial condition and solving the continuity equation both accurately and efficiently.

  3. Method for accurate sizing of pulmonary vessels from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2015-03-01

    Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.

  4. An automated method for analysis of microcirculation videos for accurate assessment of tissue perfusion

    PubMed Central

    2012-01-01

    Background Imaging of the human microcirculation in real-time has the potential to detect injuries and illnesses that disturb the microcirculation at earlier stages and may improve the efficacy of resuscitation. Despite advanced imaging techniques to monitor the microcirculation, there are currently no tools for the near real-time analysis of the videos produced by these imaging systems. An automated system tool that can extract microvasculature information and monitor changes in tissue perfusion quantitatively might be invaluable as a diagnostic and therapeutic endpoint for resuscitation. Methods The experimental algorithm automatically extracts microvascular network and quantitatively measures changes in the microcirculation. There are two main parts in the algorithm: video processing and vessel segmentation. Microcirculatory videos are first stabilized in a video processing step to remove motion artifacts. In the vessel segmentation process, the microvascular network is extracted using multiple level thresholding and pixel verification techniques. Threshold levels are selected using histogram information of a set of training video recordings. Pixel-by-pixel differences are calculated throughout the frames to identify active blood vessels and capillaries with flow. Results Sublingual microcirculatory videos are recorded from anesthetized swine at baseline and during hemorrhage using a hand-held Side-stream Dark Field (SDF) imaging device to track changes in the microvasculature during hemorrhage. Automatically segmented vessels in the recordings are analyzed visually and the functional capillary density (FCD) values calculated by the algorithm are compared for both health baseline and hemorrhagic conditions. These results were compared to independently made FCD measurements using a well-known semi-automated method. Results of the fully automated algorithm demonstrated a significant decrease of FCD values. Similar, but more variable FCD values were calculated

  5. Evaluation of Three Rapid Diagnostic Methods for Direct Identification of Microorganisms in Positive Blood Cultures

    PubMed Central

    Martinez, Raquel M.; Bauerle, Elizabeth R.; Fang, Ferric C.

    2014-01-01

    The identification of organisms from positive blood cultures generally takes several days. However, recently developed rapid diagnostic methods offer the potential for organism identification within only a few hours of blood culture positivity. In this study, we evaluated the performance of three commercial methods to rapidly identify organisms directly from positive blood cultures: QuickFISH (AdvanDx, Wolburn, MA), Verigene Gram-Positive Blood Culture (BC-GP; Nanosphere, Northbrook, IL), and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) with Sepsityper processing (Bruker Daltonics, Billerica, MA). A total of 159 blood cultures (VersaTREK Trek Diagnostic Systems, Cleveland, OH) positive for Gram-positive and Gram-negative bacteria as well as yeast were analyzed with QuickFISH and MALDI-TOF MS. In all, 102 blood cultures were analyzed using the BC-GP assay. For monomicrobial cultures, we observed 98.0% concordance with routine methods for both QuickFISH (143/146) and the BC-GP assay (93/95). MALDI-TOF MS demonstrated 80.1% (117/146) and 87.7% (128/146) concordance with routine methods to the genus and species levels, respectively. None of the methods tested were capable of consistently identifying polymicrobial cultures in their entirety or reliably differentiating Streptococcus pneumoniae from viridans streptococci. Nevertheless, the methods evaluated in this study are convenient and accurate for the most commonly encountered pathogens and have the potential to dramatically reduce turnaround time for the provision of results to the treating physician. PMID:24808235

  6. Chronic intraoral pain--assessment of diagnostic methods and prognosis.

    PubMed

    Pigg, Maria

    2011-01-01

    The overall goal of this thesis was to broaden our knowledge of chronic intraoral pain. The research questions were: What methods can be used to differentiate inflammatory, odontogenic tooth pain from pain that presents as toothache but is non-odontogenic in origin? What is the prognosis of chronic tooth pain of non-odontogenic origin, and which factors affect the prognosis? Atypical odontalgia (AO) is a relatively rare but severe and chronic pain condition affecting the dentoalveolar region. Recent research indicates that the origin is peripheral nerve damage: neuropathic pain. The condition presents as tooth pain and is challenging to dentists because it is difficult to distinguish from ordinary toothache due to inflammation or infection. AO is of interest to the pain community because it shares many characteristics with other chronic pain conditions, and pain perpetuation mechanisms are likely to be similar. An AO diagnosis is made after a comprehensive examination and assessment of patients' self-reported characteristics: the pain history. Traditional dental diagnostic methods do not appear to suffice, since many patients report repeated care-seeking and numerous treatment efforts with little or no pain relief. Developing methods that are useful in the clinical setting is a prerequisite for a correct diagnosis and adequate treatment decisions. Quantitative sensory testing (QST) is used to assess sensory function on skin when nerve damage or disease is suspected. A variety of stimuli has been used to examine the perception of, for example, touch, temperature (painful and non-painful), vibration, pinprick pain, and pressure pain. To detect sensory abnormalities and nerve damage in the oral cavity, the same methods may be possible to use. Study I examined properties of thermal thresholds in and around the mouth in 30 pain-free subjects: the influence of measurement location and stimulation area size on threshold levels, and time variability of thresholds

  7. Fast, accurate and easy-to-pipeline methods for amplicon sequence processing

    NASA Astrophysics Data System (ADS)

    Antonielli, Livio; Sessitsch, Angela

    2016-04-01

    Next generation sequencing (NGS) technologies established since years as an essential resource in microbiology. While on the one hand metagenomic studies can benefit from the continuously increasing throughput of the Illumina (Solexa) technology, on the other hand the spreading of third generation sequencing technologies (PacBio, Oxford Nanopore) are getting whole genome sequencing beyond the assembly of fragmented draft genomes, making it now possible to finish bacterial genomes even without short read correction. Besides (meta)genomic analysis next-gen amplicon sequencing is still fundamental for microbial studies. Amplicon sequencing of the 16S rRNA gene and ITS (Internal Transcribed Spacer) remains a well-established widespread method for a multitude of different purposes concerning the identification and comparison of archaeal/bacterial (16S rRNA gene) and fungal (ITS) communities occurring in diverse environments. Numerous different pipelines have been developed in order to process NGS-derived amplicon sequences, among which Mothur, QIIME and USEARCH are the most well-known and cited ones. The entire process from initial raw sequence data through read error correction, paired-end read assembly, primer stripping, quality filtering, clustering, OTU taxonomic classification and BIOM table rarefaction as well as alternative "normalization" methods will be addressed. An effective and accurate strategy will be presented using the state-of-the-art bioinformatic tools and the example of a straightforward one-script pipeline for 16S rRNA gene or ITS MiSeq amplicon sequencing will be provided. Finally, instructions on how to automatically retrieve nucleotide sequences from NCBI and therefore apply the pipeline to targets other than 16S rRNA gene (Greengenes, SILVA) and ITS (UNITE) will be discussed.

  8. An automated, fast and accurate registration method to link stranded seeds in permanent prostate implants.

    PubMed

    Westendorp, Hendrik; Nuver, Tonnis T; Moerland, Marinus A; Minken, André W

    2015-10-21

    The geometry of a permanent prostate implant varies over time. Seeds can migrate and edema of the prostate affects the position of seeds. Seed movements directly influence dosimetry which relates to treatment quality. We present a method that tracks all individual seeds over time allowing quantification of seed movements. This linking procedure was tested on transrectal ultrasound (TRUS) and cone-beam CT (CBCT) datasets of 699 patients. These datasets were acquired intraoperatively during a dynamic implantation procedure, that combines both imaging modalities. The procedure was subdivided in four automatic linking steps. (I) The Hungarian Algorithm was applied to initially link seeds in CBCT and the corresponding TRUS datasets. (II) Strands were identified and optimized based on curvature and linefits: non optimal links were removed. (III) The positions of unlinked seeds were reviewed and were linked to incomplete strands if within curvature- and distance-thresholds. (IV) Finally, seeds close to strands were linked, also if the curvature-threshold was violated. After linking the seeds an affine transformation was applied. The procedure was repeated until the results were stable or the 6th iteration ended. All results were visually reviewed for mismatches and uncertainties. Eleven implants showed a mismatch and in 12 cases an uncertainty was identified. On average the linking procedure took 42 ms per case. This accurate and fast method has the potential to be used for other time spans, like Day 30, and other imaging modalities. It can potentially be used during a dynamic implantation procedure to faster and better evaluate the quality of the permanent prostate implant. PMID:26439900

  9. An automated, fast and accurate registration method to link stranded seeds in permanent prostate implants

    NASA Astrophysics Data System (ADS)

    Westendorp, Hendrik; Nuver, Tonnis T.; Moerland, Marinus A.; Minken, André W.

    2015-10-01

    The geometry of a permanent prostate implant varies over time. Seeds can migrate and edema of the prostate affects the position of seeds. Seed movements directly influence dosimetry which relates to treatment quality. We present a method that tracks all individual seeds over time allowing quantification of seed movements. This linking procedure was tested on transrectal ultrasound (TRUS) and cone-beam CT (CBCT) datasets of 699 patients. These datasets were acquired intraoperatively during a dynamic implantation procedure, that combines both imaging modalities. The procedure was subdivided in four automatic linking steps. (I) The Hungarian Algorithm was applied to initially link seeds in CBCT and the corresponding TRUS datasets. (II) Strands were identified and optimized based on curvature and linefits: non optimal links were removed. (III) The positions of unlinked seeds were reviewed and were linked to incomplete strands if within curvature- and distance-thresholds. (IV) Finally, seeds close to strands were linked, also if the curvature-threshold was violated. After linking the seeds an affine transformation was applied. The procedure was repeated until the results were stable or the 6th iteration ended. All results were visually reviewed for mismatches and uncertainties. Eleven implants showed a mismatch and in 12 cases an uncertainty was identified. On average the linking procedure took 42 ms per case. This accurate and fast method has the potential to be used for other time spans, like Day 30, and other imaging modalities. It can potentially be used during a dynamic implantation procedure to faster and better evaluate the quality of the permanent prostate implant.

  10. A new method for tracking organ motion on diagnostic ultrasound images

    SciTech Connect

    Kubota, Yoshiki Matsumura, Akihiko; Fukahori, Mai; Minohara, Shin-ichi; Yasuda, Shigeo; Nagahashi, Hiroshi

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather than organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and

  11. A Novel Method for Determining the Phase of T-Wave Alternans: Diagnostic and Therapeutic Implications

    PubMed Central

    Sayadi, Omid; Merchant, Faisal M.; Puppala, Dheeraj; Mela, Theofanie; Singh, Jagmeet P.; Heist, E. Kevin; Owen, Chris; Armoundas, Antonis A.

    2013-01-01

    Background T-wave alternans (TWA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death (SCD). However, in order to effectively estimate and suppress TWA, the phase of TWA must be accurately determined. Methods and Results We developed a method that computes the beat-by-beat integral of the T-wave morphology, over time points within the T-wave with positive alternans. Then, we estimated the signed derivative of the T-wave integral sequence which allows the classification of each beat to a binary phase index. In animal studies, we found that this method was able to accurately identify the T-wave phase in artificially induced alternans (p<0.0001). The coherence of the phase increased consistently after acute ischemia induction in all body-surface and intracardiac leads (p<0.0001). Also, we developed a phase resetting detection algorithm that enhances the diagnostic utility of TWA. We further established an algorithm that employs the phase of TWA in order to deliver appropriate polarity pacing pulses (all interventions compared to baseline, p<0.0001 for alternans voltage; p<0.0001 for Kscore), to suppress TWA. Finally, we demonstrated that using the phase of TWA we can suppress spontaneous TWA during acute ischemia; 77.6% for alternans voltage (p<0.0001) and 92.5% for Kscore (p<0.0001). Conclusions We developed a method to quantify the temporal variability of the TWA phase. This method is expected to enhance the utility of TWA in predicting ventricular arrhythmias and SCD and raises the possibility of using upstream therapies to abort a ventricular tachyarrhythmia prior to its onset. PMID:23884196

  12. A Generalized Subspace Least Mean Square Method for High-resolution Accurate Estimation of Power System Oscillation Modes

    SciTech Connect

    Zhang, Peng; Zhou, Ning; Abdollahi, Ali

    2013-09-10

    A Generalized Subspace-Least Mean Square (GSLMS) method is presented for accurate and robust estimation of oscillation modes from exponentially damped power system signals. The method is based on orthogonality of signal and noise eigenvectors of the signal autocorrelation matrix. Performance of the proposed method is evaluated using Monte Carlo simulation and compared with Prony method. Test results show that the GSLMS is highly resilient to noise and significantly dominates Prony method in tracking power system modes under noisy environments.

  13. A Method for Deriving Accurate Gas-Phase Abundances for the Multiphase Interstellar Galactic Halo

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Sembach, Kenneth R.; Savage, Blair D.

    2006-01-01

    We describe a new method for accurately determining total gas-phase abundances for the Galactic halo interstellar medium with minimal ionization uncertainties. For sight lines toward globular clusters containing both ultraviolet-bright stars and radio pulsars, it is possible to measure column densities of H I and several ionization states of selected metals using ultraviolet absorption line measurements and of H II using radio dispersion measurements. By measuring the ionized hydrogen column, we minimize ionization uncertainties that plague abundance measurements of Galactic halo gas. We apply this method for the first time to the sight line toward the globular cluster Messier 3 [(l,b)=(42.2d,+78.7d), d=10.2 kpc, z=10.0 kpc] using Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope ultraviolet spectroscopy of the post-asymptotic giant branch star von Zeipel 1128 and radio observations by Ransom et al. of recently discovered millisecond pulsars. The fraction of hydrogen associated with ionized gas along this sight line is 45%+/-5%, with the warm (T~104 K) and hot (T>~105 K) ionized phases present in roughly a 5:1 ratio. This is the highest measured fraction of ionized hydrogen along a high-latitude pulsar sight line. We derive total gas-phase abundances logN(S)/N(H)=-4.87+/-0.03 and logN(Fe)/N(H)=-5.27+/-0.05. Our derived sulfur abundance is in excellent agreement with recent solar system determinations of Asplund, Grevesse, & Sauval. However, it is -0.14 dex below the solar system abundance typically adopted in studies of the interstellar medium. The iron abundance is ~-0.7 dex below the solar system abundance, consistent with the significant incorporation of iron into interstellar grains. Abundance estimates derived by simply comparing S II and Fe II to H I are +0.17 and +0.11 dex higher, respectively, than the abundance estimates derived from our refined approach. Ionization corrections to the gas-phase abundances measured in the standard way are

  14. [Cognitive functions, their development and modern diagnostic methods].

    PubMed

    Klasik, Adam; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Augustyniak, Ewa

    2006-01-01

    provided a theory. The psychometric approach concentrates on studying the differences in intelligence. The aim of this approach is to test intelligence by means of standardized tests (e.g. WISC-R, WAIS-R) used to show the individual differences among humans. Human cognitive functions determine individuals' adaptation capabilities and disturbances in this area indicate a number of psychopathological changes and are a symptom enabling to differentiate or diagnose one with a disorder. That is why the psychological assessment of cognitive functions is an important part of patients' diagnosis. Contemporary neuropsychological studies are to a great extent based computer tests. The use of computer methods has a number of measurement-related advantages. It allows for standardized testing environment, increasing therefore its reliability and standardizes the patient assessment process. Special attention should be paid to the neuropsychological tests included in the Vienna Test System (Cognitron, SIGNAL, RT, VIGIL, DAUF), which are used to assess the operational memory span, learning processes, reaction time, attention selective function, attention continuity as well as attention interference resistance. It also seems justified to present the CPT id test (Continuous Performance Test) as well as Free Recall. CPT is a diagnostic tool used to assess the attention selective function, attention continuity of attention, attention interference resistance as well as attention alertness. The Free Recall test is used in the memory processes diagnostics to assess patients' operational memory as well as the information organization degree in operational memory. The above mentioned neuropsychological tests are tools used in clinical assessment of cognitive function disorders. PMID:17471820

  15. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  16. Comparison of Self-Instruction Methods for Teaching Diagnostic Testing.

    ERIC Educational Resources Information Center

    Puskas, Jane C.

    1991-01-01

    Self-teaching booklets and computer media were evaluated for teaching diagnostic testing with first (n=49), second (n=41) and third year (n=71) dental students as a foundation for further development of clinical decision-making skills. Results found the media more effective than no instruction and equally effective to the traditional lecture…

  17. Sherlock Holmes' methods of deductive reasoning applied to medical diagnostics.

    PubMed

    Miller, L

    1985-03-01

    Having patterned the character of Sherlock Holmes after one of his professors, Sir Arthur Conan Doyle, himself a physician, incorporated many of the didactic qualities of the 19th century medical diagnostician into the character of Holmes. In this paper I explore Holmes's techniques of deductive reasoning and their basis in 19th and 20th century medical diagnostics. PMID:3887762

  18. Sherlock Holmes's Methods of Deductive Reasoning Applied to Medical Diagnostics

    PubMed Central

    Miller, Larry

    1985-01-01

    Having patterned the character of Sherlock Holmes after one of his professors, Sir Arthur Conan Doyle, himself a physician, incorporated many of the didactic qualities of the 19th century medical diagnostician into the character of Holmes. In this paper I explore Holmes's techniques of deductive reasoning and their basis in 19th and 20th century medical diagnostics. PMID:3887762

  19. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  20. A spectrally accurate method for overlapping grid solution of incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.; Peet, Yulia T.; Fischer, Paul F.; Lottes, James W.

    2016-02-01

    An overlapping mesh methodology that is spectrally accurate in space and up to third-order accurate in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The ability to decompose a global domain into separate, but overlapping, subdomains eases mesh generation procedures and increases flexibility of modeling flows with complex geometries. The methodology employs implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. The overlapping mesh methodology is thoroughly validated using two-dimensional and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal convergence is documented and is in agreement with the nominal order of accuracy of the solver. The influence of long integration times, as well as inflow-outflow global boundary conditions on the performance of the overlapping grid solver is assessed. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics with the overlapping grids is validated against published available experimental and other computation data. Scaling tests are presented that show near linear strong scaling, even for moderately large processor counts.

  1. [Survey of studies on adjuvant diagnostic method of stimulating auricular points at home and abroad].

    PubMed

    Chen, Gong-Sun; Hu, Zhi-Hui; Zhu, Bing

    2007-12-01

    The auricular (including auricular acupoints) adjuvant diagnostic method, besides inspection (including dyeing method), palpation (including thermometric method), tenderness method (including impressing method) and electrical detection, includes the adjuvant diagnostic method of stimulating auricular points as well, it has been mostly studied and used by specialists of western medicine or doctors of integrated Chinese and western medicine. But it hasn't been introduced in the published Chinese monographs of auricular acupuncture yet. This article briefly introduces the adjuvant diagnostic method of stimulating auricular points combined with X-ray radiography; application in fetal heart electronic monitoring and fetal biophysical monitoring; and diagnostic methods of auricle reflex, vascular autonomous signals, and auricle and somatic 7 frequency response regions, which began to be researched abroad 35 years ago. The authors hope it will give some invigoration or illumination to my colleagues in acupuncture, especially those who are interested in auricular acupuncture. PMID:18271243

  2. Speckle methods for diagnostics of the human oral cavity

    NASA Astrophysics Data System (ADS)

    Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.

    1999-11-01

    Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the degree of seriousness of diseases has been studied in experiments in vivo. Behavior of spectral moments of measuring signal during the treatment of parodontitis has been analyzed.

  3. Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation

    NASA Astrophysics Data System (ADS)

    Vizireanu, D. N.; Halunga, S. V.

    2012-04-01

    A simple, fast and accurate amplitude estimation algorithm of sinusoidal signals for DSP based instrumentation is proposed. It is shown that eight samples, used in two steps, are sufficient. A practical analytical formula for amplitude estimation is obtained. Numerical results are presented. Simulations have been performed when the sampled signal is affected by white Gaussian noise and when the samples are quantized on a given number of bits.

  4. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  5. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  6. [THE METHODICAL APPROACHES TO DIAGNOSTIC OF NIGHT PAROXYSMAL HEMOGLOBINURIA].

    PubMed

    Plekhanova, O S; Naumova, E V; Lugovskaya, S A; Potchtar, M E; Bugrov, I Yu; Dolgov, V V

    2016-03-01

    The article presents diagnostic of night paroxysmal hemoglobinuria. The night paroxysmal hemoglobinuria is an orphan disease characterized by absence of GPI-anchor on blood cells as a result of mutation of PIG-A gene on the short arm of X-chromosome. The particular proteins bounded with GPI-anchor implement function of defense from activation of components of complement and development of membrane-attacking complex. The erythrocytes exposed to destruction in bloodstream are among the most impacted. Therefore, one of the main signs of night paroxysmal hemoglobinuria is complement-depending intravascular hemolysis which indicators for a long time played a key role in diagnostic of night paroxysmal hemoglobinuria. The actual technique of diagnostic of night paroxysmal hemoglobinuria is flow cytometry. The analysis of night paroxysmal hemoglobinuria clone is recommended to patients with hemolysis of unclear genesis, thrombosis of cerebral and abdominal veins, thrombocytopenia and macrocytosis and also patients with AA, myelodysplastic syndrome, myelofibrosis. The international protocol recommended by the International Society of Clinical Cytometry (2010) is implemented to diagnose night paroxysmal hemoglobinuria. The original technique of evaluation of reticulocytes was developed with purpose to detect night paroxysmal hemoglobinuria clone. The high correlation was substantiated between size of night paroxysmal hemoglobinuria clone measured among reticulocytes according to proposed mode and night paroxysmal hemoglobinuria clone measured among granulocytes and monocytes detected according international standardized approach. PMID:27506106

  7. Method matters: Understanding diagnostic reliability in DSM-IV and DSM-5.

    PubMed

    Chmielewski, Michael; Clark, Lee Anna; Bagby, R Michael; Watson, David

    2015-08-01

    Diagnostic reliability is essential for the science and practice of psychology, in part because reliability is necessary for validity. Recently, the DSM-5 field trials documented lower diagnostic reliability than past field trials and the general research literature, resulting in substantial criticism of the DSM-5 diagnostic criteria. Rather than indicating specific problems with DSM-5, however, the field trials may have revealed long-standing diagnostic issues that have been hidden due to a reliance on audio/video recordings for estimating reliability. We estimated the reliability of DSM-IV diagnoses using both the standard audio-recording method and the test-retest method used in the DSM-5 field trials, in which different clinicians conduct separate interviews. Psychiatric patients (N = 339) were diagnosed using the SCID-I/P; 218 were diagnosed a second time by an independent interviewer. Diagnostic reliability using the audio-recording method (N = 49) was "good" to "excellent" (M κ = .80) and comparable to the DSM-IV field trials estimates. Reliability using the test-retest method (N = 218) was "poor" to "fair" (M κ = .47) and similar to DSM-5 field-trials' estimates. Despite low test-retest diagnostic reliability, self-reported symptoms were highly stable. Moreover, there was no association between change in self-report and change in diagnostic status. These results demonstrate the influence of method on estimates of diagnostic reliability. PMID:26098046

  8. Diagnostic methods for invasive fungal diseases in patients with hematologic malignancies

    PubMed Central

    Riwes, Mary Mansour; Wingard, John R

    2013-01-01

    Invasive fungal disease is associated with increased morbidity and mortality in hematologic malignancy patients and hematopoietic stem cell transplant recipients. Timely recognition and treatment of invasive fungal diseases in these patients are essential and decrease mortality. However, conventional definitive diagnostic methods are difficult and time consuming. While conventional microbiological and histopathological methods are still needed for a definitive diagnosis of invasive fungal disease, new noninvasive diagnostic methods including serologic and molecular biomarkers are now available. These new diagnostic methods facilitate an early diagnosis of invasive fungal disease and allow for utilization of a pre-emptive treatment approach, which may ultimately lead to improved treatment outcomes and reduced toxicity. PMID:23216596

  9. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  10. Jet Noise Diagnostics Supporting Statistical Noise Prediction Methods

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity. NASA has been investing in development of statistical jet noise prediction tools because these seem to fit the middle ground that allows enough flexibility and fidelity for jet noise source diagnostics while having reasonable computational requirements. These tools rely on Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) solutions as input for computing far-field spectral directivity using an acoustic analogy. There are many ways acoustic analogies can be created, each with a series of assumptions and models, many often taken unknowingly. And the resulting prediction can be easily reverse-engineered by altering the models contained within. However, only an approach which is mathematically sound, with assumptions validated and modeled quantities checked against direct measurement will give consistently correct answers. Many quantities are modeled in acoustic analogies precisely because they have been impossible to measure or calculate, making this requirement a difficult task. The NASA team has spent considerable effort identifying all the assumptions and models used to take the Navier-Stokes equations to the point of a statistical calculation via an acoustic analogy very similar to that proposed by Lilley. Assumptions have been identified and experiments have been developed to test these assumptions. In some cases this has resulted in assumptions being changed. Beginning with the CFD used as input to the acoustic analogy, models for turbulence closure used in RANS CFD codes have been explored and

  11. The Revised Research Diagnostic Criteria for Temporomandibular Disorders: Methods used to Establish and Validate Revised Axis I Diagnostic Algorithms

    PubMed Central

    Schiffman, Eric L.; Ohrbach, Richard; Truelove, Edmond L.; Feng, Tai; Anderson, Gary C.; Pan, Wei; Gonzalez, Yoly M.; John, Mike T.; Sommers, Earl; List, Thomas; Velly, Ana M.; Kang, Wenjun; Look, John O.

    2011-01-01

    AIMS To derive reliable and valid revised Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) Axis I diagnostic algorithms for clinical TMD diagnoses. METHODS The multi-site RDC/TMD Validation Project’s dataset (614 TMD community and clinic cases, and 91 controls) was used to derive revised algorithms for Axis I TMD diagnoses. Validity of diagnostic algorithms was assessed relative to reference standards, the latter based on consensus diagnoses rendered by 2 TMD experts using criterion examination data, including temporomandibular joint imaging. Cut-offs for target validity were sensitivity ≥ 0.70 and specificity ≥ 0.95. Reliability of revised algorithms was assessed in 27 study participants. RESULTS Revised algorithm sensitivity and specificity exceeded the target levels for myofascial pain (0.82, 0.99, respectively) and myofascial pain with limited opening (0.93, 0.97). Combining diagnoses for any myofascial pain showed sensitivity of 0.91 and specificity of 1.00. For joint pain, target sensitivity and specificity were observed (0.92, 0.96) when arthralgia and osteoarthritis were combined as “any joint pain.” Disc displacement without reduction with limited opening demonstrated target sensitivity and specificity (0.80, 0.97). For the other Group II disc displacements and Group III osteoarthritis and osteoarthrosis, sensitivity was below target (0.35 to 0.53), and specificity ranged from 0.80 to meeting target. Kappa for revised algorithm diagnostic reliability was ≥ 0.63. CONCLUSION Revised RDC/TMD Axis I TMD diagnostic algorithms are recommended for myofascial pain and joint pain as reliable and valid. However, revised clinical criteria alone, without recourse to imaging, are inadequate for valid diagnosis of two of the three disc displacements and osteoarthritis/osteoarthrosis. PMID:20213032

  12. Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania.

    PubMed

    Knopp, Stefanie; Salim, Nahya; Schindler, Tobias; Karagiannis Voules, Dimitrios A; Rothen, Julian; Lweno, Omar; Mohammed, Alisa S; Singo, Raymond; Benninghoff, Myrna; Nsojo, Anthony A; Genton, Blaise; Daubenberger, Claudia

    2014-03-01

    Sensitive diagnostic tools are crucial for an accurate assessment of helminth infections in low-endemicity areas. We examined stool samples from Tanzanian individuals and compared the diagnostic accuracy of a real-time polymerase chain reaction (PCR) with the FLOTAC technique and the Kato-Katz method for hookworm and the Baermann method for Strongyloides stercoralis detection. Only FLOTAC had a higher sensitivity than the Kato-Katz method for hookworm diagnosis; the sensitivities of PCR and the Kato-Katz method were equal. PCR had a very low sensitivity for S. stercoralis detection. The cycle threshold values of the PCR were negatively correlated with the logarithm of hookworm egg and S. stercoralis larvae counts. The median larvae count was significantly lower in PCR false negatives than true positives. All methods failed to detect very low-intensity infections. New diagnostic approaches are needed for monitoring of progressing helminth control programs, confirmation of elimination, or surveillance of disease recrudescence. PMID:24445211

  13. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  14. Diagnostic efficacy of in vitro methods vs. skin testing in patients with inhalant allergies

    SciTech Connect

    Corey, J.P.; Liudahl, J.J.; Young, S.A.; Rodman, S.M. )

    1991-03-01

    The purpose of our study was to investigate the diagnostic efficacy of two selected methods of in vitro allergy testing. Specifically, the PRIST/modified RAST I125 isotope systems and the Quantizyme/modified EAST alkaline phosphatase method were compared. The time, expense, convenience, and diagnostic efficacy of the two procedures are discussed. Special attention is given to the practicality of each method for the practicing physician.

  15. Correcting errors in the optical path difference in Fourier spectroscopy: a new accurate method.

    PubMed

    Kauppinen, J; Kärkköinen, T; Kyrö, E

    1978-05-15

    A new computational method for calculating and correcting the errors of the optical path difference in Fourier spectrometers is presented. This method only requires an one-sided interferogram and a single well-separated line in the spectrum. The method also cancels out the linear phase error. The practical theory of the method is included, and an example of the progress of the method is illustrated by simulations. The method is also verified by several simulations in order to estimate its usefulness and accuracy. An example of the use of this method in practice is also given. PMID:20198027

  16. Benchmarking Gas Path Diagnostic Methods: A Public Approach

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene

    2008-01-01

    Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.

  17. Development of wide area environment accelerator operation and diagnostics method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  18. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2015-02-01

    A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. PMID:25449112

  19. Estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers.

    PubMed

    Shen, Yan; Lou, Shuqin; Wang, Xin

    2014-03-20

    The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters. PMID:24663461

  20. Application of modern diagnostic methods to environmental improvement. Annual progress report, October 1994--September 1995

    SciTech Connect

    Shepard, W.S.

    1995-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), an interdisciplinary research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to aid in solving DOE`s nuclear waste problem. The program is a comprehensive effort which includes five focus areas: advanced diagnostic systems; development/application; torch operation and test facilities; process development; on-site field measurement and analysis; technology transfer/commercialization. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and process control. Also, the measured parameters, will be employed to improve, optimize and control the operation of the plasma torch and the overall plasma treatment process. Moreover, on-site field measurements at various DOE facilities are carried out to aid in the rapid demonstration and implementation of modern fieldable diagnostic methods. Such efforts also provide a basis for technology transfer.

  1. Novel methods for accurate identification, isolation, and genomic analysis of symptomatic microenvironments in atherosclerotic arteries.

    PubMed

    Slevin, Mark; Baldellou, Maribel; Hill, Elspeth; Alexander, Yvonne; McDowell, Garry; Murgatroyd, Christopher; Carroll, Michael; Degens, Hans; Krupinski, Jerzy; Rovira, Norma; Chowdhury, Mohammad; Serracino-Inglott, Ferdinand; Badimon, Lina

    2014-01-01

    A challenge facing surgeons is identification and selection of patients for carotid endarterectomy or coronary artery bypass/surgical intervention. While some patients with atherosclerosis develop unstable plaques liable to undergo thrombosis, others form more stable plaques and are asymptomatic. Identification of the cellular signaling mechanisms associated with production of the inflammatory, hemorrhagic lesions of mature heterogenic plaques will help significantly in our understanding of the differences in microenvironment associated with development of regions susceptible to rupture and thrombosis and may help to predict the risk of plaque rupture and guide surgical intervention to patients who will most benefit. Here, we demonstrate detailed and novel methodologies for successful and, more importantly, accurate and reproducible extraction, sampling, and analysis of micro-regions in stable and unstable coronary/carotid arteries. This information can be applied to samples from other origins and so should be useful for scientists working with micro-isolation techniques in all fields of biomedical science. PMID:24510873

  2. Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods.

    PubMed

    Abate-Pella, Daniel; Freund, Dana M; Ma, Yan; Simón-Manso, Yamil; Hollender, Juliane; Broeckling, Corey D; Huhman, David V; Krokhin, Oleg V; Stoll, Dwight R; Hegeman, Adrian D; Kind, Tobias; Fiehn, Oliver; Schymanski, Emma L; Prenni, Jessica E; Sumner, Lloyd W; Boswell, Paul G

    2015-09-18

    Identification of small molecules by liquid chromatography-mass spectrometry (LC-MS) can be greatly improved if the chromatographic retention information is used along with mass spectral information to narrow down the lists of candidates. Linear retention indexing remains the standard for sharing retention data across labs, but it is unreliable because it cannot properly account for differences in the experimental conditions used by various labs, even when the differences are relatively small and unintentional. On the other hand, an approach called "retention projection" properly accounts for many intentional differences in experimental conditions, and when combined with a "back-calculation" methodology described recently, it also accounts for unintentional differences. In this study, the accuracy of this methodology is compared with linear retention indexing across eight different labs. When each lab ran a test mixture under a range of multi-segment gradients and flow rates they selected independently, retention projections averaged 22-fold more accurate for uncharged compounds because they properly accounted for these intentional differences, which were more pronounced in steep gradients. When each lab ran the test mixture under nominally the same conditions, which is the ideal situation to reproduce linear retention indices, retention projections still averaged 2-fold more accurate because they properly accounted for many unintentional differences between the LC systems. To the best of our knowledge, this is the most successful study to date aiming to calculate (or even just to reproduce) LC gradient retention across labs, and it is the only study in which retention was reliably calculated under various multi-segment gradients and flow rates chosen independently by labs. PMID:26292625

  3. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  4. Evaluation of triple stage mass spectrometry as a robust and accurate diagnostic tool for determination of free cordycepin in designer egg.

    PubMed

    Chen, Yi Hsin; Lim, Chee Wei; Chan, Sheot Harn

    2014-05-01

    Direct determination of free cordycepin in designer egg using a highly selective mass spectrometric (MS) technique aided by a rapid and efficient dilute-and-shoot workflow would enhance their application as diagnostic tools in food fraud control. Here, triple stage mass spectrometry (MS(3)) demonstrated excellent analyte selectivity capability even when incomplete chromatographic separation was performed. Method validation was performed at six concentration levels of 100, 200, 400, 800, 1200 and 1600ngg(-1). Spiking experiments were examined at three concentration levels of 200, 400, and 1200ngg(-1) in individual egg white and egg yolk, measured over 2days. MS(3) enabled ion chromatograms with zero-background interference to be made in egg extracts. MS(3) eliminated severe over recovery (p<0.05) observed in all fortified samples, a challenge that MRM-transition could not address in a single step. Matrix-matched calibrants were needed to compensate for over recovery observed under MRM-transition mode. PMID:24360442

  5. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    1999-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  6. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    2000-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  7. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules IV: Electron-Propagator Methods.

    PubMed

    Dolgounitcheva, O; Díaz-Tinoco, Manuel; Zakrzewski, V G; Richard, Ryan M; Marom, Noa; Sherrill, C David; Ortiz, J V

    2016-02-01

    Comparison of ab initio electron-propagator predictions of vertical ionization potentials and electron affinities of organic, acceptor molecules with benchmark calculations based on the basis set-extrapolated, coupled cluster single, double, and perturbative triple substitution method has enabled identification of self-energy approximations with mean, unsigned errors between 0.1 and 0.2 eV. Among the self-energy approximations that neglect off-diagonal elements in the canonical, Hartree-Fock orbital basis, the P3 method for electron affinities, and the P3+ method for ionization potentials provide the best combination of accuracy and computational efficiency. For approximations that consider the full self-energy matrix, the NR2 methods offer the best performance. The P3+ and NR2 methods successfully identify the correct symmetry label of the lowest cationic state in two cases, naphthalenedione and benzoquinone, where some other methods fail. PMID:26730459

  8. A New Cation-Exchange Method for Accurate Field Speciation of Hexavalent Chromium

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine

    2003-01-01

    A new cation-exchange method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The new method allows measurement of Cr(VI) concentrations as low as 0.05 micrograms per liter, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. The sensitivity, accuracy, and precision of the determination in waters over the pH range of 2 to 11 and Fe concentrations up to 1 milligram per liter are equal to or better than existing methods such as USEPA method 218.6. Time stability of preserved samples is a significant advantage over the 24-hour time constraint specified for USEPA method 218.6.

  9. Accurate and efficient Nyström volume integral equation method for the Maxwell equations for multiple 3-D scatterers

    NASA Astrophysics Data System (ADS)

    Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung

    2016-09-01

    In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.

  10. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  11. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    PubMed Central

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-01-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course. PMID:27010238

  12. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods.

    PubMed

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P

    2016-01-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course. PMID:27010238

  13. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    NASA Astrophysics Data System (ADS)

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; MacNaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-03-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  14. TROP-2 immunohistochemistry: a highly accurate method in the differential diagnosis of papillary thyroid carcinoma.

    PubMed

    Bychkov, Andrey; Sampatanukul, Pichet; Shuangshoti, Shanop; Keelawat, Somboon

    2016-08-01

    We aimed to evaluate the diagnostic utility of the novel immunohistochemical marker TROP-2 on thyroid specimens (226 tumours and 207 controls). Whole slide immunohistochemistry was performed and scored by automated digital image analysis. Non-neoplastic thyroid, follicular adenomas, follicular carcinomas, and medullary carcinomas were negative for TROP-2 immunostaining. The majority of papillary thyroid carcinoma (PTC) specimens (94/114, 82.5%) were positive for TROP-2; however, the pattern of staining differed significantly between the histopathological variants. All papillary microcarcinomas (mPTC), PTC classic variant (PTC cv), and tall cell variant (PTC tcv) were TROP-2 positive, with mainly diffuse staining. In contrast, less than half of the PTC follicular variant specimens were positive for TROP-2, with only focal immunoreactivity. TROP-2 could identify PTC cv with 98.1% sensitivity and 97.5% specificity. ROC curve analysis found that the presence of >10% of TROP-2 positive cells in a tumour supported a diagnosis of PTC. The study of intratumoural heterogeneity showed that low-volume cytological samples of PTC cv could be adequately assessed by TROP-2 immunostaining. The TROP-2 H-score (intensity multiplied by proportion) was significantly associated with PTC variant and capsular invasion in encapsulated PTC follicular variant (p<0.001). None of the baseline (age, gender) and clinical (tumour size, nodal disease, stage) parameters were correlated with TROP-2 expression. In conclusion, TROP-2 membranous staining is a very sensitive and specific marker for PTC cv, PTC tcv, and mPTC, with high overall specificity for PTC. PMID:27311870

  15. An accurate method for the determination of carboxyhemoglobin in postmortem blood using GC-TCD.

    PubMed

    Lewis, Russell J; Johnson, Robert D; Canfield, Dennis V

    2004-01-01

    During the investigation of aviation accidents, postmortem samples from accident victims are submitted to the FAA's Civil Aerospace Medical Institute for toxicological analysis. In order to determine if an accident victim was exposed to an in-flight/postcrash fire or faulty heating/exhaust system, the analysis of carbon monoxide (CO) is conducted. Although our laboratory predominantly uses a spectrophotometric method for the determination of carboxyhemoglobin (COHb), we consider it essential to confirm with a second technique based on a different analytical principle. Our laboratory encountered difficulties with many of our postmortem samples while employing a commonly used GC method. We believed these problems were due to elevated methemoglobin (MetHb) concentration in our specimens. MetHb does not bind CO; therefore, elevated MetHb levels will result in a loss of CO-binding capacity. Because most commonly employed GC methods determine %COHb from a ratio of unsaturated blood to CO-saturated blood, a loss of CO-binding capacity will result in an erroneously high %COHb value. Our laboratory has developed a new GC method for the determination of %COHb that incorporates sodium dithionite, which will reduce any MetHb present to Hb. Using blood controls ranging from 1% to 67% COHb, we found no statistically significant differences between %COHb results from our new GC method and our spectrophotometric method. To validate the new GC method, postmortem samples were analyzed with our existing spectrophotometric method, a GC method commonly used without reducing agent, and our new GC method with the addition of sodium dithionite. As expected, we saw errors up to and exceeding 50% when comparing the unreduced GC results with our spectrophotometric method. With our new GC procedure, the error was virtually eliminated. PMID:14987426

  16. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  17. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC

    2009-06-19

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.

  18. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  19. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    SciTech Connect

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  20. A method for accurate determination of terminal sequences of viral genomic RNA.

    PubMed

    Weng, Z; Xiong, Z

    1995-09-01

    A combination of ligation-anchored PCR and anchored cDNA cloning techniques were used to clone the termini of the saguaro cactus virus (SCV) RNA genome. The terminal sequences of the viral genome were subsequently determined from the clones. The 5' terminus was cloned by ligation-anchored PCR, whereas the 3' terminus was obtained by a technique we term anchored cDNA cloning. In anchored cDNA cloning, an anchor oligonucleotide was prepared by phosphorylation at the 5' end, followed by addition of a dideoxynucleotide at the 3' end to block the free hydroxyl group. The 5' end of the anchor was subsequently ligated to the 3' end of SCV RNA. The anchor-ligated, chimerical viral RNA was then reverse-transcribed into cDNA using a primer complementary to the anchor. The cDNA containing the complete 3'-terminal sequence was converted into ds-cDNA, cloned, and sequenced. Two restriction sites, one within the viral sequence and one within the primer sequence, were used to facilitate cloning. The combination of these techniques proved to be an easy and accurate way to determine the terminal sequences of SCV RNA genome and should be applicable to any other RNA molecules with unknown terminal sequences. PMID:9132274

  1. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  2. A second-order accurate kinetic-theory-based method for inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Deshpande, Suresh M.

    1986-01-01

    An upwind method for the numerical solution of the Euler equations is presented. This method, called the kinetic numerical method (KNM), is based on the fact that the Euler equations are moments of the Boltzmann equation of the kinetic theory of gases when the distribution function is Maxwellian. The KNM consists of two phases, the convection phase and the collision phase. The method is unconditionally stable and explicit. It is highly vectorizable and can be easily made total variation diminishing for the distribution function by a suitable choice of the interpolation strategy. The method is applied to a one-dimensional shock-propagation problem and to a two-dimensional shock-reflection problem.

  3. Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.

    PubMed

    Cubas, Javier; Pindado, Santiago; Sanz-Andrés, Ángel

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions. PMID:25874262

  4. Accurate Simulation of MPPT Methods Performance When Applied to Commercial Photovoltaic Panels

    PubMed Central

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions. PMID:25874262

  5. Frequency-Domain Methods for Characterization of Pulsed Power Diagnostics

    SciTech Connect

    White, A D; Anderson, R A; Ferriera, T J; Goerz, D A

    2009-07-27

    This paper discusses methods of frequency-domain characterization of pulsed power sensors using vector network analyzer and spectrum analyzer techniques that offer significant simplification over time-domain methods, while mitigating or minimizing the effect of the difficulties present in time domain characterization. These methods are applicable to characterization of a wide variety of sensors.

  6. Fast Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs)

    NASA Astrophysics Data System (ADS)

    Wiźniowski, T.; Rickman, H.

    2013-06-01

    We present a new method to compute Minimum Orbit Intersection Distances (MOIDs) for arbitrary pairs of heliocentric orbits and compare it with Giovanni Gronchi's algebraic method. Our procedure is numerical and iterative, and the MOID configuration is found by geometric scanning and tuning. A basic element is the meridional plane, used for initial scanning, which contains one of the objects and is perpendicular to the orbital plane of the other. Our method also relies on an efficient tuning technique in order to zoom in on the MOID configuration, starting from the first approximation found by scanning. We work with high accuracy and take special care to avoid the risk of missing the MOID, which is inherent to our type of approach. We demonstrate that our method is both fast, reliable and flexible. It is freely available and its source Fortran code downloadable via our web page.

  7. Improved light microscopy counting method for accurately counting Plasmodium parasitemia and reticulocytemia.

    PubMed

    Lim, Caeul; Pereira, Ligia; Shardul, Pritish; Mascarenhas, Anjali; Maki, Jennifer; Rixon, Jordan; Shaw-Saliba, Kathryn; White, John; Silveira, Maria; Gomes, Edwin; Chery, Laura; Rathod, Pradipsinh K; Duraisingh, Manoj T

    2016-08-01

    Even with the advances in molecular or automated methods for detection of red blood cells of interest (such as reticulocytes or parasitized cells), light microscopy continues to be the gold standard especially in laboratories with limited resources. The conventional method for determination of parasitemia and reticulocytemia uses a Miller reticle, a grid with squares of different sizes. However, this method is prone to errors if not used correctly and counts become inaccurate and highly time-consuming at low frequencies of target cells. In this report, we outline the correct guidelines to follow when using a reticle for counting, and present a new counting protocol that is a modified version of the conventional method for increased accuracy in the counting of low parasitemias and reticulocytemias. Am. J. Hematol. 91:852-855, 2016. © 2016 Wiley Periodicals, Inc. PMID:27074559

  8. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  9. Accurate, finite-volume methods for 3D MHD on unstructured Lagrangian meshes

    SciTech Connect

    Barnes, D.C.; Rousculp, C.L.

    1998-10-01

    Previous 2D methods for magnetohydrodynamics (MHD) have contributed both to development of core code capability and to physics applications relevant to AGEX pulsed-power experiments. This strategy is being extended to 3D by development of a modular extension of an ASCI code. Extension to 3D not only increases complexity by problem size, but also introduces new physics, such as magnetic helicity transport. The authors have developed a method which incorporates all known conservation properties into the difference scheme on a Lagrangian unstructured mesh. Because the method does not depend on the mesh structure, mesh refinement is possible during a calculation to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {center_dot} {delta}l, is centered on the edges of this extended mesh. For ideal flow, this maintains {del} {center_dot} B = 0 to round-off error. Vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using the support operator method, to obtain an energy conservative, symmetric method on an arbitrary mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.

  10. Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User's Guide

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    This report is a User's Guide for the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES). ProDiMES is a standard benchmarking problem and a set of evaluation metrics to enable the comparison of candidate aircraft engine gas path diagnostic methods. This Matlab (The Mathworks, Inc.) based software tool enables users to independently develop and evaluate diagnostic methods. Additionally, a set of blind test case data is also distributed as part of the software. This will enable the side-by-side comparison of diagnostic approaches developed by multiple users. The Users Guide describes the various components of ProDiMES, and provides instructions for the installation and operation of the tool.

  11. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    SciTech Connect

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  12. Application of combined rigid choledochoscope and accurate positioning method in the adjuvant treatment of bile duct stones

    PubMed Central

    Wang, Ping; Chen, Xiaowu; Sun, Beiwang; Liu, Yanmin

    2015-01-01

    To explore the clinical effect of percutaneous transhepatic cholangioscopic lithotomy (PTCSL) combined with rigid choledochoscope and accurate positioning in the treatment of calculus of bile duct. This study retrospectively reviewed 162 patients with hepatolithiasis at the First Affiliated Hospital of Guangzhou Medical University between 2001 and 2013 were assigned to hard lens group or traditional PTCSL group. Compared with the traditional PTCSL, PTCSL with rigid choledochoscope can shorten the interval time which limit the PTCSL application. The operation time (45 vs 78, P=0.003), the number of operation (1.62 vs 1.97, P=0.031), and blood loss (37.8 vs 55.1, P=0.022) were better in hard lens group while the stone residual and complication had no significant differences. Rigid choledochoscope is a safe, minimally invasive and effective method in the treatment of bile duct stones. Accurate positioning method can effectively shorten operation process time. PMID:26629183

  13. An accurate and efficient computation method of the hydration free energy of a large, complex molecule

    NASA Astrophysics Data System (ADS)

    Yoshidome, Takashi; Ekimoto, Toru; Matubayasi, Nobuyuki; Harano, Yuichi; Kinoshita, Masahiro; Ikeguchi, Mitsunori

    2015-05-01

    The hydration free energy (HFE) is a crucially important physical quantity to discuss various chemical processes in aqueous solutions. Although an explicit-solvent computation with molecular dynamics (MD) simulations is a preferable treatment of the HFE, huge computational load has been inevitable for large, complex solutes like proteins. In the present paper, we propose an efficient computation method for the HFE. In our method, the HFE is computed as a sum of /2 ( is the ensemble average of the sum of pair interaction energy between solute and water molecule) and the water reorganization term mainly reflecting the excluded volume effect. Since can readily be computed through a MD of the system composed of solute and water, an efficient computation of the latter term leads to a reduction of computational load. We demonstrate that the water reorganization term can quantitatively be calculated using the morphometric approach (MA) which expresses the term as the linear combinations of the four geometric measures of a solute and the corresponding coefficients determined with the energy representation (ER) method. Since the MA enables us to finish the computation of the solvent reorganization term in less than 0.1 s once the coefficients are determined, the use of the MA enables us to provide an efficient computation of the HFE even for large, complex solutes. Through the applications, we find that our method has almost the same quantitative performance as the ER method with substantial reduction of the computational load.

  14. Accurate, finite-volume methods for three dimensional magneto-hydrodynamics on Lagrangian meshes

    SciTech Connect

    Rousculp, C.L.; Barnes, D.C.

    1999-07-01

    Recently developed algorithms for ideal and resistive, 3D MHD calculations on Lagrangian hexahedral meshes have been generalized to work with a lagrangian mesh composed of arbitrary polyhedral cells. this allows for mesh refinement during a calculation to prevent the well known problem of tangling in a Lagrangian mesh. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {sm_bullet} {delta}1, is centered on all faces edges of this extended mesh. Thus, {triangledown} {sm_bullet} B = 0 is maintained to round-off error. For ideal flow, (E = v x B), vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion, (E = {minus}{eta}J), is treated with a support operator method, to obtain an energy conservative, symmetric method on an arbitrary polyhedral mesh. The equation of motion is time-step-split. First, the ideal term is treated explicitly. Next, the diffusion is solved implicitly with a preconditioned conjugate gradient method. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.

  15. More accurate matrix-matched quantification using standard superposition method for herbal medicines.

    PubMed

    Liu, Ying; Shi, Xiao-Wei; Liu, E-Hu; Sheng, Long-Sheng; Qi, Lian-Wen; Li, Ping

    2012-09-01

    Various analytical technologies have been developed for quantitative determination of marker compounds in herbal medicines (HMs). One important issue is matrix effects that must be addressed in method validation for different detections. Unlike biological fluids, blank matrix samples for calibration are usually unavailable for HMs. In this work, practical approaches for minimizing matrix effects in HMs analysis were proposed. The matrix effects in quantitative analysis of five saponins from Panax notoginseng were assessed using high-performance liquid chromatography (HPLC). Matrix components were found to interfere with the ionization of target analytes when mass spectrometry (MS) detection were employed. To compensate the matrix signal suppression/enhancement, two matrix-matched methods, standard addition method with the target-knockout extract and standard superposition method with a HM extract were developed and tested in this work. The results showed that the standard superposition method is simple and practical for overcoming matrix effects for quantitative analysis of HMs. Moreover, the interference components were observed to interfere with light scattering of target analytes when evaporative light scattering detection (ELSD) was utilized for quantitative analysis of HMs but was not indicated when Ultraviolet detection (UV) were employed. Thus, the issue of interference effects should be addressed and minimized for quantitative HPLC-ELSD and HPLC-MS methodologies for quality control of HMs. PMID:22835696

  16. Accurate VoF based curvature evaluation method for low-resolution interface geometries

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Herrmann, Marcus; Desjardins, Olivier

    2014-11-01

    The height function method is a common approach to compute the curvature of a gas-liquid interface in the context of the volume-of-fluid method. While the approach has been shown to produce second-order curvature estimates for many interfaces, the height function method deteriorates when the curvature becomes large and the interface becomes under-resolved by the computational mesh. In this work, we propose a modification to the height function method that improves the curvature calculation for under-resolved structures. The proposed scheme computes heights within columns that are not aligned with the underlying computational mesh but rather the interface normal vector which are found to be more robust for under-resolved interfaces. A computational geometry toolbox is used to compute the heights in the complex geometry that is formed at the intersection of the computational mesh and the columns. The resulting scheme has significantly reduced curvature errors for under-resolved interfaces and recovers the second-order convergence of the standard height function method for well-resolved interfaces.

  17. The Accuracy of Diagnostic Methods for Diabetic Retinopathy: A Systematic Review and Meta-Analysis

    PubMed Central

    Martínez-Vizcaíno, Vicente; Cavero-Redondo, Iván; Álvarez-Bueno, Celia; Rodríguez-Artalejo, Fernando

    2016-01-01

    Objective The objective of this study was to evaluate the accuracy of the recommended glycemic measures for diagnosing diabetic retinopathy. Methods We systematically searched MEDLINE, EMBASE, the Cochrane Library, and the Web of Science databases from inception to July 2015 for observational studies comparing the diagnostic accuracy of glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), and 2-hour plasma glucose (2h-PG). Random effects models for the diagnostic odds ratio (dOR) value computed by Moses’ constant for a linear model and 95% CIs were used to calculate the accuracy of the test. Hierarchical summary receiver operating characteristic curves (HSROC) were used to summarize the overall test performance. Results Eleven published studies were included in the meta-analysis. The pooled dOR values for the diagnosis of retinopathy were 16.32 (95% CI 13.86–19.22) for HbA1c and 4.87 (95% CI 4.39–5.40) for FPG. The area under the HSROC was 0.837 (95% CI 0.781–0.892) for HbA1c and 0.735 (95% CI 0.657–0.813) for FPG. The 95% confidence region for the point that summarizes the overall test performance of the included studies occurs where the cut-offs ranged from 6.1% (43.2 mmol/mol) to 7.8% (61.7 mmol/mol) for HbA1c and from 7.8 to 9.3 mmol/L for FPG. In the four studies that provided information regarding 2h-PG, the pooled accuracy estimates for HbA1c were similar to those of 2h-PG; the overall performance for HbA1c was superior to that for FPG. Conclusions The three recommended tests for the diagnosis of type 2 diabetes in nonpregnant adults showed sufficient accuracy for their use in clinical settings, although the overall accuracy for the diagnosis of retinopathy was similar for HbA1c and 2h-PG, which were both more accurate than for FPG. Due to the variability and inconveniences of the glucose level-based methods, HbA1c appears to be the most appropriate method for the diagnosis diabetic retinopathy. PMID:27123641

  18. Simple, Precise and Accurate HPLC Method of Analysis for Nevirapine Suspension from Human Plasma

    PubMed Central

    Halde, S.; Mungantiwar, A.; Chintamaneni, M.

    2011-01-01

    A selective and sensitive high performance liquid chromatography with UV detector (HPLC-UV) method was developed and validated from human plasma. Nevirapine and internal standard (IS) zidovudine were extracted from human plasma by liquid-liquid extraction process using methyl tert-butyl ether. The samples were analysed using Inertsil ODS 3, 250×4.6 mm, 5 μ column using a mobile phase consists of 50 mM sodium acetate buffer solution (pH-4.00±0.05): acetonitrile (73:27 v/v). The method was validated over a concentration range of 50.00 ng/ml to 3998.96 ng/ml. The method was successfully applied to bioequivalence study of 10 ml single dose nevirapine oral suspension 50 mg/5 ml in healthy male volunteers. PMID:22707826

  19. Highly effective and accurate weak point monitoring method for advanced design rule (1x nm) devices

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongho; Seong, ShiJin; Yoon, Minjung; Park, Il-Suk; Kim, HyungSeop; Ihm, Dongchul; Chin, Soobok; Sivaraman, Gangadharan; Li, Mingwei; Babulnath, Raghav; Lee, Chang Ho; Kurada, Satya; Brown, Christine; Galani, Rajiv; Kim, JaeHyun

    2014-04-01

    Historically when we used to manufacture semiconductor devices for 45 nm or above design rules, IC manufacturing yield was mainly determined by global random variations and therefore the chip manufacturers / manufacturing team were mainly responsible for yield improvement. With the introduction of sub-45 nm semiconductor technologies, yield started to be dominated by systematic variations, primarily centered on resolution problems, copper/low-k interconnects and CMP. These local systematic variations, which have become decisively greater than global random variations, are design-dependent [1, 2] and therefore designers now share the responsibility of increasing yield with manufacturers / manufacturing teams. A widening manufacturing gap has led to a dramatic increase in design rules that are either too restrictive or do not guarantee a litho/etch hotspot-free design. The semiconductor industry is currently limited to 193 nm scanners and no relief is expected from the equipment side to prevent / eliminate these systematic hotspots. Hence we have seen a lot of design houses coming up with innovative design products to check hotspots based on model based lithography checks to validate design manufacturability, which will also account for complex two-dimensional effects that stem from aggressive scaling of 193 nm lithography. Most of these hotspots (a.k.a., weak points) are especially seen on Back End of the Line (BEOL) process levels like Mx ADI, Mx Etch and Mx CMP. Inspecting some of these BEOL levels can be extremely challenging as there are lots of wafer noises or nuisances that can hinder an inspector's ability to detect and monitor the defects or weak points of interest. In this work we have attempted to accurately inspect the weak points using a novel broadband plasma optical inspection approach that enhances defect signal from patterns of interest (POI) and precisely suppresses surrounding wafer noises. This new approach is a paradigm shift in wafer inspection

  20. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    NASA Astrophysics Data System (ADS)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  1. Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Soh, Woo Y.

    1992-01-01

    A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.

  2. Tokamak physics studies using x-ray diagnostic methods

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

  3. Which Method Is Most Precise; Which Is Most Accurate? An Undergraduate Experiment

    ERIC Educational Resources Information Center

    Jordan, A. D.

    2007-01-01

    A simple experiment, the determination of the density of a liquid by several methods, is presented. Since the concept of density is a familiar one, the experiment is suitable for the introductory laboratory period of a first- or second-year course in physical or analytical chemistry. The main objective of the experiment is to familiarize students…

  4. Accurate analytical method for the extraction of solar cell model parameters

    NASA Astrophysics Data System (ADS)

    Phang, J. C. H.; Chan, D. S. H.; Phillips, J. R.

    1984-05-01

    Single diode solar cell model parameters are rapidly extracted from experimental data by means of the presently derived analytical expressions. The parameter values obtained have a less than 5 percent error for most solar cells, in light of the extraction of model parameters for two cells of differing quality which were compared with parameters extracted by means of the iterative method.

  5. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  6. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  7. Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement.

    PubMed

    Reese, Matthew O; Dameron, Arrelaine A; Kempe, Michael D

    2011-08-01

    The development of flexible organic light emitting diode displays and flexible thin film photovoltaic devices is dependent on the use of flexible, low-cost, optically transparent and durable barriers to moisture and/or oxygen. It is estimated that this will require high moisture barriers with water vapor transmission rates (WVTR) between 10(-4) and 10(-6) g/m(2)/day. Thus there is a need to develop a relatively fast, low-cost, and quantitative method to evaluate such low permeation rates. Here, we demonstrate a method where the resistance changes of patterned Ca films, upon reaction with moisture, enable one to calculate a WVTR between 10 and 10(-6) g/m(2)/day or better. Samples are configured with variable aperture size such that the sensitivity and/or measurement time of the experiment can be controlled. The samples are connected to a data acquisition system by means of individual signal cables permitting samples to be tested under a variety of conditions in multiple environmental chambers. An edge card connector is used to connect samples to the measurement wires enabling easy switching of samples in and out of test. This measurement method can be conducted with as little as 1 h of labor time per sample. Furthermore, multiple samples can be measured in parallel, making this an inexpensive and high volume method for measuring high moisture barriers. PMID:21895269

  8. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  9. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  10. A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2007-01-01

    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.

  11. An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng

    2016-01-01

    An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.

  12. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding

  13. A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures.

    PubMed

    Mangipudi, K R; Radisch, V; Holzer, L; Volkert, C A

    2016-04-01

    We present an automated focused ion beam nanotomography method for nanoporous microstructures with open porosity, and apply it to reconstruct nanoporous gold (np-Au) structures with ligament sizes on the order of a few tens of nanometers. This method uses serial sectioning of a well-defined wedge-shaped geometry to determine the thickness of individual slices from the changes in the sample width in successive cross-sectional images. The pore space of a selected region of the np-Au is infiltrated with ion-beam-deposited Pt composite before serial sectioning. The cross-sectional images are binarized and stacked according to the individual slice thicknesses, and then processed using standard reconstruction methods. For the image conditions and sample geometry used here, we are able to determine the thickness of individual slices with an accuracy much smaller than a pixel. The accuracy of the new method based on actual slice thickness is assessed by comparing it with (i) a reconstruction using the same cross-sectional images but assuming a constant slice thickness, and (ii) a reconstruction using traditional FIB-tomography method employing constant slice thickness. The morphology and topology of the structures are characterized using ligament and pore size distributions, interface shape distribution functions, interface normal distributions, and genus. The results suggest that the morphology and topology of the final reconstructions are significantly influenced when a constant slice thickness is assumed. The study reveals grain-to-grain variations in the morphology and topology of np-Au. PMID:26906523

  14. A Simplified Diagnostic Method for Elastomer Bond Durability

    NASA Technical Reports Server (NTRS)

    White, Paul

    2009-01-01

    A simplified method has been developed for determining bond durability under exposure to water or high humidity conditions. It uses a small number of test specimens with relatively short times of water exposure at elevated temperature. The method is also gravimetric; the only equipment being required is an oven, specimen jars, and a conventional laboratory balance.

  15. Implicit spectrally-accurate method for moving boundary problems using immersed boundary conditions concept

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Floryan, J. M.

    2008-04-01

    A fully implicit, spectral algorithm for the analysis of moving boundary problem is described. The algorithm is based on the concept of immersed boundary conditions (IBC), i.e., the computational domain is fixed while the time dependent physical domain is submerged inside the computational domain, and is described in the context of the diffusion-type problems. The physical conditions along the edges of the physical domain are treated as internal constraints. The method eliminates the need for adaptive grid generation that follows evolution of the physical domain and provides sharp resolution of the location of the boundary. Various tests confirm the spectral accuracy in space and the first- and second-order accuracy in time. The computational cost advantage of the IBC method as compared with the more traditional algorithm based on the mapping concept is demonstrated.

  16. A rapid and accurate method for calculation of stratospheric photolysis rates with molecular scattering

    NASA Technical Reports Server (NTRS)

    Boughner, Robert E.

    1986-01-01

    A method for calculating the photodissociation rates needed for photochemical modeling of the stratosphere, which includes the effects of molecular scattering, is described. The procedure is based on Sokolov's method of averaging functional correction. The radiation model and approximations used to calculate the radiation field are examined. The approximated diffuse fields and photolysis rates are compared with exact data. It is observed that the approximate solutions differ from the exact result by 10 percent or less at altitudes above 15 km; the photolysis rates differ from the exact rates by less than 5 percent for altitudes above 10 km and all zenith angles, and by less than 1 percent for altitudes above 15 km.

  17. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  18. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    SciTech Connect

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered

  19. A Variable Coefficient Method for Accurate Monte Carlo Simulation of Dynamic Asset Price

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Hung, Chih-Young; Yu, Shao-Ming; Chiang, Su-Yun; Chiang, Yi-Hui; Cheng, Hui-Wen

    2007-07-01

    In this work, we propose an adaptive Monte Carlo (MC) simulation technique to compute the sample paths for the dynamical asset price. In contrast to conventional MC simulation with constant drift and volatility (μ,σ), our MC simulation is performed with variable coefficient methods for (μ,σ) in the solution scheme, where the explored dynamic asset pricing model starts from the formulation of geometric Brownian motion. With the method of simultaneously updated (μ,σ), more than 5,000 runs of MC simulation are performed to fulfills basic accuracy of the large-scale computation and suppresses statistical variance. Daily changes of stock market index in Taiwan and Japan are investigated and analyzed.

  20. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method

    SciTech Connect

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  1. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  2. SIESTA-PEXSI: Massively parallel method for efficient and accurate ab initio materials simulation

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Huhs, Georg; Garcia, Alberto; Yang, Chao

    2014-03-01

    We describe how to combine the pole expansion and selected inversion (PEXSI) technique with the SIESTA method, which uses numerical atomic orbitals for Kohn-Sham density functional theory (KSDFT) calculations. The PEXSI technique can efficiently utilize the sparsity pattern of the Hamiltonian matrix and the overlap matrix generated from codes such as SIESTA, and solves KSDFT without using cubic scaling matrix diagonalization procedure. The complexity of PEXSI scales at most quadratically with respect to the system size, and the accuracy is comparable to that obtained from full diagonalization. One distinct feature of PEXSI is that it achieves low order scaling without using the near-sightedness property and can be therefore applied to metals as well as insulators and semiconductors, at room temperature or even lower temperature. The PEXSI method is highly scalable, and the recently developed massively parallel PEXSI technique can make efficient usage of 10,000 ~100,000 processors on high performance machines. We demonstrate the performance the SIESTA-PEXSI method using several examples for large scale electronic structure calculation including long DNA chain and graphene-like structures with more than 20000 atoms. Funded by Luis Alvarez fellowship in LBNL, and DOE SciDAC project in partnership with BES.

  3. Sarcocystosis in Cervus elaphus: Comparison of diagnostic methods.

    PubMed

    Luzón, Mónica; Domínguez-González, Julia; Soto-Carrión, Ana María; Alunda, José María; Fuente, Concepción de la

    2015-12-01

    Red deer (Cervus elaphus) from a National Wildlife Reserve near Toledo in central Spain were surveyed for Sarcocystis infection. A total of 61 deer were examined. Tissue compression and histology were used to examine samples from diaphragm and heart from each animal included in the study, and results from the two techniques and the two tissues were compared to determine the tissue and technique that provide the most accurate measure of prevalence and intensity. Prevalence and intensity were then compared between calves, yearlings and adults. Sarcocystis was detected in 59 (97%) of the 61 deer. Comparison between tissues showed that (a) prevalence based on histology was similar for heart and diaphragm, (b) prevalence based on compression was significantly higher for heart than for diaphragm and (c) intensity was significantly higher for heart than for diaphragm, regardless of the technique used. Comparison between techniques showed that (a) both techniques rendered similar prevalences and intensities of Sarcocystis infection with heart samples and (b) both techniques were not comparable with diaphragm samples (compression rendered lower prevalence but higher intensity than histology). Together these data suggest that heart is the preferable tissue for estimating prevalence and intensity, regardless of the technique used. A preliminary species identification of isolated cysts from three animals showed two morph types, corresponding to Sarcocystis cervicanis (syn. S. cf. grueneri; S. wapiti) in the heart and diaphragm of three animals and S. hjorti, only in the diaphragm of two animals. Given the different location of those morph types, both heart and diaphragm should be sampled and preferably assessed using histology to most reliably detect infection. Based on histology of heart, prevalence and intensity of Sarcocystis were significantly lower in calves than in yearlings or adults. PMID:26767167

  4. Sarcocystosis in Cervus elaphus: Comparison of diagnostic methods

    PubMed Central

    Luzón, Mónica; Domínguez-González, Julia; Soto-Carrión, Ana María; Alunda, José María; Fuente, Concepción de la

    2015-01-01

    Red deer (Cervus elaphus) from a National Wildlife Reserve near Toledo in central Spain were surveyed for Sarcocystis infection. A total of 61 deer were examined. Tissue compression and histology were used to examine samples from diaphragm and heart from each animal included in the study, and results from the two techniques and the two tissues were compared to determine the tissue and technique that provide the most accurate measure of prevalence and intensity. Prevalence and intensity were then compared between calves, yearlings and adults. Sarcocystis was detected in 59 (97%) of the 61 deer. Comparison between tissues showed that (a) prevalence based on histology was similar for heart and diaphragm, (b) prevalence based on compression was significantly higher for heart than for diaphragm and (c) intensity was significantly higher for heart than for diaphragm, regardless of the technique used. Comparison between techniques showed that (a) both techniques rendered similar prevalences and intensities of Sarcocystis infection with heart samples and (b) both techniques were not comparable with diaphragm samples (compression rendered lower prevalence but higher intensity than histology). Together these data suggest that heart is the preferable tissue for estimating prevalence and intensity, regardless of the technique used. A preliminary species identification of isolated cysts from three animals showed two morph types, corresponding to Sarcocystis cervicanis (syn. S. cf. grueneri; S. wapiti) in the heart and diaphragm of three animals and S. hjorti, only in the diaphragm of two animals. Given the different location of those morph types, both heart and diaphragm should be sampled and preferably assessed using histology to most reliably detect infection. Based on histology of heart, prevalence and intensity of Sarcocystis were significantly lower in calves than in yearlings or adults. PMID:26767167

  5. Accurate and quick calibration method for polarization-modulation spectroscopy using an ac-modulated polarizing undulator

    SciTech Connect

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2008-08-15

    An accurate calibration method in which an ac-modulated polarizing undulator is used for polarization modulation spectroscopy such as circular dichroism (CD) and linear dichroism (LD) has been proposed and successfully applied to vacuum ultraviolet (vuv) CD and LD spectra measured at beamline BL-5B in the electron storage ring, TERAS, at AIST. This calibration method employs an undulator-modulation spectroscopic method with a multireflection polarimeter, and it uses electronic and optical elements identical to those used for the CD and LD measurements. This method regards the polarimeter as a standard sample for the CD and LD measurements in the vuv region in which a standard sample has not yet been established. The calibration factors for the CD and LD spectra are obtained over a wide range of wavelengths, from 120 to 230 nm, at TERAS BL-5B. The calibrated CD and LD spectra measured at TERAS exhibit good agreement with the standard spectra for wavelengths greater than 170 nm; the mean differences between the standard and calibrated CD and LD spectra are approximately 7% and 4%, respectively. This method enables a remarkable reduction in the experimental time, from approximately 1 h to less than 10 min that is sufficient to observe the storage-ring current dependence of the calibration factors. This method can be applied to the calibration of vuv-CD spectra measured using a conventional photoelastic modulator and for performing an accurate analysis of protein secondary structures.

  6. Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Huebner, Alan

    2011-01-01

    This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…

  7. PLIF: A rapid, accurate method to detect and quantitatively assess protein-lipid interactions.

    PubMed

    Ceccato, Laurie; Chicanne, Gaëtan; Nahoum, Virginie; Pons, Véronique; Payrastre, Bernard; Gaits-Iacovoni, Frédérique; Viaud, Julien

    2016-01-01

    Phosphoinositides are a type of cellular phospholipid that regulate signaling in a wide range of cellular and physiological processes through the interaction between their phosphorylated inositol head group and specific domains in various cytosolic proteins. These lipids also influence the activity of transmembrane proteins. Aberrant phosphoinositide signaling is associated with numerous diseases, including cancer, obesity, and diabetes. Thus, identifying phosphoinositide-binding partners and the aspects that define their specificity can direct drug development. However, current methods are costly, time-consuming, or technically challenging and inaccessible to many laboratories. We developed a method called PLIF (for "protein-lipid interaction by fluorescence") that uses fluorescently labeled liposomes and tethered, tagged proteins or peptides to enable fast and reliable determination of protein domain specificity for given phosphoinositides in a membrane environment. We validated PLIF against previously known phosphoinositide-binding partners for various proteins and obtained relative affinity profiles. Moreover, PLIF analysis of the sorting nexin (SNX) family revealed not only that SNXs bound most strongly to phosphatidylinositol 3-phosphate (PtdIns3P or PI3P), which is known from analysis with other methods, but also that they interacted with other phosphoinositides, which had not previously been detected using other techniques. Different phosphoinositide partners, even those with relatively weak binding affinity, could account for the diverse functions of SNXs in vesicular trafficking and protein sorting. Because PLIF is sensitive, semiquantitative, and performed in a high-throughput manner, it may be used to screen for highly specific protein-lipid interaction inhibitors. PMID:27025878

  8. Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Witek, Henryk A.; Morokuma, Keiji

    2005-09-01

    An optimization technique for enhancing the quality of repulsive two-body potentials of the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented and tested. The new, optimized potentials allow for significant improvement of calculated harmonic vibrational frequencies. Mean absolute deviation from experiment computed for a group of 14 hydrocarbons is reduced from 59.0 to 33.2 cm -1 and maximal absolute deviation, from 436.2 to 140.4 cm -1. A drawback of the new family of potentials is a lower quality of reproduced geometrical and energetic parameters.

  9. High-order accurate difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion

    NASA Astrophysics Data System (ADS)

    Moiseev, N. Ya.; Silant'eva, I. Yu.

    2009-05-01

    A technique is proposed for improving the accuracy of the Godunov method as applied to gasdynamic simulations in one dimension. The underlying idea is the reconstruction of fluxes arsoss cell boundaries (“large” values) by using antidiffusion corrections, which are obtained by analyzing the differential approximation of the schemes. In contrast to other approaches, the reconstructed values are not the initial data but rather large values calculated by solving the Riemann problem. The approach is efficient and yields higher accuracy difference schemes with a high resolution.

  10. A novel method for more accurately mapping the surface temperature of ultrasonic transducers.

    PubMed

    Axell, Richard G; Hopper, Richard H; Jarritt, Peter H; Oxley, Chris H

    2011-10-01

    This paper introduces a novel method for measuring the surface temperature of ultrasound transducer membranes and compares it with two standard measurement techniques. The surface temperature rise was measured as defined in the IEC Standard 60601-2-37. The measurement techniques were (i) thermocouple, (ii) thermal camera and (iii) novel infra-red (IR) "micro-sensor." Peak transducer surface measurements taken with the thermocouple and thermal camera were -3.7 ± 0.7 (95% CI)°C and -4.3 ± 1.8 (95% CI)°C, respectively, within the limits of the IEC Standard. Measurements taken with the novel IR micro-sensor exceeded these limits by 3.3 ± 0.9 (95% CI)°C. The ambiguity between our novel method and the standard techniques could have direct patient safety implications because the IR micro-sensor measurements were beyond set limits. The spatial resolution of the measurement technique is not well defined in the IEC Standard and this has to be taken into consideration when selecting which measurement technique is used to determine the maximum surface temperature. PMID:21856072

  11. Simple and efficient methods for the accurate evaluation of patterning effects in ultrafast photonic switches.

    PubMed

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe; Xue, Weiqi; Seoane, Jorge; Zsigri, Beáta; Jeppesen, Palle; Mørk, Jesper

    2011-01-01

    Although patterning effects (PEs) are known to be a limiting factor of ultrafast photonic switches based on semiconductor optical amplifiers (SOAs), a simple approach for their evaluation in numerical simulations and experiments is missing. In this work, we experimentally investigate and verify a theoretical prediction of the pseudo random binary sequence (PRBS) length needed to capture the full impact of PEs. A wide range of SOAs and operation conditions are investigated. The very simple form of the PRBS length condition highlights the role of two parameters, i.e. the recovery time of the SOAs as well as the operation bit rate. Furthermore, a simple and effective method for probing the maximum PEs is demonstrated, which may relieve the computational effort or the experimental difficulties associated with the use of long PRBSs for the simulation or characterization of SOA-based switches. Good agrement with conventional PRBS characterization is obtained. The method is suitable for quick and systematic estimation and optimization of the switching performance. PMID:21263552

  12. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues

    PubMed Central

    Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros

    2014-01-01

    When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601

  13. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  14. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues.

    PubMed

    Boyle, John J; Kume, Maiko; Wyczalkowski, Matthew A; Taber, Larry A; Pless, Robert B; Xia, Younan; Genin, Guy M; Thomopoulos, Stavros

    2014-11-01

    When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601

  15. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  16. A method for the accurate and smooth approximation of standard thermodynamic functions

    NASA Astrophysics Data System (ADS)

    Coufal, O.

    2013-01-01

    A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are

  17. Voronoi-cell finite difference method for accurate electronic structure calculation of polyatomic molecules on unstructured grids

    SciTech Connect

    Son, Sang-Kil

    2011-03-01

    We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist of spherical atomic grids. It provides accurate and efficient solutions for the Schroedinger equation and the Poisson equation with the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples, we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the method to the density-functional theory for many-electron polyatomic molecules.

  18. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  19. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  20. A method to measure the density of seawater accurately to the level of 10-6

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Wolf, Henning; Hassel, Egon

    2016-04-01

    A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.

  1. An accurate and efficient method for prediction of the long-term evolution of space debris in the geosynchronous region

    NASA Astrophysics Data System (ADS)

    McNamara, Roger P.; Eagle, C. D.

    1992-08-01

    Planetary Observer High Accuracy Orbit Prediction Program (POHOP), an existing numerical integrator, was modified with the solar and lunar formulae developed by T.C. Van Flandern and K.F. Pulkkinen to provide the accuracy required to evaluate long-term orbit characteristics of objects on the geosynchronous region. The orbit of a 1000 kg class spacecraft is numerically integrated over 50 years using both the original and the more accurate solar and lunar ephemerides methods. Results of this study demonstrate that, over the long term, for an object located in the geosynchronous region, the more accurate solar and lunar ephemerides effects on the objects's position are significantly different than using the current POHOP ephemeris.

  2. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    NASA Astrophysics Data System (ADS)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  3. A New Method for Accurate Signal Processing in Measurements of Elemental Mercury Vapor by Atomic Fluorescence Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L., II; Jaffe, D. A.

    2015-12-01

    The most widely used method for quantifying atmospheric Hg is gold amalgamation pre-concentration, followed by thermal desorption (TD) and detection via atomic fluorescence spectrophotometry (AFS). Most AFS-based atmospheric Hg measurements are carried out using commercial analyzers manufactured by Tekran® Instruments Corp. (instrument models 2537A and 2537B). A generally overlooked and poorly characterized source of analytical uncertainty in these measurements is the method by which the raw Hg AFS signal is processed. In nearly all applications of Tekran® analyzers for atmospheric Hg measurements, researchers rely upon embedded software which automatically integrates the Hg TD peaks. However, Swartzendruber et al. (2009; doi:10.1016/j.atmosenv.2009.02.063) demonstrated that the Hg TD peaks can be more accurately defined, and overall measurement precision increased, by post-processing the raw Hg AFS signal; improvements in measurement accuracy and precision were shown to be more significant at lower sample loadings. Despite these findings, a standardized method for signal post-processing has not been presented. To better characterize uncertainty associated with Tekran® based atmospheric Hg measurements, and to facilitate more widespread adoption of an accurate, standardized signal processing method, we developed a new, distributable Virtual Instrument (VI) which performs semi-automated post-processing of the raw Hg AFS signal from the Tekran® analyzers. Here we describe the key features of the VI and compare its performance to that of the Tekran® signal processing method.

  4. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  5. Optical methods for diagnostic of cell-tissue grafts

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Volova, L. T.; Boltovskaya, V. V.; Zherdeva, L. A.; Belousov, N. V.; Pershutkina, S. V.

    2015-08-01

    In this work the results of cell-tissue grafts research with a complex of optical methods - confocal fluorescent microscopy and Raman spectroscopy are presented. It was established that coefficient M scatter is related to irregularity of demineralization process. It was microscopically shown that the quantity of integrated cells into these types of transplants amounts to 20% of its surface.

  6. Calreticulin Mutations in Myeloproliferative Neoplasms: Comparison of Three Diagnostic Methods

    PubMed Central

    Park, Ji-Hye; Sevin, Margaux; Ramla, Selim; Truffot, Aurélie; Verrier, Tiffany; Bouchot, Dominique; Courtois, Martine; Bas, Mathilde; Benali, Sonia; Bailly, François; Favre, Bernardine; Guy, Julien; Martin, Laurent; Maynadié, Marc; Carillo, Serge; Girodon, François

    2015-01-01

    Calreticulin (CALR) mutations have recently been reported in 70–84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments. PMID:26501981

  7. Accurate hydrogen bond energies within the density functional tight binding method.

    PubMed

    Domínguez, A; Niehaus, T A; Frauenheim, T

    2015-04-01

    The density-functional-based tight-binding (DFTB) approach has been recently extended by incorporating one-center exchange-like terms in the expansion of the multicenter integrals. This goes beyond the Mulliken approximation and leads to a scheme which treats in a self-consistent way the fluctuations of the whole dual density matrix and not only its diagonal elements (Mulliken charges). To date, only the performance of this new formalism to reproduce excited-state properties has been assessed (Domínguez et al. J. Chem. Theory Comput., 2013, 9, 4901-4914). Here we study the effect of our corrections on the computation of hydrogen bond energies for water clusters and water-containing systems. The limitations of traditional DFTB to reproduce hydrogen bonds has been acknowledged often. We compare our results for a set of 22 small water clusters and water-containing systems as well as for five water hexadecamers to those obtained with the DFTB3 method. Additionally, we combine our extension with a third-order energy expansion in the charge fluctuations. Our results show that the new formalisms significantly improve upon original DFTB. PMID:25763597

  8. DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces

    PubMed Central

    Tjong, Harianto; Zhou, Huan-Xiang

    2007-01-01

    Structural and physical properties of DNA provide important constraints on the binding sites formed on surfaces of DNA-targeting proteins. Characteristics of such binding sites may form the basis for predicting DNA-binding sites from the structures of proteins alone. Such an approach has been successfully developed for predicting protein–protein interface. Here this approach is adapted for predicting DNA-binding sites. We used a representative set of 264 protein–DNA complexes from the Protein Data Bank to analyze characteristics and to train and test a neural network predictor of DNA-binding sites. The input to the predictor consisted of PSI-blast sequence profiles and solvent accessibilities of each surface residue and 14 of its closest neighboring residues. Predicted DNA-contacting residues cover 60% of actual DNA-contacting residues and have an accuracy of 76%. This method significantly outperforms previous attempts of DNA-binding site predictions. Its application to the prion protein yielded a DNA-binding site that is consistent with recent NMR chemical shift perturbation data, suggesting that it can complement experimental techniques in characterizing protein–DNA interfaces. PMID:17284455

  9. Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus

    PubMed Central

    Quach, D.T.; Sakoulas, G.; Nizet, V.; Pogliano, J.; Pogliano, K.

    2016-01-01

    Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP), which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA) and -resistant (MRSA) clinical isolates of S. aureus (n = 71) within 1–2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS) from daptomycin non-susceptible (DNS) S. aureus strains (n = 20) within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice. PMID:26981574

  10. Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus.

    PubMed

    Quach, D T; Sakoulas, G; Nizet, V; Pogliano, J; Pogliano, K

    2016-02-01

    Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP), which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA) and -resistant (MRSA) clinical isolates of S. aureus (n = 71) within 1-2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS) from daptomycin non-susceptible (DNS) S. aureus strains (n = 20) within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice. PMID:26981574

  11. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  12. A hybrid method for efficient and accurate simulations of diffusion compartment imaging signals

    NASA Astrophysics Data System (ADS)

    Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît; Taquet, Maxime

    2015-12-01

    Diffusion-weighted imaging is sensitive to the movement of water molecules through the tissue microstructure and can therefore be used to gain insight into the tissue cellular architecture. While the diffusion signal arising from simple geometrical microstructure is known analytically, it remains unclear what diffusion signal arises from complex microstructural configurations. Such knowledge is important to design optimal acquisition sequences, to understand the limitations of diffusion-weighted imaging and to validate novel models of the brain microstructure. We present a novel framework for the efficient simulation of high-quality DW-MRI signals based on the hybrid combination of exact analytic expressions in simple geometric compartments such as cylinders and spheres and Monte Carlo simulations in more complex geometries. We validate our approach on synthetic arrangements of parallel cylinders representing the geometry of white matter fascicles, by comparing it to complete, all-out Monte Carlo simulations commonly used in the literature. For typical configurations, equal levels of accuracy are obtained with our hybrid method in less than one fifth of the computational time required for Monte Carlo simulations.

  13. Method for accurately positioning a device at a desired area of interest

    DOEpatents

    Jones, Gary D.; Houston, Jack E.; Gillen, Kenneth T.

    2000-01-01

    A method for positioning a first device utilizing a surface having a viewing translation stage, the surface being movable between a first position where the viewing stage is in operational alignment with a first device and a second position where the viewing stage is in operational alignment with a second device. The movable surface is placed in the first position and an image is produced with the first device of an identifiable characteristic of a calibration object on the viewing stage. The moveable surface is then placed in the second position and only the second device is moved until an image of the identifiable characteristic in the second device matches the image from the first device. The calibration object is then replaced on the stage of the surface with a test object, and the viewing translation stage is adjusted until the second device images the area of interest. The surface is then moved to the first position where the test object is scanned with the first device to image the area of interest. An alternative embodiment where the devices move is also disclosed.

  14. A Novel method of ensuring safe and accurate dilatation during percutaneous nephrolithotomy

    PubMed Central

    Javali, Tarun; Pathade, Amey; Nagaraj, H. K.

    2015-01-01

    ABSTRACT Objective: To report our technique that helps locate the guidewire into the ureter enabling safe dilatation during PCNL. Materials and Methods: Cases in which the guidewire failed to pass into the ureter following successful puncture of the desired calyx were subjected to this technique. A second guidewire was passed through the outer sheath of a 9 Fr. metallic dilator cannula, passed over the first guidewire. The cannula and outer sheath were removed, followed by percutaneous passage of a 6/7.5 Fr ureteroscope between the two guidewires, monitoring its progress through both the endoscopic and fluoroscopic monitors. Once the stone was visualized in the calyx a guidewire was passed through the working channel and maneuvered past the stone into the pelvis and ureter under direct endoscopic vision. This was followed by routine tract dilatation. Results: This technique was employed in 85 out of 675 cases of PCNL carried out at our institute between Jan 2010 to June 2014. The mean time required for our technique, calculated from the point of introduction of the ureteroscope untill the successful passage of the guidewire down into the ureter was 95 seconds. There were no intraoperative or postoperative complications as a result of this technique. Guidewire could be successfully passed into the ureter in 82 out of 85 cases. Conclusions: Use of the ureteroscope introduced percutaneously through the puncture site in PCNL, is a safe and effective technique that helps in maneuvering the guidewire down into the ureter, which subsequently enables safe dilatation. PMID:26689529

  15. Fraley's syndrome: case report and update on current diagnostic methods

    SciTech Connect

    Zuckier, L.S.; Patel, Y.D.; Fine, E.J.; Koenigsberg, M.

    1988-01-01

    A 38-year-old woman presented with fever, right flank pain, and a clinical diagnosis of pyelonephritis. Work-up revealed the presence of a crossing arterial branch causing obstruction of the superior infundibulum of the right kidney, which is an uncommon cause of nephralgia and urinary infection initially described by Fraley in 1966. Intravenous urography, retrograde pyelography, and angiography remain the mainstay of diagnosis, much as in the initial descriptions of this entity. (/sup 131/I)Hippuran imaging, with analysis of the upper and lower pole regions of interest, provides a simple yet powerful method of evaluating functional and excretory changes in the superior infundibulum, and has proved more efficacious than previously reported whole-kidney renograms. Renal scintigraphy represents a relatively noninvasive method of serial functional examination in this disorder. Ultrasound imaging, by monitoring upper-pole dilatation, may provide complementary morphologic information important for long-term follow-up.

  16. Multiple light scattering methods for multiphase flow diagnostics

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi

    2015-11-01

    Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.

  17. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  18. A modified method for accurate correlation between the craze density and the optomechanical properties of fibers using pluta microscope.

    PubMed

    Sokkar, T Z N; El-Farahaty, K A; El-Bakary, M A; Omar, E Z; Hamza, A A

    2016-05-01

    A modified method was suggested to improve the performance of the Pluta microscope in its nonduplicated mode in the calculation of the areal craze density especially, for relatively low draw ratio (low areal craze density). This method decreases the error that is resulted from the similarity between the formed crazes and the dark fringes of the interference pattern. Furthermore, an accurate method to calculate the birefringence and the orientation function of the drawn fibers via nonduplicated Pluta polarizing interference microscope for high areal craze density (high draw ratio) was suggested. The advantage of the suggested method is to relate the optomechanical properties of the tested fiber with the areal craze density, for the same region of the fiber material. Microsc. Res. Tech. 79:422-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:26920339

  19. Assessment of diagnostic methods for solenoid-operated valves

    NASA Astrophysics Data System (ADS)

    Kryter, R. C.; Farmer, W. S.

    Solenoid-operated valves (SOV's) were studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study was to identify, evaluate, and recommend methods for inspection, surveillance, monitoring, and maintenance of SOV's that can help ensure their operational readiness - that is, their ability to perform required safety functions under all anticipated operating conditions, since failure of one of these small and relatively inexpensive devices could have serious consequences under certain circumstances. Intrusive techniques requiring the addition of magnetic or acoustic sensors or the application of special test signals were investigated briefly, but major emphasis was placed on the examination of condition-indicating techniques that can be applied with minimal cost and impact on plant operation. These include monitoring coil mean temperature remotely by means of coil dc resistance or ac impedance, determining valve plunger position by means of coil ac impedance, verifying unrestricted SOV plunger movement by measuring current and voltage at their critical bistable (pull-in and drop-out) values, and detecting the presence of shorted turns or insulation breakdown within the solenoid coil using interrupted-current test methods. Experimental results are presented that demonstrate the technical feasibility and practicality of the monitoring techniques assessed in the study, and recommendations for further work are provided.

  20. Making Diagnostic Inferences about Cognitive Attributes Using the Rule-Space Model and Attribute Hierarchy Method

    ERIC Educational Resources Information Center

    Gierl, Mark J.

    2007-01-01

    The purpose of this paper is to describe the logic and identify key assumptions associated with making cognitive inferences using two attribute-based psychometric methods. The first method is Kikumi Tatsuoka's rule-space model. This model provides a strong point of reference for studying the nature of diagnostic inferences because it is important…

  1. Method of hepatitis diagnostics of changes in human skin diffuse reflectivity

    NASA Astrophysics Data System (ADS)

    Kirsh, M. L.; Sokol, A. M.; Lomanets, V. S.; Gayka, O. R.

    1999-11-01

    The results on the study of influence of bilirubinum concentration in a human blood on the spectrum of a diffuse reflectivity of his skin are represented. On this basis, the method for hepatitis diagnostics has been developed, and the laboratory device implementing this method has been designed.

  2. Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees' Cognitive Skills in Critical Reading

    ERIC Educational Resources Information Center

    Wang, Changjiang; Gierl, Mark J.

    2011-01-01

    The purpose of this study is to apply the attribute hierarchy method (AHM) to a subset of SAT critical reading items and illustrate how the method can be used to promote cognitive diagnostic inferences. The AHM is a psychometric procedure for classifying examinees' test item responses into a set of attribute mastery patterns associated with…

  3. Accurate quantification of tio2 nanoparticles collected on air filters using a microwave-assisted acid digestion method.

    PubMed

    Mudunkotuwa, Imali A; Anthony, T Renée; Grassian, Vicki H; Peters, Thomas M

    2016-01-01

    Titanium dioxide (TiO(2)) particles, including nanoparticles with diameters smaller than 100 nm, are used extensively in consumer products. In a 2011 current intelligence bulletin, the National Institute of Occupational Safety and Health (NIOSH) recommended methods to assess worker exposures to fine and ultrafine TiO(2) particles and associated occupational exposure limits for these particles. However, there are several challenges and problems encountered with these recommended exposure assessment methods involving the accurate quantitation of titanium dioxide collected on air filters using acid digestion followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Specifically, recommended digestion methods include the use of chemicals, such as perchloric acid, which are typically unavailable in most accredited industrial hygiene laboratories due to highly corrosive and oxidizing properties. Other alternative methods that are used typically involve the use of nitric acid or combination of nitric acid and sulfuric acid, which yield very poor recoveries for titanium dioxide. Therefore, given the current state of the science, it is clear that a new method is needed for exposure assessment. In this current study, a microwave-assisted acid digestion method has been specifically designed to improve the recovery of titanium in TiO(2) nanoparticles for quantitative analysis using ICP-OES. The optimum digestion conditions were determined by changing several variables including the acids used, digestion time, and temperature. Consequently, the optimized digestion temperature of 210°C with concentrated sulfuric and nitric acid (2:1 v/v) resulted in a recovery of >90% for TiO(2). The method is expected to provide for a more accurate quantification of airborne TiO(2) particles in the workplace environment. PMID:26181824

  4. Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains.

    PubMed

    Lewandowska, Dagmara W; Zagordi, Osvaldo; Zbinden, Andrea; Schuurmans, Macé M; Schreiber, Peter; Geissberger, Fabienne-Desirée; Huder, Jon B; Böni, Jürg; Benden, Christian; Mueller, Nicolas J; Trkola, Alexandra; Huber, Michael

    2015-10-01

    Multiplex PCR assays for respiratory viruses are widely used in routine diagnostics, as they are highly sensitive, rapid, and cost effective. However, depending on the assay system, cross-reactivity between viruses that share a high sequence homology as well as detection of rare virus isolates with sequence variations can be problematic. Virus sequence-independent metagenomic high-throughput sequencing allows for accurate detection of all virus species in a given sample, as we demonstrate here for human Enterovirus and Rhinovirus in a lung transplant patient. While early in infection a commercial PCR assay recorded Rhinovirus, high-throughput sequencing correctly identified human Enterovirus C104 as the source of infection, highlighting the potential of the technology and the benefit of applying open assay formats in complex diagnostic situations. PMID:26231254

  5. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.; Scott, Waymond R., Jr.

    1990-07-01

    Two antennas are considered, a cylindrical monopole and a conical monopole. Both are driven through an image plane from a coaxial transmission line. Each of these antennas corresponds to a well-posed theoretical electromagnetic boundary value problem and a realizable experimental model. These antennas are analyzed by a straightforward application of the time-domain finite-difference method. The computed results for these antennas are shown to be in excellent agreement with accurate experimental measurements for both the time domain and the frequency domain. The graphical displays presented for the transient near-zone and far-zone radiation from these antennas provide physical insight into the radiation process.

  6. An ONIOM study of the Bergman reaction: a computationally efficient and accurate method for modeling the enediyne anticancer antibiotics

    NASA Astrophysics Data System (ADS)

    Feldgus, Steven; Shields, George C.

    2001-10-01

    The Bergman cyclization of large polycyclic enediyne systems that mimic the cores of the enediyne anticancer antibiotics was studied using the ONIOM hybrid method. Tests on small enediynes show that ONIOM can accurately match experimental data. The effect of the triggering reaction in the natural products is investigated, and we support the argument that it is strain effects that lower the cyclization barrier. The barrier for the triggered molecule is very low, leading to a reasonable half-life at biological temperatures. No evidence is found that would suggest a concerted cyclization/H-atom abstraction mechanism is necessary for DNA cleavage.

  7. Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods

    PubMed Central

    Caruso, Carlo; Burriesci, Matthew S.; Cella, Kristen; Pringle, John R.

    2015-01-01

    In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue. PMID:26291447

  8. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry

    PubMed Central

    Fazio, Massimo A.; Bruno, Luigi; Reynaud, Juan F.; Poggialini, Andrea; Downs, J. Crawford

    2012-01-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment. PMID:22435090

  9. Breast Microcalcifications: Diagnostic Outcomes According to Image-Guided Biopsy Method

    PubMed Central

    Bae, Sohi; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Min Jung

    2015-01-01

    Objective To evaluate the diagnostic outcomes of ultrasonography-guided core needle biopsy (US-CNB), US-guided vacuum-assisted biopsy (US-VAB), and stereotactic-guided vacuum-assisted biopsy (S-VAB) for diagnosing suspicious breast microcalcification. Materials and Methods We retrospectively reviewed 336 cases of suspicious breast microcalcification in patients who subsequently underwent image-guided biopsy. US-CNB was performed for US-visible microcalcifications associated with a mass (n = 28), US-VAB for US-visible microcalcifications without an associated mass (n = 59), and S-VAB for mammogram-only visible lesions (n = 249). Mammographic findings, biopsy failure rate, false-negative rate, and underestimation rate were analyzed. Histological diagnoses and the Breast Imaging Reporting and Data System (BI-RADS) categories were reported. Results Biopsy failure rates for US-CNB, US-VAB, and S-VAB were 7.1% (2/28), 0% (0/59), and 2.8% (7/249), respectively. Three false-negative cases were detected for US-CNB and two for S-VAB. The rates of biopsy-diagnosed ductal carcinoma in situ that were upgraded to invasive cancer at surgery were 41.7% (5/12), 12.9% (4/31), and 8.6% (3/35) for US-CNB, US-VAB, and S-VAB, respectively. Sonographically visible lesions were more likely to be malignant (66.2% [51/77] vs. 23.2% [46/198]; p < 0.001) or of higher BI-RADS category (61.0% [47/77] vs. 22.2% [44/198]; p < 0.001) than sonographically invisible lesions. Conclusion Ultrasonography-guided vacuum-assisted biopsy is more accurate than US-CNB when suspicious microcalcifications are detected on US. Calcifications with malignant pathology are significantly more visible on US than benign lesions. PMID:26357494

  10. Thomson scattering as a method for laser plasma diagnostics

    SciTech Connect

    Alayi, Y.

    1983-12-01

    The Thomson scattering has been used to determine the density and temperature of an inhomogeneous nonstationary plasma. A common method to calibrate the Thomson scattering device consists in replacing the plasma by a gas and measuring the Rayleigh scattering cross section. The angular distribution of the scattered light in Argon is measured, the incident light is a ruby laser with ..delta..t = 30ns and lambda = 6943nm and vertically polarized. We have found that angular distribution is strongly favored in the forward direction (30/sup 0/, 45/sup 0/, 60/sup 0/) and defavored for backward direction (90/sup 0/, 120/sup 0/, 135/sup 0/, 150/sup 0/) in agreement with the results of George, et al, but in disagreement with the Rayleigh theory which assumes a uniform distribution. Our results may be related to the form of the scattered light spectrum which undergoes a dramatic change through the kinetic-hydrodynamic transition. The general form of the spectrum is determined by the parameter y = 1/Kl (where K = 4..pi.. sin (theta/2)/lambda, theta is the scattering angle and l is the free path path), which increases in the direction of the hydrodynamic regime (small angles). By analogy, the Thomson scattering presents the same aspects with ..cap alpha.. = 1/Klambda /SUB D/ (where lambda /SUB D/ is the Debye length). The deviation from the uniform distribution provides the possibility to determine the plasma turbulence spectrum from the scattered light.

  11. A rapid, economical, and accurate method to determining the physical risk of storm marine inundations using sedimentary evidence

    NASA Astrophysics Data System (ADS)

    Nott, Jonathan F.

    2015-04-01

    The majority of physical risk assessments from storm surge inundations are derived from synthetic time series generated from short climate records, which can often result in inaccuracies and are time-consuming and expensive to develop. A new method is presented here for the wet tropics region of northeast Australia. It uses lidar-generated topographic cross sections of beach ridge plains, which have been demonstrated to be deposited by marine inundations generated by tropical cyclones. Extreme value theory statistics are applied to data derived from the cross sections to generate return period plots for a given location. The results suggest that previous methods to estimate return periods using synthetic data sets have underestimated the magnitude/frequency relationship by at least an order of magnitude. The new method promises to be a more rapid, economical, and accurate assessment of the physical risk of these events.

  12. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  13. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    PubMed

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. PMID:22658682

  14. A method for accurate zero calibration of asymmetric jaws in single-isocenter half-beam techniques

    SciTech Connect

    Hernandez, V.; Abella, R.; Lopez, M.; Perez, M.; Artigues, M.; Sempau, J.; Arenas, M.

    2013-02-15

    Purpose: To present a practical method for calibrating the zero position of asymmetric jaws that provides higher accuracy at the central axis and improves dose homogeneity in the abutting region of half-beams. Methods: Junction doses were measured for each asymmetric jaw using the double-exposure technique and electronic portal imaging devices. The junction dose was determined as a function of jaw position. The shift in the zero jaw position (or in its corresponding potentiometer readout) required to correct for the measured junction dose could thus be obtained. The jaw calibration was then modified to introduce the calculated shift and therefore achieve an accurate zero position in order to provide a relative junction dose that was as close to zero as possible. Results: All the asymmetric jaws from four medical linear accelerators were calibrated with the new calibration procedure. Measured relative junction doses at gantry 0 Degree-Sign were reduced from a maximum of {+-}40% to a maximum of {+-}8% for all the jaws in the four considered accelerators. These results were valid for 6 MV and 18 MV photon beams and for any combination of asymmetric jaws set to zero. The calibration was stable over a long period of time; therefore, the need for recalibrating is seldom necessary. Conclusions: Accurate calibration of the zero position of the jaws is feasible in current medical linear accelerators. The proposed procedure is fast and it improves dose homogeneity at the junction of half-beams, thus, allowing a more accurate and safer use of these techniques.

  15. Diagnostic test accuracy: methods for systematic review and meta-analysis.

    PubMed

    Campbell, Jared M; Klugar, Miloslav; Ding, Sandrine; Carmody, Dennis P; Hakonsen, Sasja J; Jadotte, Yuri T; White, Sarahlouise; Munn, Zachary

    2015-09-01

    Systematic reviews are carried out to provide an answer to a clinical question based on all available evidence (published and unpublished), to critically appraise the quality of studies, and account for and explain variations between the results of studies. The Joanna Briggs Institute specializes in providing methodological guidance for the conduct of systematic reviews and has developed methods and guidance for reviewers conducting systematic reviews of studies of diagnostic test accuracy. Diagnostic tests are used to identify the presence or absence of a condition for the purpose of developing an appropriate treatment plan. Owing to demands for improvements in speed, cost, ease of performance, patient safety, and accuracy, new diagnostic tests are continuously developed, and there are often several tests available for the diagnosis of a particular condition. In order to provide the evidence necessary for clinicians and other healthcare professionals to make informed decisions regarding the optimum test to use, primary studies need to be carried out on the accuracy of diagnostic tests and the results of these studies synthesized through systematic review. The Joanna Briggs Institute and its international collaboration have updated, revised, and developed new guidance for systematic reviews, including systematic reviews of diagnostic test accuracy. This methodological article summarizes that guidance and provides detailed advice on the effective conduct of systematic reviews of diagnostic test accuracy. PMID:26355602

  16. New method of acne disease fluorescent diagnostics in natural and fluorescent light and treatment control

    NASA Astrophysics Data System (ADS)

    Karimova, L. N.; Berezin, A. N.; Shevchik, S. A.; Kharnas, S. S.; Kusmin, S. G.; Loschenov, V. B.

    2005-08-01

    In the given research the new method of fluorescent diagnostics (FD) and photodynamic therapy (PDT) control of acne disease is submitted. Method is based on simultaneous diagnostics in natural and fluorescent light. PDT was based on using 5-ALA (5- aminolevulinic acid) preparation and 600-730 nanometers radiation. If the examined site of a skin possessed a high endogenous porphyrin fluorescence level, PDT was carried out without 5-ALA. For FD and treatment control a dot spectroscopy and the fluorescent imaging of the affected skin were used.

  17. Are the classic diagnostic methods in mycology still state of the art?

    PubMed

    Wiegand, Cornelia; Bauer, Andrea; Brasch, Jochen; Nenoff, Pietro; Schaller, Martin; Mayser, Peter; Hipler, Uta-Christina; Elsner, Peter

    2016-05-01

    The diagnostic workup of cutaneous fungal infections is traditionally based on microscopic KOH preparations as well as culturing of the causative organism from sample material. Another possible option is the detection of fungal elements by dermatohistology. If performed correctly, these methods are generally suitable for the diagnosis of mycoses. However, the advent of personalized medicine and the tasks arising therefrom require new procedures marked by simplicity, specificity, and swiftness. The additional use of DNA-based molecular techniques further enhances sensitivity and diagnostic specificity, and reduces the diagnostic interval to 24-48 hours, compared to weeks required for conventional mycological methods. Given the steady evolution in the field of personalized medicine, simple analytical PCR-based systems are conceivable, which allow for instant diagnosis of dermatophytes in the dermatology office (point-of-care tests). PMID:27119470

  18. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods

    PubMed Central

    Flynn, Jullien M; Brown, Emily A; Chain, Frédéric J J; MacIsaac, Hugh J; Cristescu, Melania E

    2015-01-01

    Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive. PMID:26078860

  19. Accurate reporting of adherence to inhaled therapies in adults with cystic fibrosis: methods to calculate “normative adherence”

    PubMed Central

    Hoo, Zhe Hui; Curley, Rachael; Campbell, Michael J; Walters, Stephen J; Hind, Daniel; Wildman, Martin J

    2016-01-01

    Background Preventative inhaled treatments in cystic fibrosis will only be effective in maintaining lung health if used appropriately. An accurate adherence index should therefore reflect treatment effectiveness, but the standard method of reporting adherence, that is, as a percentage of the agreed regimen between clinicians and people with cystic fibrosis, does not account for the appropriateness of the treatment regimen. We describe two different indices of inhaled therapy adherence for adults with cystic fibrosis which take into account effectiveness, that is, “simple” and “sophisticated” normative adherence. Methods to calculate normative adherence Denominator adjustment involves fixing a minimum appropriate value based on the recommended therapy given a person’s characteristics. For simple normative adherence, the denominator is determined by the person’s Pseudomonas status. For sophisticated normative adherence, the denominator is determined by the person’s Pseudomonas status and history of pulmonary exacerbations over the previous year. Numerator adjustment involves capping the daily maximum inhaled therapy use at 100% so that medication overuse does not artificially inflate the adherence level. Three illustrative cases Case A is an example of inhaled therapy under prescription based on Pseudomonas status resulting in lower simple normative adherence compared to unadjusted adherence. Case B is an example of inhaled therapy under-prescription based on previous exacerbation history resulting in lower sophisticated normative adherence compared to unadjusted adherence and simple normative adherence. Case C is an example of nebulizer overuse exaggerating the magnitude of unadjusted adherence. Conclusion Different methods of reporting adherence can result in different magnitudes of adherence. We have proposed two methods of standardizing the calculation of adherence which should better reflect treatment effectiveness. The value of these indices can

  20. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate

    PubMed Central

    Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul

    2015-01-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  1. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  2. Damage diagnosis for SHM of existing civil structure with statistical diagnostic method

    NASA Astrophysics Data System (ADS)

    Iwasaki, Atsushi; Todoroki, Akira; Sugiya, Tsuneya; Sakai, Shinsuke

    2004-07-01

    The present research proposes a new automatic damage diagnostic method that does not require data of damaged state. Structural health monitoring is a noticeable technology for civil structures. Multiple damage diagnostic method for has been proposed, and most of them employ parametric method based on modeling or non-parametric method such as artificial neural networks. These methods demand much costs, and first of all, it is impossible to obtain data for training of damaged existing structures. That causes importance of development of the method, which diagnoses damage just from data of the intact state structure for existing structures. Therefore we purpose new statistical diagnostic method for structural damage detection. In the present method, system identification using a response surface is performed and damage is diagnosed by testing the change of this identified system by statistical test. The new method requires data of non-damaged state and does not require the complicated modeling and data of damaged state structure. As an example, the present study deals damage diagnosis of a jet-fan which installed to a tunnel on an expressway as a ventilator fan. Damages are detected from load of turnbuckles. As a result, the damage is successfully diagnosed with the method.

  3. A multivariate method for meta-analysis and comparison of diagnostic tests.

    PubMed

    Dimou, Niki L; Adam, Maria; Bagos, Pantelis G

    2016-09-10

    We present here an extension of the classic bivariate random effects meta-analysis for the log-transformed sensitivity and specificity that can be applied for two or more diagnostic tests. The advantage of this method is that a closed-form expression is derived for the calculation of the within-studies covariances. The method allows the direct calculation of sensitivity and specificity, as well as, the diagnostic odds ratio, the area under curve and the parameters of the summary receiver operator's characteristic curve, along with the means for a formal comparison of these quantities for different tests. There is no need for individual patient data or the simultaneous evaluation of both diagnostic tests in all studies. The method is simple and fast; it can be extended for several diagnostic tests and can be fitted in nearly all statistical packages. The method was evaluated in simulations and applied in a meta-analysis for the comparison of anti-cyclic citrullinated peptide antibody and rheumatoid factor for discriminating patients with rheumatoid arthritis, with encouraging results. Simulations suggest that the method is robust and more powerful compared with the standard bivariate approach that ignores the correlation between tests. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26940666

  4. Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.

    PubMed

    Abbasi, Mahdi

    2014-01-01

    Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR. PMID:24696808

  5. Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis

    PubMed Central

    Abbasi, Mahdi

    2014-01-01

    Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N2log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR. PMID:24696808

  6. A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food.

    PubMed

    Pérez-Ortega, Patricia; Lara-Ortega, Felipe J; García-Reyes, Juan F; Gilbert-López, Bienvenida; Trojanowicz, Marek; Molina-Díaz, Antonio

    2016-11-01

    The feasibility of accurate-mass multi-residue screening methods using liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) using time-of-flight mass spectrometry has been evaluated, including over 625 multiclass food contaminants as case study. Aspects such as the selectivity and confirmation capability provided by HRMS with different acquisition modes (full-scan or full-scan combined with collision induced dissociation (CID) with no precursor ion isolation), and chromatographic separation along with main limitations such as sensitivity or automated data processing have been examined. Compound identification was accomplished with retention time matching and accurate mass measurements of the targeted ions for each analyte (mainly (de)protonated molecules). Compounds with the same nominal mass (isobaric species) were very frequent due to the large number of compounds included. Although 76% of database compounds were involved in isobaric groups, they were resolved in most cases (99% of these isobaric species were distinguished by retention time, resolving power, isotopic profile or fragment ions). Only three pairs could not be resolved with these tools. In-source CID fragmentation was evaluated in depth, although the results obtained in terms of information provided were not as thorough as those obtained using fragmentation experiments without precursor ion isolation (all ion mode). The latter acquisition mode was found to be the best suited for this type of large-scale screening method instead of classic product ion scan, as provided excellent fragmentation information for confirmatory purposes for an unlimited number of compounds. Leaving aside the sample treatment limitations, the main weaknesses noticed are basically the relatively low sensitivity for compounds which does not map well against electrospray ionization and also quantitation issues such as those produced by signal suppression due to either matrix effects from coeluting matrix or from

  7. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, K.V.; Berning, D.E.; Volkert, W.A.; Ketring, A.R.

    1998-12-01

    A complex and method for making a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids. 20 figs.

  8. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.

    1998-01-01

    A complex and method for making same for use as a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids.

  9. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, K.V.; Karra, S.R.; Berning, D.E.; Smith, C.J.; Volkert, W.A.; Ketring, A.R.

    1999-01-05

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand. 21 figs.

  10. Validation of a Theoretical Model of Diagnostic Classroom Assessment: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Koh, Nancy

    2012-01-01

    The purpose of the study was to validate a theoretical model of diagnostic, formative classroom assessment called, "Proximal Assessment for Learner Diagnosis" (PALD). To achieve its purpose, the study employed a two-stage, mixed-methods design. The study utilized multiple data sources from 11 elementary level mathematics teachers who…

  11. Patents on diagnostic methods in Europe under the European Patent Convention (EPC).

    PubMed

    Barba, Michelangelo

    2010-01-01

    This article reviews the provisions of the European Patent Convention with regard to diagnostic methods practiced on the human or animal body. Moreover, it is also discussed the relevant jurisprudence (Case Law) interpreting the legal provisions. Some examples based on real cases are also presented and discussed. PMID:21095714

  12. Depression and Spinal Cord Injury: A Review of Diagnostic Methods for Depression, 1985 to 2000.

    ERIC Educational Resources Information Center

    Skinner, Amy L.; Armstrong, Kevin J.; Rich, John

    2003-01-01

    Studies of depression in individuals with spinal cord injuries (SCI) over a 15-year period were examined to determine if researchers used consistent diagnostic measures. The Beck Depression Inventory was the most frequently used instrument, but there was inconsistency among methods employed and disagreement regarding the inclusion of somatic…

  13. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  14. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  15. Development and evaluation of a liquid chromatography-mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma.

    PubMed

    Sobsey, Constance A; Han, Jun; Lin, Karen; Swardfager, Walter; Levitt, Anthony; Borchers, Christoph H

    2016-09-01

    Malondialdhyde (MDA) is a commonly used marker of lipid peroxidation in oxidative stress. To provide a sensitive analytical method that is compatible with high throughput, we developed a multiple reaction monitoring-mass spectrometry (MRM-MS) approach using 3-nitrophenylhydrazine chemical derivatization, isotope-labeling, and liquid chromatography (LC) with electrospray ionization (ESI)-tandem mass spectrometry assay to accurately quantify MDA in human plasma. A stable isotope-labeled internal standard was used to compensate for ESI matrix effects. The assay is linear (R(2)=0.9999) over a 20,000-fold concentration range with a lower limit of quantitation of 30fmol (on-column). Intra- and inter-run coefficients of variation (CVs) were <2% and ∼10% respectively. The derivative was stable for >36h at 5°C. Standards spiked into plasma had recoveries of 92-98%. When compared to a common LC-UV method, the LC-MS method found near-identical MDA concentrations. A pilot project to quantify MDA in patient plasma samples (n=26) in a study of major depressive disorder with winter-type seasonal pattern (MDD-s) confirmed known associations between MDA concentrations and obesity (p<0.02). The LC-MS method provides high sensitivity and high reproducibility for quantifying MDA in human plasma. The simple sample preparation and rapid analysis time (5x faster than LC-UV) offers high throughput for large-scale clinical applications. PMID:27437618

  16. Scalable implementations of accurate excited-state coupled cluster theories: application of high-level methods to porphyrin based systems

    SciTech Connect

    Kowalski, Karol; Krishnamoorthy, Sriram; Olson, Ryan M.; Tipparaju, Vinod; Apra, Edoardo

    2011-11-30

    The development of reliable tools for excited-state simulations is emerging as an extremely powerful computational chemistry tool for understanding complex processes in the broad class of light harvesting systems and optoelectronic devices. Over the last years we have been developing equation of motion coupled cluster (EOMCC) methods capable of tackling these problems. In this paper we discuss the parallel performance of EOMCC codes which provide accurate description of the excited-state correlation effects. Two aspects are discuss in details: (1) a new algorithm for the iterative EOMCC methods based on the novel task scheduling algorithms, and (2) parallel algorithms for the non-iterative methods describing the effect of triply excited configurations. We demonstrate that the most computationally intensive non-iterative part can take advantage of 210,000 cores of the Cray XT5 system at OLCF. In particular, we demonstrate the importance of non-iterative many-body methods for achieving experimental level of accuracy for several porphyrin-based system.

  17. Accurate, efficient, and scalable parallel simulation of mesoscale electrostatic/magnetostatic problems accelerated by a fast multipole method

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Karpeev, Dmitry; Li, Jiyuan; de Pablo, Juan; Hernandez-Ortiz, Juan; Heinonen, Olle

    Boundary integrals arise in many electrostatic and magnetostatic problems. In computational modeling of these problems, although the integral is performed only on the boundary of a domain, its direct evaluation needs O(N2) operations, where N is number of unknowns on the boundary. The O(N2) scaling impedes a wider usage of the boundary integral method in scientific and engineering communities. We have developed a parallel computational approach that utilize the Fast Multipole Method to evaluate the boundary integral in O(N) operations. To demonstrate the accuracy, efficiency, and scalability of our approach, we consider two test cases. In the first case, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space using a hybrid finite element-boundary integral method. In the second case, we solve an electrostatic problem involving the polarization of dielectric objects in free space using the boundary element method. The results from test cases show that our parallel approach can enable highly efficient and accurate simulations of mesoscale electrostatic/magnetostatic problems. Computing resources was provided by Blues, a high-performance cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Work at Argonne was supported by U. S. DOE, Office of Science under Contract No. DE-AC02-06CH11357.

  18. Ion chromatography as highly suitable method for rapid and accurate determination of antibiotic fosfomycin in pharmaceutical wastewater.

    PubMed

    Zeng, Ping; Xie, Xiaolin; Song, Yonghui; Liu, Ruixia; Zhu, Chaowei; Galarneau, Anne; Pic, Jean-Stéphane

    2014-01-01

    A rapid and accurate ion chromatography (IC) method (limit of detection as low as 0.06 mg L(-1)) for fosfomycin concentration determination in pharmaceutical industrial wastewater was developed. This method was compared with the performance of high performance liquid chromatography determination (with a high detection limit of 96.0 mg L(-1)) and ultraviolet spectrometry after reacting with alizarin (difficult to perform in colored solutions). The accuracy of the IC method was established in the linear range of 1.0-15.0 mg L(-1) and a linear correlation was found with a correlation coefficient of 0.9998. The recoveries of fosfomycin from industrial pharmaceutical wastewater at spiking concentrations of 2.0, 5.0 and 8.0 mg L(-1) ranged from 81.91 to 94.74%, with a relative standard deviation (RSD) from 1 to 4%. The recoveries of effluent from a sequencing batch reactor treated fosfomycin with activated sludge at spiking concentrations of 5.0, 8.0, 10.0 mg L(-1) ranging from 98.25 to 99.91%, with a RSD from 1 to 2%. The developed IC procedure provided a rapid, reliable and sensitive method for the determination of fosfomycin concentration in industrial pharmaceutical wastewater and samples containing complex components. PMID:24845315

  19. Accurate Kohn-Sham ionization potentials from scaled-opposite-spin second-order optimized effective potential methods.

    PubMed

    Śmiga, Szymon; Della Sala, Fabio; Buksztel, Adam; Grabowski, Ireneusz; Fabiano, Eduardo

    2016-08-15

    One important property of Kohn-Sham (KS) density functional theory is the exact equality of the energy of the highest occupied KS orbital (HOMO) with the negative ionization potential of the system. This exact feature is out of reach for standard density-dependent semilocal functionals. Conversely, accurate results can be obtained using orbital-dependent functionals in the optimized effective potential (OEP) approach. In this article, we investigate the performance, in this context, of some advanced OEP methods, with special emphasis on the recently proposed scaled-opposite-spin OEP functional. Moreover, we analyze the impact of the so-called HOMO condition on the final quality of the HOMO energy. Results are compared to reference data obtained at the CCSD(T) level of theory. © 2016 Wiley Periodicals, Inc. PMID:27357413

  20. The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites

    SciTech Connect

    Cao, Zhen; Voth, Gregory A.

    2015-12-28

    It is essential to be able to systematically construct coarse-grained (CG) models that can efficiently and accurately reproduce key properties of higher-resolution models such as all-atom. To fulfill this goal, a mapping operator is needed to transform the higher-resolution configuration to a CG configuration. Certain mapping operators, however, may lose information related to the underlying electrostatic properties. In this paper, a new mapping operator based on the centers of charge of CG sites is proposed to address this issue. Four example systems are chosen to demonstrate this concept. Within the multiscale coarse-graining framework, CG models that use this mapping operator are found to better reproduce the structural correlations of atomistic models. The present work also demonstrates the flexibility of the mapping operator and the robustness of the force matching method. For instance, important functional groups can be isolated and emphasized in the CG model.

  1. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  2. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction

    PubMed Central

    2013-01-01

    Background Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case–control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. Results We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual’s continental and sub-continental ancestry. To predict an individual’s continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control’s λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of

  3. A comparative study of the diagnostic methods for Group A streptococcal sore throat in two reference hospitals in Yaounde, Cameroon

    PubMed Central

    Gonsu, Hortense Kamga; Bomki, Cynthia Mbimenyuy; Djomou, François; Toukam, Michel; Ndze, Valantine Ngum; Lyonga, Emilia Enjema; Mbakop, Calixte Didier; Koulla-Shiro, Sinata

    2015-01-01

    Introduction Sore throat is a common complaint in general practice which is more frequent in children. The most frequent pathogenic bacteria associated with this infection is Streptococcus pyogenes. Rapid Antigen Diagnostic Test (RADT) facilitates the rapid identification and consequently prompt treatment of patients, prevents complications, and also reduces the risk of spread of Group A Streptococcus (GAS). The main objective of this study was to assess the diagnostic value of a rapid streptococcal antigen detection test in patients with sore throat. Methods A cross-sectional descriptive study was carried out from January to April 2011 on patients aged 3 to 72 years consulting for pharyngitis or sore throat at the paediatric and Ear, Nose and Throat units of the University Teaching Hospital Yaounde and the Central Hospital Yaounde. Two throat swabs were collected per patient. One was used for the rapid test and the other for standard bacteriological analysis. Results The prevalence of GAS in the study population was 22.5%. Out of the 71 samples collected, the RADT detected group A streptococcal antigens in 12 of 16 positive cultures giving a sensitivity of 75%. The specificity of the rapid test was 96%, with positive predictive value of 85.7%, and negative predictive value of 93% respectively. Conclusion Rapid test may have an additional value in the management of patients with high risk of having GAS infection. However, tests with a higher sensitivity are needed for accurate and reliable results for early diagnosis of patients with sore throat caused by GAS.

  4. An UPLC-MS/MS method for separation and accurate quantification of tamoxifen and its metabolites isomers.

    PubMed

    Arellano, Cécile; Allal, Ben; Goubaa, Anwar; Roché, Henri; Chatelut, Etienne

    2014-11-01

    A selective and accurate analytical method is needed to quantify tamoxifen and its phase I metabolites in a prospective clinical protocol, for evaluation of pharmacokinetic parameters of tamoxifen and its metabolites in adjuvant treatment of breast cancer. The selectivity of the analytical method is a fundamental criteria to allow the quantification of the main active metabolites (Z)-isomers from (Z)'-isomers. An UPLC-MS/MS method was developed and validated for the quantification of (Z)-tamoxifen, (Z)-endoxifen, (E)-endoxifen, Z'-endoxifen, (Z)'-endoxifen, (Z)-4-hydroxytamoxifen, (Z)-4'-hydroxytamoxifen, N-desmethyl tamoxifen, and tamoxifen-N-oxide. The validation range was set between 0.5ng/mL and 125ng/mL for 4-hydroxytamoxifen and endoxifen isomers, and between 12.5ng/mL and 300ng/mL for tamoxifen, tamoxifen N-desmethyl and tamoxifen-N-oxide. The application to patient plasma samples was performed. PMID:25173109

  5. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    SciTech Connect

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  6. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  7. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  8. Determination of Baylisascaris schroederi infection in wild giant pandas by an accurate and sensitive PCR/CE-SSCP method.

    PubMed

    Zhang, Wenping; Yie, Shangmian; Yue, Bisong; Zhou, Jielong; An, Renxiong; Yang, Jiangdong; Chen, Wangli; Wang, Chengdong; Zhang, Liang; Shen, Fujun; Yang, Guangyou; Hou, Rong; Zhang, Zhihe

    2012-01-01

    It has been recognized that other than habitat loss, degradation and fragmentation, the infection of the roundworm Baylisascaris schroederi (B. schroederi) is one of the major causes of death in wild giant pandas. However, the prevalence and intensity of the parasite infection has been inconsistently reported through a method that uses sedimentation-floatation followed by a microscope examination. This method fails to accurately determine infection because there are many bamboo residues and/or few B. schroederi eggs in the examined fecal samples. In the present study, we adopted a method that uses PCR and capillary electrophoresis combined with a single-strand conformation polymorphism analysis (PCR/CE-SSCP) to detect B. schroederi infection in wild giant pandas at a nature reserve, and compared it to the traditional microscope approach. The PCR specifically amplified a single band of 279-bp from both fecal samples and positive controls, which was confirmed by sequence analysis to correspond to the mitochondrial COII gene of B. schroederi. Moreover, it was demonstrated that the amount of genomic DNA was linearly correlated with the peak area of the CE-SSCP analysis. Thus, our adopted method can reliably detect the infectious prevalence and intensity of B. schroederi in wild giant pandas. The prevalence of B. schroederi was found to be 54% in the 91 fecal samples examined, and 48% in the fecal samples of 31 identified individual giant pandas. Infectious intensities of the 91 fecal samples were detected to range from 2.8 to 959.2 units/gram, and from 4.8 to 959.2 units/gram in the fecal samples of the 31 identified giant pandas. For comparison, by using the traditional microscope method, the prevalence of B. schroederi was found to be only 33% in the 91 fecal samples, 32% in the fecal samples of the 31 identified giant pandas, and no reliable infectious intensity was observed. PMID:22911871

  9. Bioelectrical impedance is an accurate method to assess body composition in obese but not severely obese adolescents.

    PubMed

    Verney, Julien; Metz, Lore; Chaplais, Elodie; Cardenoux, Charlotte; Pereira, Bruno; Thivel, David

    2016-07-01

    The aim of this study was to compare total and segmental body composition results between bioimpedance analysis (BIA) and dual x-ray absorptiometry (DXA) scan and to test the reproducibility of BIA in obese adolescents. We hypothesized that BIA offers an accurate and reproducible method to assess body composition in adolescents with obesity. Whole-body and segmental body compositions were assessed by BIA (Tanita MC-780) and DXA (Hologic) among 138 (110 girls and 28 boys) obese adolescents (Tanner stage 3-5) aged 14±1.5years. The BIA analysis was replicated on 3 identical occasions in 32 participants to test the reproducibility of the methods. Whole-body fat mass percentage was significantly higher using the BIA method compared with DXA (40.6±7.8 vs 38.8±4.9%, P<.001), which represents a 4.8% overestimation of the BIA technique compared with DXA. Similarly, fat mass expressed in kilograms is overestimated by 2.8% using BIA (35.8±11.7kg) compared with the DXA measure (34.3±8.7kg) (P<.001), and fat-free mass is underestimated by -6.1% using BIA (P<.001). Except for the right arm and leg percentage of fat mass, all the segmental measures of body composition are significantly different between the 2 methods. Intraclass correlation coefficient and Lin coefficient showed great agreement and concordance between both methods in assessing whole-body composition. Intraclass correlation coefficient between the 3 BIA measures ranged from 0.99 to 1 for body weight, body fat, and fat-free mass. Bioimpedance analysis offers an acceptable and reproducible alternative to assess body composition in obese adolescents, with however a loss of correlation between BIA and DXA with increasing body fat; its validity remains uncertain for segmental analysis among obese youth. PMID:27333957

  10. Application of modern diagnostic methods to environmental improvement. Annual progress report, January--October 1994

    SciTech Connect

    Shepard, W.S.

    1994-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), a research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to real world processes; measurements are made in hot, highly corrosive atmospheres in which conventional measurement devices are ineffective. Task 1 of this agreement is concerned with the development and application of various diagnostic methods to characterize the plasma properties, the melt properties and the downstream emissions from a plasma torch facility designed to vitrify mixed waste. Correlation of the measured properties with the operating parameters of the torch will be sought to improve, optimize and control the overall operation of the plasma treatment process. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and control purposes of treatment processes in general. Task 2 of this agreement is concerned with the development of a system to monitor and control the combustion stoichiometry in real time in order to minimize environmental impact and maximize process efficiency. Staged fuel injection is also being studied to minimize NO{sub x} formation.

  11. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.

  12. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-01

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). PMID:24274986

  13. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms

    PubMed Central

    Twisk, Frank NM

    2015-01-01

    Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional “malaise”: a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional “malaise” and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially. PMID:26140274

  14. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms.

    PubMed

    Twisk, Frank Nm

    2015-06-26

    Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional "malaise": a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional "malaise" and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially. PMID:26140274

  15. Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package

    NASA Astrophysics Data System (ADS)

    Deguchi, Daiki; Sato, Kazunori; Kino, Hiori; Kotani, Takao

    2016-05-01

    We have recently implemented a new version of the quasiparticle self-consistent GW (QSGW) method in the ecalj package released at http://github.com/tkotani/ecalj. Since the new version of the ecalj package is numerically stable and more accurate than the previous versions, we can perform calculations easily without being bothered with tuning input parameters. Here we examine its ability to describe energy band properties, e.g., band-gap energy, eigenvalues at special points, and effective mass, for a variety of semiconductors and insulators. We treat C, Si, Ge, Sn, SiC (in 2H, 3C, and 4H structures), (Al, Ga, In) × (N, P, As, Sb), (Zn, Cd, Mg) × (O, S, Se, Te), SiO2, HfO2, ZrO2, SrTiO3, PbS, PbTe, MnO, NiO, and HgO. We propose that a hybrid QSGW method, where we mix 80% of QSGW and 20% of LDA, gives universally good agreement with experiments for these materials.

  16. A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals

    NASA Astrophysics Data System (ADS)

    Gu, F.; Wang, T.; Alwodai, A.; Tian, X.; Shao, Y.; Ball, A. D.

    2015-01-01

    Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has motivated many studies into improving this method. In this paper a modulation signal bispectrum (MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the amplitude at (1 ± 2 s)fs (s is the rotor slip and fs is the fundamental supply frequency) with high accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces more accurate results in predicting the number of BRB, compared with conventional power spectrum analysis. Moreover, the paper has also developed an improved model for motor current signals under rotor fault conditions and an effective method to decouple the BRB current which interferes with that of speed oscillations associated with BRB. These provide theoretical supports for the new estimators and clarify the issues in using conventional bispectrum analysis.

  17. Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees' Knowledge and Skills in Mathematics: An Operational Implementation of Cognitive Diagnostic Assessment

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Alves, Cecilia; Majeau, Renate Taylor

    2010-01-01

    The purpose of this study is to apply the attribute hierarchy method in an operational diagnostic mathematics program at Grades 3 and 6 to promote cognitive inferences about students' problem-solving skills. The attribute hierarchy method is a psychometric procedure for classifying examinees' test item responses into a set of structured attribute…

  18. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    PubMed

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS. PMID:26631397

  19. Disseminated histoplasmosis and AIDS: clinical aspects and diagnostic methods for early detection.

    PubMed

    Corti, M E; Cendoya, C A; Soto, I; Esquivel, P; Trione, N; Villafañe, M F; Corbera, K M; Helou, S; Negroni, R

    2000-03-01

    Disseminated histoplasmosis in AIDS patients is the focus of this paper. Cutaneous lesions are reported as a frequent clinical sign. Bone marrow aspiration and biopsy, blood cultures (lysis-centrifugation technique), bronchoalveolar lavage, and skin lesion scrapings are the most effective diagnostic methods. The identification of a specific antigen in blood and urine may be a rapid means of evaluation and follow-up of patients with this disease. PMID:10763544

  20. Electromagnetism, Optics and Lasers: Handbook of Coherent Domain Optical Methods, Biomedical Diagnostics, Environment and Material Science

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research c ontaining the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters.

  1. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    SciTech Connect

    Ul'yanov, S S; Laskavyi, V N; Glova, Alina B; Polyanina, T I; Ul'yanova, O V; Fedorova, V A; Ul'yanov, A S

    2012-05-31

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  2. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    NASA Astrophysics Data System (ADS)

    Ul'yanov, S. S.; Laskavyi, V. N.; Glova, Alina B.; Polyanina, T. I.; Ul'yanova, O. V.; Fedorova, V. A.; Ul'yanov, A. S.

    2012-05-01

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 — Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  3. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  4. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET

    PubMed Central

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-01-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system. PMID:26543243

  5. Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device

    NASA Astrophysics Data System (ADS)

    Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-03-01

    Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.

  6. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart

    2013-09-01

    The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.

  7. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel; Zimbal, Andreas

    2008-02-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements.

  8. Species Distribution 2.0: An Accurate Time- and Cost-Effective Method of Prospection Using Street View Imagery

    PubMed Central

    Schwoertzig, Eugénie; Millon, Alexandre

    2016-01-01

    Species occurrence data provide crucial information for biodiversity studies in the current context of global environmental changes. Such studies often rely on a limited number of occurrence data collected in the field and on pseudo-absences arbitrarily chosen within the study area, which reduces the value of these studies. To overcome this issue, we propose an alternative method of prospection using geo-located street view imagery (SVI). Following a standardised protocol of virtual prospection using both vertical (aerial photographs) and horizontal (SVI) perceptions, we have surveyed 1097 randomly selected cells across Spain (0.1x0.1 degree, i.e. 20% of Spain) for the presence of Arundo donax L. (Poaceae). In total we have detected A. donax in 345 cells, thus substantially expanding beyond the now two-centuries-old field-derived record, which described A. donax only 216 cells. Among the field occurrence cells, 81.1% were confirmed by SVI prospection to be consistent with species presence. In addition, we recorded, by SVI prospection, 752 absences, i.e. cells where A. donax was considered absent. We have also compared the outcomes of climatic niche modeling based on SVI data against those based on field data. Using generalized linear models fitted with bioclimatic predictors, we have found SVI data to provide far more compelling results in terms of niche modeling than does field data as classically used in SDM. This original, cost- and time-effective method provides the means to accurately locate highly visible taxa, reinforce absence data, and predict species distribution without long and expensive in situ prospection. At this time, the majority of available SVI data is restricted to human-disturbed environments that have road networks. However, SVI is becoming increasingly available in natural areas, which means the technique has considerable potential to become an important factor in future biodiversity studies. PMID:26751565

  9. ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method

    NASA Astrophysics Data System (ADS)

    Izard, Albert; Crocce, Martin; Fosalba, Pablo

    2016-07-01

    Next generation galaxy surveys demand the development of massive ensembles of galaxy mocks to model the observables and their covariances, what is computationally prohibitive using N-body simulations. COmoving Lagrangian Acceleration (COLA) is a novel method designed to make this feasible by following an approximate dynamics but with up to three orders of magnitude speed-ups when compared to an exact N-body. In this paper, we investigate the optimization of the code parameters in the compromise between computational cost and recovered accuracy in observables such as two-point clustering and halo abundance. We benchmark those observables with a state-of-the-art N-body run, the MICE Grand Challenge simulation. We find that using 40 time-steps linearly spaced since zi ˜ 20, and a force mesh resolution three times finer than that of the number of particles, yields a matter power spectrum within 1 per cent for k ≲ 1 h Mpc-1 and a halo mass function within 5 per cent of those in the N-body. In turn, the halo bias is accurate within 2 per cent for k ≲ 0.7 h Mpc-1 whereas, in redshift space, the halo monopole and quadrupole are within 4 per cent for k ≲ 0.4 h Mpc-1. These results hold for a broad range in redshift (0 < z < 1) and for all halo mass bins investigated (M > 1012.5 h-1 M⊙). To bring accuracy in clustering to one per cent level we study various methods that re-calibrate halo masses and/or velocities. We thus propose an optimized choice of COLA code parameters as a powerful tool to optimally exploit future galaxy surveys.

  10. Stable and accurate hybrid finite volume methods based on pure convexity arguments for hyperbolic systems of conservation law

    NASA Astrophysics Data System (ADS)

    De Vuyst, Florian

    2004-01-01

    This exploratory work tries to present first results of a novel approach for the numerical approximation of solutions of hyperbolic systems of conservation laws. The objective is to define stable and "reasonably" accurate numerical schemes while being free from any upwind process and from any computation of derivatives or mean Jacobian matrices. That means that we only want to perform flux evaluations. This would be useful for "complicated" systems like those of two-phase models where solutions of Riemann problems are hard, see impossible to compute. For Riemann or Roe-like solvers, each fluid model needs the particular computation of the Jacobian matrix of the flux and the hyperbolicity property which can be conditional for some of these models makes the matrices be not R-diagonalizable everywhere in the admissible state space. In this paper, we rather propose some numerical schemes where the stability is obtained using convexity considerations. A certain rate of accuracy is also expected. For that, we propose to build numerical hybrid fluxes that are convex combinations of the second-order Lax-Wendroff scheme flux and the first-order modified Lax-Friedrichs scheme flux with an "optimal" combination rate that ensures both minimal numerical dissipation and good accuracy. The resulting scheme is a central scheme-like method. We will also need and propose a definition of local dissipation by convexity for hyperbolic or elliptic-hyperbolic systems. This convexity argument allows us to overcome the difficulty of nonexistence of classical entropy-flux pairs for certain systems. We emphasize the systematic feature of the method which can be fastly implemented or adapted to any kind of systems, with general analytical or data-tabulated equations of state. The numerical results presented in the paper are not superior to many existing state-of-the-art numerical methods for conservation laws such as ENO, MUSCL or central scheme of Tadmor and coworkers. The interest is rather

  11. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism

    PubMed Central

    Cacko, Marek; Królicki, Leszek

    2015-01-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated. PMID:26807297

  12. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism.

    PubMed

    Nieciecki, Michał; Cacko, Marek; Królicki, Leszek

    2015-12-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated. PMID:26807297

  13. [Forensic medical diagnostics of intra-vitality of the strangulation mark by morphological methods].

    PubMed

    Bogomolov, D V; Zbrueva, Yu V; Putintsev, V A; Denisova, O P

    2016-01-01

    The objective of the present study WaS to overview the current domestic and foreign literature concerning the up-to-date methods employed for the expert evaluation of intra-vitality of the strangulation mark. The secondary objective was to propose the new approaches for addressing this problem. The methods of expert diagnostics with a view to determining the time of infliction of injuries as exemplified by mechanical asphyxia are discussed. It is concluded that immunohistochemical and morphometric studies provide the most promising tools for the evaluation of intra-vitality of the strangulation mark for the purpose of forensic medical expertise. PMID:27358932

  14. A fast and accurate method for computing the Sunyaev-Zel'dovich signal of hot galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Nagai, Daisuke; Sazonov, Sergey; Nelson, Kaylea

    2012-10-01

    New-generation ground- and space-based cosmic microwave background experiments have ushered in discoveries of massive galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, providing a new window for studying cluster astrophysics and cosmology. Many of the newly discovered, SZ-selected clusters contain hot intracluster plasma (kTe ≳ 10 keV) and exhibit disturbed morphology, indicative of frequent mergers with large peculiar velocity (v ≳ 1000 km s-1). It is well known that for the interpretation of the SZ signal from hot, moving galaxy clusters, relativistic corrections must be taken into account, and in this work, we present a fast and accurate method for computing these effects. Our approach is based on an alternative derivation of the Boltzmann collision term which provides new physical insight into the sources of different kinematic corrections in the scattering problem. In contrast to previous works, this allows us to obtain a clean separation of kinematic and scattering terms. We also briefly mention additional complications connected with kinematic effects that should be considered when interpreting future SZ data for individual clusters. One of the main outcomes of this work is SZPACK, a numerical library which allows very fast and precise (≲0.001 per cent at frequencies hν ≲ 20kTγ) computation of the SZ signals up to high electron temperature (kTe ≃ 25 keV) and large peculiar velocity (v/c ≃ 0.01). The accuracy is well beyond the current and future precision of SZ observations and practically eliminates uncertainties which are usually overcome with more expensive numerical evaluation of the Boltzmann collision term. Our new approach should therefore be useful for analysing future high-resolution, multifrequency SZ observations as well as computing the predicted SZ effect signals from numerical simulations.

  15. Development of a simple, accurate SPME-based method for assay of VOCs in column breakthrough experiments.

    PubMed

    Salaices Avila, Manuel Alejandro; Breiter, Roman; Mott, Henry

    2007-01-01

    Solid-phase microextraction (SPME) with gas chromatography is to be used for assay of effluent liquid samples from soil column experiments associated with VOC fate/transport studies. One goal of the fate/transport studies is to develop accurate, highly reproducible column breakthrough curves for 1,2-cis-dichloroethylene (cis-DCE) and trichloroethylene (TCE) to better understand interactions with selected natural solid phases. For SPME, the influences of the sample equilibration time, extraction temperature and the ratio of volume of sample bottle to that of the liquid sample (V(T)/V(w)) are the critical factors that could influence accuracy and precision of the measured results. Equilibrium between the gas phase and liquid phase was attained after 200 min of equilibration time. The temperature must be carefully controlled due to variation of both the Henry's constant (K(h)) and the fibre/gas phase distribution coefficient (K(fg)). K(h) decreases with decreasing temperature while K(fg) increases. Low V(T)/V(w) yields better sensitivity but results in analyte losses and negative bias of the resultant assay. High V(T)/V(w) ratio yields reduced sensitivity but analyte losses were found to be minimal, leading to better accuracy and reproducibility. A fast SPME method was achieved, 5 min for SPME extraction and 3.10 min for GC analysis. A linear calibration function in the gas phase was developed to analyse the breakthrough curve data, linear between a range of 0.9-236 microgl(-1), and a detection limit lower than 5 microgl(-1). PMID:16844196

  16. Inversion methods for the measurements of MHD-like density fluctuations by Heavy Ion Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Malaquias, A.; Henriques, R. B.; Nedzelsky, I. S.

    2015-09-01

    We report here on the recent developments in the deconvolution of the path integral effects for the study of MHD pressure-like fluctuations measured by Heavy Ion Beam Diagnostic. In particular, we develop improved methods to account for and remove the path integral effect on the determination of the ionization generation factors, including the double ionization of the primary beam. We test the method using the HIBD simulation code which computes the real beam trajectories and attenuations due to electron impact ionization for any selected synthetic profiles of plasma current, plasma potential, electron temperature and density. Simulations have shown the numerical method to be highly effective in ISTTOK within an overall accuracy of a few percent (< 3%). The method here presented can effectively reduce the path integral effects and may serve as the basis to develop improved retrieving techniques for plasma devices working even in higher density ranges. The method is applied to retrieve the time evolution and spatial structure of m=1 and m=2 modes. The 2D MHD mode-like structure is reconstructed by means of a spatial projection of all 1D measurements obtained during one full rotation of the mode. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  17. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    resulted from this feedback. Alternate diagnostic methods are constantly being evaluated as to their suitability as a diagnostic tool in these environments. A new method currently under examination is background oriented Schlieren (BOS) for examining the fuel/air mixing processes. While ratioing the Stokes and anti-Stokes nitrogen lines obtained from spontaneous Raman is being refined for temperature measurement. While the primary focus of the GRC diagnostic work remains optical species measurement and flow stream characterization, an increased emphasis has been placed on our involvement in flame code validation efforts. A functional combustor code should shorten and streamline future combustor design. Quantitative measurements of flow parameters such as temperature, species concentration, drop size and velocity using such methods as Raman and phase Doppler anemometry will provide data necessary in this effort.

  18. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  19. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  20. Personality Assessment in the Diagnostic Manuals: On Mindfulness, Multiple Methods, and Test Score Discontinuities

    PubMed Central

    Bornstein, Robert F.

    2015-01-01

    Recent controversies have illuminated the strengths and limitations of different frameworks for conceptualizing personality pathology (e.g., trait perspectives, categorical models), and stimulated debate regarding how best to diagnose personality disorders (PDs) in DSM-5, and in other diagnostic systems (i.e., the International Classification of Diseases, the Psychodynamic Diagnostic Manual). In this article I argue that regardless of how PDs are conceptualized and which diagnostic system is employed, multi-method assessment must play a central role in PD diagnosis. By complementing self-reports with evidence from other domains (e.g., performance-based tests), a broader range of psychological processes are engaged in the patient, and the impact of self-perception and self-presentation biases may be better understood. By providing the assessor with evidence drawn from multiple modalities, some of which provide converging patterns and some of which yield divergent results, the assessor is compelled to engage this evidence more deeply. The mindful processing that ensues can help minimize the deleterious impact of naturally occurring information processing bias and distortion on the part of the clinician (e.g., heuristics, attribution errors), bringing greater clarity to the synthesis and integration of assessment data. PMID:25856565

  1. Express diagnostics of intact and pathological dental hard tissues by optical PNC method

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-03-01

    The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1 mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC- method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be used as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.

  2. Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    PubMed Central

    2010-01-01

    Background There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians. Methods/Design A cross-sectional study of Indigenous Australian adults (target n = 600, 50% male) across 4 sites: Top End, Northern Territory; Central Australia; Far North Queensland and Western Australia. The reference measure of glomerular filtration rate was the plasma disappearance rate of iohexol over 4 hours. We will compare the accuracy of the following glomerular filtration rate measures with the reference measure: Modification of Diet in Renal Disease 4-variable formula, Chronic Kidney Disease Epidemiology Collaboration equation, Cockcroft-Gault formula and cystatin C- derived estimates. Detailed assessment of body build and composition was performed using anthropometric measurements, skinfold thicknesses, bioelectrical impedance and a sub-study used dual-energy X-ray absorptiometry. A

  3. New diagnostic methods for laser plasma- and microwave-enhanced combustion.

    PubMed

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-08-13

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  4. Impact of gene patents on diagnostic testing: a new patent landscaping method applied to spinocerebellar ataxia

    PubMed Central

    Berthels, Nele; Matthijs, Gert; Van Overwalle, Geertrui

    2011-01-01

    Recent reports in Europe and the United States raise concern about the potential negative impact of gene patents on the freedom to operate of diagnosticians and on the access of patients to genetic diagnostic services. Patents, historically seen as legal instruments to trigger innovation, could cause undesired side effects in the public health domain. Clear empirical evidence on the alleged hindering effect of gene patents is still scarce. We therefore developed a patent categorization method to determine which gene patents could indeed be problematic. The method is applied to patents relevant for genetic testing of spinocerebellar ataxia (SCA). The SCA test is probably the most widely used DNA test in (adult) neurology, as well as one of the most challenging due to the heterogeneity of the disease. Typically tested as a gene panel covering the five common SCA subtypes, we show that the patenting of SCA genes and testing methods and the associated licensing conditions could have far-reaching consequences on legitimate access to this gene panel. Moreover, with genetic testing being increasingly standardized, simply ignoring patents is unlikely to hold out indefinitely. This paper aims to differentiate among so-called ‘gene patents' by lifting out the truly problematic ones. In doing so, awareness is raised among all stakeholders in the genetic diagnostics field who are not necessarily familiar with the ins and outs of patenting and licensing. PMID:21811306

  5. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  6. White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods.

    PubMed

    McGuire, Liam P; Turner, James M; Warnecke, Lisa; McGregor, Glenna; Bollinger, Trent K; Misra, Vikram; Foster, Jeffrey T; Frick, Winifred F; Kilpatrick, A Marm; Willis, Craig K R

    2016-03-01

    White-nose syndrome is caused by the fungus Pseudogymnoascus destructans and has killed millions of hibernating bats in North America but the pathophysiology of the disease remains poorly understood. Our objectives were to (1) assess non-destructive diagnostic methods for P. destructans infection compared to histopathology, the current gold-standard, and (2) to evaluate potential metrics of disease severity. We used data from three captive inoculation experiments involving 181 little brown bats (Myotis lucifugus) to compare histopathology, quantitative PCR (qPCR), and ultraviolet fluorescence as diagnostic methods of P. destructans infection. To assess disease severity, we considered two histology metrics (wing area with fungal hyphae, area of dermal necrosis), P. destructans fungal load (qPCR), ultraviolet fluorescence, and blood chemistry (hematocrit, sodium, glucose, pCO2, and bicarbonate). Quantitative PCR was most effective for early detection of P. destructans, while all three methods were comparable in severe infections. Correlations among hyphae and necrosis scores, qPCR, ultraviolet fluorescence, blood chemistry, and hibernation duration indicate a multi-stage pattern of disease. Disruptions of homeostasis occurred rapidly in late hibernation. Our results provide valuable information about the use of non-destructive techniques for monitoring, and provide novel insight into the pathophysiology of white-nose syndrome, with implications for developing and implementing potential mitigation strategies. PMID:26957435

  7. Combined Use of Cytogenetic and Molecular Methods in Prenatal Diagnostics of Chromosomal Abnormalities

    PubMed Central

    Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Mehinovic, Lejla; Konjhodzic, Rijad

    2015-01-01

    Aim: The aim of prenatal diagnostics is to provide information of the genetic abnormalities of the fetus early enough for the termination of pregnancy to be possible. Chromosomal abnormalities can be detected in an unborn child through the use of cytogenetic, molecular- cytogenetic and molecular methods. In between them, central spot is still occupied by cytogenetic methods. In cases where use of such methods is not informative enough, one or more molecular cytogenetic methods can be used for further clarification. Combined use of the mentioned methods improves the quality of the final findings in the diagnostics of chromosomal abnormalities, with classical cytogenetic methods still occupying the central spot. Material and methods: Conducted research represent retrospective-prospective study of a four year period, from 2008 through 2011. In the period stated, 1319 karyotyping from amniotic fluid were conducted, along with 146 FISH analysis. Results: Karyotyping had detected 20 numerical and 18 structural aberrations in that period. Most common observed numerical aberration were Down syndrome (75%), Klinefelter syndrome (10%), Edwards syndrome, double Y syndrome and triploidy (5% each). Within observed structural aberrations more common were balanced chromosomal aberrations then non balanced ones. Most common balanced structural aberrations were as follows: reciprocal translocations (60%), Robertson translocations (13.3%), chromosomal inversions, duplications and balanced de novo chromosomal rearrangements (6.6% each). Conclusion: With non- balanced aberrations observed in the samples of amniotic fluid, non- balanced translocations, deletions and derived chromosomes were equally represented. Number of detected aneuploidies with FISH, prior to obtaining results with karyotyping, were 6. PMID:26005269

  8. DIAGNOSTIC EVALUATION OF AIR QUALITY MODELS USING ADVANCED METHODS WITH SPECIALIZED OBSERVATIONS OF SELECTED AMBIENT SPECIES -PART II

    EPA Science Inventory

    This is Part 2 of "Diagnostic Evaluation of Air Quality Models Using Advanced Methods with Specialized Observations of Selected Ambient Species". A limited field campaign to make specialized observations of selected ambient species using advanced and innovative instrumentation f...

  9. Evaluation of the Effect of Fluctuation of Absolute Value for Diagnostic Accuracy of Fatigue Crack Monitoring Via Statistical Diagnostic Method Using Correlation between Sensors

    NASA Astrophysics Data System (ADS)

    Iwasaki, Atsushi; Morimoto, Akihiro; Yatomi, Masataka; Kimura, Tadashi

    This research is about improvement of the diagnostic accuracy of the fatigue crack monitoring via the statistical diagnostic method. Our research group proposes an unsupervised damage diagnostic method named SI-F method which diagnoses the damage from detecting the change of correlation between sensors caused by the initiation or propagation of the damage via the statistical evaluation. By the method, correlation between sensors is identified by using the response surface and the change of them is statistically investigated with the F-test. To identify the crack length by the method, identification about the relation between the crack length and the F0 statistic is required. Then in this research, to evaluate effect of the regression error, the noise magnitude and the fluctuation of the external force to the relation, numerical simulation was conducted. For the simulation, two sets of data, one with constant load and one with variable load, are generated and compared. And the applicability of the result of the simulation is experimentally investigated. Finally, the results indicate that the F0 affected by the regression error and the noise magnitude but not affected by the external force.

  10. Investigation of opportunities of the optical non-invasive diagnostics method for the blood sugar control

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2015-03-01

    The relevance of noninvasive method for determining the blood sugar is caused by necessity of regular monitoring of glucose levels in diabetic patients blood. Traditional invasive method is painful, because it requires a finger pricking. Despite the active studies in the field of non-invasive medical diagnostics, to date the painless and inexpensive instrument for blood sugar control for personal use doesn't exist. It's possible to measure the concentration of glucose in the blood with help of spectrophotometry method. It consists of registering and analyzing the spectral characteristics of the radiation which missed, reflected or absorbed by the object. The authors proposed a measuring scheme for studying the spectral characteristics of the radiation, missed by earlobe. Ultra-violet, visible and near infrared spectral ranges are considered. The paper presents the description of construction and working principles of the proposed special retaining clip and results of experiment with real patient.

  11. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  12. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. E.; Chental, Victor V.; Komov, D.; Vaculovskaya, E.; Tabolinovskaya, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikhin, V.; Loschenov, Victor B.; Meerovich, Gennady A.; Stratonnikov, A. A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, E.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  13. Mammary carcinoma – current diagnostic methods and symptomatology in imaging studies

    PubMed Central

    Popiel, Monika; Mróz-Klimas, Danuta; Kasprzak, Renata; Furmanek, Mariusz

    2012-01-01

    Summary Breast cancer is the most common neoplasm of the female population and its incidence is constantly rising. Social campaigns educating the public about the importance of the problem have been conducted for the past several years. Women are encouraged to self-examine on a monthly basis. Women aged 50–69 years can have an x-ray mammography performed once every 2 years as part of a prophylactic screening program. Ultrasound studies or MR mammography are adjuvant or, in some cases, alternative to x-ray mammography. Nuclear medicine techniques with application of oncophilic markers and receptor studies (this publication will not cover nuclear medicine methods) are not routinely used. Other techniques, such as computed tomography and conventional radiography are of no significance in the diagnostics of mammary cancer. However, together with isotopic methods, they are helpful in staging of the disease. X-ray mammography is, up to date, the only method with proven value in decreasing mortality. It is also the best available method for visualization of microcalicifications. Ultrasound examination is complementary to x-ray mammography as it is a cheap, easily available method of imaging mammary glands with higher glandular tissue content. It is also the most commonly used modality aiding in targeted biopsy of mammary gland. To date, MR mammography, characterized by the highest sensitivity in cancer diagnostics, remained a method reserved for “special tasks”. MR is used for prophylaxis mainly in a population of women with particularly high risk of the disease and in cases where x-ray and ultrasound examinations are insufficient. Picture of mammary carcinoma in imaging studies is heterogeneous. However, it most often presents as an irregularly demarcated mass. Moreover, each modality can aid in visualization of additional features of a lesion such as typical shape of microcalcifications in x-ray mammography, characteristic pattern of contrast enhancement in MR

  14. On the development of a method to measure the surface temperature of ultrasonic diagnostic transducers

    NASA Astrophysics Data System (ADS)

    Hekkenberg, R. T.; Bezemer, R. A.

    2004-01-01

    A project to develop improved and practical procedures to measure the surface temperature of diagnostic ultrasound transducers under normal use conditions has been carried out. The approach taken in the project was first to produce tissue mimicking material and an experimental measurement set-up that could lead to reasonably accurate and reproducible values of surface temperature rise. The relative influence of different tissue layers close to the surface has been modelled. Measurement results obtained using different types of thermocouples and using an infrared camera system were compared. Typical transducer surface temperature rises on a layered physical model were compared to those obtained on human skin (forearm). The difference between the average temperature rises on a 1.5 mm silicone layer on a soft tissue mimic and on the human forearm was not more than 7%. However, the variation between transducers introduces an uncertainty around 23% (95% confidence) of the temperature rise ratio. If the output beam dimension is accounted for as a (weak) factor of influence, the uncertainty is reduced to 19%. For endocavity transducers there does not seem to be a strong argument for potting the transducer in a tissue model. An example set-up for the measurement of externally used transducers has been implemented in the IEC 60601-2-37 1st Amendment. The material developed can be ordered from TNO.

  15. Molecular IR Spectroscopy: New Trends and Methods of Noninvasive Diagnostics of Tissue IN VIVO

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia; Bruch, Reinhard

    1998-05-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850-1850 cm-1) has recently been applied to the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured the normal skin and malignant tissues in vivo on the surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room to measure the skin in the depth (under/in the layers of epidermis) of human breast, stomach, lung, and kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  16. [Clinical usefulness of diagnostic methods for human papilloma virus dependent lesions].

    PubMed

    Suwalska, Anna; Owczarek, Witold; Fiedor, Piotr

    2014-02-01

    Persistent infection of Human Papilloma Virus (HPV) is confirmed necessary factor for development of cervical cancer and anogenital neoplasia. DNA HPV is detected in 96% of cervical cancer, 40% of vulvar and vaginal cancer, 90% of anal cancer and 26% of oral cavity cancer cases in general population. The most common high-risk HPV types observed in anogenital intraepithelial neoplasia or anogenital cancer are HPV 16, 18 and 45. Numerous diagnostic methods of detection of HPV infection and lesions causes by persistent HPV infection are widely used. Epidemiological data reveals correlation of incidence and mortality reduction due to cervical cancer and consequent prosecution and improvement of screening programmes based on morphological assessment of exfoliative smears. In last decade some limitations of conventional smear method were pointed out and a new diagnostic techniques were introduced: liquid-based cytology and HPV DNA testing. Combination of cytological examination and HPV DNA testing seems to be optimal solution to be introduced in large population because of combining high sensitivity of molecular test with high specificity of cytological smear. PMID:24720112

  17. Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data

    SciTech Connect

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.; Solberg, Timothy D.; Chetty, Indrin J.

    2009-12-15

    In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10x10 and 40x40 cm{sup 2} field sizes. The BEAMnrc parameters/techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections, (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe-Heitler) was used as the ''base line'' for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were {approx}935 ({approx}111 min on a single 2.6 GHz processor) and {approx}200 ({approx}45 min on a single processor) for the 10x10 field size with 50 million histories and 40x40 cm{sup 2} field size with 100 million histories, respectively, using the VRT directional bremsstrahlung splitting (DBS) with no

  18. Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data

    PubMed Central

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.; Solberg, Timothy D.; Chetty, Indrin J.

    2009-01-01

    In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10×10 and 40×40 cm2 field sizes. The BEAMnrc parameters∕techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections, (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe–Heitler) was used as the “base line” for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were ∼935 (∼111 min on a single 2.6 GHz processor) and ∼200 (∼45 min on a single processor) for the 10×10 field size with 50 million histories and 40×40 cm2 field size with 100 million histories, respectively, using the VRT directional bremsstrahlung splitting (DBS) with no electron splitting. When

  19. Cotton-based diagnostic devices.

    PubMed

    Lin, Shang-Chi; Hsu, Min-Yen; Kuan, Chen-Meng; Wang, Hsi-Kai; Chang, Chia-Ling; Tseng, Fan-Gang; Cheng, Chao-Min

    2014-01-01

    A good diagnostic procedure avoids wasting medical resources, is easy to use, resists contamination, and provides accurate information quickly to allow for rapid follow-up therapies. We developed a novel diagnostic procedure using a "cotton-based diagnostic device" capable of real-time detection, i.e., in vitro diagnostics (IVD), which avoids reagent contamination problems common to existing biomedical devices and achieves the abovementioned goals of economy, efficiency, ease of use, and speed. Our research reinforces the advantages of an easy-to-use, highly accurate diagnostic device created from an inexpensive and readily available U.S. FDA-approved material (i.e., cotton as flow channel and chromatography paper as reaction zone) that adopts a standard calibration curve method in a buffer system (i.e., nitrite, BSA, urobilinogen and uric acid assays) to accurately obtain semi-quantitative information and limit the cross-contamination common to multiple-use tools. Our system, which specifically targets urinalysis diagnostics and employs a multiple biomarker approach, requires no electricity, no professional training, and is exceptionally portable for use in remote or home settings. This could be particularly useful in less industrialized areas. PMID:25393975

  20. A new, fast and accurate spectrophotometric method for the determination of the optical constants of arbitrary absorptance thin films from a single transmittance curve: application to dielectric materials

    NASA Astrophysics Data System (ADS)

    Desforges, Jean; Deschamps, Clément; Gauvin, Serge

    2015-08-01

    The determination of the complex refractive index of thin films usually requires the highest accuracy. In this paper, we report on a new and accurate method based on a spectral rectifying process of a single transmittance curve. The agreements with simulated and real experimental data show the helpfulness of the method. The case of materials having arbitrary absorption bands at midpoint in spectral range, such as pigments in guest-host polymers, is also encompassed by this method.

  1. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers.

    PubMed

    Reginatto, Marcel; Zimbal, Andreas

    2008-02-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements. PMID:18315297

  2. Crystallo-optic diagnostics method of the soft laser-induced effects in biological fluids

    NASA Astrophysics Data System (ADS)

    Skopinov, S. A.; Yakovleva, S. V.

    1991-05-01

    Presently, it is well known that individual cells"2 and higher organisms3'4 exhibit a marked response to soft laser irradiation in certain parts of the visible and near infrared spectral ranges. Broad clinical applications of laser therapy and slow progress in understanding of the physical, chemical and biological mechanisms of this phenomenon make the task to search new methods of objectivisation of laser-induces bioeffects very insistent. In this paper we give a short review of the methods of structural-optical diagnostics of the soft laser-induced effects in biofluids (blood and its fractions, saliva, juices, mucuses, exudations, etc.) and suggest their applications in experimental and clinical studies of the soft laser bioeffects.

  3. A nondestructive method for diagnostic of insulated building walls using infrared thermography

    NASA Astrophysics Data System (ADS)

    Larbi Youcef, Mohamed H. A.; Mazioud, Atef; Bremond, Pierre; Ibos, Laurent; Candau, Yves; Piro, Michel; Filloux, Alain

    2007-04-01

    This work deals with the development of an experimental protocol for the diagnostic of multi-layered insulated building walls. First, a test bench is set up in order to measure front and back sides temperatures of standard panels. The panels considered have insulation thicknesses of 2, 6 and 10cm. The front side is heated by two halogen lamps of 500W. A CEDIP Jade Long wave infrared camera and thermocouples are used to carry out temperature measurements. In a second time, a one dimensional model based on thermal quadruples and Laplace transforms was developped under Matlab environment. Also, we developped a three dimensional model based on finite volumes using Fluent computational code. Finally, a method of identification of physical parameters is implemented by performing least square minimization based on Levenberg-Marquardt method. The experimental measurements are compared to theoretical results and by minimization we obtain thermal conductivity and diffusivity as well as thickness of the two layers.

  4. Diagnostic radiology peer review: a method inclusive of all interpreters of radiographic examinations regardless of specialty.

    PubMed

    Hopper, K D; Rosetti, G F; Edmiston, R B; Madewell, J E; Beam, L M; Landis, J R; Miller, K L; Ricci, J A; McCauslin, M A

    1991-08-01

    A proposed method of assessing the quality of diagnostic radiographic examinations includes peer review designed to evaluate physicians, including nonradiologists, involved in the performance and interpretation of such examinations. A pilot project evaluated this system with randomly selected Pennsylvania Blue Shield data files of 10 providers billing for chest radiography interpretations during the second quarter of 1989. Of the 98 chest radiographs reviewed blindly, all inadequately marked radiographs and incomplete written reports were produced by nonradiologists. Technical quality of images obtained by radiologists did not significantly differ from that of images obtained by nonradiologists (P = .189). All five interpretive errors that could have seriously affected the patient's health care were produced by nonradiologists (P = .019). Four of these serious errors were made by providers billing for fewer than 25 radiographs. While administrative and time cost limitations are obvious, this method of peer review encompasses all physicians billing for a particular radiographic service, irrespective of specialty. PMID:2068327

  5. Diagnostic methods to cutaneous leishmaniasis detection in domestic dogs and cats.

    PubMed

    Trevisan, Daliah Alves Coelho; Lonardoni, Maria Valdrinez Campana; Demarchi, Izabel Galhardo

    2015-01-01

    Cutaneous leishmaniasis is caused by different species of Leishmania. In domestic animals such as dogs and cats, the diagnostic consists of clinical, epidemiological and serological tests, which changes among countries all around the world. Because of this diversity in the methods selected, we propose this systematic literature review to identify the methods of laboratory diagnosis used to detect cutaneous leishmaniasis in domestic dogs and cats in the Americas. Articles published in the last 5 years were searched in PubMed, ISI Web of Science, LILACS and Scielo, and we selected 10 papers about cutaneous leishmaniasis in dogs and cats in the Americas. In Brazil, often the indirect immunofluorescence and enzyme immunoassay (ELISA) have been applied. Other countries like United States and Mexico have been using antigenic fractions for antibodies detections by Western blot. ELISA and Western blot showed a higher sensitivity and efficacy in the detection of leishmaniasis. Analysis of sensibility and specificity of the methods was rarely used. Although confirmatory to leishmaniasis, direct methods for parasites detection and polymerase chain reaction showed low positivity in disease detection. We suggested that more than one method should be used for the detection of feline and canine leishmaniasis. Serological methods such as Western blot and enzyme immunoassay have a high efficacy in the diagnosis of this disease. PMID:26734869

  6. Diagnostic methods to cutaneous leishmaniasis detection in domestic dogs and cats*

    PubMed Central

    Trevisan, Daliah Alves Coelho; Lonardoni, Maria Valdrinez Campana; Demarchi, Izabel Galhardo

    2015-01-01

    Cutaneous leishmaniasis is caused by different species of Leishmania. In domestic animals such as dogs and cats, the diagnostic consists of clinical, epidemiological and serological tests, which changes among countries all around the world. Because of this diversity in the methods selected, we propose this systematic literature review to identify the methods of laboratory diagnosis used to detect cutaneous leishmaniasis in domestic dogs and cats in the Americas. Articles published in the last 5 years were searched in PubMed, ISI Web of Science, LILACS and Scielo, and we selected 10 papers about cutaneous leishmaniasis in dogs and cats in the Americas. In Brazil, often the indirect immunofluorescence and enzyme immunoassay (ELISA) have been applied. Other countries like United States and Mexico have been using antigenic fractions for antibodies detections by Western blot. ELISA and Western blot showed a higher sensitivity and efficacy in the detection of leishmaniasis. Analysis of sensibility and specificity of the methods was rarely used. Although confirmatory to leishmaniasis, direct methods for parasites detection and polymerase chain reaction showed low positivity in disease detection. We suggested that more than one method should be used for the detection of feline and canine leishmaniasis. Serological methods such as Western blot and enzyme immunoassay have a high efficacy in the diagnosis of this disease. PMID:26734869

  7. Interobserver Reliability of Four Diagnostic Methods Using Traditional Korean Medicine for Stroke Patients

    PubMed Central

    Lee, Ju Ah; Kang, Byoung-Kab; Alraek, Terje

    2014-01-01

    Objective. The aim of this study is to evaluate the consistency of pattern identification (PI), a set of diagnostic indicators used by traditional Korean medicine (TKM) clinicians. Methods. A total of 168 stroke patients who were admitted into oriental medical university hospitals from June 2012 through January 2013 were included in the study. Using the PI indicators, each patient was independently diagnosed by two experts from the same department. Interobserver consistency was assessed by simple percentage agreement as well as by kappa and AC1 statistics. Results. Interobserver agreement on the PI indicators (for all patients) was generally high: pulse diagnosis signs (AC1 = 0.66–0.89); inspection signs (AC1 = 0.66–0.95); listening/smelling signs (AC1 = 0.67–0.88); and inquiry signs (AC1 = 0.62–0.94). Conclusion. In four examinations, there was moderate agreement between the clinicians on the PI indicators. To improve clinician consistency (e.g., in the diagnostic criteria used), it is necessary to analyze the reasons for inconsistency and to improve clinician training. PMID:25574181

  8. Accurate ab initio ro-vibronic spectroscopy of the X̃2Π CCN radical using explicitly correlated methods.

    PubMed

    Grant Hill, J; Mitrushchenkov, Alexander; Yousaf, Kazim E; Peterson, Kirk A

    2011-10-14

    Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X(2)Π and a(4)Σ(-) electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm(-1) in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH(f)(0K) = 161.7 ± 0.5 kcal/mol. PMID:22010720

  9. A Simple Accurate Alternative to the Minimum-Deviation Method for the Determination of the Refractive Index of a Prism.

    ERIC Educational Resources Information Center

    Waldenstrom, S.; Naqvi, K. Razi

    1978-01-01

    Proposes an alternative to the classical minimum-deviation method for determining the refractive index of a prism. This new "fixed angle of incidence method" may find applications in research. (Author/GA)

  10. Accurate method for measurement of pipe wall thickness using a circumferential guided wave generated and detected by a pair of noncontact transducers

    NASA Astrophysics Data System (ADS)

    Nishino, H.; Taniguchi, Y.; Yoshida, K.

    2012-05-01

    A noncontact method of an accurate estimation of a pipe wall thickness using a circumferential (C-) Lamb wave is presented. The C-Lamb waves circling along the circumference of pipes are transmitted and received by the critical angle method using a pair of noncontact air-coupled ultrasonic transducers. For the accurate estimation of a pipe wall thickness, the accurate measurement of the angular wave number that changes minutely owing to the thickness must be achieved. To achieve the accurate measurement, a large number of tone-burst cycles are used so as to superpose the C-Lamb wave on itself along its circumferential orbit. In this setting, the amplitude of the superposed region changes considerably with the angular wave number, from which the wall thickness can be estimated. This paper presents the principle of the method and experimental verifications. As results of the experimental verifications, it was confirmed that the maximum error between the estimates and the theoretical model was less than 10 micrometers.

  11. [On the method of express-diagnostics of thyroid gland dysfunctions].

    PubMed

    Abazova, Z Kh; Baĭsiev, A Kh; Kumykov, V K; Efendieva, M K

    2005-01-01

    The method of express-diagnostics of thyroid diseases on a degree of moisture of the skin integument which is one of clinical attributes of hypothyroidism (a skin is dry, shelled, with sites of keratinization) and hyperthyroidism at which the return picture is observed, i.e. the (increased humidity of a skin is offered. At the same time as a parameter describing a degree of moisture of skin is a relative humidity of the air environment which are taking place above the skin integument in conditions of thermodynamic equilibrium. The instrument is a hermetic glass in which the sensor of humidity is mounted. Studies on the definition of threshold levels of parameter for several groups of patients with clinically confirmed diagnoses of diseases of a thyroid are carried out. PMID:16106951

  12. Microvascular resistance in essential hypertension and flowmetry as a diagnostic method

    NASA Astrophysics Data System (ADS)

    Lukjanov, Valdimir F.

    2001-08-01

    New Doppler-Laser flowmetry diagnostic test of functional condition of microcirculation was worked out of find precapillar and postcapillar resistance. Flowmetry was used to measure vasomotion and blood flow after arterial compression, decompression and venous hyperemia were held. Patients of essential hypertension were examined with the help of Doppler-Laser Flowmetry, optical photometry (540 nm). Precapillar resistance included next basis parameters: vasomotion with high frequency (10-16 per/min) and low amplitude, latent time after decompression, large postocclusive reactive hyperemia, absent venous hyperemia. Postcapillar resistance included next basis parameters: vasomotion with low frequency (4-8 per/min) and high amplitude, paradoxical hyperemia in arterial compression, little or absent postocclusive reactive hyperemia, large venous hyperemia. This test-method was applied to select patogenetic treatment of essential hypertension.

  13. Embedded diagnostic, prognostic, and health management system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Barajas, Leandro G. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor); Strawser, Philip A (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.

  14. The Scientific Method, Diagnostic Bayes, and How to Detect Epistemic Errors

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2015-12-01

    In the past decades, Bayesian methods have found widespread application and use in environmental systems modeling. Bayes theorem states that the posterior probability, P(H|D) of a hypothesis, H is proportional to the product of the prior probability, P(H) of this hypothesis and the likelihood, L(H|hat{D}) of the same hypothesis given the new/incoming observations, &hat; {D}. In science and engineering, H often constitutes some numerical simulation model, D = F(x,.) which summarizes using algebraic, empirical, and differential equations, state variables and fluxes, all our theoretical and/or practical knowledge of the system of interest, and x are the d unknown parameters which are subject to inference using some data, &hat; {D} of the observed system response. The Bayesian approach is intimately related to the scientific method and uses an iterative cycle of hypothesis formulation (model), experimentation and data collection, and theory/hypothesis refinement to elucidate the rules that govern the natural world. Unfortunately, model refinement has proven to be very difficult in large part because of the poor diagnostic power of residual based likelihood functions tep{gupta2008}. This has inspired te{vrugt2013} to advocate the use of 'likelihood-free' inference using approximate Bayesian computation (ABC). This approach uses one or more summary statistics, S(&hat; {D}) of the original data, &hat; {D} designed ideally to be sensitive only to one particular process in the model. Any mismatch between the observed and simulated summary metrics is then easily linked to a specific model component. A recurrent issue with the application of ABC is self-sufficiency of the summary statistics. In theory, S(.) should contain as much information as the original data itself, yet complex systems rarely admit sufficient statistics. In this article, we propose to combine the ideas of ABC and regular Bayesian inference to guarantee that no information is lost in diagnostic model

  15. Surgical biopsy with intra-operative frozen section. An accurate and cost-effective method for diagnosis of musculoskeletal sarcomas.

    PubMed

    Ashford, R U; McCarthy, S W; Scolyer, R A; Bonar, S F; Karim, R Z; Stalley, P D

    2006-09-01

    The most appropriate protocol for the biopsy of musculoskeletal tumours is controversial, with some authors advocating CT-guided core biopsy. At our hospital the initial biopsies of most musculoskeletal tumours has been by operative core biopsy with evaluation by frozen section which determines whether diagnostic tissue has been obtained and, if possible, gives the definitive diagnosis. In order to determine the accuracy and cost-effectiveness of this protocol we have undertaken a retrospective audit of biopsies of musculoskeletal tumours performed over a period of two years. A total of 104 patients had biopsies according to this regime. All gave the diagnosis apart from one minor error which did not alter the management of the patient. There was no requirement for re-biopsy. This protocol was more labour-intensive and 38% more costly than CT-guided core biopsy (AU$1804 vs AU$1308). However, the accuracy and avoidance of the anxiety associated with repeat biopsy outweighed these disadvantages. PMID:16943474

  16. Diagnostic Methods of Helicobacter pylori Infection for Epidemiological Studies: Critical Importance of Indirect Test Validation.

    PubMed

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2016-01-01

    Among the methods developed to detect H. pylori infection, determining the gold standard remains debatable, especially for epidemiological studies. Due to the decreasing sensitivity of direct diagnostic tests (histopathology and/or immunohistochemistry [IHC], rapid urease test [RUT], and culture), several indirect tests, including antibody-based tests (serology and urine test), urea breath test (UBT), and stool antigen test (SAT) have been developed to diagnose H. pylori infection. Among the indirect tests, UBT and SAT became the best methods to determine active infection. While antibody-based tests, especially serology, are widely available and relatively sensitive, their specificity is low. Guidelines indicated that no single test can be considered as the gold standard for the diagnosis of H. pylori infection and that one should consider the method's advantages and disadvantages. Based on four epidemiological studies, culture and RUT present a sensitivity of 74.2-90.8% and 83.3-86.9% and a specificity of 97.7-98.8% and 95.1-97.2%, respectively, when using IHC as a gold standard. The sensitivity of serology is quite high, but that of the urine test was lower compared with that of the other methods. Thus, indirect test validation is important although some commercial kits propose universal cut-off values. PMID:26904678

  17. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    SciTech Connect

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods.

  18. Diagnostic Methods of Helicobacter pylori Infection for Epidemiological Studies: Critical Importance of Indirect Test Validation

    PubMed Central

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2016-01-01

    Among the methods developed to detect H. pylori infection, determining the gold standard remains debatable, especially for epidemiological studies. Due to the decreasing sensitivity of direct diagnostic tests (histopathology and/or immunohistochemistry [IHC], rapid urease test [RUT], and culture), several indirect tests, including antibody-based tests (serology and urine test), urea breath test (UBT), and stool antigen test (SAT) have been developed to diagnose H. pylori infection. Among the indirect tests, UBT and SAT became the best methods to determine active infection. While antibody-based tests, especially serology, are widely available and relatively sensitive, their specificity is low. Guidelines indicated that no single test can be considered as the gold standard for the diagnosis of H. pylori infection and that one should consider the method's advantages and disadvantages. Based on four epidemiological studies, culture and RUT present a sensitivity of 74.2–90.8% and 83.3–86.9% and a specificity of 97.7–98.8% and 95.1–97.2%, respectively, when using IHC as a gold standard. The sensitivity of serology is quite high, but that of the urine test was lower compared with that of the other methods. Thus, indirect test validation is important although some commercial kits propose universal cut-off values. PMID:26904678

  19. A rapid and precise diagnostic method for detecting the Pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification.

    PubMed

    Kikuchi, Taisei; Aikawa, Takuya; Oeda, Yuka; Karim, Nurul; Kanzaki, Natsumi

    2009-12-01

    ABSTRACT Bursaphelenchus xylophilus is the causal agent of pine wilt disease, which is a major forest disease in Japan, Korea, China, Taiwan, and Portugal. A diagnostic method which is rapid, precise, and simple could greatly help the proper management of this disease. Here, we present a novel detection method using loop-mediated isothermal amplification (LAMP) targeting the internal transcribed spacer region of ribosomal DNA of the nematode. Specificity of the primers and LAMP was confirmed using DNA from various nematode species related to B. xylophilus. Our experimental results suggest that LAMP can detect B. xylophilus faster and with higher sensitivity than the traditional diagnostic method. Moreover, because it does not require expensive equipment or specialized techniques, this LAMP-based diagnostic method has the potential to be used under field conditions. PMID:19900002

  20. AN EFFICIENT METHOD FOR ACCURATELY DETERMINING WEAR VOLUMES OF SLIDERS WITH NON-FLAT WEAR SCARS AND COMPOUND CURVATURES

    SciTech Connect

    Qu, Jun; Truhan, Jr., John J

    2006-01-01

    Point contact is often used in unidirectional pin-on-disk and reciprocating pin-on-flat sliding friction and wear tests. The slider tip could have either a spherical shape or compound curvatures (such as an ellipsoidal shape), and the worn tip usually is not flat but has unknown curvatures. Current methods for determining the wear volumes of sliders suffer from one or more limitations. For example, the gravimetric method is not able to detect small amounts of wear, and the two-dimensional wear scar size measurement is valid only for flat wear scars. More rigorous methods can be very time consuming, such as the 3D surface profiling method that involves obtaining tedious multiple surface profiles and analyzing a large set of data. In this study, a new 'single-trace' analysis is introduced to efficiently evaluate the wear volumes of non-flat worn sliders. This method requires only the measurement of the wear scar size and one trace of profiling to obtain the curvature on the wear cap. The wear volume calculation only involves closed-form algebraic equations. This single-trace method has demonstrated much higher accuracy and fewer limitations than the gravimetric method and 2D method, and has shown good agreement with the 3D method while saving significant surface profiling and data analysis time.

  1. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients.

    PubMed

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  2. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  3. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

    PubMed Central

    Asaoka, Ryo; Fujino, Yuri; Murata, Hiroshi; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an ‘intraocular pressure (IOP)-integrated VF trend analysis’ was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  4. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  5. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  6. HEART Pathway Accelerated Diagnostic Protocol Implementation: Prospective Pre-Post Interrupted Time Series Design and Methods

    PubMed Central

    Wells, Brian J

    2016-01-01

    Background Most patients presenting to US Emergency Departments (ED) with chest pain are hospitalized for comprehensive testing. These evaluations cost the US health system >$10 billion annually, but have a diagnostic yield for acute coronary syndrome (ACS) of <10%. The history/ECG/age/risk factors/troponin (HEART) Pathway is an accelerated diagnostic protocol (ADP), designed to improve care for patients with acute chest pain by identifying patients for early ED discharge. Prior efficacy studies demonstrate that the HEART Pathway safely reduces cardiac testing, while maintaining an acceptably low adverse event rate. Objective The purpose of this study is to determine the effectiveness of HEART Pathway ADP implementation within a health system. Methods This controlled before-after study will accrue adult patients with acute chest pain, but without ST-segment elevation myocardial infarction on electrocardiogram for two years and is expected to include approximately 10,000 patients. Outcomes measures include hospitalization rate, objective cardiac testing rates (stress testing and angiography), length of stay, and rates of recurrent cardiac care for participants. Results In pilot data, the HEART Pathway decreased hospitalizations by 21%, decreased hospital length (median of 12 hour reduction), without increasing adverse events or recurrent care. At the writing of this paper, data has been collected on >5000 patient encounters. The HEART Pathway has been fully integrated into health system electronic medical records, providing real-time decision support to our providers. Conclusions We hypothesize that the HEART Pathway will safely reduce healthcare utilization. This study could provide a model for delivering high-value care to the 8-10 million US ED patients with acute chest pain each year. ClinicalTrial Clinicaltrials.gov NCT02056964; https://clinicaltrials.gov/ct2/show/NCT02056964 (Archived by WebCite at http://www.webcitation.org/6ccajsgyu) PMID:26800789

  7. Multicenter Evaluation of Clinical Diagnostic Methods for Detection and Isolation of Campylobacter spp. from Stool.

    PubMed

    Fitzgerald, Collette; Patrick, Mary; Gonzalez, Anthony; Akin, Joshua; Polage, Christopher R; Wymore, Kate; Gillim-Ross, Laura; Xavier, Karen; Sadlowski, Jennifer; Monahan, Jan; Hurd, Sharon; Dahlberg, Suzanne; Jerris, Robert; Watson, Renee; Santovenia, Monica; Mitchell, David; Harrison, Cassandra; Tobin-D'Angelo, Melissa; DeMartino, Mary; Pentella, Michael; Razeq, Jafar; Leonard, Celere; Jung, Carrianne; Achong-Bowe, Ria; Evans, Yaaqobah; Jain, Damini; Juni, Billie; Leano, Fe; Robinson, Trisha; Smith, Kirk; Gittelman, Rachel M; Garrigan, Charles; Nachamkin, Irving

    2016-05-01

    The use of culture-independent diagnostic tests (CIDTs), such as stool antigen tests, as standalone tests for the detection of Campylobacter in stool is increasing. We conducted a prospective, multicenter study to evaluate the performance of stool antigen CIDTs compared to culture and PCR for Campylobacter detection. Between July and October 2010, we tested 2,767 stool specimens from patients with gastrointestinal illness with the following methods: four types of Campylobacter selective media, four commercial stool antigen assays, and a commercial PCR assay. Illnesses from which specimens were positive by one or more culture media or at least one CIDT and PCR were designated "cases." A total of 95 specimens (3.4%) met the case definition. The stool antigen CIDTs ranged from 79.6% to 87.6% in sensitivity, 95.9 to 99.5% in specificity, and 41.3 to 84.3% in positive predictive value. Culture alone detected 80/89 (89.9% sensitivity) Campylobacter jejuni/Campylobacter coli-positive cases. Of the 209 noncases that were positive by at least one CIDT, only one (0.48%) was positive by all four stool antigen tests, and 73% were positive by just one stool antigen test. The questionable relevance of unconfirmed positive stool antigen CIDT results was supported by the finding that noncases were less likely than cases to have gastrointestinal symptoms. Thus, while the tests were convenient to use, the sensitivity, specificity, and positive predictive value of Campylobacter stool antigen tests were highly variable. Given the relatively low incidence of Campylobacter disease and the generally poor diagnostic test characteristics, this study calls into question the use of commercially available stool antigen CIDTs as standalone tests for direct detection of Campylobacter in stool. PMID:26962088

  8. A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes.

    PubMed

    Ovchinnikov, Victor; Nam, Kwangho; Karplus, Martin

    2016-08-25

    A method is developed to obtain simultaneously free energy profiles and diffusion constants from restrained molecular simulations in diffusive systems. The method is based on low-order expansions of the free energy and diffusivity as functions of the reaction coordinate. These expansions lead to simple analytical relationships between simulation statistics and model parameters. The method is tested on 1D and 2D model systems; its accuracy is found to be comparable to or better than that of the existing alternatives, which are briefly discussed. An important aspect of the method is that the free energy is constructed by integrating its derivatives, which can be computed without need for overlapping sampling windows. The implementation of the method in any molecular simulation program that supports external umbrella potentials (e.g., CHARMM) requires modification of only a few lines of code. As a demonstration of its applicability to realistic biomolecular systems, the method is applied to model the α-helix ↔ β-sheet transition in a 16-residue peptide in implicit solvent, with the reaction coordinate provided by the string method. Possible modifications of the method are briefly discussed; they include generalization to multidimensional reaction coordinates [in the spirit of the model of Ermak and McCammon (Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352-1360)], a higher-order expansion of the free energy surface, applicability in nonequilibrium systems, and a simple test for Markovianity. In view of the small overhead of the method relative to standard umbrella sampling, we suggest its routine application in the cases where umbrella potential simulations are appropriate. PMID:27135391

  9. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go

    PubMed Central

    Moitessier, N; Englebienne, P; Lee, D; Lawandi, J; Corbeil, C R

    2008-01-01

    Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation. In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable docking/scoring method. PMID:18037925

  10. A pseudo wavelet-based method for accurate tagline tracing on tagged MR images of the tongue

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohui; Ozturk, Cengizhan; Chi-Fishman, Gloria

    2006-03-01

    In this paper, we present a pseudo wavelet-based tagline detection method. The tagged MR image is transformed to the wavelet domain, and the prominent tagline coefficients are retained while others are eliminated. Significant stripes are extracted via segmentation, which are mixtures of tags and anatomical boundary that resembles line. A refinement step follows such that broken lines or isolated points are grouped or eliminated. Without assumption on tag models, our method extracts taglines automatically regardless their width and spacing. In addition, founded on the multi-resolution wavelet analysis, our method reconstructs taglines precisely and shows great robustness to various types of taglines.

  11. Diagnostic imaging methods applied in long-term surveillance after EVAR. Will computed tomography angiography be replaced by other methods?

    PubMed Central

    Stefaniak, Karolina; Gabriel, Marcin; Oszkinis, Grzegorz

    2016-01-01

    Endovascular implantation of a stent graft in the abdominal aorta (endovascular aneurysm repair – EVAR) is a widely accepted alternative to open surgery in treatment of abdominal aortic aneurysms. Although EVAR is connected with a significant reduction in the risk of peri- and post-operative complications, it does not eliminate them totally. Long-term surveillance of post-EVAR patients is aimed at early detection of and fast reaction to a group of complications called endovascular leaks. Currently, the gold standard in leak diagnostics is computed tomography angiography (CTA). The other methods are ultrasonography, magnetic resonance (MR) angiography, intra-aneurysm sac pressure measurement, X-ray, and digital subtraction angiography (DSA). Despite many analyses based on long-term research, emphasising the high value and competitiveness of less invasive tests such as US or X-ray compared to CTA, it is still difficult for them to win the trust and acceptance of clinicians. The persisting view is that computed tomography is the test that finally resolves any inaccuracies. Consequently, a patient with a number of concurrent diseases is subject to absurdly high radiation exposure and effects of a radiocontrast agent within a short time. It is therefore logical to acknowledge that the EVAR-related risk is catching up with the open surgery risk, while the endovascular procedure is much more costly. Nevertheless, the status of CTA as the gold standard ultimately seems to be unthreatened. This paper presents a description of the diagnostic imaging tests that make it possible to detect any vascular leaks and to develop strategies for therapeutic processes. PMID:26966443

  12. Accurate semi analytical model of an optical fiber having Kerr nonlinearity using a robust nonlinear unconstrained optimization method

    NASA Astrophysics Data System (ADS)

    RoyChoudhury, Raja; RoyChoudhury, Arundhati

    2011-02-01

    This paper presents a semi analytical formulation of modal properties of a non linear optical fiber having Kerr non linearity with a three parameter approximation of fundamental modal field. The minimization of core parameter ( U) which involves Kerr nonlinearity through the non-stationary expression of propagation constant, is carried out by Nelder-Mead Simplex method of non linear unconstrained minimization, suitable for problems with non-smooth functions as the method does not require any derivative information. Use of three parameters in modal approximation and implementation of Simplex methods enables our semi analytical description to be an alternative way having less computational burden for calculation of modal parameters than full numerical methods.

  13. Computerized method for evaluating diagnostic image quality of calcified plaque images in cardiac CT: Validation on a physical dynamic cardiac phantom

    SciTech Connect

    King, Martin; Rodgers, Zachary; Giger, Maryellen L.; Bardo, Dianna M. E.; Patel, Amit R.

    2010-11-15

    Purpose: In cardiac computed tomography (CT), important clinical indices, such as the coronary calcium score and the percentage of coronary artery stenosis, are often adversely affected by motion artifacts. As a result, the expert observer must decide whether or not to use these indices during image interpretation. Computerized methods potentially can be used to assist in these decisions. In a previous study, an artificial neural network (ANN) regression model provided assessability (image quality) indices of calcified plaque images from the software NCAT phantom that were highly agreeable with those provided by expert observers. The method predicted assessability indices based on computer-extracted features of the plaque. In the current study, the ANN-predicted assessability indices were used to identify calcified plaque images with diagnostic calcium scores (based on mass) from a physical dynamic cardiac phantom. The basic assumption was that better quality images were associated with more accurate calcium scores. Methods: A 64-channel CT scanner was used to obtain 500 calcified plaque images from a physical dynamic cardiac phantom at different heart rates, cardiac phases, and plaque locations. Two expert observers independently provided separate sets of assessability indices for each of these images. Separate sets of ANN-predicted assessability indices tailored to each observer were then generated within the framework of a bootstrap resampling scheme. For each resampling iteration, the absolute calcium score error between the calcium scores of the motion-contaminated plaque image and its corresponding stationary image served as the ground truth in terms of indicating images with diagnostic calcium scores. The performances of the ANN-predicted and observer-assigned indices in identifying images with diagnostic calcium scores were then evaluated using ROC analysis. Results: Assessability indices provided by the first observer and the corresponding ANN performed

  14. New capillary gel electrophoresis method for fast and accurate identification and quantification of multiple viral proteins in influenza vaccines.

    PubMed

    van Tricht, Ewoud; Geurink, Lars; Pajic, Bojana; Nijenhuis, Johan; Backus, Harold; Germano, Marta; Somsen, Govert W; Sänger-van de Griend, Cari E

    2015-11-01

    Current methods for the identification and/or quantification of viral proteins in influenza virus and virosome samples suffer from long analysis times, limited protein coverage and/or low accuracy and precision. We studied and optimized capillary gel electrophoresis (CGE) in order to achieve faster and enhanced characterization and quantification of viral proteins. Sample preparation as well the composition of the gel buffer was investigated in order to achieve adequate protein separation in relatively short times. The total sample preparation (reduction and deglycosylation) could be carried out efficiently within two hours. Hydrodynamic injection, separation voltage, and capillary temperature were optimized in full factorial design. The final method was validated and showed good performance for hemagglutinin fragment 1 (HA1), hemagglutinin fragment 2 (HA2), matrix protein (M) and nucleoprotein (NP). The CGE method allowed identification of different virus strains based on their specific protein profile. B/Brisbane inactivated virus and virosome samples could be analyzed within one day. The CGE results (titers) were comparable to single radial immune-diffusion (SRID), but the method has the advantage of a much faster time to results. CGE analysis of A/Christchurch from upstream process demonstrated the applicability of the method to samples of high complexity. The CGE method could be used in the same analyte concentration range as the RP-HPLC method, but showed better precision and accuracy. Overall, the total analysis time for the CGE method was much shorter, allowing analysis of 100 samples in 4 days instead of 10 days for SRID. PMID:26452923

  15. Validation of a fast and accurate chromatographic method for detailed quantification of vitamin E in green leafy vegetables.

    PubMed

    Cruz, Rebeca; Casal, Susana

    2013-11-15

    Vitamin E analysis in green vegetables is performed by an array of different methods, making it difficult to compare published data or choosing the adequate one for a particular sample. Aiming to achieve a consistent method with wide applicability, the current study reports the development and validation of a fast micro-method for quantification of vitamin E in green leafy vegetables. The methodology uses solid-liquid extraction based on the Folch method, with tocol as internal standard, and normal-phase HPLC with fluorescence detection. A large linear working range was confirmed, being highly reproducible, with inter-day precisions below 5% (RSD). Method sensitivity was established (below 0.02 μg/g fresh weight), and accuracy was assessed by recovery tests (>96%). The method was tested in different green leafy vegetables, evidencing diverse tocochromanol profiles, with variable ratios and amounts of α- and γ-tocopherol, and other minor compounds. The methodology is adequate for routine analyses, with a reduced chromatographic run (<7 min) and organic solvent consumption, and requires only standard chromatographic equipment available in most laboratories. PMID:23790900

  16. A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry.

    PubMed

    Pantuzzo, Fernando L; Silva, Julio César J; Ciminelli, Virginia S T

    2009-09-15

    A fast and accurate microwave-assisted digestion method for arsenic determination by flame atomic absorption spectrometry (FAAS) in typical, complex residues from gold mining is presented. Three digestion methods were evaluated: an open vessel digestion using a mixture of HCl:HNO(3):HF acids (Method A) and two microwave digestion methods using a mixture of HCl:H(2)O(2):HNO(3) in high (Method B) and medium-pressure (Method C) vessels. The matrix effect was also investigated. Arsenic concentration from external and standard addition calibration curves (at a 95% confidence level) were statistically equal (p-value=0.122) using microwave digestion in high-pressure vessel. The results from the open vessel digestion were statistically different (p-value=0.007) whereas in the microwave digestion in medium-pressure vessel (Method C) the dissolution of the samples was incomplete. PMID:19345010

  17. Developing accurate survey methods for estimating population sizes and trends of the critically endangered Nihoa Millerbird and Nihoa Finch.

    USGS Publications Warehouse

    Gorresen, P. Marcos; Camp, Richard J.; Brinck, Kevin W.; Farmer, Chris

    2012-01-01

    Point-transect surveys indicated that millerbirds were more abundant than shown by the striptransect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the pointtransect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, pointtransect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa

  18. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  19. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    NASA Astrophysics Data System (ADS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  20. Perspective ground-based method for diagnostics of the lower ionosphere and the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, N. V.; Grigoriev, G. I.; Tolmacheva, A. V.

    We present a new perspective ground-based method for diagnostics of the ionosphere and atmosphere parameters. The method uses one of the numerous physical phenomena observed in the ionosphere illuminated by high-power radio waves. It is a generation of the artificial periodic irregularities (APIs) in the ionospheric plasma. The APIs were found while studying the effects of ionospheric high-power HF modification. It was established that the APIs are formed by a standing wave that occurs due to interference between the upwardly radiated radio wave and its reflection off the ionosphere. The API studies are based upon observation of the Bragg backscatter of the pulsed probe radio wave from the artificial periodic structure. Bragg backscatter occurs if the spatial period of the irregularities is equal to half a wavelength of the probe signal. The API techniques makes it possible to obtain the following information: the profiles of electron density from the lower D-region up to the maximum of the F-layer; the irregular structure of the ionosphere including split of the regular E-layer, the sporadic layers; the vertical velocities in the D- and E-regions of the ionosphere; the turbulent velocities, turbulent diffusion coefficients and the turbopause altitude; the neutral temperatures and densities at the E-region altitudes; the parameters of the internal gravity waves and their spectral characteristics; the relative concentration of negative oxygen ions in the D-region. Some new results obtained by the API technique are discussed .

  1. Rapid diagnostic methods for influenza virus in clinical specimens - A comparative study

    NASA Technical Reports Server (NTRS)

    Evans, A. S.; Olson, B.

    1982-01-01

    A comparison of five rapid viral diagnostic techniques for identifying influenza virus in nasopharyngeal aspirates has been made on patients with influenza-like illnesses. Initial results with immune electron microscopy were positive in only one of 11 specimens from which virus was isolated and further work abandoned. Four other rapid tests were carried out on 39 specimens from which influenza virus had been isolated in tissue culture in 28. Of these 28 specimens yielding virus, 24 (85.7 percent) were positive by an indirect fluorescent antibody test (IFAT) on nasopharyngeal cells, 18 (64.3 percent) by enzyme-linked immunosorbent assay (ELISA), 19 (67.8 percent) by enzyme-linked fluorescent assay (ELFA), and 26 (92.8 percent) by a rapid tissue culture amplification method (TCA) in a continuous Rhesus monkey kidney line (LLC-MK2) with identification of virus by fluorescent antibody. In terms of sensitivity, simplicity, and rapidity, a combination of the IFAT and TCA methods seems to be very useful.

  2. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities.

    PubMed

    Gouas, L; Goumy, C; Véronèse, L; Tchirkov, A; Vago, P

    2008-09-01

    Cytogenetics is the part of genetics that deals with chromosomes, particularly with numerical and structural chromosome abnormalities, and their implications in congenital or acquired genetic disorders. Standard karyotyping, successfully used for the last 50 years in investigating the chromosome etiology in patients with infertility, fetal abnormalities and congenital disorders, is constrained by the limits of microscopic resolution and is not suited for the detection of subtle chromosome abnormalities. The ability to detect submicroscopic chromosomal rearrangements that lead to copy-number changes has escalated progressively in recent years with the advent of molecular cytogenetic techniques. Here, we review various gene dosage methods such as FISH, PCR-based approaches (MLPA, QF-PCR, QMPSF and real time PCR), CGH and array-CGH, that can be used for the identification and delineation of copy-number changes for diagnostic purposes. Besides comparing their relative strength and weakness, we will discuss the impact that these detection methods have on our understanding of copy number variations in the human genome and their implications in genetic counseling. PMID:18513889

  3. Applying Automated MR-Based Diagnostic Methods to the Memory Clinic: A Prospective Study

    PubMed Central

    Klöppel, Stefan; Peter, Jessica; Ludl, Anna; Pilatus, Anne; Maier, Sabrina; Mader, Irina; Heimbach, Bernhard; Frings, Lars; Egger, Karl; Dukart, Juergen; Schroeter, Matthias L.; Perneczky, Robert; Häussermann, Peter; Vach, Werner; Urbach, Horst; Teipel, Stefan; Hüll, Michael; Abdulkadir, Ahmed

    2015-01-01

    Abstract Several studies have demonstrated that fully automated pattern recognition methods applied to structural magnetic resonance imaging (MRI) aid in the diagnosis of dementia, but these conclusions are based on highly preselected samples that significantly differ from that seen in a dementia clinic. At a single dementia clinic, we evaluated the ability of a linear support vector machine trained with completely unrelated data to differentiate between Alzheimer’s disease (AD), frontotemporal dementia (FTD), Lewy body dementia, and healthy aging based on 3D-T1 weighted MRI data sets. Furthermore, we predicted progression to AD in subjects with mild cognitive impairment (MCI) at baseline and automatically quantified white matter hyperintensities from FLAIR-images. Separating additionally recruited healthy elderly from those with dementia was accurate with an area under the curve (AUC) of 0.97 (according to Fig. 4). Multi-class separation of patients with either AD or FTD from other included groups was good on the training set (AUC >  0.9) but substantially less accurate (AUC = 0.76 for AD, AUC = 0.78 for FTD) on 134 cases from the local clinic. Longitudinal data from 28 cases with MCI at baseline and appropriate follow-up data were available. The computer tool discriminated progressive from stable MCI with AUC = 0.73, compared to AUC = 0.80 for the training set. A relatively low accuracy by clinicians (AUC = 0.81) illustrates the difficulties of predicting conversion in this heterogeneous cohort. This first application of a MRI-based pattern recognition method to a routine sample demonstrates feasibility, but also illustrates that automated multi-class differential diagnoses have to be the focus of future methodological developments and application studies PMID:26401773

  4. Applying Automated MR-Based Diagnostic Methods to the Memory Clinic: A Prospective Study.

    PubMed

    Klöppel, Stefan; Peter, Jessica; Ludl, Anna; Pilatus, Anne; Maier, Sabrina; Mader, Irina; Heimbach, Bernhard; Frings, Lars; Egger, Karl; Dukart, Juergen; Schroeter, Matthias L; Perneczky, Robert; Häussermann, Peter; Vach, Werner; Urbach, Horst; Teipel, Stefan; Hüll, Michael; Abdulkadir, Ahmed

    2015-01-01

    Several studies have demonstrated that fully automated pattern recognition methods applied to structural magnetic resonance imaging (MRI) aid in the diagnosis of dementia, but these conclusions are based on highly preselected samples that significantly differ from that seen in a dementia clinic. At a single dementia clinic, we evaluated the ability of a linear support vector machine trained with completely unrelated data to differentiate between Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia, and healthy aging based on 3D-T1 weighted MRI data sets. Furthermore, we predicted progression to AD in subjects with mild cognitive impairment (MCI) at baseline and automatically quantified white matter hyperintensities from FLAIR-images. Separating additionally recruited healthy elderly from those with dementia was accurate with an area under the curve (AUC) of 0.97 (according to Fig. 4). Multi-class separation of patients with either AD or FTD from other included groups was good on the training set (AUC >  0.9) but substantially less accurate (AUC = 0.76 for AD, AUC = 0.78 for FTD) on 134 cases from the local clinic. Longitudinal data from 28 cases with MCI at baseline and appropriate follow-up data were available. The computer tool discriminated progressive from stable MCI with AUC = 0.73, compared to AUC = 0.80 for the training set. A relatively low accuracy by clinicians (AUC = 0.81) illustrates the difficulties of predicting conversion in this heterogeneous cohort. This first application of a MRI-based pattern recognition method to a routine sample demonstrates feasibility, but also illustrates that automated multi-class differential diagnoses have to be the focus of future methodological developments and application studies. PMID:26401773

  5. The True Color of Yogi: An Accurate Method for Removing Diffuse Illumination from Multispectral Images of Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Rages, Kathy

    2002-01-01

    We correct spectra of Yogi to remove diffuse illumination and show that the part of Yogi facing the wind is less red than other faces of the rock. Our method eliminates ambiguity in interpreting spectra obtained under Mars illumination conditions. Additional information is contained in the original extended abstract.

  6. An accurate 3D shape context based non-rigid registration method for mouse whole-body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie C.; Salvado, Olivier

    2011-03-01

    Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration.

  7. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  8. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing.

    PubMed

    Wang, Ting; He, Quanze; Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  9. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  10. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events.

    PubMed

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The [Formula: see text] class contains tandem [Formula: see text]-type motif sequences, and the [Formula: see text] class contains alternating [Formula: see text], [Formula: see text] and [Formula: see text] type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a [Formula: see text]-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the [Formula: see text] class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for [Formula: see text]-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  11. High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight

    NASA Astrophysics Data System (ADS)

    Xu, Li; Weng, Peifen

    2014-02-01

    An improved fifth-order weighted essentially non-oscillatory (WENO-Z) scheme combined with the moving overset grid technique has been developed to compute unsteady compressible viscous flows on the helicopter rotor in forward flight. In order to enforce periodic rotation and pitching of the rotor and relative motion between rotor blades, the moving overset grid technique is extended, where a special judgement standard is presented near the odd surface of the blade grid during search donor cells by using the Inverse Map method. The WENO-Z scheme is adopted for reconstructing left and right state values with the Roe Riemann solver updating the inviscid fluxes and compared with the monotone upwind scheme for scalar conservation laws (MUSCL) and the classical WENO scheme. Since the WENO schemes require a six point stencil to build the fifth-order flux, the method of three layers of fringes for hole boundaries and artificial external boundaries is proposed to carry out flow information exchange between chimera grids. The time advance on the unsteady solution is performed by the full implicit dual time stepping method with Newton type LU-SGS subiteration, where the solutions of pseudo steady computation are as the initial fields of the unsteady flow computation. Numerical results on non-variable pitch rotor and periodic variable pitch rotor in forward flight reveal that the approach can effectively capture vortex wake with low dissipation and reach periodic solutions very soon.

  12. Accurate all-electron G0W0 quasiparticle energies employing the full-potential augmented plane-wave method

    NASA Astrophysics Data System (ADS)

    Nabok, Dmitrii; Gulans, Andris; Draxl, Claudia

    2016-07-01

    The G W approach of many-body perturbation theory has become a common tool for calculating the electronic structure of materials. However, with increasing number of published results, discrepancies between the values obtained by different methods and codes become more and more apparent. For a test set of small- and wide-gap semiconductors, we demonstrate how to reach the numerically best electronic structure within the framework of the full-potential linearized augmented plane-wave (FLAPW) method. We first evaluate the impact of local orbitals in the Kohn-Sham eigenvalue spectrum of the underlying starting point. The role of the basis-set quality is then further analyzed when calculating the G0W0 quasiparticle energies. Our results, computed with the exciting code, are compared to those obtained using the projector-augmented plane-wave formalism, finding overall good agreement between both methods. We also provide data produced with a typical FLAPW basis set as a benchmark for other G0W0 implementations.

  13. An accurate method for energy spectrum reconstruction of Linac beams based on EPID measurements of scatter radiation

    NASA Astrophysics Data System (ADS)

    Juste, B.; Miró, R.; Verdú, G.; Santos, A.

    2014-06-01

    This work presents a methodology to reconstruct a Linac high energy photon spectrum beam. The method is based on EPID scatter images generated when the incident photon beam impinges onto a plastic block. The distribution of scatter radiation produced by this scattering object placed on the external EPID surface and centered at the beam field size was measured. The scatter distribution was also simulated for a series of monoenergetic identical geometry photon beams. Monte Carlo simulations were used to predict the scattered photons for monoenergetic photon beams at 92 different locations, with 0.5 cm increments and at 8.5 cm from the centre of the scattering material. Measurements were performed with the same geometry using a 6 MeV photon beam produced by the linear accelerator. A system of linear equations was generated to combine the polyenergetic EPID measurements with the monoenergetic simulation results. Regularization techniques were applied to solve the system for the incident photon spectrum. A linear matrix system, A×S=E, was developed to describe the scattering interactions and their relationship to the primary spectrum (S). A is the monoenergetic scatter matrix determined from the Monte Carlo simulations, S is the incident photon spectrum, and E represents the scatter distribution characterized by EPID measurement. Direct matrix inversion methods produce results that are not physically consistent due to errors inherent in the system, therefore Tikhonov regularization methods were applied to address the effects of these errors and to solve the system for obtaining a consistent bremsstrahlung spectrum.

  14. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events

    PubMed Central

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  15. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  16. Improved Methods of Carnivore Faecal Sample Preservation, DNA Extraction and Quantification for Accurate Genotyping of Wild Tigers

    PubMed Central

    Harika, Katakam; Mahla, Ranjeet Singh; Shivaji, Sisinthy

    2012-01-01

    Background Non-invasively collected samples allow a variety of genetic studies on endangered and elusive species. However due to low amplification success and high genotyping error rates fewer samples can be identified up to the individual level. Number of PCRs needed to obtain reliable genotypes also noticeably increase. Methods We developed a quantitative PCR assay to measure and grade amplifiable nuclear DNA in feline faecal extracts. We determined DNA degradation in experimentally aged faecal samples and tested a suite of pre-PCR protocols to considerably improve DNA retrieval. Results Average DNA concentrations of Grade I, II and III extracts were 982pg/µl, 9.5pg/µl and 0.4pg/µl respectively. Nearly 10% of extracts had no amplifiable DNA. Microsatellite PCR success and allelic dropout rates were 92% and 1.5% in Grade I, 79% and 5% in Grade II, and 54% and 16% in Grade III respectively. Our results on experimentally aged faecal samples showed that ageing has a significant effect on quantity and quality of amplifiable DNA (p<0.001). Maximum DNA degradation occurs within 3 days of exposure to direct sunlight. DNA concentrations of Day 1 samples stored by ethanol and silica methods for a month varied significantly from fresh Day 1 extracts (p<0.1 and p<0.001). This difference was not significant when samples were preserved by two-step method (p>0.05). DNA concentrations of fresh tiger and leopard faecal extracts without addition of carrier RNA were 816.5pg/µl (±115.5) and 690.1pg/µl (±207.1), while concentrations with addition of carrier RNA were 49414.5pg/µl (±9370.6) and 20982.7pg/µl (±6835.8) respectively. Conclusions Our results indicate that carnivore faecal samples should be collected as freshly as possible, are better preserved by two-step method and should be extracted with addition of carrier RNA. We recommend quantification of template DNA as this facilitates several downstream protocols. PMID:23071624

  17. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics.

    PubMed

    Landoas, Olivier; Glebov, Vladimir Yu; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range. PMID:21806179

  18. An In Vitro Comparison of Different Diagnostic Methods in Detection of Residual Dentinal Caries

    PubMed Central

    Unlu, Nimet; Ermis, Rabia Banu; Sener, Sevgi; Kucukyilmaz, Ebru; Cetin, Ali Riza

    2010-01-01

    The aim of this study was to investigate the efficiency of different diagnostic methods in detection of residual dentinal caries in excavated cavities. Fifty extracted molar with deep dentinal carious lesions were excavated using a slow-speed handpiece. All cavities were assessed by laser fluorescence(LF) device, electronic caries monitor(ECM), and caries detector dye(CDD) by three independent observers blindly. The measurements were repeated after two weeks. Specimens containing dentin slices 150 μm in thickness were prepared for histological analyses. The existence and absence of carious dentin was determined using a lightmicroscope. The average intraobserver accuracy was 1.00 (perfect agreement) for CDD, 0.86 (excellent agreement) for ECM, and 0.50 (good agreement) for LF. The average interobserver accuracy values were 0.92 (excellent agreement), (0.36 marginal agreement) and 0.48 (good agreement), for CDD, ECM, and LF, respectively. The average specificity was 0.60 for CDD, 73% for ECM, and 0.50 for LF. The average sensitivity was 0.55 for CDD, 0.85 for LF, and 0.47 for ECM. The average accuracy values were 0.53, 0.51, and 0.81 for CDD, ECM, and LF, respectively. LF had the greatest sensitivity and accuracy values of any of the methods tested. As a conclusion, LF device is appeared to most reliable method in detection of remain caries in cavity. However, because of its technical sensitivity it may susceptible to variations in measurements. To pay attention to the rule of usage and repeated measurements can minimize such variations in clinical practice. It was concluded that LF is an improvement on the currently available aids for residual caries detection. PMID:20613961

  19. RepurposeVS: A Drug Repurposing-Focused Computational Method for Accurate Drug-Target Signature Predictions.

    PubMed

    Issa, Naiem T; Peters, Oakland J; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2015-01-01

    We describe here RepurposeVS for the reliable prediction of drug-target signatures using X-ray protein crystal structures. RepurposeVS is a virtual screening method that incorporates docking, drug-centric and protein-centric 2D/3D fingerprints with a rigorous mathematical normalization procedure to account for the variability in units and provide high-resolution contextual information for drug-target binding. Validity was confirmed by the following: (1) providing the greatest enrichment of known drug binders for multiple protein targets in virtual screening experiments, (2) determining that similarly shaped protein target pockets are predicted to bind drugs of similar 3D shapes when RepurposeVS is applied to 2,335 human protein targets, and (3) determining true biological associations in vitro for mebendazole (MBZ) across many predicted kinase targets for potential cancer repurposing. Since RepurposeVS is a drug repurposing-focused method, benchmarking was conducted on a set of 3,671 FDA approved and experimental drugs rather than the Database of Useful Decoys (DUDE) so as to streamline downstream repurposing experiments. We further apply RepurposeVS to explore the overall potential drug repurposing space for currently approved drugs. RepurposeVS is not computationally intensive and increases performance accuracy, thus serving as an efficient and powerful in silico tool to predict drug-target associations in drug repurposing. PMID:26234515

  20. HubAlign: an accurate and efficient method for global alignment of protein–protein interaction networks

    PubMed Central

    Hashemifar, Somaye; Xu, Jinbo

    2014-01-01

    Motivation: High-throughput experimental techniques have produced a large amount of protein–protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. Results: This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. Availability: HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip Contact: jinboxu@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161231