Science.gov

Sample records for accurate diagnostic technique

  1. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  2. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  3. Nanotechnology in Disease Diagnostic Techniques.

    PubMed

    Savaliya, Reema; Shah, Darshini; Singh, Ragini; Kumar, Ashutosh; Shankar, Rishi; Dhawan, Alok; Singh, Sanjay

    2015-06-25

    Currently the major research highlights of bioengineering and medical technology are directed towards development of improved diagnostic techniques to screen complex diseases. Screening requirements are for the identification of the cause of illnesses, monitoring the improvement or progression of the state of diseases such as cancer, cardiovascular or neurodegenerative diseases. Nanotechnology enables the manipulation of materials at nanoscale and has shown potential to enhance sensitivity, selectivity and lower the cost of a diagnosis. The causative biomolecules (DNA, proteins) can be detected by red-shifted absorbance of gold nanoparticles or alteration in the conductance of a nanowire or nanotubes, and deflection of a micro or nano-cantilever. Several types of nanomaterials such as metals, metal-oxides and quantum dots have shown ample advantages over traditional diagnosis, intracellular labeling and visualization of target cells/tissues. Nanotechnology has also opened several avenues which could be further developed to enable enhanced visualization of tissues, cells, DNA and proteins over a point-of-care device. Protein or gene chips created using nanomaterials could be further be integrated into a convenient nano-fluidic device for better disease diagnosis.

  4. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  5. Diagnostic methodology is critical for accurately determining the prevalence of ichthyophonus infections in wild fish populations

    USGS Publications Warehouse

    Kocan, R.; Dolan, H.; Hershberger, P.

    2011-01-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus, particularly when the exposure history of the population is not known.

  6. Diagnostic cardiology: Noninvasive imaging techniques

    SciTech Connect

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  7. Fabricating an Accurate Implant Master Cast: A Technique Report.

    PubMed

    Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F

    2015-12-01

    The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.

  8. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  9. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  10. [Spectroscopy technique and ruminant methane emissions accurate inspecting].

    PubMed

    Shang, Zhan-Huan; Guo, Xu-Sheng; Long, Rui-Jun

    2009-03-01

    The increase in atmospheric CH4 concentration, on the one hand through the radiation process, will directly cause climate change, and on the other hand, cause a lot of changes in atmospheric chemical processes, indirectly causing climate change. The rapid growth of atmospheric methane has gained attention of governments and scientists. All countries in the world now deal with global climate change as an important task of reducing emissions of greenhouse gases, but the need for monitoring the concentration of methane gas, in particular precision monitoring, can be scientifically formulated to provide a scientific basis for emission reduction measures. So far, CH4 gas emissions of different animal production systems have received extensive research. The methane emission by ruminant reported in the literature is only estimation. This is due to the various factors that affect the methane production in ruminant, there are various variables associated with the techniques for measuring methane production, the techniques currently developed to measure methane are unable to accurately determine the dynamics of methane emission by ruminant, and therefore there is an urgent need to develop an accurate method for this purpose. Currently, spectroscopy technique has been used and is relatively a more accurate and reliable method. Various spectroscopy techniques such as modified infrared spectroscopy methane measuring system, laser and near-infrared sensory system are able to achieve the objective of determining the dynamic methane emission by both domestic and grazing ruminant. Therefore spectroscopy technique is an important methane measuring technique, and contributes to proposing reduction methods of methane.

  11. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  12. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  13. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  14. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  15. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  16. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  17. Using Copula Distributions to Support More Accurate Imaging-Based Diagnostic Classifiers for Neuropsychiatric Disorders

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.

    2014-01-01

    Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging

  18. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  19. Magnetic separation techniques in diagnostic microbiology.

    PubMed Central

    Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M

    1994-01-01

    The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection

  20. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  1. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  2. Influence of pansharpening techniques in obtaining accurate vegetation thematic maps

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier

    2016-10-01

    In last decades, there have been a decline in natural resources, becoming important to develop reliable methodologies for their management. The appearance of very high resolution sensors has offered a practical and cost-effective means for a good environmental management. In this context, improvements are needed for obtaining higher quality of the information available in order to get reliable classified images. Thus, pansharpening enhances the spatial resolution of the multispectral band by incorporating information from the panchromatic image. The main goal in the study is to implement pixel and object-based classification techniques applied to the fused imagery using different pansharpening algorithms and the evaluation of thematic maps generated that serve to obtain accurate information for the conservation of natural resources. A vulnerable heterogenic ecosystem from Canary Islands (Spain) was chosen, Teide National Park, and Worldview-2 high resolution imagery was employed. The classes considered of interest were set by the National Park conservation managers. 7 pansharpening techniques (GS, FIHS, HCS, MTF based, Wavelet `à trous' and Weighted Wavelet `à trous' through Fractal Dimension Maps) were chosen in order to improve the data quality with the goal to analyze the vegetation classes. Next, different classification algorithms were applied at pixel-based and object-based approach, moreover, an accuracy assessment of the different thematic maps obtained were performed. The highest classification accuracy was obtained applying Support Vector Machine classifier at object-based approach in the Weighted Wavelet `à trous' through Fractal Dimension Maps fused image. Finally, highlight the difficulty of the classification in Teide ecosystem due to the heterogeneity and the small size of the species. Thus, it is important to obtain accurate thematic maps for further studies in the management and conservation of natural resources.

  3. Diagnostics techniques in nonmuscle invasive bladder cancer

    PubMed Central

    Soubra, Ayman; Risk, Michael C.

    2015-01-01

    Introduction: Nonmuscle invasive bladder cancer (NMIBC) is the most common presentation of bladder cancer and is often treatable with endoscopic resection and intravesical therapies. Cystoscopy and urine cytology are the gold standard in diagnosis and surveillance but are limited by their sensitivity in some situations. We seek to provide an overview of recent additions to the diagnostic armamentarium for urologists treating this disease. Methods: Articles were identified through a literature review of articles obtained through PubMed searches including the terms “bladder cancer” and various diagnostic techniques described in the article. Results: A variety of urinary biomarkers are available to assist the diagnosis and management of patients with NMIBC. Many have improved sensitivity over urine cytology, but less specificity. There are certain situations in which this has proved valuable, but as yet these are not part of the standard guidelines for NMIBC. Fluorescence cystoscopy has level 1 evidence demonstrating increased rates of tumor detection and prolonged recurrence-free survival when utilized for transurethral resection. Other technologies seeking to enhance cystoscopy, such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography are still under evaluation. Conclusions: A variety of urine biomarker and adjunctive endoscopic technologies have been developed to assist the management of NMIBC. While some, such as fluorescence cystoscopy, have demonstrated a definite benefit in this disease, others are still finding their place in the diagnosis and treatment of this disease. Future studies should shed light on how these can be incorporated to improve outcomes in NMIBC. PMID:26604438

  4. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  5. Clinical technique: techniques in the practice diagnostic laboratory: a review.

    PubMed

    Doneley, Bob

    2015-01-01

    The need to rapidly diagnose disease in avian/exotic animal patients has led to the increased use of on-site diagnostic testing by veterinarians treating these animals. This article explores the use of on-site veterinary diagnostic testing: advantages and disadvantages of such testing; tests that are performed; type of equipment available; and the need for quality control.

  6. Invasive diagnostic techniques in idiopathic interstitial pneumonias.

    PubMed

    Poletti, Venerino; Ravaglia, Claudia; Gurioli, Carlo; Piciucchi, Sara; Dubini, Alessandra; Cavazza, Alberto; Chilosi, Marco; Rossi, Andrea; Tomassetti, Sara

    2016-01-01

    Fibrosing interstitial lung diseases (f-ILDs) represent a heterogeneous group of disorders in which the aetiology may be identified or, not infrequently, remain unknown. Establishing a correct diagnosis of a distinct f-ILD requires a multidisciplinary approach, integrating clinical profile, physiological and laboratory data, radiological appearance and, when appropriate, histological findings. Surgical lung biopsy is still considered the most important diagnostic tool as it is able to provide lung samples large enough for identification of complex patterns such as usual interstitial pneumonitis (UIP) and nonspecific interstitial pneumonitis. However, this procedure is accompanied by significant morbidity and mortality. Bronchoalveolar lavage is still a popular diagnostic tool allowing identification of alternative diagnoses in patients with suspected idiopathic pulmonary fibrosis (IPF) when an increase in lymphocytes is detected. Conventional transbronchial lung biopsy has a very low sensitivity in detecting the UIP pattern and its role in this clinical-radiological context is marginal. The introduction of less invasive methods such as transbronchial cryobiopsy show great promise to clinical practice as they can be used to obtain samples large enough to morphologically support a diagnosis of IPF or other idiopathic interstitial pneumonias, along with fewer complications. Recent advances in the field suggest that less invasive methods of lung sampling, without significant side effects, in combination with other diagnostic methods could replace the need for surgical lung biopsy in the future. Indeed, these new multidisciplinary procedures may become the main diagnostic work-up method for patients with suspected idiopathic interstitial pneumonia.

  7. Laboratory Diagnostic Techniques for Entamoeba Species

    PubMed Central

    Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J.

    2007-01-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  8. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI.

    PubMed

    Eswaraiah, R; Sreenivasa Reddy, E

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.

  9. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  10. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  11. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  12. Diagnostic yield of blood clot culture in the accurate diagnosis of enteric fever and human brucellosis.

    PubMed

    Mantur, Basappa G; Bidari, Laxman H; Akki, Aravind S; Mulimani, Mallanna S; Tikare, Nitin V

    2007-01-01

    Culture of blood is the most frequent, accurate means of diagnosing bacteremia in enteric fever and brucellosis. However, conventional blood culturing is slow in isolating bacteria causing these diseases. In this work, we evaluated the performance of blood clot culture and conventional whole blood cultures in the accurate diagnosis of enteric fever (253 cases) and human brucellosis (71cases). The blood clot culture was found to be much more sensitive for both Salmonella (more by 34.4%, P< 0.001) and Brucella (more by 22.6%, P<0.001) than whole blood culture. Bacterial growth was significantly faster in cultures of blood clot compared to whole blood (1.1 versus 2.6 days for Salmonella, 3.1 versus 8.2 days for Brucella melitensis, respectively). The rapid confirmation of the etiological agent would facilitate an early institution of appropriate antimicrobial therapy, thereby reducing clinical morbidity especially in an endemic population. It is worthwile practicing blood clot culture for the accurate diagnosis of enteric fever and brucellosis in developing countries where diagnostic facilities by advanced technologies like automated culture systems and PCR are not available.

  13. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect

    Haque, Aeraj Ul

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  14. Fast processing techniques for accurate ultrasonic range measurements

    NASA Astrophysics Data System (ADS)

    Barshan, Billur

    2000-01-01

    Four methods of range measurement for airborne ultrasonic systems - namely simple thresholding, curve-fitting, sliding-window, and correlation detection - are compared on the basis of bias error, standard deviation, total error, robustness to noise, and the difficulty/complexity of implementation. Whereas correlation detection is theoretically optimal, the other three methods can offer acceptable performance at much lower cost. Performances of all methods have been investigated as a function of target range, azimuth, and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation detection in the order of decreasing complexity. Apart from correlation detection, minimum bias and total error is most consistently obtained with the curve-fitting method. On the other hand, the sliding-window method is always better than the thresholding and curve-fitting methods in terms of minimizing the standard deviation. The experimental results are in close agreement with the corresponding simulation results. Overall, the three simple and fast processing methods provide a variety of attractive compromises between measurement accuracy and system complexity. Although this paper concentrates on ultrasonic range measurement in air, the techniques described may also find application in underwater acoustics.

  15. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  16. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  17. Evolving imaging techniques in diagnostic strategies of pulmonary embolism.

    PubMed

    Robert-Ebadi, Helia; Le Gal, Grégoire; Righini, Marc

    2016-01-01

    Modern non invasive diagnostic strategies for pulmonary embolism (PE) rely on the sequential use of clinical probability assessment, D-dimer measurement and thoracic imaging tests. Planar ventilation/perfusion (V/Q) scintigraphy was the cornerstone for more than two decades and has now been replaced by computed tomography pulmonary angiography (CTPA). Diagnostic strategies using CTPA are very safe to rule out PE and have been well validated in large prospective management outcome studies. With the widespread use of CTPA, concerns regarding radiation and overdiagnosis of PE have paved the way for investigating new diagnostic modalities. V/Q single photon emission tomography has arisen as a highly accurate test and a potential alternative to CTPA. However, prospective management outcome studies are still lacking and are warranted before implementation in everyday clinical practice.

  18. Diagnostic Emergency Ultrasound: Assessment Techniques In The Pediatric Patient.

    PubMed

    Guttman, Joshua; Nelson, Bret P

    2016-01-01

    Emergency ultrasound is performed at the point of care to answer focused clinical questions in a rapid manner. Over the last 20 years, the use of this technique has grown rapidly, and it has become a core requirement in many emergency medicine residencies and in some pediatric emergency medicine fellowships. The use of emergency ultrasound in the pediatric setting is increasing due to the lack of ionizing radiation with these studies, as compared to computed tomography. Utilizing diagnostic ultrasound in the emergency department can allow clinicians to arrive at a diagnosis at the bedside rather than sending the patient out of the department for another study. This issue focuses on common indications for diagnostic ultrasound, as found in the pediatric literature or extrapolated from adult literature where pediatric evidence is scarce. Limitations, current trends, controversies, and future directions of diagnostic ultrasound in the emergency department are also discussed.

  19. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique

    PubMed Central

    2012-01-01

    Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new class of agent with great potential for clinical applications. This is partly due to their long blood circulation time and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes. PMID:22809406

  20. Diagnostic Implication and Clinical Relevance of Ancillary Techniques in Clinical Pathology Practice

    PubMed Central

    Makki, Jaafar S.

    2016-01-01

    Hematoxylin–eosin-stained slide preparation is one of the most durable techniques in medicine history, which has remained unchanged since implemented. It allows an accurate microscopic diagnosis of the vast majority of tissue samples. In many circumstances, this technique cannot answer all the questions posed at the initial diagnostic level. The pathologist has always been looking for additional ancillary techniques to answer pending questions. In our daily histopathology practice, we referred to those techniques as special stains, but nowadays, they are more than stains and are collectively called ancillary tests. They include a wide range of techniques starting from histochemical stains and ending in one or more advanced techniques, such as immunohistochemistry, immunofluorescence, molecular studies, cytogenetic studies, electron microscopy, flow cytometry, and polymerase chain reaction. PMID:27042154

  1. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Astaf'eva, N. G.; Meglinski, I. V.

    2014-08-01

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials.

  2. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  3. Reference Guide for Building Diagnostics Equipment and Techniques.

    DTIC Science & Technology

    1986-07-01

    measurements for performance tests on ventilation fans - velocity profiles in large ducts - calibration of other air flow meters. The anemometer caa be...MICROCOPY RESOLUTION TEST CHART f 2NN 7V - CUM DEB-TR-86-06 Do s itT n s Reference Guide for Building ~~~Diagnostics Equipment and Techniques ’:’" C...FOR NONCONTACT THERMAL INSPECTIONS 17 NONDESTRUCTIVE SUBSURFACE MOISTURE TESTS ,’ Thermal Imagers 33 Spot Radiometers 38 Portable Line Scanners 41

  4. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    PubMed Central

    Dingari, Narahara Chari; Horowitz, Gary L.; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future. PMID:22393405

  5. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  6. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between

  7. Smartphone-Based Accurate Analysis of Retinal Vasculature towards Point-of-Care Diagnostics

    PubMed Central

    Xu, Xiayu; Ding, Wenxiang; Wang, Xuemin; Cao, Ruofan; Zhang, Maiye; Lv, Peilin; Xu, Feng

    2016-01-01

    Retinal vasculature analysis is important for the early diagnostics of various eye and systemic diseases, making it a potentially useful biomarker, especially for resource-limited regions and countries. Here we developed a smartphone-based retinal image analysis system for point-of-care diagnostics that is able to load a fundus image, segment retinal vessels, analyze individual vessel width, and store or uplink results. The proposed system was not only evaluated on widely used public databases and compared with the state-of-the-art methods, but also validated on clinical images directly acquired with a smartphone. An Android app is also developed to facilitate on-site application of the proposed methods. Both visual assessment and quantitative assessment showed that the proposed methods achieved comparable results to the state-of-the-art methods that require high-standard workstations. The proposed system holds great potential for the early diagnostics of various diseases, such as diabetic retinopathy, for resource-limited regions and countries. PMID:27698369

  8. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  9. A novel, integrated PET-guided MRS technique resulting in more accurate initial diagnosis of high-grade glioma.

    PubMed

    Kim, Ellen S; Satter, Martin; Reed, Marilyn; Fadell, Ronald; Kardan, Arash

    2016-06-01

    Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas.

  10. Accurate Point-of-Care Detection of Ruptured Fetal Membranes: Improved Diagnostic Performance Characteristics with a Monoclonal/Polyclonal Immunoassay

    PubMed Central

    Rogers, Linda C.; Scott, Laurie; Block, Jon E.

    2016-01-01

    OBJECTIVE Accurate and timely diagnosis of rupture of membranes (ROM) is imperative to allow for gestational age-specific interventions. This study compared the diagnostic performance characteristics between two methods used for the detection of ROM as measured in the same patient. METHODS Vaginal secretions were evaluated using the conventional fern test as well as a point-of-care monoclonal/polyclonal immunoassay test (ROM Plus®) in 75 pregnant patients who presented to labor and delivery with complaints of leaking amniotic fluid. Both tests were compared to analytical confirmation of ROM using three external laboratory tests. Diagnostic performance characteristics were calculated including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. RESULTS Diagnostic performance characteristics uniformly favored ROM detection using the immunoassay test compared to the fern test: sensitivity (100% vs. 77.8%), specificity (94.8% vs. 79.3%), PPV (75% vs. 36.8%), NPV (100% vs. 95.8%), and accuracy (95.5% vs. 79.1%). CONCLUSIONS The point-of-care immunoassay test provides improved diagnostic accuracy for the detection of ROM compared to fern testing. It has the potential of improving patient management decisions, thereby minimizing serious complications and perinatal morbidity. PMID:27199579

  11. A Technique Using Calibrated Photography and Photoshop for Accurate Shade Analysis and Communication.

    PubMed

    McLaren, Edward A; Figueira, Johan; Goldstein, Ronald E

    2017-02-01

    This article reviews the critical aspects of controlling the shade-taking environment and discusses various modalities introduced throughout the years to acquire and communicate shade information. Demonstrating a highly calibrated digital photographic technique for capturing shade information, this article shows how to use Photoshop® to standardize images and extract color information from the tooth and shade tab for use by a ceramist for an accurate shade-matching restoration.

  12. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  13. Techniques for determining propulsion system forces for accurate high speed vehicle drag measurements in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.

    1975-01-01

    As part of a NASA program to evaluate current methods of predicting the performance of large, supersonic airplanes, the drag of the XB-70 airplane was measured accurately in flight at Mach numbers from 0.75 to 2.5. This paper describes the techniques used to determine engine net thrust and the drag forces charged to the propulsion system that were required for the in-flight drag measurements. The accuracy of the measurements and the application of the measurement techniques to aircraft with different propulsion systems are discussed. Examples of results obtained for the XB-70 airplane are presented.

  14. Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson's disease

    PubMed Central

    Mahlknecht, Philipp; Pechlaner, Raimund; Boesveldt, Sanne; Volc, Dieter; Pinter, Bernardette; Reiter, Eva; Müller, Christoph; Krismer, Florian; Berendse, Henk W.; van Hilten, Jacobus J.; Wuschitz, Albert; Schimetta, Wolfgang; Högl, Birgit; Djamshidian, Atbin; Nocker, Michael; Göbel, Georg; Gasperi, Arno; Kiechl, Stefan; Willeit, Johann; Poewe, Werner

    2016-01-01

    ABSTRACT Introduction The aim of this study was to evaluate odor identification testing as a quick, cheap, and reliable tool to identify PD. Methods Odor identification with the 16‐item Sniffin' Sticks test (SS‐16) was assessed in a total of 646 PD patients and 606 controls from three European centers (A, B, and C), as well as 75 patients with atypical parkinsonism or essential tremor and in a prospective cohort of 24 patients with idiopathic rapid eye movement sleep behavior disorder (center A). Reduced odor sets most discriminative for PD were determined in a discovery cohort derived from a random split of PD patients and controls from center A using L1‐regularized logistic regression. Diagnostic accuracy was assessed in the rest of the patients/controls as validation cohorts. Results Olfactory performance was lower in PD patients compared with controls and non‐PD patients in all cohorts (each P < 0.001). Both the full SS‐16 and a subscore of the top eight discriminating odors (SS‐8) were associated with an excellent discrimination of PD from controls (areas under the curve ≥0.90; sensitivities ≥83.3%; specificities ≥82.0%) and from non‐PD patients (areas under the curve ≥0.91; sensitivities ≥84.1%; specificities ≥84.0%) in all cohorts. This remained unchanged when patients with >3 years of disease duration were excluded from analysis. All 8 incident PD cases among patients with idiopathic rapid eye movement sleep behavior disorder were predicted with the SS‐16 and the SS‐8 (sensitivity, 100%; positive predictive value, 61.5%). Conclusions Odor identification testing provides excellent diagnostic accuracy in the distinction of PD patients from controls and diagnostic mimics. A reduced set of eight odors could be used as a quick tool in the workup of patients presenting with parkinsonism and for PD risk indication. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and

  15. Picosecond lidar techniques in laboratory and field diagnostics

    NASA Astrophysics Data System (ADS)

    Goulard, R.

    1984-12-01

    The availability of picosecond laser systems opens a new potential in the field of diagnostics. It is now possible to observe chemical events over time intervals as short as 10 to the minus 9th power sec (e.g., fluorescence, bond-selective chemistry,...) without overlap with the much shorter 10 to the minus 12th power sec triggering signal. In addition, two specific effects are of special interest to real industrial flame diagnostics. One is the elimination of background noise, since the picosecond time-gating of the detector will collect the whole signal of interest but only a tiny fraction of the time-spread noise background (e.g., soot, walls,...). The other is related to the very short length of these pulses (similar to mm): it is the possibility to use the lidar/radar principle to convert the time history of the measured back scattered signals into a millimeter-resolved space distribution along the beam. In this fashion, Raman and other techniques can yield a detailed map of concentrations and temperatures in three-dimensional space, even in sooty combustors background, with the need of only one single porthole.

  16. Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations

    NASA Astrophysics Data System (ADS)

    Caridi, F.; D'Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Gatto, M. F.

    2016-10-01

    A comprehensive study was conducted about the investigation of the natural/anthropo-genic radioactivity of various environmental matrices. Different diagnostics techniques were employed: high resolution HpGe gamma spectrometry, to quantify the activity concentration of radionuclides that emit gamma photons; alpha spectrometry, for the determination of the specific activity of α -emitters radioisotopes; liquid scintillation, to measure the activity concentration of tritium, radon and total alpha/beta in liquid samples; alpha spectrometry through the Rad7 setup, to estimate the gas radon activity concentration in air, water and soil; total alpha/beta counter, for the activity concentration quantification of radionuclides, in solid samples, emitting alpha/beta particles. From the dosimetric point of view, knowledge of the radioactivity level in the environmental matrices allows to evaluate any possible radiological hazard for the population, through the calculation of the appropriate parameters of radioprotection and their comparison with the safety limits reported by the literature.

  17. A New Diagnostic Technique for the Solar Corona

    NASA Technical Reports Server (NTRS)

    Nelson, R.; Davila, Joseph M.; St.Cyr, O. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Over the last 30-40 years spectroscopic observation of the EUV (extreme ultraviolet) line emission has proved invaluable as a diagnostic of the solar coronal plasma state. Line ratios have been used to determine electron density, electron temperature and ion flow velocity. In this paper, we present results obtained with a new measurement technique that uses spectroscopic observations of the white light corona to obtain the electron density, temperature, and flow velocity. A prototype instrument has been designed and built to obtain visible light spectra (3800-4300 A) with modest resolution. This instrument was used to obtain coronal observations during the June 2001 eclipse in Zambia. The data were corrected for sky and instrument transmission to derive the electron temperature and flow speed. Results from these measurements will be discussed.

  18. RT-PCR is a more accurate diagnostic tool for detection of BCR-ABL rearrangement

    SciTech Connect

    Zehnbauer, B.A.; Allen, A.P.; McGrath, S.D.

    1994-09-01

    Detection of the Philadelphia chromosome (Ph1) or genomic Southern hybridization for clonal gene rearrangement (GSH-R) has provided very specific identification of BCR-ABL gene rearrangement. Reverse transcriptase-polymerase chain reaction (RT-PCR) is diagnostic for patterns of BCR-ABL expression which are undetected by GSH-R and/or Ph1 and provides increased sensitivity both at diagnosis and in detection of minimal residual leukemia. Fifty-three specimens (of 150 tested from 119 consecutive leukemia patients) were RT-PCR positive for BCR-ABL gene expression confirmed by hybridization of PCR products with b{sub 3}a{sub 2}, b{sub 2}a{sub 2}, or e{sub 1}a{sub 2} junction-specific oligonucleotides. In 6 cases of CML with GSH-R{sup {minus}}at diagnosis, RT-PCR provided specific BCR-ABL identification. Deletion of BCR regions, low mitotic index, or e{sub 1}a{sub 2} expression caused failure to detect GSH-R or Ph1 translocation.

  19. Continuous digital ECG analysis over accurate R-peak detection using adaptive wavelet technique.

    PubMed

    Gopalakrishnan Nair, T R; Geetha, A P; Asharani, M

    2013-10-01

    Worldwide, health care segment is under a severe challenge to achieve more accurate and intelligent biomedical systems in order to assist healthcare professionals with more accurate and consistent data as well as reliability. The role of ECG in healthcare is one of the paramount importances and it has got a multitude of abnormal relations and anomalies which characterizes intricate cardiovascular performance image. Until the recent past, ECG instruments and analysis played the role of providing the PQRST signal as raw observational output either on paper or on a console or in a file having many diagnostic clues embedded in the signal left to the expert cardiologist to look out for characteristic intervals and to detect the cardiovascular abnormality. Methods and practises are required more and more, to automate this process of cardiac expertise using knowledge engineering and an intelligent systems approach. This paper presents one of the challenging R-peak detections to classify diagnosis and estimate cardio disorders in a fully automated signal processing sequence. This study used an adaptive wavelet approach to generate an appropriate wavelet for R-signal identification under noise, baseband wandering and temporal variations of R-positions. This study designed an adaptive wavelet and successfully detected R- peak variations under various ECG signal conditions. The result and analysis of this method and the ways to use it for further purposes are presented here.

  20. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures.

    PubMed

    Brahme, Anders; Nyman, Peter; Skatt, Björn

    2008-05-01

    A four-dimensional (4D) laser camera (LC) has been developed for accurate patient imaging in diagnostic and therapeutic radiology. A complementary metal-oxide semiconductor camera images the intersection of a scanned fan shaped laser beam with the surface of the patient and allows real time recording of movements in a three-dimensional (3D) or four-dimensional (4D) format (3D +time). The LC system was first designed as an accurate patient setup tool during diagnostic and therapeutic applications but was found to be of much wider applicability as a general 4D photon "tag" for the surface of the patient in different clinical procedures. It is presently used as a 3D or 4D optical benchmark or tag for accurate delineation of the patient surface as demonstrated for patient auto setup, breathing and heart motion detection. Furthermore, its future potential applications in gating, adaptive therapy, 3D or 4D image fusion between most imaging modalities and image processing are discussed. It is shown that the LC system has a geometrical resolution of about 0, 1 mm and that the rigid body repositioning accuracy is about 0, 5 mm below 20 mm displacements, 1 mm below 40 mm and better than 2 mm at 70 mm. This indicates a slight need for repeated repositioning when the initial error is larger than about 50 mm. The positioning accuracy with standard patient setup procedures for prostate cancer at Karolinska was found to be about 5-6 mm when independently measured using the LC system. The system was found valuable for positron emission tomography-computed tomography (PET-CT) in vivo tumor and dose delivery imaging where it potentially may allow effective correction for breathing artifacts in 4D PET-CT and image fusion with lymph node atlases for accurate target volume definition in oncology. With a LC system in all imaging and radiation therapy rooms, auto setup during repeated diagnostic and therapeutic procedures may save around 5 min per session, increase accuracy and allow

  1. Gearbox diagnostics using wavelet-based windowing technique

    NASA Astrophysics Data System (ADS)

    Omar, F. K.; Gaouda, A. M.

    2009-08-01

    In extracting gear box acoustic signals embedded in excessive noise, the need for an online and automated tool becomes a crucial necessity. One of the recent approaches that have gained some acceptance within the research arena is the Wavelet multi-resolution analysis (WMRA). However selecting an accurate mother wavelet, defining dynamic threshold values and identifying the resolution levels to be considered in gearboxes fault detection and diagnosis are still challenging tasks. This paper proposes a novel wavelet-based technique for detecting, locating and estimating the severity of defects in gear tooth fracture. The proposed technique enhances the WMRA by decomposing the noisy data into different resolution levels while data sliding it into Kaiser's window. Only the maximum expansion coefficients at each resolution level are used in de-noising, detecting and measuring the severity of the defects. A small set of coefficients is used in the monitoring process without assigning threshold values or performing signal reconstruction. The proposed monitoring technique has been applied to a laboratory data corrupted with high noise level.

  2. Novel x-ray optics for medical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, A.; Arvanian, V.; Kuyumchyan, D.; Aristov, V.; Shulakov, E.

    2009-08-01

    A new hard X - ray hologram with using crystal Fresnel zone plates (ZP) has been described. An image of Fourier hologram for hard X- ray is presented. X-ray phase contrast methods for medical diagnostics techniques are presented. We have developed an X-ray microscope, based on micro focus source which is capable of high resolution phasecontrast imaging and holograms. We propose a new imaging technique with the x-ray energy 8 keV. The method is expected to have wide applications in imaging of low absorbing samples such as biological and medical tissue. We used FIB to reproduction three dimension structures of damaged spinal cord of rat before and after combined treatment with NT3 and NR2D. PUBLISHER'S NOTE 12/16/09: This SPIE Proceedings paper has been updated with an erratum correcting several issues throughout the paper. The corrected paper was published in place of the earlier version on 9/1/2009. If you purchased the original version of the paper and no longer have access, please contact SPIE Digital Library Customer Service at CustomerService@SPIEDigitalLibrary.org for assistance.

  3. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses.

    PubMed

    Myers, Risa B; Herskovic, Jorge R

    2011-12-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDWs) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a Clinical Data Warehouse containing synthetic patient data. We present a synthetic Clinical Data Warehouse, and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing's sensitivity and specificity both by conducting a "Simulated Expert Review" where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a "Bayesian Chain", using Bayes' Theorem to calculate the probability of a patient having a condition after each visit. The second method is a "one-shot" approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition. Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes' Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of

  4. Imaging techniques used in the diagnostic workup of acute venous thromboembolic disease.

    PubMed

    Tilve-Gómez, A; Rodríguez-Fernández, P; Trillo-Fandiño, L; Plasencia-Martínez, J M

    2016-12-13

    Early diagnosis is one of the most important factors affecting the prognosis of pulmonary embolism (PE); however, the clinical presentation of PE is often very unspecific and it can simulate other diseases. For these reasons, imaging tests, especially computed tomography angiography (CTA) of the pulmonary arteries, have become the keystone in the diagnostic workup of PE. The wide availability and high diagnostic performance of pulmonary CTA has led to an increase in the number of examinations done and a consequent increase in the population's exposure to radiation and iodinated contrast material. Thus, other techniques such as scintigraphy and venous ultrasonography of the lower limbs, although less accurate, continue to be used in certain circumstances, and optimized protocols have been developed for CTA to reduce the dose of radiation (by decreasing the kilovoltage) and the dose of contrast agents. We describe the technical characteristics and interpretation of the findings for each imaging technique used to diagnose PE and discuss their advantages and limitations; this knowledge will help the best technique to be chosen for each case. Finally, we comment on some data about the increased use of CTA, its clinical repercussions, its "overuse", and doubts about its cost-effectiveness.

  5. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  6. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  7. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  8. Evaluation of a pan-serotype point-of-care rapid diagnostic assay for accurate detection of acute dengue infection.

    PubMed

    Vivek, Rosario; Ahamed, Syed Fazil; Kotabagi, Shalini; Chandele, Anmol; Khanna, Ira; Khanna, Navin; Nayak, Kaustuv; Dias, Mary; Kaja, Murali-Krishna; Shet, Anita

    2017-03-01

    The catastrophic rise in dengue infections in India and globally has created a need for an accurate, validated low-cost rapid diagnostic test (RDT) for dengue. We prospectively evaluated the diagnostic performance of NS1/IgM RDT (dengue day 1) using 211 samples from a pediatric dengue cohort representing all 4 serotypes in southern India. The dengue-positive panel consisted of 179 dengue real-time polymerase chain reaction (RT-PCR) positive samples from symptomatic children. The dengue-negative panel consisted of 32 samples from dengue-negative febrile children and asymptomatic individuals that were negative for dengue RT-PCR/NS1 enzyme-linked immunosorbent assay/IgM/IgG. NS1/IgM RDT sensitivity was 89.4% and specificity was 93.8%. The NS1/IgM RDT showed high sensitivity throughout the acute phase of illness, in primary and secondary infections, in different severity groups, and detected all 4 dengue serotypes, including coinfections. This NS1/IgM RDT is a useful point-of-care assay for rapid and reliable diagnosis of acute dengue and an excellent surveillance tool in our battle against dengue.

  9. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  10. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  11. Advanced numerical techniques for accurate unsteady simulations of a wingtip vortex

    NASA Astrophysics Data System (ADS)

    Ahmad, Shakeel

    A numerical technique is developed to simulate the vortices associated with stationary and flapping wings. The Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations are used over an unstructured grid. The present work assesses the locations of the origins of vortex generation, models those locations and develops a systematic mesh refinement strategy to simulate vortices more accurately using the URANS model. The vortex center plays a key role in the analysis of the simulation data. A novel approach to locating a vortex center is also developed referred to as the Max-Max criterion. Experimental validation of the simulated vortex from a stationary NACA0012 wing is achieved. The tangential velocity along the core of the vortex falls within five percent of the experimental data in the case of the stationary NACA0012 simulation. The wing surface pressure coefficient also matches with the experimental data. The refinement techniques are then focused on unsteady simulations of pitching and dual-mode wing flapping. Tip vortex strength, location, and wing surface pressure are analyzed. Links to vortex behavior and wing motion are inferred. Key words: vortex, tangential velocity, Cp, vortical flow, unsteady vortices, URANS, Max-Max, Vortex center

  12. A wet etching technique for accurate etching of GaAs/AlAs distributed Bragg reflectors

    SciTech Connect

    Bacher, K.; Harris, J.S. Jr.

    1995-07-01

    The authors have demonstrated a wet etching technique capable of producing accurate and uniform etch depths in distributed Bragg reflectors (DBRs) and other GaAs/AlAs superlattice structures. The process utilizes two selective etchants, citric acid/hydrogen peroxide in a 4:1 ratio and phosphoric acid/hydrogen peroxide/water in a 3:1:50 ratio, to sequentially etch away each pair of superlattice layers. The authors have used this technique to expose a 680 {angstrom} thick conduction GaAs layer buried beneath a 15 period, 2.1 {micro}m thick, undoped GaAs/AlAs DBR mirror. Transmission line measurements pads were formed on the exposed layer to determine the contact and sheet resistance. Comparison with a similar layer on the surface of the wafer reveals that the exposed layer is easily contacted with only a slight increase in sheet resistance indicating less than 125 {angstrom} of overetching, 0.6% of the total etch depth.

  13. An accurate optical technique for measuring the nuclear polarisation of 3He gas

    NASA Astrophysics Data System (ADS)

    Talbot, C.; Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    In the metastability exchange optical pumping cells of our on-site production unit and of our other experimental set-ups, we use a light absorption technique to measure the 3He nuclear polarisation. It involves weak probe beams at 1083 nm, that are either perpendicular or parallel to the magnetic field and cell axis, with suitable light polarisations. When metastability exchange collisions control the populations of the sublevels in the 23S state, absolute values of the 3He ground state nuclear polarisation are directly inferred from the ratio of the absorption rates measured for these probe beams. Our report focuses on the transverse detection scheme for which this ratio, measured at low magnetic field for σ and π light polarisations, hardly depends on gas pressure or the presence of an intense pump beam. This technique has been systematically tested both in pure 3He and isotopic mixtures and it is routinely used for accurate control of the optical pumping efficiency as well as for calibration of the NMR system.

  14. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change.

  15. Internal Mammary Sentinel Lymph Node Biopsy With Modified Injection Technique: High Visualization Rate and Accurate Staging.

    PubMed

    Qiu, Peng-Fei; Cong, Bin-Bin; Zhao, Rong-Rong; Yang, Guo-Ren; Liu, Yan-Bing; Chen, Peng; Wang, Yong-Sheng

    2015-10-01

    Although the 2009 American Joint Committee on Cancer incorporated the internal mammary sentinel lymph node biopsy (IM-SLNB) concept, there has been little change in surgical practice patterns because of the low visualization rate of internal mammary sentinel lymph nodes (IMSLN) with the traditional radiotracer injection technique. In this study, various injection techniques were evaluated in term of the IMSLN visualization rate, and the impact of IM-SLNB on the diagnostic and prognostic value were analyzed.Clinically, axillary lymph nodes (ALN) negative patients (n = 407) were divided into group A (traditional peritumoral intraparenchymal injection) and group B (modified periareolar intraparenchymal injection). Group B was then separated into group B1 (low volume) and group B2 (high volume) according to the injection volume. Clinically, ALN-positive patients (n = 63) were managed as group B2. Internal mammary sentinel lymph node biopsy was performed for patients with IMSLN visualized.The IMSLN visualization rate was significantly higher in group B than that in group A (71.1% versus 15.5%, P < 0.001), whereas the axillary sentinel lymph nodes were reliably identified in both groups (98.9% versus 98.3%, P = 0.712). With high injection volume, group B2 was found to have higher IMSLN visualization rate than group B1 (75.1% versus 45.8%, P < 0.001). The IMSLN metastasis rate was only 8.1% (12/149) in clinically ALN-negative patients with successful IM-SLNB, and adjuvant treatment was altered in a small proportion. The IMSLN visualization rate was 69.8% (44/63) in clinically ALN-positive patients with the IMSLN metastasis rate up to 20.5% (9/44), and individual radiotherapy strategy could be guided with the IM-SLNB results.The modified injection technique (periareolar intraparenchymal, high volume, and ultrasound guidance) significantly improved the IMSLN visualization rate, making the routine IM-SLNB possible in daily practice. Internal mammary

  16. The diagnosis and management of pre-invasive breast disease: The role of new diagnostic techniques

    PubMed Central

    Nerurkar, Ashutosh; Osin, Peter

    2003-01-01

    In recent years we have seen significantly increased use of minimally invasive diagnostic techniques in the management of breast disease. There is wide recognition of fine needle aspiration and core biopsy as the principal diagnostic methods. However, concerns exist regarding their reliability. This article provides a brief overview of the major diagnostic issues related to use of fine needle aspiration, core biopsy and ductal lavage. It summarizes areas of use for each technique, outlines the main diagnostic pitfalls and their causes, and provides a perspective on future developments in the field. PMID:14580247

  17. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  18. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  19. Developpement de techniques de diagnostic non intrusif par tomographie optique

    NASA Astrophysics Data System (ADS)

    Dubot, Fabien

    Que ce soit dans les domaines des procedes industriels ou de l'imagerie medicale, on a assiste ces deux dernieres decennies a un developpement croissant des techniques optiques de diagnostic. L'engouement pour ces methodes repose principalement sur le fait qu'elles sont totalement non invasives, qu'elle utilisent des sources de rayonnement non nocives pour l'homme et l'environnement et qu'elles sont relativement peu couteuses et faciles a mettre en oeuvre comparees aux autres techniques d'imagerie. Une de ces techniques est la Tomographie Optique Diffuse (TOD). Cette methode d'imagerie tridimensionnelle consiste a caracteriser les proprietes radiatives d'un Milieu Semi-Transparent (MST) a partir de mesures optiques dans le proche infrarouge obtenues a l'aide d'un ensemble de sources et detecteurs situes sur la frontiere du domaine sonde. Elle repose notamment sur un modele direct de propagation de la lumiere dans le MST, fournissant les predictions, et un algorithme de minimisation d'une fonction de cout integrant les predictions et les mesures, permettant la reconstruction des parametres d'interet. Dans ce travail, le modele direct est l'approximation diffuse de l'equation de transfert radiatif dans le regime frequentiel tandis que les parametres d'interet sont les distributions spatiales des coefficients d'absorption et de diffusion reduit. Cette these est consacree au developpement d'une methode inverse robuste pour la resolution du probleme de TOD dans le domaine frequentiel. Pour repondre a cet objectif, ce travail est structure en trois parties qui constituent les principaux axes de la these. Premierement, une comparaison des algorithmes de Gauss-Newton amorti et de Broyden- Fletcher-Goldfarb-Shanno (BFGS) est proposee dans le cas bidimensionnel. Deux methodes de regularisation sont combinees pour chacun des deux algorithmes, a savoir la reduction de la dimension de l'espace de controle basee sur le maillage et la regularisation par penalisation de Tikhonov

  20. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  1. Brain MAPS: an automated, accurate and robust brain extraction technique using a template library

    PubMed Central

    Leung, Kelvin K.; Barnes, Josephine; Modat, Marc; Ridgway, Gerard R.; Bartlett, Jonathan W.; Fox, Nick C.; Ourselin, Sébastien

    2011-01-01

    Whole brain extraction is an important pre-processing step in neuro-image analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any sub-optimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T1-weighted MR baseline images from the Alzheimer’s Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p < 0.05, all tests), and the 1st-99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans (p < 0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤ 0.010% for 1.5T scans and ≤ 0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p < 0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy. PMID:21195780

  2. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  3. Machinery Diagnostics Via Mechanical Vibration Analysis using Spectral Analysis Techniques

    DTIC Science & Technology

    1988-09-01

    based on the economics of the situation, it is more advantageous to opt for a continuous monitoring system and or there are a very large number of...etc. 3 formats, to systems where permanently installed sensors feed into a computer equipped with diagnostic software. 3. Applictkon to Machinery...the intervals will only be optimal for those units which degrade exactly as does the average unit of the class. Those which perform below average may

  4. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  5. Endoscopy as a diagnostic and therapeutic alternative technique of taeniasis.

    PubMed

    Canaval Zuleta, Héctor Julián; Company Campins, María M; Dolz Abadía, Carlos

    2016-06-01

    Despite a low incidence in developed countries, gastrointestinal taeniasis should be suspected in patients with abdominal pain, diarrhea, anemia, and/or malabsorption of unknown origin, even more so if they come from endemic regions or areas with poor hygienic and alimentary habits. Diagnosis is traditionally reached by identifying the parasite in stools, but more recently both serological and immunological approaches are also available. Based on a patient diagnosed by gastroscopy, a literature review was undertaken of patients diagnosed by endoscopy. We discuss endoscopy as diagnostic modality, and the effectiveness and safety that endoscopic treatment may provide in view of the potential risk for neurocysticercosis.

  6. Action Research to Improve the Learning Space for Diagnostic Techniques.

    PubMed

    Ariel, Ellen; Owens, Leigh

    2015-12-01

    The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of "knowledge" and "understanding." The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001), it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed. Journal of Microbiology & Biology Education.

  7. Fast and accurate techniques of treating the radiative transfer problem under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Trautmann, Thomas; Loyola, Diego

    As a massive amount of spectral information is expected from the new generation of European atmospheric sensors Sentinel 5 Precursor, Sentinel 4 and Sentinel 5, a fast processing of the data in the UV-VIS spectral domain, is required. Trace gas retrievals from nadir sounding instruments are hindered by the presence of clouds. Our research is focused on the developing of a robust and accurate algorithm for treating clouds in the radiative transfer models (RTM). For this reason we have implemented an acceleration technique based on dimensionality reduction algorithms. We obtained the speed improvement of about 8 times. For operational reasons clouds can be considered as an optically homogeneous layer. In the independent pixel approximation, radiative transfer computations involving cloudy scenes require two separate calls to the RTM, one call for a clear sky scenario, the other for an atmosphere containing clouds. We present two novel methods for RTM performance enhancement with particular application to trace gas retrievals under cloudy conditions. Both methods are based on reusing results from clear-sky RTM calculations to speed up corresponding calculations for the cloud-filled scenario. Also, for satellite instruments with a high spatial resolution, it is important to account for the sub-pixel cloud inhomogeneities, or at least, to assess their effect on the radiances at the top of the atmosphere, and in particular, on the retrieval results. This assessment is probabilistic since the detailed structure of the clouds is unknown and only a small number of statistical properties are given. In this regard, we have designed a stochastic model for the solar radiation problem and a molecular atmosphere with its underlying surface. The model allows the computation of the mean radiance at the top of the atmosphere as it is intended to be used for trace gas retrievals. The efficiency of the stochastic model is lower, because we have to solve a two-dimensional problem

  8. Hypersonic Wake Diagnostics Using Laser Induced Fluorescence Techniques

    NASA Technical Reports Server (NTRS)

    Mills, Jack L.; Sukenik, Charles I.; Balla, Robert J.

    2011-01-01

    A review of recent research performed in iodine that involves a two photon absorption of light at 193 nm will be discussed, and it's potential application to velocimetry measurements in a hypersonic flow field will be described. An alternative seed atom, Krypton, will be presented as a good candidate for performing nonintrusive hypersonic flow diagnostics. Krypton has a metastable state with a lifetime of approximately 43 s which would prove useful for time of flight measurement (TOF) and a sensitivity to collisions that can be utilized for density measurements. Calculations using modest laser energies and experimental values show an efficiency of excited state production to be on the order of 10(exp -6) for a two photon absorption at 193 nm.

  9. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  10. Measurement Techniques for Electrothermal-Chemical Gun Diagnostics

    DTIC Science & Technology

    1993-12-01

    conductors of a circuit ( Askeland 1985). This technique has been successfully applied to other experimental work including the pressure measurements made in...Fe2O4 ( Askeland 1985). Ferrites are implemented by wrapping the power cords and coaxial data lines of all electronics equipment tightly for several... Askeland , D. R. The Sciece and Engineering of Materials. Prindle, Weber, and Schmidt, 1985. Burden. H. S., and D. D. Shear. "Transient Noise in Electronic

  11. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  12. Validation of Three Early Ejaculation Diagnostic Tools: A Composite Measure Is Accurate and More Adequate for Diagnosis by Updated Diagnostic Criteria

    PubMed Central

    Jern, Patrick; Piha, Juhana; Santtila, Pekka

    2013-01-01

    Purpose To validate three early ejaculation diagnostic tools, and propose a new tool for diagnosis in line with proposed changes to diagnostic criteria. Significant changes to diagnostic criteria are expected in the near future. Available screening tools do not necessarily reflect proposed changes. Materials and Methods Data from 148 diagnosed early ejaculation patients (Mage = 42.8) and 892 controls (Mage = 33.1 years) from a population-based sample were used. Participants responded to three different questionnaires (Premature Ejaculation Profile; Premature Ejaculation Diagnostic Tool; Multiple Indicators of Premature Ejaculation). Stopwatch measured ejaculation latency times were collected from a subsample of early ejaculation patients. We used two types of responses to the questionnaires depending on the treatment status of the patients 1) responses regarding the situation before starting pharmacological treatment and 2) responses regarding current situation. Logistic regressions and Receiver Operating Characteristics were used to assess ability of both the instruments and individual items to differentiate between patients and controls. Results All instruments had very good precision (Areas under the Curve ranging from .93-.98). A new five-item instrument (named CHecklist for Early Ejaculation Symptoms – CHEES) consisting of high-performance variables selected from the three instruments had validity (Nagelkerke R2 range .51-.79 for backwards/forwards logistic regression) equal to or slightly better than any individual instrument (i.e., had slightly higher validity statistics, but these differences did not achieve statistical significance). Importantly, however, this instrument was more in line with proposed changes to diagnostic criteria. Conclusions All three screening tools had good validity. A new 5-item diagnostic tool (CHEES) based on the three instruments had equal or somewhat more favorable validity statistics compared to the other three tools, but is

  13. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    PubMed

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use.

  14. Diagnostic and therapeutic techniques. For evaluation and treatment of skin disorders.

    PubMed

    Pariser, D M

    1989-09-01

    Many infectious diseases of the skin can be diagnosed accurately and rapidly by simple bedside techniques. This article describes several of the more useful and commonly performed techniques for diagnosing superficial fungus infection, herpes simplex, zoster, and varicella as well as the techniques for identification of the ectoparasite-producing scabies and pediculosis in addition to techniques of skin biopsy. Also the therapeutic techniques of cryotherapy and curettage and electrode-siccation are discussed.

  15. [THE CYTOMETRIC TECHNIQUE OF BINDING OF EOSIN-5-MALEIMIDE IN DIAGNOSTIC OF INHERENT SPHEROCYTOSIS].

    PubMed

    Kuzminova, J A; Plyasunova, S A; Jogov, V V; Smetanina, N S

    2016-03-01

    The laboratory diagnostic of inherent spherocytosis is based on detection of spherocytes in peripheral blood, decreasing of index of sphericity, decreasing of osmotic resistance of erythrocytes. The new test of diagnostic of hereditary spherocytosis build on molecular defect was developed on the basis of binding extracellular fragments of protein of band 3 with eosin-5-maleimide (EMA-test). The study was carried out to implement comparative analysis of sensitivity and specificity of techniques applied to diagnose inherent spherocytosis. The sampling of 94 patients with various forms of anemias was analyzed All patients were applied complex clinical laboratory examination including analysis of osmotic resistance of erythrocytes, erythrocytometry and EMA-test as specific techniques of diagnostic of inherent spherocytosis. In 51 out of 94 patients (54%) decreasing of values of EMA-test was detected and in 47 patients diagnosis of inherent spherocytosis was confirmed. The standard values of EMA-test were established in 43 patients (46%) and 12 patients out of them with established diagnosis of inherent spherocytosis. Therefore, sensitivity of EMA-test made up to 79% and specificity - 80%. The most sensitive techniques of diagnostic remain osmotic resistance of erythrocytes (91%) and index of sphericity (up to 96%). But the highest specificity in this respect has EMA-test (80%). Nowadays, none of implemented techniques of diagnostic of inherent spherocytosis can be applied as a universal one. The implementation of complex examination is needed for proper diagnostic of disease.

  16. Analysis of diagnostic calorimeter data by the transfer function technique

    SciTech Connect

    Delogu, R. S. Pimazzoni, A.; Serianni, G.; Poggi, C.; Rossi, G.

    2016-02-15

    This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.

  17. Application of computerized tomography techniques to tokamak diagnostics

    NASA Astrophysics Data System (ADS)

    Stalker, K. T.; Kelly, J. G.

    1980-08-01

    A Coded Aperture Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented.

  18. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  19. Coherent Rayleigh-Brillouin scattering as a flow diagnostic technique

    SciTech Connect

    Graul, J. S.; Lilly, T. C.

    2014-12-09

    Broadband coherent Rayleigh-Brillouin scattering (CRBS) was used to measure translational gas temperatures for nitrogen at the ambient pressure of 0.8 atm using a purpose-built Fabry-Perot etalon spectrometer. Temperatures derived from the CRBS spectral analysis were compared with experimentally-measured temperatures, and were found to be, on average, within 2% of the experimentally-measured value. Axial flow velocities from a double jet at a pressure ratio of 0.38 were also measured by looking at the Doppler shift of the CRBS line shape. With recent developments in chirped laser technology and the capacity of CRBS to simultaneously provide thermodynamic and bulk flow information, the CRBS line shape acquisition and analysis technique presented here may allow for future time-resolved, characterization of aerospace flows.

  20. Cardiovascular procedures/diagnostic techniques and therapeutic procedures

    SciTech Connect

    Tilkian, A.G.; Daily, E.K.

    1986-01-01

    This book covers the technical and therapeutic aspects of cardiovascular procedures in immense detail. There are large and appropriate diagrams and tables. The topics of the chapters are tools for catheterization, venous access, arterial access, hemodynamic monitoring, cardiac catheterization and coronary arteriography, ergonovine provocation testing for coronary artery spasm, pulmonary angiography, endomyocredial biopsy, electrophysiologic studies, pericardiocentesis and drainage, intraaortic balloon pumping, direct current cardioversion and defibrilaltion, pacemaker implantation of the automatic implantable cardioverter/defibrillator, coronary angioplasty, thrombolytic therapy, transluminal catheter extraction and resolution of intracardiac catheter knots, cardiopulmonary resuscitation, contrast media toxicity and allergic reactions, radiation hazards, and medicolegal concerns. An appendix and index follow these chapters. In general, each chapter covers historical aspects, indications, complications, techniques, and preoperative and postoperative care.

  1. Computational Diagnostic Techniques for Electromagnetic Scattering: Analytical Imaging, Near Fields, and Surface Currents

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.; Talcott, Noel A., Jr.; Shaeffer, John

    1997-01-01

    This paper presents three techniques and the graphics implementations which can be used as diagnostic aides in the design and understanding of scattering structures: Imaging, near fields, and surface current displays. The imaging analysis is a new bistatic k space approach which has potential for much greater information than standard experimental approaches. The near field and current analysis are implementations of standard theory while the diagnostic graphics displays are implementations exploiting recent computer engineering work station graphics libraries.

  2. Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics.

    PubMed

    Beck, Daniel; Foster, James A

    2014-01-01

    Microbial communities are important to human health. Bacterial vaginosis (BV) is a disease associated with the vagina microbiome. While the causes of BV are unknown, the microbial community in the vagina appears to play a role. We use three different machine-learning techniques to classify microbial communities into BV categories. These three techniques include genetic programming (GP), random forests (RF), and logistic regression (LR). We evaluate the classification accuracy of each of these techniques on two different datasets. We then deconstruct the classification models to identify important features of the microbial community. We found that the classification models produced by the machine learning techniques obtained accuracies above 90% for Nugent score BV and above 80% for Amsel criteria BV. While the classification models identify largely different sets of important features, the shared features often agree with past research.

  3. Machine Learning Techniques Accurately Classify Microbial Communities by Bacterial Vaginosis Characteristics

    PubMed Central

    Beck, Daniel; Foster, James A.

    2014-01-01

    Microbial communities are important to human health. Bacterial vaginosis (BV) is a disease associated with the vagina microbiome. While the causes of BV are unknown, the microbial community in the vagina appears to play a role. We use three different machine-learning techniques to classify microbial communities into BV categories. These three techniques include genetic programming (GP), random forests (RF), and logistic regression (LR). We evaluate the classification accuracy of each of these techniques on two different datasets. We then deconstruct the classification models to identify important features of the microbial community. We found that the classification models produced by the machine learning techniques obtained accuracies above 90% for Nugent score BV and above 80% for Amsel criteria BV. While the classification models identify largely different sets of important features, the shared features often agree with past research. PMID:24498380

  4. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  5. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  6. Fiber optic diagnostic techniques applied to electrical discharge machining sparks

    NASA Astrophysics Data System (ADS)

    Pillans, B. W.; Evensen, M. H.; Taylor, H. F.; Eubank, P. T.; Ma, Lianxi

    2002-02-01

    Plasma sparks from an electrical discharge machining (EDM) process were observed using fiber optics positioned in the dielectric oil. Measurement techniques were developed to observe the spark in the extremely noisy environment. Optical data were used along with current pulse wave forms from the EDM machine to study the temporal characteristics of the spark in both the pulse time and the pause time. During the pause time, extinction of the sparks was longer than previously thought—perhaps due to the remaining infrared radiation after the collapse of the spark. Further, an optical pattern was identified that indicated in advance when an arc was being formed instead of a spark. Spectral data of the plasma spark was obtained by using a scanning grating spectrometer in conjunction with crosscorrelation to maximize the signal-to-noise ratio. Average spark temperatures from the spectral data were found to be significantly higher than those previously predicted from energy balances. The results showed a shift in the optical spectra to longer wavelengths during the spark, showing that the spark temperature decreased with time.

  7. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  8. Development of detection techniques and diagnostics for airborne carbon nanoparticles.

    SciTech Connect

    Michelsen, Hope A.; Witze, Peter O.; Settersten, Thomas B.

    2003-11-01

    We have recorded time-resolved LII signals from a laminar ethylene diffusion flame over a wide range of laser fluences at 532 nm. We have performed these experiments using an injection-seeded NdYAG laser with a pulse duration of 7 ns. The beam was spatially filtered and imaged into the flame to provide a homogeneous spatial profile. These data were used to aid in the development of a model, which will be used to test the validity of the LII technique under varying environmental conditions. The new model describes the heating of soot particles during the laser pulse and the subsequent cooling of the particles by radiative emission, sublimation, and conduction. The model additionally includes particle heating by oxidation, accounts for the likelihood of particle annealing, and incorporates a mechanism for nonthermal photodesorption, which is required for good agreement with our experimental results. In order to investigate the fast photodesorption mechanism in more detail, we have recorded LII temporal profiles using a regeneratively amplified Nd:YAG laser with a pulse duration of 70 ps to heat the particles and a streak camera with a temporal resolution of {approx}65 ps to collect the signal. Preliminary results confirm earlier indications of a fast mechanism leading to signal decay rates of much less than a nanosecond. Parameters to which the model is sensitive include the initial soot temperature, the temperature of the ambient gas, and the partial pressure of oxygen. In order to narrow the model uncertainties, we have developed a source of soot that allows us to determine and control these parameters. Soot produced by a burner is extracted, diluted, and cooled in a flow tube, which is equipped with a Scanning Mobility Particle Sizer (SMPS) for characterization of the aggregates.

  9. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  10. Accurate and flexible calibration technique for fringe projection profilometry by using encoded points and Fourier analysis

    NASA Astrophysics Data System (ADS)

    González, Andrés. L.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    In order to get measures with a high accurate, three-dimensional reconstruction systems are implemented in industrial, medical, and investigative fields. To obtain high accurate is necessary to carry out an appropriate calibration procedure. In fringe projection profilometry, this procedure allows obtaining a relation between absolute phase and three-dimensional (3D) information of the object in study; however, to execute such procedure a precise movement stage is required. A fringe projection system is formed by a projector, a digital camera and a control unit, called like a projection-acquisition unit in this paper. The calibration of the projection-acquisition unit consists in to establish the parameters that are required to transform the phase of the projected fringes to metric coordinates of the object surface. These parameters are a function of the intrinsic and extrinsic parameters of both camera and projector, due to the projector is modeled as an inverse camera. For this purpose, in this paper a novel and flexible calibration method that allows calibrating any device that works with fringe projection profilometry is proposed. In this method is used a reference plane placed in random positions and the projection of an encoded pattern of control points. The camera parameters are computed using Zhang's calibration method; and the projector parameters are computed from the camera parameters and the phase of the pattern of control points, which is determined by using Fourier analysis. Experimental results are presented to demonstrate the performance of the calibration method.

  11. Fast and accurate registration techniques for affine and nonrigid alignment of MR brain images.

    PubMed

    Liu, Jia-Xiu; Chen, Yong-Sheng; Chen, Li-Fen

    2010-01-01

    Registration of magnetic resonance brain images is a geometric operation that determines point-wise correspondences between two brains. It remains a difficult task due to the highly convoluted structure of the brain. This paper presents novel methods, Brain Image Registration Tools (BIRT), that can rapidly and accurately register brain images by utilizing the brain structure information estimated from image derivatives. Source and target image spaces are related by affine transformation and non-rigid deformation. The deformation field is modeled by a set of Wendland's radial basis functions hierarchically deployed near the salient brain structures. In general, nonlinear optimization is heavily engaged in the parameter estimation for affine/non-rigid transformation and good initial estimates are thus essential to registration performance. In this work, the affine registration is initialized by a rigid transformation, which can robustly estimate the orientation and position differences of brain images. The parameters of the affine/non-rigid transformation are then hierarchically estimated in a coarse-to-fine manner by maximizing an image similarity measure, the correlation ratio, between the involved images. T1-weighted brain magnetic resonance images were utilized for performance evaluation. Our experimental results using four 3-D image sets demonstrated that BIRT can efficiently align images with high accuracy compared to several other algorithms, and thus is adequate to the applications which apply registration process intensively. Moreover, a voxel-based morphometric study quantitatively indicated that accurate registration can improve both the sensitivity and specificity of the statistical inference results.

  12. Fast and accurate roughness characterization techniques for wafers and hard disks

    NASA Astrophysics Data System (ADS)

    Rothe, Hendrik; Kasper, Andre

    1996-11-01

    Especially for wafers, hard disks and flat panel displays fast and accurate technical means for roughness characterization are needed. However, speed and accuracy are contradictory. Generally speaking, fast roughness sensors are not accurate, and precise instruments are slow. It turned out in the last years that with multi aperture fiber optic sensors which acquire ARS/TIS data a very fast estimation of surface roughness is possible. But it is rather difficult to convince e.g. chip manufacturers that the results of such sensors are reliable, because there are no accepted international standards for these kinds of optical measurements. Therefore we decided to establish a setup of our ARS/TIS sensor for roughness characterization and an instrument for roughness measurement in a cleanroom consisting of the following parts: (1) 200 X 200 mm stages, speed 0.4 ms-1, +/- 1 micron accuracy, acceleration 1 g; (2) visual inspection head consisting of 50 X objective and CCD camera; (3) AFM scan head; (4) ARS/TIS fiber optic sensor; and (5) laminar box. Topics of the paper are measurement philosophy, specs of the setup, architecture of the fiber optic ARS/TIS head, as well as data processing algorithms and software.

  13. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Huang, Y. S.; Huang, Y. P.; Huang, K. N.; Young, M. S.

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39°C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  14. A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Yousefi, Hossein; Delkhosh, Mehdi; Ghaderi, Amin

    2016-07-01

    In this paper, a new algorithm based on the fractional order of rational Euler functions (FRE) is introduced to study the Thomas-Fermi (TF) model which is a nonlinear singular ordinary differential equation on a semi-infinite interval. This problem, using the quasilinearization method (QLM), converts to the sequence of linear ordinary differential equations to obtain the solution. For the first time, the rational Euler (RE) and the FRE have been made based on Euler polynomials. In addition, the equation will be solved on a semi-infinite domain without truncating it to a finite domain by taking FRE as basic functions for the collocation method. This method reduces the solution of this problem to the solution of a system of algebraic equations. We demonstrated that the new proposed algorithm is efficient for obtaining the value of y'(0) , y(x) and y'(x) . Comparison with some numerical and analytical solutions shows that the present solution is highly accurate.

  15. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  16. Fast and Accurate Technique for Determination of Moisture Content in Oil Palm Fruits using Open-Ended Coaxial Sensor

    NASA Astrophysics Data System (ADS)

    Abbas, Zulkifly; Yeow, You Kok; Shaari, Abdul Halim; Zakaria, Azmi; Hassan, Jumiah; Khalid, Kaida; Saion, Elias

    2005-07-01

    A simple, fast and accurate technique employing an open-ended coaxial sensor for the determination of the moisture content in oil palm fruit is presented. For this technique, a calibration equation has been developed based on the relationship between the measured moisture content obtained by the oven drying method and the phase of the reflection coefficient of the sensor for 21 fruits. The moisture content predicted by the sensor was in good agreement with that obtained using the standard oven drying method within ± 5% accuracy when tested on 145 different fruits samples.

  17. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  18. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  19. The Sandtray Technique for Swedish Children 1945-1960: Diagnostics, Psychotherapy and Processes of Individualisation

    ERIC Educational Resources Information Center

    Nelson, Karin Zetterqvist

    2011-01-01

    The present article examines the development of a diagnostic and therapeutic technique named The Sandtray at the Erica Foundation, a privately-run child counselling service in Stockholm. Originally it was called The World, developed by the British paediatrician and child psychiatrist Margaret Lowenfeld. In the 1930s it was imported to Sweden,…

  20. Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan; Chang, Te-Jeng

    2011-01-01

    The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…

  1. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  2. Accurate geometric camera calibration technique using multi-views of a non-metric planar grid

    NASA Astrophysics Data System (ADS)

    Bingwei, Hui; Gongjian, Wen; Xing, Zhang; Deren, Li

    2013-04-01

    A robust geometric camera calibration technique with a non-metric planar grid is proposed. For each image of the non-metric grid, a projective model of the grid intersections represented by the grid row and column numbers is derived with sixteen physically meaningful parameters. In this model, intrinsic camera parameters and coefficients of lens distortions are involved. After several images of the same gird have been acquired by the camera awaiting calibrations, two broad steps are taken to work out the camera parameters. Firstly, with two reasonable approximations the projective parameters of all view images are solved linearly and analytically by using the properties of the rotation matrix skillfully. Secondly, with the rigorous projective formulations of non-metric grid intersections, a mathematical optimization model is established to obtain the calibration results with least squares errors. The robustness and accuracy are verified by using many real grabbed images.

  3. Enhancing the Fever Workup Utilizing a Multi-Technique Modeling Approach to Diagnose Infections More Accurately

    PubMed Central

    Fadlalla, Adam M.A.; Golob, Joseph F.

    2012-01-01

    Abstract Background Differentiation between infectious and non-infectious etiologies of the systemic inflammatory response syndrome (SIRS) in trauma patients remains elusive. We hypothesized that mathematical modeling in combination with computerized clinical decision support would assist with this differentiation. The purpose of this study was to determine the capability of various mathematical modeling techniques to predict infectious complications in critically ill trauma patients and compare the performance of these models with a standard fever workup practice (identifying infections on the basis of fever or leukocytosis). Methods An 18-mo retrospective database was created using information collected daily from critically ill trauma patients admitted to an academic surgical and trauma intensive care unit. Two hundred forty-three non-infected patient-days were chosen randomly to combine with the 243 infected-days, which created a modeling sample of 486 patient-days. Utilizing ten variables known to be associated with infectious complications, decision trees, neural networks, and logistic regression analysis models were created to predict the presence of urinary tract infections (UTIs), bacteremia, and respiratory tract infections (RTIs). The data sample was split into a 70% training set and a 30% testing set. Models were compared by calculating sensitivity, specificity, positive predictive value, negative predictive value, overall accuracy, and discrimination. Results Decision trees had the best modeling performance, with a sensitivity of 83%, an accuracy of 82%, and a discrimination of 0.91 for identifying infections. Both neural networks and decision trees outperformed logistic regression analysis. A second analysis was performed utilizing the same 243 infected days and only those non-infected patient-days associated with negative microbiologic cultures (n = 236). Decision trees again had the best modeling performance for infection identification, with a

  4. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  5. Calibration techniques for fast-ion D{sub {alpha}} diagnostics

    SciTech Connect

    Heidbrink, W. W.; Bortolon, A.; Muscatello, C. M.; Ruskov, E.; Grierson, B. A.; Podesta, M.

    2012-10-15

    Fast-ion D{sub {alpha}} measurements are an application of visible charge-exchange recombination (CER) spectroscopy that provide information about the energetic ion population. Like other CER diagnostics, the standard intensity calibration is obtained with an integrating sphere during a vacuum vessel opening. An alternative approach is to create plasmas where the fast-ion population is known, then calculate the expected signals with a synthetic diagnostic code. The two methods sometimes agree well but are discrepant in other cases. Different background subtraction techniques and simultaneous measurements of visible bremsstrahlung and of beam emission provide useful checks on the calibrations and calculations.

  6. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  7. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder

    PubMed Central

    Yu, J S; Xue, A Y; Redei, E E; Bagheri, N

    2016-01-01

    Major depressive disorder (MDD) is a critical cause of morbidity and disability with an economic cost of hundreds of billions of dollars each year, necessitating more effective treatment strategies and novel approaches to translational research. A notable barrier in addressing this public health threat involves reliable identification of the disorder, as many affected individuals remain undiagnosed or misdiagnosed. An objective blood-based diagnostic test using transcript levels of a panel of markers would provide an invaluable tool for MDD as the infrastructure—including equipment, trained personnel, billing, and governmental approval—for similar tests is well established in clinics worldwide. Here we present a supervised classification model utilizing support vector machines (SVMs) for the analysis of transcriptomic data readily obtained from a peripheral blood specimen. The model was trained on data from subjects with MDD (n=32) and age- and gender-matched controls (n=32). This SVM model provides a cross-validated sensitivity and specificity of 90.6% for the diagnosis of MDD using a panel of 10 transcripts. We applied a logistic equation on the SVM model and quantified a likelihood of depression score. This score gives the probability of a MDD diagnosis and allows the tuning of specificity and sensitivity for individual patients to bring personalized medicine closer in psychiatry. PMID:27779627

  8. In-vitro and in-vivo diagnostic techniques for prostate cancer: a review.

    PubMed

    McClure, Patrick; Elnakib, Ahmed; Abou El-Ghar, Mohamed; Khalifa, Fahmi; Soliman, Ahmed; El-Diasty, Tarek; Suri, Jasjit S; Elmaghraby, Adel; El-Baz, Ayman

    2014-10-01

    This paper overviews one of the most important, interesting, and challenging problems in oncology, early diagnosis of prostate cancer. Developing effective diagnostic techniques for prostate cancer is of great clinical importance and can improve the effectiveness of treatment and increase the patient's chance of survival. The main focus of this study is to overview the different in-vitro and in-vivo technologies for diagnosing prostate cancer. This review discusses the current clinically used in-vitro cancer diagnostic tools, such as biomarker tests and needle biopsies and including their applications, advantages, and limitations. Moreover, the current in-vitro research tools that focus on the role of nanotechnology in prostate cancer diagnosis have been detailed. In addition to the in-vitro techniques, the current study discusses in detail developed in-vivo non-invasive state-of-the-art Computer-Aided Diagnosis (CAD) systems for prostate cancer based on analyzing Transrectal Ultrasound (TRUS) and different types of magnetic resonance imaging (MRI), e.g., T2-MRI, Diffusion Weighted Imaging (DWI), Dynamic Contrast Enhanced (DCE)-MRI, and multi-parametric MRI, focusing on their implementation, experimental procedures, and reported outcomes. Furthermore, the paper addresses the limitations of the current prostate cancer diagnostic techniques, outlines the challenges that these techniques face, and introduces the recent trends to solve these challenges, which include biomarkers used in in-vitro lab-on-a-chip nanotechnology-based methods.

  9. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  10. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  11. Diagnostic techniques for measurement of aerodynamic noise in free field and reverberant environment of wind tunnels

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.; Mawardi, O. K.

    1973-01-01

    Techniques for studying aerodynamic noise generating mechanisms without disturbing the flow in a free field, and in the reverberation environment of the ARC wind tunnel were investigated along with the design and testing of an acoustic antenna with an electronic steering control. The acoustic characteristics of turbojet as a noise source, detection of direct sound from a source in a reverberant background, optical diagnostic methods, and the design characteristics of a high directivity acoustic antenna. Recommendations for further studies are included.

  12. Closing the diarrhoea diagnostic gap in Indian children by the application of molecular techniques.

    PubMed

    Ajjampur, S S R; Rajendran, P; Ramani, S; Banerjee, I; Monica, B; Sankaran, P; Rosario, V; Arumugam, R; Sarkar, R; Ward, H; Kang, G

    2008-11-01

    A large proportion of diarrhoeal illnesses in children in developing countries are ascribed to an unknown aetiology because the only available methods, such as microscopy and culture, have low sensitivity. This study was aimed at decreasing the diagnostic gap in diarrhoeal disease by the application of molecular techniques. Faecal samples from 158 children with and 99 children without diarrhoea in a hospital in South India were tested for enteric pathogens using conventional diagnostic methods (culture, microscopy and enzyme immunoassays) and molecular methods (six PCR-based assays). The additional use of molecular techniques increased identification to at least one aetiological agent in 76.5 % of diarrhoeal specimens, compared with 40.5 % using conventional methods. Rotavirus (43.3 %), enteropathogenic Escherichia coli (15.8 %), norovirus (15.8 %) and Cryptosporidium spp. (15.2 %) are currently the most common causes of diarrhoea in hospitalized children in Vellore, in contrast to a study conducted two decades earlier in the same hospital, where bacterial pathogens such as Shigella spp., Campylobacter spp. and enterotoxigenic E. coli were more prevalent. Molecular techniques significantly increased the detection rates of pathogens in children with diarrhoea, but a more intensive study, testing for a wider range of infectious agents and including more information on non-infectious causes of diarrhoea, is required to close the diagnostic gap in diarrhoeal disease.

  13. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  14. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  15. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    PubMed

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  16. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions.

    PubMed

    Polgár, László; García-Reyes, Juan F; Fodor, Péter; Gyepes, Attila; Dernovics, Mihály; Abrankó, László; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2012-08-03

    In recent years, the detection and characterization of relevant pesticide metabolites in food is an important task in order to evaluate their formation, kinetics, stability, and toxicity. In this article, a methodology for the systematic screening of pesticides and their main metabolites in fruit and vegetable samples is described, using LC-HRMS and accurate-mass database search of parent compounds and their diagnostic fragment ions. The approach is based on (i) search for parent pesticide molecules; (ii) search for their metabolites in the positive samples, assuming common fragmentation pathways between the metabolites and parent pesticide molecules; and (iii) search for pesticide conjugates using the data from both parent species and diagnostic fragment ions. An accurate-mass database was constructed consisting of 1396 compounds (850 parent compounds, 447 fragment ions and 99 metabolites). The screening process was performed by the software in an automated fashion. The proposed methodology was evaluated with 29 incurred samples and the output obtained was compared to standard pesticide testing methods (targeted LC-MS/MS). Examples on the application of the proposed approach are shown, including the detection of several pesticide glycosides derivatives, which were found with significantly relevant intensities. Glucose-conjugated forms of parent compounds (e.g., fenhexamid-O-glucoside) and those of metabolites (e.g., despropyl-iprodione-N-glycoside) were detected. Facing the lack of standards for glycosylated pesticides, the study was completed with the synthesis of fenhexamid-O-glucoside for quantification purposes. In some cases the pesticide derivatives were found in a relatively high ratio, drawing the attention to these kinds of metabolites and showing that they should not be neglected in multi-residue methods. The global coverage obtained on the 29 analyzed samples showed the usefulness and benefits of the proposed approach and highlights the practical

  17. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-03-01

    The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.

  18. Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis).

    PubMed

    Britton, Louise E; Cassidy, Joseph P; O'Donovan, Jim; Gordon, Stephen V; Markey, Bryan

    2016-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (paratuberculosis), a chronic wasting disease in cattle with important welfare, economic and potential public health implications. Current tests are unable to recognise all stages of the disease, which makes it difficult to diagnose and control. This review explores emerging diagnostic techniques that could complement and enhance the diagnosis of MAP infection, including bacteriophage analysis, new MAP-specific antigens, host protein expression in response to infection, transcriptomic studies, analysis of microRNAs and investigation of the gastrointestinal microbiome. It emphasises the inherent challenges of diagnosing bovine Johne's disease and investigates novel areas which may have the potential both to advance our understanding of the immunopathology of MAP infection and to augment current diagnostic tests.

  19. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  20. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  1. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  2. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    NASA Astrophysics Data System (ADS)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  3. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  4. Intestinal helminths in immigrants in Naples (Italy): a comparison between two different diagnostic techniques

    PubMed Central

    Esposito, Silvano; Noviello, Silvana; Leone, Sebastiano; Pascale, Renato; Russo, Enrico; Gualdieri, Luciano

    2013-01-01

    Objective To compare two different methods for detection of intestinal parasitic in immigrants from high risk geographic areas for intestinal parasitic diseases. Methods A total of 307 stool specimens were analysed by Ridley method and FLOTAC, a new technique performing a direct count of all parasitic elements. Results : Compared to Ridley method, FLOTAC technique led to fewer negative results (P<0.05), index of a higher sensibility. Conclusions Performing a more accurate detection of parasites appears a goal to reach in terms of public health.

  5. Evaluation of ovine abortion associated with Toxoplasma gondii in Spain by different diagnostic techniques.

    PubMed

    Pereira-Bueno, J; Quintanilla-Gozalo, A; Pérez-Pérez, V; Alvarez-García, G; Collantes-Fernández, E; Ortega-Mora, L M

    2004-05-07

    A total of 173 aborted ovine foetuses and seven aborted caprine foetuses, submitted from different points of north and central Spain, were analysed to determine the role of T. gondii in abortion and to compare the utility of the most widely used techniques in diagnosis of the congenital infection (histopathology, serology--IFAT and ELISA--and a nested-PCR). Parasite infection was diagnosed in 40 (23.1%; n = 173) ovine foetuses by at least one of the diagnostic techniques used. A higher percentage of foetuses were diagnosed using serological techniques (IFAT and ELISA) (28.3%; n = 106) than by histologic examination (8.7%; n = 173) or PCR (6.9%; n = 173). No significant association between infection and the foetal age categories was found (P > 0.05). In this study, 106 aborted foetuses were analysed by all of the three diagnostic techniques. When we compared serological results, perfect agreement between ELISA and IFAT was obtained. On the contrary, slight to fair agreements were observed when histology results were compared with those obtained by serology and PCR techniques. All the positive foetuses were aborted in the mid (60%) or last (40%) term of pregnancy, but no significant differences were found between ages of the infected and non-infected foetuses (P > 0.05). This report indicates that toxoplasmosis may be a common cause of small ruminant abortion and neonatal death in Spain and points out the necessity of using different and complementary techniques to increase the probability of detecting Toxoplasma infection in an aborted foetus.

  6. A diagnostic analysis of the VVP single-doppler retrieval technique

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    1995-01-01

    A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.

  7. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  8. Mycoplasma pneumoniae: Current Knowledge on Nucleic Acid Amplification Techniques and Serological Diagnostics

    PubMed Central

    Loens, Katherine; Ieven, Margareta

    2016-01-01

    Mycoplasma pneumoniae (M. pneumoniae) belongs to the class Mollicutes and has been recognized as a common cause of respiratory tract infections (RTIs), including community-acquired pneumonia (CAP), that occur worldwide and in all age groups. In addition, M. pneumoniae can simultaneously or sequentially lead to damage in the nervous system and has been associated with a wide variety of other acute and chronic diseases. During the past 10 years, the proportion of LRTI in children and adults, associated with M. pneumoniae infection has ranged from 0 to more than 50%. This variation is due to the age and the geographic location of the population examined but also due to the diagnostic methods used. The true role of M. pneumoniae in RTIs remains a challenge given the many limitations and lack of standardization of the applied diagnostic tool in most cases, with resultant wide variations in data from different studies. Correct and rapid diagnosis and/or management of M. pneumoniae infections is, however, critical to initiate appropriate antibiotic treatment and is nowadays usually done by PCR and/or serology. Several recent reviews, have summarized current methods for the detection and identification of M. pneumoniae. This review will therefore provide a look at the general principles, advantages, diagnostic value, and limitations of the most currently used detection techniques for the etiological diagnosis of a M. pneumoniae infection as they evolve from research to daily practice. PMID:27064893

  9. A comparison of diagnostic techniques for postpartum endometritis in dairy cattle.

    PubMed

    Barlund, C S; Carruthers, T D; Waldner, C L; Palmer, C W

    2008-04-01

    Holstein cows (n=221) from eight commercial dairy herds were examined for endometritis between 28 and 41 days postpartum using 5 diagnostic techniques: (1) vaginoscopy; (2) ultrasonographic assessment of uterine fluid volume; (3) ultrasonographic assessment of endometrial thickness; (4) endometrial cytology collected by cytobrush; and (5) endometrial cytology collected by uterine lavage. Concordance correlation was used to evaluate the reliability of cytobrush and lavage cytology. Cytobrush cytology was found to have the greatest intraobserver repeatability (cytobrush, rho(c)=0.85 versus lavage, rho(c)=0.76) and was chosen as the reference diagnostic test. Pregnancy data at 150 days postpartum was available for 189 cows. Survival analysis was used to determine the lowest percentage of polymorphonuclear cells associated with time to pregnancy. The sensitivity and specificity of the diagnostic techniques was determined using pregnancy status at 150 days and cytobrush cytology as the diagnostic standards. The risk of non-pregnancy at 150 days was 1.9 times higher in cows with more than 8% PMNs identified using cytobrush cytology than in cows with less than 8% PMNs (P=0.04). Twenty-one cows of 189 cows (11.1%) had >8% PMNs and were considered to be positive for endometritis. Cows with endometritis had a 17.9% lower first service conception rate (P=0.03) and a 24-day increase in median days open (P=0.04). The sensitivities of all five diagnostic tests relative to 150-day pregnancy status ranged from 7.1 to 14.3% and the specificities from 84.0 to 93.3%. Relative to cytobrush cytology, the respective sensitivity and specificity values are as follows: vaginoscopy (53.9%, 95.4%); lavage cytology (92.3%, 93.9%); ultrasonographic assessment of uterine fluid (30.8%, 92.8%); and ultrasonographic assessment of endometrial thickness (3.9%, 89.2%). Endometritis impaired reproductive performance. Cytobrush cytology was the most reliable method of diagnosing endometritis in cattle.

  10. Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique

    NASA Astrophysics Data System (ADS)

    Bozinoski, Radoslav

    Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions

  11. [Mesenteric ischemia: update of new diagnostic techniques for an old disease, and review of radiological signs].

    PubMed

    Palma Baro, A; Caldevilla Bernardo, D; Parrondo Muiños, C

    2013-01-01

    Acute arterial mesenteric ischemia is a medical emergency associated with a high rate of mortality (> 60%). A diagnostic delay may lead to disease progression, thus it is important to recognize this condition as early as possible. The development of imaging techniques, such as multidetector computed tomography (MDCT) allows an early diagnosis to be made as it detects typical radiographic signs such as, the presence of a thrombus within the superior mesenteric artery (SMA), pneumatosis in bowel loops, and air in the interior of the superior mesenteric and portal veins. It is important to know of these new imaging techniques applications and the typical radiographic signs of this disease as it is an emergency which, if confirmed, could lead to performing urgent surgery to prevent progression to intestinal necrosis and a possible fatal outcome.

  12. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  13. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  14. A pattern-recognition-based, fault-tolerant monitoring and diagnostic technique

    SciTech Connect

    Singer, R.M.; Gross, K.C.; King, R.W.

    1995-06-01

    A properly designed monitoring and diagnostic system must be capable of detecting and distinguishing sensor and process malfunctions in the presence of signal noise, varying process states and multiple faults. The technique presented in this paper addresses these objectives through the implementation of a multivariate state estimation algorithm based upon pattern recognition methodology coupled with a statistically-based hypothesis test. Utilizing a residual signal vector generated from the difference between the estimated and measured current states of a process, disturbances are detected and identified with statistical hypothesis testing. Since the hypothesis testing utilizes the inherent noise on the signals to obtain a conclusion and the state estimation algorithm requires only a majority of the sensors to be functioning to ascertain the current state, this technique has proven to be quite robust and fault-tolerant. Several examples of its application are presented.

  15. Diagnostic procedures in tularaemia with special focus on molecular and immunological techniques.

    PubMed

    Splettstoesser, W D; Tomaso, H; Al Dahouk, S; Neubauer, H; Schuff-Werner, P

    2005-08-01

    Tularaemia is a severe bacterial zoonosis caused by the highly infectious agent Francisella tularensis. It is endemic in countries of the northern hemisphere ranging from North America to Europe, Asia and Japan. Very recently, Francisella-like strains causing disease in humans were described from tropical northern Australia. In the last decade, efforts have been made to develop sensitive and specific immunological and molecular techniques for the laboratory diagnosis of tularaemia and also for the definite identification of members of the species F. tularensis and its four subspecies. Screening for the keyword 'Francisella' a Medline search over the last decade was performed and articles describing diagnostic methods for tularaemia and its causative agent were selected. Besides classical microbiological techniques (cultivation, biochemical profiling, susceptibility testing) several new immunological and molecular approaches to identify F. tularensis have been introduced employing highly specific antibodies and various polymerase chain reaction (PCR)-based methods. Whereas direct antigen detection by enzyme-linked immunosorbent assay (ELISA) or immunofluorescence might allow early presumptive diagnosis of tularaemia, these methods--like all PCR techniques--still await further evaluation. Therefore, diagnosis of tularaemia still relies mainly on the demonstration of specific antibodies in the host. ELISA and immunoblot methods started to replace the standard tube or micro-agglutination assays. However, the diagnostic value of antibody detection in the very early clinical phase of tularaemia is limited. Francisella tularensis is regarded as a 'highest priority' biological agent (category 'A' according to the CDC, Atlanta, GA, USA), thus rapid and reliable diagnosis of tularaemia is required not only for a timely onset of therapy, the handling of outbreak investigations but also for the surveillance of endemic foci. Only very recently, evaluated test kits for

  16. The Role of Flow Diagnostic Techniques in Fan and Open Rotor Noise Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2016-01-01

    A principal source of turbomachinery noise is the interaction of the rotating and stationary blade rows with the perturbations in the airstream through the engine. As such, a lot of research has been devoted to the study of the turbomachinery noise generation mechanisms. This is particularly true of fan and open rotors, both of which are the major contributors to the overall noise output of modern aircraft engines. Much of the research in fan and open rotor noise has been focused on developing theoretical models for predicting their noise characteristics. These models, which run the gamut from the semi-empirical to fully computational ones, are, in one form or another, informed by the description of the unsteady flow-field in which the propulsors (i.e., the fan and open rotors) operate. Not surprisingly, the fidelity of the theoretical models is dependent, to a large extent, on capturing the nuances of the unsteady flowfield that have a direct role in the noise generation process. As such, flow diagnostic techniques have proven to be indispensible in identifying the shortcoming of theoretical models and in helping to improve them. This presentation will provide a few examples of the role of flow diagnostic techniques in assessing the fidelity and robustness of the fan and open rotor noise prediction models.

  17. Electron density measurements in very electronegative plasmas using different diagnostic techniques: theory and experiments

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Lafleur, Trevor; Aanesland, Ane

    2016-09-01

    Very electronegative plasmas (known as ``ion-ion'' plasmas) are used in different applications including material processing, space propulsion and thermonuclear fusion. Diagnostics of ion-ion plasmas can be performed using different probe techniques, including Langmuir and hairpin probes, RF, microwave and optical diagnostics. However, in certain applications (for example, in the electronegative thruster PEGASES), the electron density is too low (<1012m-3) to be reliably measured by these standard techniques. This is further complicated by the presence of strong, non-homogeneous, magnetic fields in the plasma ( 200 G) and the relatively small plasma size (few cm). In this work we compare results achieved with a Langmuir probe, and with an independent measurement of the electron density using a matched dipole probe. Measurements are performed in an SF6 plasma with an electronegativity in the range between a few hundred to a few thousand. We show here that though the model itself can correctly describe the plasma-probe interactions, there is a critical value of plasma electronegativity above which the electron density measured with a Langmuir probe can give only an upper limit estimation.

  18. Development of Ground-Based DIAL Techniques for High Accurate Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Nakazato, M.; Sakai, T.; Tsukamoto, M.; Sakaizawa, D.

    2009-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode (Fig.1). The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We develop the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The characteristics of the 1.6 μm DIALs of the primitive and next generations are shown in Table 1. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaisawa et al., Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Fig. 1 Experimental setup of the 1.6 μm CO2 DIAL. Comparison of primitive

  19. Modification of a Common BAL Technique to Enhance Sample Diagnostic Value

    PubMed Central

    Singletary, Morgan L; Phillippi-Falkenstein, Kathrine M; Scanlon, Elizabeth; Bohm, Rudolf P; Veazey, Ronald S; Gill, Amy F

    2008-01-01

    Bronchoalveolar lavage (BAL) by means of bronchoscopy is a diagnostic tool frequently used for clinical and research purposes in nonhuman primates. Although many institutions use this procedure, the technique is not standardized. One technical aspect that can vary is the method by which fluid is recovered. The purpose of this study was to evaluate differences between 2 different BAL aspiration techniques. Bronchoscopy and BAL fluid collection were performed on 20 rhesus macaques (Macaca mulatta). Data collected for comparison included heart rate, oxygen saturation levels, rectal temperature, volume of fluid collected, total cell count, cell viability, differential cell count, and flow cytometry. Results showed no significant differences in the heart rate, oxygen saturation, or body temperature between the 2 groups. Likewise, differential cell counts and cell viability studies of the retrieved fluid did not differ between methods. Compared with the conventional technique, the modified aspiration technique led to an 8.3% increase in overall fluid yield and a higher concentration of cells recovered. These differences are statistically significant and likely will be clinically relevant in the context of diagnosis. PMID:18947171

  20. Polarization-based optical imaging and processing techniques with application to the cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Gang L.; Li, Yanfang; Cameron, Brent D.

    2002-06-01

    In this investigation, a polarization-based imaging system is developed and described that measures the two-dimensional effective backscattering Mueller matrix of a sample in near real-time. As is well known, a Mueller matrix can provide considerable information on the makeup and optical characteristics of a sample and also directly describes how the sample transforms an incident light beam. The ability to measure the two-dimensional Mueller matrix of a biological sample, therefore, can provide considerable information on the sample composition as well as the potential to reveal significant structural information that normally would not be visible through standard imaging techniques. Additional information can also be obtained through the application of image-processing, decomposition, and reconstruction techniques that operate directly on the 2D Mueller matrix. Using the developed system, it is shown how the induction of internal strain within the sample coupled with image reconstruction and decomposition techniques can further improve image contrast and aid in the detection of boundaries between tissues of different biomechanical and structural properties. The studies presented were performed with both rat tissue and a melanoma-based tissue culture. The results demonstrate how these techniques could provide information that may be of diagnostic value in the physical detection of malignant lesion boundaries.

  1. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy.

    PubMed

    Wang, Liqun; Mizaikoff, Boris

    2008-07-01

    The objective of this contribution is to review the application of advanced multivariate data-analysis techniques in the field of mid-infrared (MIR) spectroscopic biomedical diagnosis. MIR spectroscopy is a powerful chemical analysis tool for detecting biomedically relevant constituents such as DNA/RNA, proteins, carbohydrates, lipids, etc., and even diseases or disease progression that may induce changes in the chemical composition or structure of biological systems including cells, tissues, and bio-fluids. However, MIR spectra of multiple constituents are usually characterized by strongly overlapping spectral features reflecting the complexity of biological samples. Consequently, MIR spectra of biological samples are frequently difficult to interpret by simple data-analysis techniques. Hence, with increasing complexity of the sample matrix more sophisticated mathematical and statistical data analysis routines are required for deconvoluting spectroscopic data and for providing useful results from information-rich spectroscopic signals. A large body of work relates to the combination of multivariate data-analysis techniques with MIR spectroscopy, and has been applied by a variety of research groups to biomedically relevant areas such as cancer detection and analysis, artery diseases, biomarkers, and other pathologies. The reported results indeed reveal a promising perspective for more widespread application of multivariate data analysis in assisting MIR spectroscopy as a screening or diagnostic tool in biomedical research and clinical studies. While the authors do not mean to ignore any relevant contributions to biomedical analysis across the entire electromagnetic spectrum, they confine the discussion in this contribution to the mid-infrared spectral range as a potentially very useful, yet underutilized frequency region. Selected representative examples without claiming completeness will demonstrate a range of biomedical diagnostic applications with particular

  2. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

    SciTech Connect

    McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.

    2014-12-15

    was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.

  3. Upgrades of Diagnostic Techniques and Technologies for JET next D-T Campaigns

    SciTech Connect

    Murari, Andrea

    2015-07-01

    . With regard to the fusion products, JET now can deploy a consistent set of techniques to measure the neutron yield and neutron spectra and to diagnose the fast particles. A full calibration of the neutron diagnostics with a 14 MeV source is being considered, after the recent very successful calibration for the 2.45 MeV neutrons. Vertical and horizontal lines of sight are foreseen for neutron and gamma spectrometry, in order to better determine the thermal neutron yield and to separate the trapped and passing components of the alphas. Various gamma ray spectrometers are being developed to cover all the various operational scenarios, from trace tritium to 50-50 D-T operation. The redistribution of the alphas will be measured with the gamma ray cameras, recently upgraded with full digital electronics; new detectors are being considered to bring the time resolution of the system in the ten of ms range. The lost alphas will also be diagnosed with improved spatial and temporal resolution, using Faraday cups and a scintillator probe. From a technological perspective, the D-T campaign will provide a unique opportunity to test ITER relevant technologies. From radiation hard detectors, for example Hall probes, to neutron absorbers and to shielding concepts, the potential of various solutions in a realistic 14 MeV radiation field will be assessed. The effects of neutrons and gamma on ancillary technologies and systems, such as fibre optics and electronics circuits, are also expected to be sufficiently high to derive useful information about the competitive advantage of various alternatives.

  4. Evaluation of Temporal Diagnostic Techniques for Two-Bunch Facet Beam

    SciTech Connect

    Litos, M.D.; Bionta, M.R.; Dolgashev, V.A.; England, R.J.; Fritz, D.; Gilevich, S.; Hering, Ph.; Hogan, M.J.; /SLAC

    2011-08-19

    Three temporal diagnostic techniques are considered for use in the FACET facility at SLAC, which will incorporate a unique two-bunch beam for plasma wakefield acceleration experiments. The results of these experiments will depend strongly on the the inter-bunch spacing as well as the longitudinal profiles of the two bunches. A reliable, singleshot, high resolution measurement of the beam's temporal profile is necessary to fully quantify the physical mechanisms underlying the beam driven plasma wakefield acceleration. In this study we show that a transverse deflecting cavity is the diagnostic which best meets our criteria. Based on our laboratory testing, numerical calculations, and simulations of the three single-shot temporal diagnostic devices, the X-band TCAV system is the best candidate for resolving FACET's two-bunch beam, with an estimated resolution of 7 {micro}m. Both the S-band TCAV system and the EO system could resolve the peak-to-peak separation of the two bunches in the FACET beam with estimated resolutions of 25 {micro}m and 30 {micro}m, respectively, but would be unable to resolve the temporal profiles of the individual bunches themselves. Because the TCAV signal is more easily interpreted and because the reliability of the EO system is less well known, however, the S-band TCAV system would be the next preferred option after the X-band TCAV system. The Fesca-200 streak camera, though simple, compact, and reliable, is unable to achieve a resolution that would be of use to FACET.

  5. Investigation of Lamp Mapping Technique for Calibration and Diagnostics of Raman LIDAR Systems

    NASA Astrophysics Data System (ADS)

    Walker, Monique

    Raman Lidar systems provide water vapor measurements that can be used for weather forecasting and atmospheric modeling. Most of the accuracy of Raman Lidar water vapor data is dependent on a secondary instrument such as the radiosonde. Here we discuss the use of the standard lamp mapping technique as it applies to Raman Lidar data. Using the standard lamp mapping technique causes the Raman Lidar water vapor data to rely on the accuracy of the fundamental Raman cross sections and the accuracy of the detection system. To be more specific we discuss how the lamp mapping technique (LMT) is used to determine a Raman Lidar water vapor mixing ratio calibration constant, correct a look-up table that could potentially be used to determine atmospheric temperatures based on Lidar measurements, determine a Lidar overlap function, determine Lidar glue coefficients and serve as a Raman Lidar diagnostic test. The mapping technique discussed here is a standard lamp being scanned over the aperture of a Raman Lidar telescope. From the mapping technique we are able to determine a system efficiency for the Lidar detection system, which allows us to perform the functions mentioned above. These various studies were conducted on two Raman Lidar systems with different optical detection systems and configurations. The water vapor mixing ratio calibration determined using the LMT and glue coefficients determined using the LMT showed good agreement with the traditional methods. In addition the LMT has shown to be an excellent diagnostic tool for Lidar systems. Furthermore, we were able to determine an overlap function for the Lidar system single optical channels and also the overlap function for water vapor mixing ratio (WVMR) using the LMT. Lastly, there was a limitation that did not allow us to obtain temperature calibration constants for Lidar-based temperature measurements using a look-up table corrected by the LMT. However, we were able to determine the detector response of the two

  6. Z-pinch diagnostics, plasma and liner instabilities and new x-ray techniques

    SciTech Connect

    Oona, H.; Anderson, B.; Benage, J.

    1996-09-01

    Pulse power experiments of the last several decades have contributed greatly to the understanding of high temperature and high density plasmas and, more recently, to the study of hydrodynamic effects in thick imploding cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load, with the resulting Lorenz force compressing the load to produce hydrodynamic motion and/or high temperature, high density plasma. In Los Alamos, Pulsed power experiments are carried out at two facilities. Experiments at low current (from several million to ten million Amperes) are conducted on the Pegasus II capacitor bank. Experiments with higher currents (10`s to 100`s MA range) are performed in Ancho Canyon with the explosively driven Procyon and MAGO magnetic flux compression generator systems. In this paper, the authors present a survey of diagnostic capabilities and results from several sets of experiments. First, they discuss the initiation and growth of instabilities in plasmas generated from the implosion of hollow z-pinches in the pegasus and Procyon experiments. Next they discuss spectroscopic data from the plasmas produced by the MAGO system. They also show time resolved imaging data from thick ({approximately} .4 mm) liner implosions. Finally, the authors discuss improvements to x-ray and visible light imaging and spectrographic diagnostic techniques. The emphasis of this paper is not so much a detailed discussion of the experiments, but a presentation of imaging and spectroscopic results and the implications of these observations to the experiments.

  7. Piriformis syndrome: implications of anatomical variations, diagnostic techniques, and treatment options.

    PubMed

    Cassidy, Lindsey; Walters, Andrew; Bubb, Kathleen; Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios

    2012-08-01

    Details of piriformis syndrome, including the proper diagnosis and most effective form of treatment, continue to be controversial. While the cause, diagnosis, and treatment of piriformis syndrome remain elusive, many studies have been conducted to investigate newly developed diagnostic techniques as well as various treatment options for piriformis-induced sciatica. Despite the quantity of literature, few studies have demonstrated statistically significant results that support one form of treatment over another. Thus, despite the evidence supporting the newer treatment methodologies for piriformis syndrome, research should continue. It is important not only to evaluate treatment outcomes based on associated pain relief, but also to investigate the functional and anatomical return that patients experience from these studied treatments in order to fully explore the most effective form of therapy for piriformis syndrome.

  8. Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms

    PubMed Central

    Masood, Ammara; Al-Jumaily, Adel Ali

    2013-01-01

    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126

  9. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  10. Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, kai

    2007-01-01

    Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.

  11. Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies

    NASA Astrophysics Data System (ADS)

    Filippidis, G.; Tserevelakis, G. J.; Selimis, A.; Fotakis, C.

    2015-02-01

    Here, we present a review of the implementation of nonlinear imaging microscopy techniques such as second and third harmonic generation (SHG-THG) and multi-photon excitation fluorescence (MPEF), as high-resolution, non-invasive diagnostic tools for cultural heritage studies. Specifically, the above nonlinear modalities are employed for the precise three-dimensional (3D) delineation of the protective layers bulk in model multilayer painting artworks. The high axial resolution thickness determination of protective layers through the use of THG imaging and the identification of the chemical composition of the artefacts via MPEF measurements are depicted. Furthermore, we reveal the potential of MPEF imaging measurements for the identification of the corrosion layers in silver-based artefacts. Finally, nonlinear modalities are employed for the assessment of the affected region and the obtainment of depth information during laser cleaning of polymeric coatings.

  12. Evaluation of Possible Nuclear Magnetic Resonance Diagnostic Techniques for Tokamak Experiments

    SciTech Connect

    S.J. Zweben; T.W. Kornack; D. Majeski; G. Schilling; C.H. Skinner; R. Wilson

    2002-08-05

    Potential applications of nuclear magnetic resonance (NMR) diagnostic techniques to tokamak experiments are evaluated. NMR frequencies for hydrogen isotopes and low-Z nuclei in such experiments are in the frequency range approximately equal to 20-200 MHz, so existing RF [radio-frequency] antennas could be used to rotate the spin polarization and to make the NMR measurements. Our tentative conclusion is that such measurements are possible if highly spin polarized H or (superscript)3He gas sources (which exist) are used to fuel these plasmas. In addition, NMR measurements of the surface layers of the first wall (without plasma) may also be possible, e.g., to evaluate the inventory of tritium inside the vessel.

  13. Profiling local optima in K-means clustering: developing a diagnostic technique.

    PubMed

    Steinley, Douglas

    2006-06-01

    Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate distributions of clusters; and (e) various multidimensional data structures. The results are evaluated in terms of the Hubert-Arabie adjusted Rand index, and several observations concerning the performance of K-means clustering are made. Finally, the article concludes with the proposal of a diagnostic technique indicating when the partitioning given by a K-means cluster analysis can be trusted. By combining the information from several observable characteristics of the data (number of clusters, number of variables, sample size, etc.) with the prevalence of unique local optima in several thousand implementations of the K-means algorithm, the author provides a method capable of guiding key data-analysis decisions.

  14. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  15. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview

  16. Sportsmen’s Groin—Diagnostic Approach and Treatment With the Minimal Repair Technique

    PubMed Central

    Muschaweck, Ulrike; Berger, Luise Masami

    2010-01-01

    Context: Sportsmen’s groin, also called sports hernia and Gilmore groin, is one of the most frequent sports injuries in athletes and may place an athletic career at risk. It presents with acute or chronic groin pain exacerbated with physical activity. So far, there is little consensus regarding pathogenesis, diagnostic criteria, or treatment. There have been various attempts to explain the cause of the groin pain. The assumption is that a circumscribed weakness in the posterior wall of the inguinal canal, which leads to a localized bulge, induces a compression of the genital branch of the genitofemoral nerve, considered responsible for the symptoms. Methods: The authors developed an innovative open suture repair—the Minimal Repair technique—to fit the needs of professional athletes. With this technique, the circumscribed weakness of the posterior wall of the inguinal canal is repaired by an elastic suture; the compression on the nerve is abolished, and the cause of the pain is removed. In contrast with that of common open suture repairs, the defect of the posterior wall is not enlarged, the suture is nearly tension free, and the patient can return to full training and athletic activity within a shorter time. The outcome of patients undergoing operations with the Minimal Repair technique was compared with that of commonly used surgical procedures. Results: The following advantages of the Minimal Repair technique were found: no insertion of prosthetic mesh, no general anesthesia required, less traumatization, and lower risk of severe complications with equal or even faster convalescence. In 2009, a prospective cohort of 129 patients resumed training in 7 days and experienced complete pain relief in an average of 14 days. Professional athletes (67%) returned to full activity in 14 days (median). Conclusion: The Minimal Repair technique is an effective and safe way to treat sportsmen’s groin. PMID:23015941

  17. Advanced Molecular Diagnostic Techniques for Detection of Food-borne Pathogens; Current Applications and Future Challenges.

    PubMed

    Umesha, S; Manukumar, H M

    2016-01-08

    The elimination of disease-causing microbes from the food supply is a primary goal and this review deals with the overall techniques availavle for detection of food-borne pathogens. Now-a-days conventional methods are replaced by advanced methods like Biosensors, Nucleic Acid-based Tests (NAT) and different PCR based techniques used in molecular biology to identify specific pathogens. Bacillus cereus, Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Campylobacter, Listeria monocytogenes, Salmonella spp, Aspergillus spp. Fusarium spp. Penicillium spp., and pathogens are detected in contaminated food items which cause always diseases in human in any one or the other way. Identification of food-borne pathogens in a short period of time is still a challenge to the scientific field in general and food technology in particular. The low level of food contamination by major pathogens requires specific sensitive detection platforms and the present area of hot research looking forward to new nanomolecular techniques for nanomaterials, make them suitable for the development of assays with high sensitivity, response time and portability. With the sound of these we attemet to highlight a comprehensive overview about food-borne pathogen detection by rapid, sensitive, accurate and cost affordable in situ analytical methods from conventional methods to recent molecular approaches for advanced food and microbiology research.

  18. Infrared Thermography-based Biophotonics: Integrated Diagnostic Technique for Systemic Reaction Monitoring

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.; Morozov, Vitaly V.

    A peculiar branch of biophotonics is a measurement, visualisation and quantitative analysis of infrared (IR) radiation emitted from living object surfaces. Focal plane array (FPA)-based IR cameras make it possible to realize in medicine the so called interventional infrared thermal diagnostics. An integrated technique aimed at the advancement of this new approach in biomedical science and practice is described in the paper. The assembled system includes a high-performance short-wave (2.45-3.05 μm) or long-wave (8-14 μm) IR camera, two laser Doppler flowmeters (LDF) and additional equipment and complementary facilities implementing the monitoring of human cardiovascular status. All these means operate synchronously. It is first ascertained the relationship between infrared thermography (IRT) and LDF data in humans in regard to their systemic cardiovascular reactivity. Blood supply real-time dynamics in a narcotized patient is first visualized and quantitatively represented during surgery in order to observe how the general hyperoxia influences thermoregulatory mechanisms; an abrupt increase in temperature of the upper limb is observed using IRT. It is outlined that the IRT-based integrated technique may act as a take-off runway leading to elaboration of informative new methods directly applicable to medicine and biomedical sciences.

  19. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements.

    PubMed

    Alshuhri, Abdullah A; Holsgrove, Timothy P; Miles, Anthony W; Cunningham, James L

    2015-08-01

    Current techniques for diagnosing early loosening of a total hip replacement (THR) are ineffective, especially for the acetabular component. Accordingly, new, accurate, and quantifiable methods are required. The aim of this study was to investigate the viability of vibrational analysis for accurately detecting acetabular component loosening. A simplified acetabular model was constructed using a Sawbones(®) foam block. By placing a thin silicone layer between the acetabular component and the Sawbones block, 2- and 4-mm soft tissue membranes were simulated representing different loosening scenarios. A constant amplitude sinusoidal excitation with a sweep range of 100-1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of observed harmonic frequencies. Both measurement methods were sufficient to measure the output vibration. Vibrational analysis reliably detected loosening corresponding to both 2 and 4 mm tissue membranes at driving frequencies between 100 and 1000 Hz (p < 0.01) using the accelerometer. In contrast, ultrasound detected 2-mm loosening at a frequency range of 850-1050 Hz (p < 0.01) and 4-mm loosening at 500-950 Hz (p < 0.01).

  20. Development and applications of laser spectroscopic techniques related to combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Aldén, Marcus

    2006-07-01

    Thanks to features as non-intrusiveness combined with high spatial and temporal resolution, various laser diagnostic techniques have during the last decades become of utmost importance for characterization of combustion related phenomena. In the following presentation some further development of the techniques will be highlighted aiming at a) surface temperatures using Thermographic Phosphors, TP, b) species specific, spatially and temporally resolved detection of species absorbing in the IR spectral region using polarization spectroscopy and Laser-induced fluorescence, and finally c) high speed visualization using a special designed laser system in combination with a framing camera. In terms of surface thermometry, Thermographic Phosphors have been used for many years for temperature measurements on solid surfaces. We have during the last years further developed and applied this technique for temperature measurements on burning surfaces and on materials going through phase shifts, e.g. pyrolysis and droplets. The basic principle behind this technique is to apply micron size particles to the surface of interest. By exciting the TP with a short pulse UV laser (ns), the phosphorescence will exhibit a behaviour where the spectral emission as well as the temporal decay are dependent on the temperature. It is thus possible to measure the temperature both in one and two dimensions. The presentation will include basic description of the technique as well as various applications, e.g in fire science, IC engines and gasturbines. Several of the species of interest for combustion/flow diagnostics exhibit a molecular structure which inhibits the use of conventional laser-induced fluorescence for spatially and spectrally resolved measurements. We have during the last years investigated the use of excitation and detection in the infrared region of the spectrum. Here, it is possible to detect both carbonmono/dioxide, water as well as species specific hydrocarbons. The techniques

  1. New diagnostic and therapeutic techniques in the management of pyogenic liver abscesses.

    PubMed Central

    Ranson, J H; Madayag, M A; Localio, S A; Spencer, F C

    1975-01-01

    An unexplained increase in the frequency of pyogenic liver abscesses of unknown etiology has, fourtunately, been paralleled by significant advances in diagnostic and therapeutic methods. This report reviews experience with 14 patients operated upon at NYU Medical Center since 1971. Eight cases (57%) were cryptogenic. Other abscesses were associated with biliary disease (3); abdominal sepsis (2); and trauma (1). Abscesses were present on hospitalization in 12 patients. Clinical findings included fever (101-108 F); 100%; leucocytosis, 71%; anorexia and vomiting, 50%; localized tenderness and hepatomegaly, 50%; hypoalbuminemia, 86%; hypocholesterolemia, 78%; elevated SGOT, 71%; and elevated aikaline phosphatase, 43%. Technetium hepatic scintiscans showed focal defects in 10 of 12 patients (83%), but did not detect multiple abscesses in 2 of these. Hepatic arteriography performed in 10 patients was highly accurate, outlining single abscesses in 6 and multiple abscesses in 4. Furthermore, in one patient a false positive scintiscan was demonstrated by negative arteriography, confirmed by autopsy. In 4 patients, arteriography indicated an abscess in the posterior-superior area of the right hepatic lobe. With precise anatomical localization, a trans-thoracic approach permitted uncomplicated drainage in each case. This approach provides excellent exposure and direct drainage for abscesses in this area. An additional therapeutic adjunct in two patients, with 4 and 11 abscesses each, was postoperative intraportal infusion of antibiotics through the umbilical vein. Thirteen patients (83%) recovered, one dying from pulmonary embolism. Primary hepatic abscesses occur with increasing frequency. Primary hepatic abscesses occur with increasing frequency. Primary hepatic abscesses occur with increasing frequency. The methods described allow more precise preoperative diagnosis and direct surgical drainage. Images Fig. 1. Fig. 2. PMID:1130869

  2. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  3. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling.

    PubMed

    de Jong, Felice A; Beecher, Chris

    2012-09-01

    Metabolomics or biochemical profiling is a fast emerging science; however, there are still many associated bottlenecks to overcome before measurements will be considered robust. Advances in MS resolution and sensitivity, ultra pressure LC-MS, ESI, and isotopic approaches such as flux analysis and stable-isotope dilution, have made it easier to quantitate biochemicals. The digitization of mass spectrometers has simplified informatic aspects. However, issues of analytical variability, ion suppression and metabolite identification still plague metabolomics investigators. These hurdles need to be overcome for accurate metabolite quantitation not only for in vitro systems, but for complex matrices such as biofluids and tissues, before it is possible to routinely identify biomarkers that are associated with the early prediction and diagnosis of diseases. In this report, we describe a novel isotopic-labeling method that uses the creation of distinct biochemical signatures to eliminate current bottlenecks and enable accurate metabolic profiling.

  4. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.

    PubMed

    Kasetsirikul, Surasak; Buranapong, Jirayut; Srituravanich, Werayut; Kaewthamasorn, Morakot; Pimpin, Alongkorn

    2016-07-12

    The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article.

  5. The Awareness of Health Professionals in Diagnostic Techniques for Intestinal Parasites in Gaza Strip, Palestine

    PubMed Central

    Hindi, AI

    2014-01-01

    Background: Diagnosis of intestinal parasites still depends on conventional methods in Gaza strip hospitals and private laboratories. Aim: This study aimed to evaluate the opinion and the practice of physicians and medical laboratories technologists towards the diagnosis of intestinal parasites in Gaza strip. Subjects and Methods: The study was carried out during the period from August 2006 to December 2006. All the subjects during this period were eligible for the interview. The sample size included 371 individuals out of them 270 physicians and 101 medical laboratory technologists (MLTs). Simple random sampling was used to select the physicians and MLTs from eight hospitals and eleven primary health-care centers. Results: It was found that (57.8%) 156/270 of physicians depend on the direct smear microscopy in the diagnosis of intestinal parasites in Gaza, compared to (31.7% (32/101) of MLT. Knowledge about the possible correlation of occult blood with reasons other than the presence of intestinal parasites was evident among both physicians and MLTs, reaching over 80% (P = 0.08). It was found that (54.4%, 147/270) of physicians and (73.3%. 74/101) of MLTs depend on wet mount result for of Entamoeba histolytica diagnosis (P = 0.01). Conclusion: Low awareness was found among both physicians and MLT regarding the diagnostic techniques used in the examination of intestinal parasites in Gaza Strip. Prescription of medicine by physicians sometimes depends on the clinical picture without laboratory confirmation. Advanced techniques were less used in the diagnosis of intestinal parasites in Gaza strip. PMID:24669336

  6. A software framework for diagnostic medical image perception with feedback, and a novel perception visualization technique

    NASA Astrophysics Data System (ADS)

    Phillips, Peter W.; Manning, David J.; Donovan, Tim; Crawford, Trevor; Higham, Stephen

    2005-04-01

    This paper describes a software framework and analysis tool to support the collection and analysis of eye movement and perceptual feedback data for a variety of diagnostic imaging modalities. The framework allows the rapid creation of experiment software that can display a collection of medical images of a particular modality, capture eye trace data, and record marks added to an image by the observer, together with their final decision. There are also a number of visualisation techniques for the display of eye trace information. The analysis tool supports the comparison of individual eye traces for a particular observer or traces from multiple observers for a particular image. Saccade and fixation data can be visualised, with user control of fixation identification functions and properties. Observer markings are displayed, and predefined regions of interest are supported. The software also supports some interactive and multi-image modalities. The analysis tool includes a novel visualisation of scan paths across multi-image modalities. Using an exploded 3D view of a stack of MRI scan sections, an observer's scan path can be shown traversing between images, in addition to inspecting them.

  7. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  8. Characterisation of the properties of a negative hydrogen ion beam by several beam diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Maurizio, R.; Fantz, U.; Bonomo, F.; Serianni, G.

    2016-06-01

    The beam properties of the BATMAN negative ion source, which is the prototype of one module of the source for the ITER neutral beam injection system, are characterised by means of three diagnostic techniques: beam emission spectroscopy (BES), the experimental calorimeter mini-STRIKE and a copper calorimeter. The main beam parameters—beam divergence, homogeneity and top-bottom asymmetries—are studied in different operational scenarios: with different magnetic filter field setups, source settings and with different gases (hydrogen or deuterium). Among all dependences, the influence of the magnetic field configuration on the beam and the evolution of the beam features during some conditioning days are investigated in detail. Data show that the stronger the filter field in the beam region, the higher the beam top-bottom asymmetry—likely a v× B effect. During the conditioning of the source, such vertical beam asymmetry increases as well, suggesting an inhomogeneous H -production at the first grid of the extraction system.

  9. Machine-learning techniques for building a diagnostic model for very mild dementia.

    PubMed

    Chen, Rong; Herskovits, Edward H

    2010-08-01

    Many researchers have sought to construct diagnostic models to differentiate individuals with very mild dementia (VMD) from healthy elderly people, based on structural magnetic-resonance (MR) images. These models have, for the most part, been based on discriminant analysis or logistic regression, with few reports of alternative approaches. To determine the relative strengths of different approaches to analyzing structural MR data to distinguish people with VMD from normal elderly control subjects, we evaluated seven different classification approaches, each of which we used to generate a diagnostic model from a training data set acquired from 83 subjects (33 VMD and 50 control). We then evaluated each diagnostic model using an independent data set acquired from 30 subjects (13 VMD and 17 controls). We found that there were significant performance differences across these seven diagnostic models. Relative to the diagnostic models generated by discriminant analysis and logistic regression, the diagnostic models generated by other high-performance diagnostic-model-generation algorithms manifested increased generalizability when diagnostic models were generated from all atlas structures.

  10. Breast Cancer-Related Arm Lymphedema: Incidence Rates, Diagnostic Techniques, Optimal Management and Risk Reduction Strategies

    SciTech Connect

    Shah, Chirag; Vicini, Frank A.

    2011-11-15

    As more women survive breast cancer, long-term toxicities affecting their quality of life, such as lymphedema (LE) of the arm, gain importance. Although numerous studies have attempted to determine incidence rates, identify optimal diagnostic tests, enumerate efficacious treatment strategies and outline risk reduction guidelines for breast cancer-related lymphedema (BCRL), few groups have consistently agreed on any of these issues. As a result, standardized recommendations are still lacking. This review will summarize the latest data addressing all of these concerns in order to provide patients and health care providers with optimal, contemporary recommendations. Published incidence rates for BCRL vary substantially with a range of 2-65% based on surgical technique, axillary sampling method, radiation therapy fields treated, and the use of chemotherapy. Newer clinical assessment tools can potentially identify BCRL in patients with subclinical disease with prospective data suggesting that early diagnosis and management with noninvasive therapy can lead to excellent outcomes. Multiple therapies exist with treatments defined by the severity of BCRL present. Currently, the standard of care for BCRL in patients with significant LE is complex decongestive physiotherapy (CDP). Contemporary data also suggest that a multidisciplinary approach to the management of BCRL should begin prior to definitive treatment for breast cancer employing patient-specific surgical, radiation therapy, and chemotherapy paradigms that limit risks. Further, prospective clinical assessments before and after treatment should be employed to diagnose subclinical disease. In those patients who require aggressive locoregional management, prophylactic therapies and the use of CDP can help reduce the long-term sequelae of BCRL.

  11. Highly time-resolved evaluation technique of instantaneous amplitude and phase difference using analytic signals for multi-channel diagnostics

    SciTech Connect

    Ohshima, S. Kobayashi, S.; Yamamoto, S.; Nagasaki, K.; Mizuuchi, T.; Kado, S.; Okada, H.; Minami, T.; Shi, N.; Konoshima, S.; Sano, F.; Lee, H. Y.; Zang, L.; Kenmochi, N.; Kasajima, K.; Ohtani, Y.; Nagae, Y.

    2014-11-15

    A fluctuation analysis technique using analytic signals is proposed. Analytic signals are suitable to characterize a single mode with time-dependent amplitude and frequency, such as an MHD mode observed in fusion plasmas since the technique can evaluate amplitude and frequency at a specific moment without limitations of temporal and frequency resolutions, which is problematic in Fourier-based analyses. Moreover, a concept of instantaneous phase difference is newly introduced, and error of the evaluated phase difference and its error reduction techniques using conditional/ensemble averaging are discussed. These techniques are applied to experimental data of the beam emission spectroscopic measurement in the Heliotron J device, which demonstrates that the technique can describe nonlinear evolution of MHD instabilities. This technique is widely applicable to other diagnostics having necessity to evaluate phase difference.

  12. The Rule of Histology in the Diagnosis of Periprosthetic Infection: Specific Granulocyte Counting Methods and New Immunohistologic Staining Techniques may Increase the Diagnostic Value

    PubMed Central

    Boettner, Friedrich; Koehler, Gabriele; Wegner, Alexander; Schmidt-Braekling, Tom; Gosheger, Georg; Goetze, Christian

    2016-01-01

    Objective: The current study investigates the diagnostic accuracy of the criteria described for frozen sections and whether modern leukocyte specific staining techniques including leukocyte peroxidase and Naphtol-AS-D-chloroacetate-esterase will improve the accuracy of the intra-operative histology. Method: 77 patients undergoing revision total hip and knee arthroplasty were included in this retrospective study. Patients were grouped into septic and aseptic based on intraoperative cultures. Tissue samples were analyzed utilizing the Mirra, Feldman, Lonner, Banit and Athanasou criteria. Results: An experienced pathologist had a high specificity (96%), but rather low sensitivity (57%) diagnosing infection. By using the Banit-, Mirra-, or Athanasou-criteria the sensitivity is increased to 0.90. The Feldman- and Lonner-criteria have a lower sensitivity (0.48 and 0.38), however, an increased specificity of 0.96 and 0.98, respectively. The Banit cut off has the highest accuracy (86%). MPOX and NACE staining increased the sensitivity and accuracy up to 100% and 92% respectively. Conclusion: Banit’s cut off is the most accurate histologic criteria to diagnose infection. Modern leukocyte specific staining techniques slightly improve the accuracy. The synovial fluid white blood cell count appears to be the most accurate intraoperative test. PMID:27708741

  13. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  14. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  15. Accelerator Diagnostic Techniques Using Time-Domain Data from a Bunch-by-bunch Longitudinal Feedback System

    SciTech Connect

    Teytelman, Dmitry

    2000-03-30

    A programmable DSP-based longitudinal damping system has been developed for the PEP-II/DAFNE/ALS machines. The DSP-based architecture allows feedback functions to coexist with data acquisition or instrumentation algorithms. The fast sampling rates in these systems (500 MHz) in conjunction with the large distributed memory of the DSP processors make possible several novel beam diagnostics complementary to traditional narrowband spectral measurements. Instantaneous spectral measurements of 250 MHz span with 70 Hz resolution can be made from 14 ms time domain data records captured by the DSP system. The authors present techniques developed for the measurement of modal growth and damping rates and other beam and system diagnostics (calibrations, measurements of the system noise floor). Results from the Advanced Light Source and PEP-II are presented to illustrate these techniques.

  16. A technique for accurately determining the cusp-region polar cap boundary using SuperDARN HF radar measurements

    NASA Astrophysics Data System (ADS)

    Chisham, G.; Freeman, M. P.

    2003-04-01

    Accurately measuring the location and motion of the polar cap boundary (PCB) in the high-latitude ionosphere can be crucial for studies concerned with the dynamics of the polar cap, e.g. the measurement of reconnection rates. The Doppler spectral width characteristics of backscatter received by the SuperDARN HF radars have been previously used for locating and tracking the PCB in the cusp region. The boundary is generally observed in meridional beams of the SuperDARN radars and appears as a distinct change between low spectral width values observed equatorward of the cusp region, and high, but variable spectral width values observed within the cusp region. To identify the spectral width boundary (SWB) between these two regions, a simple algorithm employing a spectral width threshold has often been applied to the data. However, there is not, as yet, a standard algorithm, or spectral width threshold, which is universally applied. Nor has there been any rigorous assessment of the accuracy of this method of boundary determination. This study applies a series of threshold algorithms to a simulated cusp-region spectral width data set, to assess the accuracy of different algorithms. This shows that simple threshold algorithms correctly identify the boundary location in, at the most, 50% of the cases and that the average boundary error is at least ~ 1 2 range gates (~ 1° latitude). It transpires that spatial and temporal smoothing of the spectral width data (e.g. by median filtering), before application of a threshold algorithm can increase the boundary determination accuracy to over 95% and the average boundary error to much less than a range gate. However, this is sometimes at the cost of temporal resolution in the motion of the boundary location. The algorithms are also applied to a year’s worth of spectral width data from the cusp ionosphere, measured by the Halley SuperDARN radar in Antarctica. This analysis highlights the increased accuracy of the enhanced

  17. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  18. ‘Dose-to-Mother’ Deuterium Oxide Dilution Technique: An Accurate Strategy to Measure Vitamin A Intake in Breastfed Infants

    PubMed Central

    Lopez-Teros, Veronica; Limon-Miro, Ana Teresa; Astiazaran-Garcia, Humberto; Tanumihardjo, Sherry A.; Tortoledo-Ortiz, Orlando; Valencia, Mauro E.

    2017-01-01

    In Mexico, infants (0–2 years old) show the highest prevalence of vitamin A deficiency (VAD), measured by serum retinol concentrations. Thus, we consider that low vitamin A (VA) intake through breast milk (BM) combined with poor weaning practices are the main factors that contribute to VAD in this group. We combined the assessment of VA status in lactating women using BM retinol and a stable isotope ‘dose-to-mother’ technique to measure BM production in women from urban and agricultural areas. Infants’ mean BM intake was 758 ± 185 mL, and no difference was observed between both areas (p = 0.067). Mean BM retinol concentration was 1.09 μmol/L, which was significantly lower for the agricultural area (p = 0.028). Based on BM retinol concentration, 57% of women were VAD; although this prevalence fell to 16% when based on fat content. Regardless of the VA biomarker used here, infants from the urban and agricultural areas cover only 66% and 49% of their dietary adequate intake from BM, respectively (p = 0.054). Our data indicate that VAD is still a public health concern in Mexico. Adopting both methods to assess VA transfer from the mother to the breastfed child offers an innovative approach towards the nutritional assessment of vulnerable groups. PMID:28230781

  19. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  20. Development of a neural network technique for KSTAR Thomson scattering diagnostics.

    PubMed

    Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ(2) method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ(2) method. The best results were obtained for 10(3) training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ(2) method and performs the calculation twenty times faster.

  1. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hun; Lee, J. H.; Yamada, I.; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ2 method. The best results were obtained for 103 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ2 method and performs the calculation twenty times faster.

  2. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  3. Cerebrospinal Fluid IL-10 and IL-10/IL-6 as Accurate Diagnostic Biomarkers for Primary Central Nervous System Large B-cell Lymphoma

    PubMed Central

    Song, Yang; Zhang, Wei; Zhang, Li; Wu, Wei; Zhang, Yan; Han, Xiao; Yang, Chen; Zhang, Lu; Zhou, Daobin

    2016-01-01

    Early diagnosis of primary central nervous system lymphoma (PCNSL) represents a challenge, and cerebrospinal fluid (CSF) cytokines may be diagnostic biomarkers for PCNSL. We used an electrochemiluminescence immunoassay to measure interleukin (IL)-10, IL-6, IL-8 and tumor necrosis factor α (TNF-α) in the CSF of 22 B cell PCNSL patients and 80 patients with other CNS diseases. CSF IL-10 was significantly higher in PCNSL patients than in the control group (median 74.7 pg/ml vs < 5.0 pg/ml, P < 0.000). Using a CSF IL-10 cutoff value of 8.2 pg/ml, the diagnostic sensitivity and specificity were 95.5% and 96.1%, respectively (AUC, 0.957; 95% CI, 0.901–1.000). For a CSF IL-10/IL-6 cutoff value of 0.72, the sensitivity was 95.5%, and the specificity was 100.0% (AUC, 0.976; 95% CI, 0.929–1.000). An increased CSF IL-10 level at diagnosis and post-treatment was associated with poor Progression free survival (PFS) for patients with PCNSL (P = 0.0181 and P = 0.0002, respectively). A low diagnostic value for PCNSL was found with CSF IL-8 or TNF-α. In conclusion, increased CSF IL-10 was a reliable diagnostic biomarker for large B cell PCNSL, and an IL-10/IL-6 ratio facilitates differentiation from other conditions, especially a CNS infection. PMID:27924864

  4. Improving the sampling technique of arterialized capillary samples to obtain more accurate PaO2 measurements.

    PubMed

    Wimpress, S; Vara, D D; Brightling, C E

    2005-01-01

    Arterialized earlobe capillary blood samples (ELCS) have been used as a measurement of blood gas status for over 20 years. There is general acceptance that there is a strong correlation and limits of agreement between arterial and arterialized blood samples with respect to pH and PaCO2. Although the correlation between the arterial and arterialized PaO2 is good, the limits of agreement poor. Our aim was to improve the accuracy of this technique in the measurement of PaO2 by simultaneously monitoring the oxygen saturation by pulse oximetry whilst taking an ELCS. We hypothesize that significant discrepancies between the SaO2 and SpO2 highlight either a poorly arterialized sample or an over aerated sample from air bubbles. We compared the SpO2 with the SaO2 of an arterial sample from 27 inpatients. We used the limits of agreement between these samples to define the degree of discordance we would accept between SaO2 and SpO2 before repeat ELCS. Subsequently, 252 consecutive patients attending our respiratory physiology unit over a six-month period had an ELCS and simultaneous SpO2. If there was a discrepancy between SaO2 and SpO2 of > 2% the ELCS was repeated. There was a good correlation and limits of agreement between the SpO2 and arterial SaO2 (r = 0.97, mean difference +/- 95% limits of agreement: 0.34 +/- 2.68). A difference of more than 2% between arterialized SaO2 and SpO2 was identified in 21 patients out of 252 (8.3%) with SaO2 higher in two and lower in 19 (r = 0.96, mean difference +/- 95% limits of agreement: 0.66 +/- 3.1). Repeat ELCS of these 21 samples reduced this discrepancy improving the concordance of the measurements (r = 0.98, mean difference +/- 95% limits of agreement: 0.47 +/- 1.0). In one case a difference of 3% remained between the saturations. We conclude that the addition of simultaneous pulse oximetry with ELCS will identify rogue measurements in about 8% of cases highlighting the need for repeat samples and thus increasing the accuracy of

  5. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    NASA Astrophysics Data System (ADS)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  6. Basic aerodynamic research facility for comparative studies of flow diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Gartrell, Luther R.; Stainback, P. Calvin

    1987-01-01

    Current flow diagnostic research efforts are focusing on higher order flow field data bases, such as those generated by laser velocimetry (LV), hot-wire anemometry, and multi-hole pressure probes. Recent low-speed comparisons of results obtained with LV and hot wires have revealed strengths and weaknesses of each instrument. A seeding study will be initiated to determine particulate tracking ability.

  7. Principles for new optical techniques in medical diagnostics for mHealth applications

    NASA Astrophysics Data System (ADS)

    Balsam, Joshua Michael

    Medical diagnostics is a critical element of effective medical treatment. However, many modern and emerging diagnostic technologies are not affordable or compatible with the needs and conditions found in low-income and middle-income countries and regions. Resource-poor areas require low-cost, robust, easy-to-use, and portable diagnostics devices compatible with telemedicine (i.e. mHealth) that can be adapted to meet diverse medical needs. Many suitable devices will need to be based on optical technologies, which are used for many types of biological analyses. This dissertation describes the fabrication and detection principles for several low-cost optical technologies for mHealth applications including: (1) a webcam based multi-wavelength fluorescence plate reader, (2) a lens-free optical detector used for the detection of Botulinum A neurotoxin activity, (3) a low cost micro-array reader that allows the performance of typical fluorescence based assays demonstrated for the detection of the toxin staphylococcal enterotoxin (SEB), and (4) a wide-field flow cytometer for high throughput detection of fluorescently labeled rare cells. This dissertation discusses how these technologies can be harnessed using readily available consumer electronics components such as webcams, cell phones, CCD cameras, LEDs, and laser diodes. There are challenges in developing devices with sufficient sensitivity and specificity, and approaches are presented to overcoming these challenges to create optical detectors that can serve as low cost medical diagnostics in resource-poor settings for mHealth.

  8. Validation of multiple diagnostic techniques to detect Cryptosporidium sp. and Giardia sp. in free-ranging western lowland gorillas (Gorilla gorilla gorilla) and observations on the prevalence of these protozoan infections in two populations in Gabon.

    PubMed

    van Zijll Langhout, Martine; Reed, Patricia; Fox, Mark

    2010-06-01

    Anthropozoonotic diseases threaten the survival of western lowland gorillas (Gorilla gorilla gorilla). Use of accurate diagnostic techniques in gorilla health monitoring contributes to the conservation of gorillas by providing robust information for appropriate management decisions. To identify suitable protozoa diagnostic techniques for wild gorillas, 95 fecal specimens were collected in Lopé National Park and east of Moukalaba-Doudou National Park in Gabon, areas with high and low levels of human activity, respectively. The samples were examined for Cryptosporidium sp. and Giardia sp. by using the following diagnostic techniques: a commercially available immunofluorescent antibody test kit, Merifluor, and a rapid immune-assay, ImmunoCard STAT!, to detect Cryptosporidium sp. and Giardia sp., and a modified Ziehl-Neelsen stain to detect Cryptosporidium sp. oocysts. The results obtained from the Merifluor test, considered the "gold standard" in human studies, were used to estimate the prevalence of Cryptosporidium sp. and Giardia sp. infections in Lopé National Park (19.0% and 22.6%, respectively) and east of Moukalaba-Doudou National Park (0% and 9.1%, respectively). The difference in prevalence in both areas may be associated with differing levels of anthropogenic disturbance. The sensitivity and specificity of the latter two diagnostic techniques were calculated by using the Merifluor test as a control. The ImmunoCard STAT! was found suitable for Giardia sp. antigen detection (specific but not sensitive) and inappropriate for Cryptosporidium sp. antigen detection (not specific or sensitive). The modified Ziehl-Neelsen stain was found to be highly specific but not sensitive in the detection of Cryptosporidium sp. oocysts. These results underline the necessity of using ancillary tests and concentration methods to correctly identify positive samples. This is the first report of Cryptosporidium sp. and Giardia sp. infections in free-ranging western lowland gorillas

  9. Accuracy of five different diagnostic techniques in mild-to-moderate pelvic inflammatory disease.

    PubMed Central

    Gaitán, Hernando; Angel, Edith; Diaz, Rodrigo; Parada, Arturo; Sanchez, Lilia; Vargas, Cara

    2002-01-01

    OBJECTIVE: To evaluate the clinical diagnosis of pelvic inflammatory disease (PID) compared with the diagnosis of PID made by laparoscopy, endometrial biopsy, transvaginal ultrasound, and cervical and endometrial cultures. Study design: A diagnostic performance test study was carried out by cross-sectional analysis in 61 women. A group presenting PID (n = 31) was compared with a group (n = 30) presenting another cause for non-specific lower abdominal pain (NSLAP). Diagnosis provided by an evaluated method was compared with a standard diagnosis (by surgical findings, histopathology, and microbiology). The pathologist was unaware of the visual findings and presumptive diagnoses given by other methods. RESULTS: All clinical and laboratory PID criteria showed low discrimination capacity. Adnexal tenderness showed the greatest sensitivity. Clinical diagnosis had 87% sensitivity, while laparoscopy had 81% sensitivity and 100% specificity; transvaginal ultrasound had 30% sensitivity and 67% specificity; and endometrial culture had 83% sensitivity and 26% specificity. CONCLUSIONS: Clinical criteria represent the best diagnostic method for discriminating PID. Laparoscopy showed the best specificity and is thus useful in those cases having an atypical clinical course for discarding abdominal pain when caused by another factor. The other diagnostic methods might have limited use. PMID:12648310

  10. Nested polymerase chain reaction for detection of Theileria annulata and comparison with conventional diagnostic techniques: its use in epidemiology studies.

    PubMed

    Martín-Sánchez, J; Viseras, J; Adroher, F J; García-Fernández, P

    1999-03-01

    In this work we studied the ability of a nested polymerase chain reaction (PCR) to detect Theileria annulata, the causative agent of Mediterranean theileriosis, in blood samples obtained from cattle on farms in different Spanish regions and its possible use in epidemiology studies. Of the 214 samples analyzed, 78.04%, 69.86%, and 62.26% were found to be positive by nested PCR, indirect immunofluorescent antibody test, and optical microscopy of Giemsa-stained smears, respectively. The three techniques were in agreement in 68.6% of the results. The observation that the prevalence of Mediterranean theileriosis estimated using nested PCR alone (70.3%) and that obtained using all three diagnostic techniques together (80.4%) did not significantly differ verifies the utility of this technique in epidemiology studies.

  11. [Will the new molecular karyotyping BACs-on-Beads technique replace the traditional cytogenetic prenatal diagnostics? Preliminary reports].

    PubMed

    Piotrowski, Krzysztof; Henkelman, Małgorzata; Zajaczek, Stanisław

    2012-04-01

    Recently several attempts have been made to introduce molecular karyotyping techniques into prenatal diagnosis. These methods can be used not only for the diagnosis of classical aneuploidies, but first of all they should be employed in the diagnostics of microaberrations, which are not revealed by low resolution methods of classical cytogenetics. The new method BACs-on-Beads is designed for quick detection of broad panel of aneuploidies and microdeletions, by the specified detection of deletions and duplications in the examined fetal DNA acquired from amniocytes. Prenatal diagnostics was performed with the use of BACs-on-Beads and classical amniocyte karyotyping simultaneously in a group of 54 pregnancies. This new method proved to be fully compatible with typical karyotyping in cultures of amniocytes in 98.2%. It was confirmed that the main advantage of this method is the possibility of quick diagnosis, within 48 hours, with much wider spectrum of detected anomalies when compared to classical methods. Contrary to other molecular karyotyping methods, the BACs-on-Beads technique is more economical, less time consuming and less complex equipment is needed than in case of other methods. We suppose that this technique can replace classical karyotyping methods in the near future.

  12. Towards accurate assessments of CH4 and N2O soil-atmosphere exchange rates with the combination of automated systems and new detection techniques

    NASA Astrophysics Data System (ADS)

    Díaz-Pinés, E.; Wolf, B.; Kiese, R.; Butterbach-Bahl, K.

    2012-04-01

    Soils can be either a source or a sink of CH4 and N2O. Accurate assessment of CH4 and N2O soil-atmosphere exchange processes is necessary in order to estimate the contribution of soil to the global warming potential under current and future conditions. Soil-atmosphere exchange processes of both CH4 and N2O depend on a combination of soil temperature and soil moisture status, as well as on nutrient availability and various microbial processes. The task of measuring CH4 and N2O exchange processes is challenging due to, among other factors: high spatial ("hot spots") and temporal heterogeneity ("hot moments") in the emissions of these species. In addition, accurate determination of CH4 and N2O concentrations is still difficult. So far, this prevents from a full understanding and contributes to a high uncertainty degree in the assessment of CH4 and N2O soil-atmosphere exchange rates across different ecosystems. Aiming at the achievement of a deeper understanding of the role of the soil in the GHG balance, we have combined new laser spectroscopy detection techniques (Quantum Cascade Laser, QCL) with automatic and semi-automatic chamber measurement systems. Therefore, different applications will be presented: A three-month-long field campaign in a poplar plantation in NE Romania allowed us to demonstrate the feasibility of the QCL coupled with automatic chambers to accurately estimate the soil-atmosphere GHG exchange at a high time resolution with a very low detection limit. A new semi-automatic system with relatively low human-maintenance requirements was tested in a poplar plantation in SW Germany. The system is not able to record fine-scale temporal variations of the GHG exchange processes; however, cumulative fluxes obtained with the semi-automatic system were very close to those measured with an automatic system with high temporal resolution. Within a climate change experiment in grassland ecosystems, an application of the QCL in combination with a robotized chamber

  13. Ataxic Creutzfeldt-Jakob disease: diagnostic techniques and neuropathologic observations in early disease.

    PubMed

    Jones, H R; Hedley-Whyte, E T; Freidberg, S R; Baker, R A

    1985-02-01

    We studied two cases of ataxic Creutzfeldt-Jakob disease. EEG, CT, evoked responses, and CSF were normal in one purely ataxic patient. Diagnosis was established by cerebellar biopsy. Autopsy demonstrated devastating spongiform changes in the cerebellum, basal ganglia, and thalamus with rare focal changes in cerebral cortex. In the second patient, late generalized changes developed with dementia. Diagnostic studies included abnormal visual evoked responses, CSF with abnormal oligoclonal bands and IgG, and subacute spongiform encephalopathy in frontal lobe biopsy. Early diagnosis is best established by biopsy of brain areas most likely to be involved on the basis of clinical neurologic findings.

  14. Surveillance for Respiratory Infections in U.S. Military Populations Using Classic and Novel Diagnostic Techniques

    DTIC Science & Technology

    2004-06-01

    ox er US S N im itz US S P ele liu US S R us hm or e Pe rc en ta ge o f C ul tu re d Sp ec im en s Negative Influenza Adenovirus Other Figure 3...Results of diagnostic testing from samples acquired while on deployment from 4 U.S. Naval ships. Note influenza was diagnosed from samples on all 4...capabilities for influenza A, influenza B, and adenovirus. The testing takes approximately 4 hours for each pathogen. Although results were potentially

  15. Diagnostic fiberoptic bronchoscopy: Techniques and results of biopsy in 600 patients.

    PubMed

    Zavala, D C

    1975-07-01

    Six hundred patients underwent diagnostic flexible fiberoptic bronchoscopy (FFB). The two diseases most frequently encountered were bronchogenic carcinoma in 330 patients (55 percent) and bacterial infection in 94 (16 percent). A positive cytology on biopsy material was obtained in 279 of 330 patients (85 percent) with primary lung cancer. Fluoroscopy was a valuable aid in diagnosing bronchogenic carcinoma, since 42 percent of the tumors were not visible endoscopically and required fluoroscopic control for placement of the biopsy instrument. Of the 55 patients with hemoptysis and negative chest x-ray films, nine (15 percent) had fiberoptically visible endobronchial carcinomas! In addition, two patients with carcinoma of the larynx and one with carcinoma of the nasopharynx were discovered. Transbronchial biopsy (TBB) in 68 patinets with diffuse and localized disease achieved an overall 69 percent diagnostic success, including a correct diagnosis in each of four patients with Pneumocystis carinii pneumonia. Brush biopsy provided additional valuable laboratory data in bacterial, mycobacterial and cytomegalovirsu infectious but had a poor yield in Pneumocystis infection. Complications as a result of forceps biopsy were minimal, except for brisk bleeding in six patients.

  16. Anesthetic Techniques Influence the Induction of Pulmonary Capillary Hemorrhage During Diagnostic Ultrasound Scanning in Rats

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Raghavendran, Krishnan

    2015-01-01

    Objectives Puhnonary apillary hemorrhage can be induced by diagnostic ultrasonnd (US) during direct pulmonary US scanning in rats. The influence of specific anesthetic tedmiques on this bioeffect was examined. Methods Ketamine plus xylazine has been used previously. In this study, the influence of intraperitoneal injections of ketamine and pentobarbital, inhalational isoflurane, and the supplemental use of xylazine with ketamine and isollurane was tested. A diagnostic US machine with a7.6-MHz linear array was used to image the right lung of anesthetized rats in a warmed water bath at different mechanical index (MI) settings. Pulmonary capillary hemorrhage was assessed by measuring comet tail artifacts in the image and by morphometry of the hemorrhagic areas on excised lungs. Results Pulmonary capillary hemorrhage was greatest for pentobarbital, lower for inhalational isoflurane, and lowest for ketamine anesthesia, with occurrence thresholds at at Mis of about 0.44, 0.8, and 0.8, respectively. Addition of xylazine produced a substantial increaseinhemorrhageanda significant proportion of hemorrhage occurrence for ketamineat an MI of 0.7 (P < .01) and forisofluraneat an MI of 0.52 (P < .01). Conclusions Ketamine plus xylazine and pentobarbital yield lower thresholds than ketamine or isoflurane alone by nearly a factor of 2 in MI. These results suggest that the choice of the anesthetic agent substantially modifies the relative risks of pulmonary capillary hemorrhage from pulmonary US. PMID:25614402

  17. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry.

    PubMed

    Palmquist, Anders; Shah, Furqan A; Emanuelsson, Lena; Omar, Omar; Suska, Felicia

    2017-03-01

    This paper investigates the application of X-ray micro-computed tomography (micro-CT) to accurately evaluate bone formation within 3D printed, porous Ti6Al4V implants manufactured using Electron Beam Melting (EBM), retrieved after six months of healing in sheep femur and tibia. All samples were scanned twice (i.e., before and after resin embedding), using fast, low-resolution scans (Skyscan 1172; Bruker micro-CT, Kontich, Belgium), and were analysed by 2D and 3D morphometry. The main questions posed were: (i) Can low resolution, fast scans provide morphometric data of bone formed inside (and around) metal implants with a complex, open-pore architecture?, (ii) Can micro-CT be used to accurately quantify both the bone area (BA) and bone-implant contact (BIC)?, (iii) What degree of error is introduced in the quantitative data by varying the threshold values?, and (iv) Does resin embedding influence the accuracy of the analysis? To validate the accuracy of micro-CT measurements, each data set was correlated with a corresponding centrally cut histological section. The results show that quantitative histomorphometry corresponds strongly with 3D measurements made by micro-CT, where a high correlation exists between the two techniques for bone area/volume measurements around and inside the porous network. On the contrary, the direct bone-implant contact is challenging to estimate accurately or reproducibly. Large errors may be introduced in micro-CT measurements when segmentation is performed without calibrating the data set against a corresponding histological section. Generally, the bone area measurement is strongly influenced by the lower threshold limit, while the upper threshold limit has little or no effect. Resin embedding does not compromise the accuracy of micro-CT measurements, although there is a change in the contrast distributions and optimisation of the threshold ranges is required.

  18. Finite element analysis of the effect of electrodes placement on accurate resistivity measurement in a diamond anvil cell with van der Pauw technique

    NASA Astrophysics Data System (ADS)

    Wu, Baojia; Huang, Xiaowei; Han, Yonghao; Gao, Chunxiao; Peng, Gang; Liu, Cailong; Wang, Yue; Cui, Xiaoyan; Zou, Guangtian

    2010-05-01

    The van der Pauw technique is widely used to determine resistivity of materials. In diamond anvil cell the compressed sample will make the contact placement change under high pressure. Using finite element analysis, we study the effect of contact placement error induced by pressure on the resistivity measurement accuracy of van der Pauw method. The results show the contact placement has a significant effect on determination accuracy. This method can provide accurate determination of sample resistivity when the spacing b between the contact center and sample periphery is less than D/9 (sample diameter). And the effect of contact placement error on accuracy rapidly increases as the contact location is closing to the sample center. For the same contact placement, the contact size error has a more obvious effect on the semiconductor sample.

  19. Practical method for highly accurate large-scale surface calculations. [of linearized muffin-tin orbital technique for chemisorption and magnetism

    NASA Technical Reports Server (NTRS)

    Fernando, G. W.; Cooper, B. R.; Ramana, M. V.; Krakauer, H.; Ma, C. Q.

    1986-01-01

    An accurate and efficient film linearized muffin-tin orbital (FLMTO) technique for surface electronic-structure calculations is presented which uses only 60-70 basis functions, as opposed to the 300 functions used in the linear augmented plane-wave method. Calculations for three different (3d and 4d) transition-metal films resulted in high quality results for five-layer slabs of Cu(001), Fe(001), and Ru(001), in addition to good results for the work functions and projected density of states. By retaining the LMTO small basis size, computer time and memory are reduced, making practical the study of systems with a larger number of atoms in the two-dimensional unit cell.

  20. Finite element analysis of the effect of electrodes placement on accurate resistivity measurement in a diamond anvil cell with van der Pauw technique

    SciTech Connect

    Wu Baojia; Huang Xiaowei; Han Yonghao; Gao Chunxiao; Peng Gang; Liu Cailong; Wang Yue; Cui Xiaoyan; Zou Guangtian

    2010-05-15

    The van der Pauw technique is widely used to determine resistivity of materials. In diamond anvil cell the compressed sample will make the contact placement change under high pressure. Using finite element analysis, we study the effect of contact placement error induced by pressure on the resistivity measurement accuracy of van der Pauw method. The results show the contact placement has a significant effect on determination accuracy. This method can provide accurate determination of sample resistivity when the spacing b between the contact center and sample periphery is less than D/9 (sample diameter). And the effect of contact placement error on accuracy rapidly increases as the contact location is closing to the sample center. For the same contact placement, the contact size error has a more obvious effect on the semiconductor sample.

  1. A diagnostic one-step real-time reverse transcription polymerase chain reaction method for accurate detection of influenza virus type A

    PubMed Central

    Behzadi, Mohammad Amin; Alborzi, Abdolvahab

    2016-01-01

    Introduction Influenza A is known as a public health concern worldwide. In this study, a novel one-step real-time reverse transcription polymerase chain reaction (rtRT-PCR) assay was designed and optimized for the detection of influenza A viruses. Material and methods The primers and probe were designed based on the analysis of 90 matrix nucleotide sequence data of influenza type A subtypes from the GenBank database of the National Center for Biotechnology Information (NCBI). The influenza virus A/Tehran/5652/2010 (H1N1 pdm09) was used as a reference. The rtRT-PCR assay was optimized, compared with that of the World Health Organization (WHO), and its analytical sensitivity, specificity and reproducibility were evaluated. In total, 64 nasopharyngeal swabs from patients with influenza-like illness (ILI) and 41 samples without ILI symptoms were tested for the virus, using conventional cell culture, direct immunofluorescence antibody (DFA) methods, and one-step rtRT-PCR with the designed primer set and probe and the WHO’s. Results The optimized assay results were similar to the WHO’s. The optimized assay results were similar to WHO’s, with non-significant differences for 10–103 copies of viral RNA/reaction (p > 0.05). It detected 10 copies of viral RNA/reaction with high reproducibility and no cross reactivity with other respiratory viruses. A specific cytopathic effect was observed in 6/64 (9.37%) of the ILI group using conventional culture and DFA staining methods; however, it was not seen in non-ILI. Also, the results of our assay and the WHO’s were similar to those of viral isolation and DFA staining. Conclusions Given the high specificity, sensitivity and reproducibility of this novel assay, it can serve as a reliable diagnostic tool for the detection of influenza A viruses in clinical specimens and lab experiments. PMID:27904520

  2. A dual-plane co-RASOR technique for accurate and rapid tracking and position verification of an Ir-192 source for single fraction HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    de Leeuw, Hendrik; Moerland, Marinus A.; van Vulpen, Marco; Seevinck, Peter R.; Bakker, Chris J. G.

    2013-11-01

    Effective high-dose-rate (HDR) treatment requires accurate and independent treatment verification to ensure that the treatment proceeds as prescribed, in particular if a high dose is given, as in single fraction therapy. Contrary to CT imaging and fluoroscopy, MR imaging provides high soft tissue contrast. Conventional MR techniques, however, do not offer the temporal resolution in combination with the 3D spatial resolution required for accurate brachytherapy source localization. We have developed an MR imaging method (center-out RAdial Sampling with Off-Resonance (co-RASOR)) that generates high positive contrast in the geometrical center of field perturbing objects, such as HDR brachytherapy sources. co-RASOR generates high positive contrast in the geometric center of an Ir-192 source by applying a frequency offset to center-out encoded data. To obtain high spatial accuracy in 3D with adequate temporal resolution, two orthogonal center-out encoded 2D images are applied instead of a full 3D acquisition. Its accuracy in 3D is demonstrated by 3D MRI and CT. The 2D images show high positive contrast in the geometric center of non-radioactive Ir-192 sources, with signal intensities up to 160% of the average signal intensity in the surrounding medium. The accuracy with which the center of the Ir-192 source is located by the dual-plane MRI acquisition corresponds closely to the accuracy obtained by 3D MRI and CT imaging. The positive contrast is shown to be obtained in homogeneous and in heterogeneous tissue. The dual-plane MRI technique allows the brachytherapy source to be tracked in 3D with millimeter accuracy with a temporal resolution of approximately 4 s.

  3. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  4. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  5. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox.

    PubMed

    Hammarlund, Erika; Lewis, Matthew W; Carter, Shirley V; Amanna, Ian; Hansen, Scott G; Strelow, Lisa I; Wong, Scott W; Yoshihara, Paul; Hanifin, Jon M; Slifka, Mark K

    2005-09-01

    Approximately 50% of the US population received smallpox vaccinations before routine immunization ceased in 1972 for civilians and in 1990 for military personnel. Several studies have shown long-term immunity after smallpox vaccination, but skepticism remains as to whether this will translate into full protection against the onset of orthopoxvirus-induced disease. The US monkeypox outbreak of 2003 provided the opportunity to examine this issue. Using independent and internally validated diagnostic approaches with >or=95% sensitivity and >or=90% specificity for detecting clinical monkeypox infection, we identified three previously unreported cases of monkeypox in preimmune individuals at 13, 29 and 48 years after smallpox vaccination. These individuals were unaware that they had been infected because they were spared any recognizable disease symptoms. Together, this shows that the US monkeypox outbreak was larger than previously realized and, more importantly, shows that cross-protective antiviral immunity against West African monkeypox can potentially be maintained for decades after smallpox vaccination.

  6. Unconventional low-cost fabrication and patterning techniques for point of care diagnostics.

    PubMed

    Sharma, Himanshu; Nguyen, Diep; Chen, Aaron; Lew, Valerie; Khine, Michelle

    2011-04-01

    The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative 'lab on chip' technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches.

  7. Dielectric properties of human diabetic blood: Thermodynamic characterization and new prospective for alternative diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Farsaci, F.; Ficarra, S.; Russo, A.; Galtieri, A.; Tellone, E.

    2015-07-01

    In this paper, we will show the possibility of studying physical properties and irreversible phenomena that occur in blood by applying the dielectric Kluitenberg's nonequilibrium thermodynamic theory. Namely, we shall use some recent extensions of this theory that allow to infer its main characteristic parameters from experimental measures. Applying these results to the study of normal and diabetic blood we show, by comparing them, that it is possible to determine the difference, in some details, of the amount of particular phenomena occurring inside them and give a biological meaning to these phenomena. Moreover, observing a correspondence between a particular value of the frequency for which state coefficients are equal and glucose levels we introduce an alternative diagnostic method to measure the values of the glucose in the blood by determining only this frequency value. The thermodynamic description will be completed by determining the trend of the entropy production.

  8. [THE MOLECULAR TECHNIQUES OF DIAGNOSTIC OF GINGIVITIS AND PERIODONTITIS IN HIV-INFECTED PATIENTS].

    PubMed

    Tsarev, V N; Nikolaeva, E N; Iagodina, E V; Trefilova, Yu A; Ippolitov, E V

    2016-01-01

    The examination was carried out in the Moscow clinical infectious hospital No 2 concerning 102 patients with verified diagnosis "AIDS-infection" and seropositive according results of detection of anti-HIV-antibodies in blood serum. The study was organized to analyze rate ofcolonization of gums with virulent anaerobic bacteria in HIV-infected (polymerase chain reaction) and antibodies to HIV in gingival fluid (enzyme-linked immunosorbent assay). It is established that in HIV-infected patients, in scrape from gingival sulcus dominate anaerobic bacteria P. gigngivalis and A. ctinomycetemcomitans and in case of periodontitis--P. gingivalis and T. forsythia. The received data permits recommending the test-system "Multident-5" for polymerase chain reaction diagnostic. The reagents kit "Calypte®HIV-1/2"--for enzyme-linked immunosorbent assay gingival fluid. The results of polymerase chain reaction and enzyme-linked immunosorbent assay have no impact of concomitant stomatological (periodontitis, gingivitis) and somatic pathology.

  9. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    NASA Technical Reports Server (NTRS)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  10. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma.

    PubMed

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  11. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  12. Comparison of PCR and other diagnostic techniques for detection of Helicobacter pylori infection in dyspeptic patients.

    PubMed Central

    Weiss, J; Mecca, J; da Silva, E; Gassner, D

    1994-01-01

    A sensitive and specific PCR-based assay to detect the Helicobacter pylori 16S rRNA gene present in formalin-fixed paraffin-embedded gastric biopsy specimens has been developed. A total of 95 patients with dyspepsia were evaluated for the presence of chronic active gastritis and an infection with H. pylori through the use of diagnostic assays based on biopsy specimens and serology. The "gold standard" for the presence of the bacteria was direct detection in histological sections of biopsy specimens by Giemsa stain. The results obtained with the PCR assay performed on the biopsy specimens (94% sensitivity and 100% specificity) were equivalent to the detection of H. pylori immunoglobulin G antibodies by the commercially available second-generation Cobas Core anti-H. pylori immunoglobulin G enzyme immunoassay (94% sensitivity and 98% specificity) for the diagnosis of H. pylori infection. Urease testing and bacterial culture of the biopsy specimens were inferior (88 and 70% sensitivity and 96% and 98% specificity, respectively). A Western blot (immunoblot) analysis had slightly greater sensitivity (96%), although specificity was reduced to 93%. This research prototype PCR assay was shown to be highly reliable for the detection of infection with H. pylori and the presence of chronic active gastritis in the population studied. PMID:7929755

  13. Comparison of diagnostic techniques for the detection of Cryptosporidium oocysts in animal samples.

    PubMed

    Ezzaty Mirhashemi, Marzieh; Zintl, Annetta; Grant, Tim; Lucy, Frances E; Mulcahy, Grace; De Waal, Theo

    2015-01-01

    While a large number of laboratory methods for the detection of Cryptosporidium oocysts in faecal samples are now available, their efficacy for identifying asymptomatic cases of cryptosporidiosis is poorly understood. This study was carried out to determine a reliable screening test for epidemiological studies in livestock. In addition, three molecular tests were compared to identify Cryptosporidium species responsible for the infection in cattle, sheep and horses. A variety of diagnostic tests including microscopic (Kinyoun's staining), immunological (Direct Fluorescence Antibody tests or DFAT), enzyme-linked immunosorbent assay (ELISA), and molecular methods (nested PCR) were compared to assess their ability to detect Cryptosporidium in cattle, horse and sheep faecal samples. The results indicate that the sensitivity and specificity of each test is highly dependent on the input samples; while Kinyoun's and DFAT proved to be reliable screening tools for cattle samples, DFAT and PCR analysis (targeted at the 18S rRNA gene fragment) were more sensitive for screening sheep and horse samples. Finally different PCR primer sets targetedat the same region resulted in the preferential amplification of certain Cryptosporidium species when multiple species were present in the sample. Therefore, for identification of Cryptosporidium spp. in the event of asymptomatic cryptosporidiosis, the combination of different 18S rRNA nested PCR primer sets is recommended for further epidemiological applications and also tracking the sources of infection.

  14. Comparison of diagnostic techniques for the detection of Cryptosporidium oocysts in animal samples

    PubMed Central

    Mirhashemi, Marzieh Ezzaty; Zintl, Annetta; Grant, Tim; Lucy, Frances E.; Mulcahy, Grace; De Waal, Theo

    2015-01-01

    While a large number of laboratory methods for the detection of Cryptosporidium oocysts in faecal samples are now available, their efficacy for identifying asymptomatic cases of cryptosporidiosis is poorly understood. This study was carried out to determine a reliable screening test for epidemiological studies in livestock. In addition, three molecular tests were compared to identify Cryptosporidium species responsible for the infection in cattle, sheep and horses. A variety of diagnostic tests including microscopic (Kinyoun's staining), immunological (Direct Fluorescence Antibody tests or DFAT), enzyme-linked immunosorbent assay (ELISA), and molecular methods (nested PCR) were compared to assess their ability to detect Cryptosporidium in cattle, horse and sheep faecal samples. The results indicate that the sensitivity and specificity of each test is highly dependent on the input samples; while Kinyoun's and DFAT proved to be reliable screening tools for cattle samples, DFAT and PCR analysis (targeted at the 18S rRNA gene fragment) were more sensitive for screening sheep and horse samples. Finally different PCR primer sets targeted at the same region resulted in the preferential amplification of certain Cryptosporidium species when multiple species were present in the sample. Therefore, for identification of Cryptosporidium spp. in the event of asymptomatic cryptosporidiosis, the combination of different 18S rRNA nested PCR primer sets is recommended for further epidemiological applications and also tracking the sources of infection. PMID:25662435

  15. Combining polarimetry and spectropolarimetry techniques in diagnostics of cancer changes in biological tissues

    NASA Astrophysics Data System (ADS)

    Yermolenko, Sergey; Ivashko, Pavlo; Gruia, Ion; Gruia, Maria; Peresunko, Olexander; Zelinska, Natalia; Voloshynskyi, Dmytro; Fedoruk, Olexander; Zimnyakov, Dmitry; Alonova, Marina

    2015-02-01

    The aim of the study is combining polarimetry and spectropolarimetry techniques for identifying the changes of opticalgeometrical structure in different kinds of biotissues with solid tumours. It is researched that a linear dichroism appears in biotissues (human esophagus, muscle tissue of rats, human prostate tissue, cervical smear) with cancer diseases, magnitude of which depends on the type of the tissue and on the time of cancer process development.

  16. Diagnosis of soil-transmitted helminthiasis in an Amazonic community of Peru using multiple diagnostic techniques.

    PubMed

    Machicado, Jorge D; Marcos, Luis A; Tello, Raul; Canales, Marco; Terashima, Angelica; Gotuzzo, Eduardo

    2012-06-01

    An observational descriptive study was conducted in a Shipibo-Conibo/Ese'Eja community of the rainforest in Peru to compare the Kato-Katz method and the spontaneous sedimentation in tube technique (SSTT) for the diagnosis of intestinal parasites as well as to report the prevalence of soil-transmitted helminth (STH) infections in this area. A total of 73 stool samples were collected and analysed by several parasitological techniques, including Kato-Katz, SSTT, modified Baermann technique (MBT), agar plate culture, Harada-Mori culture and the direct smear examination. Kato-Katz and SSTT had the same rate of detection for Ascaris lumbricoides (5%), Trichuris trichiura (5%), hookworm (14%) and Hymenolepis nana (26%). The detection rate for Strongyloides stercoralis larvae was 16% by SSTT and 0% by Kato-Katz, but 18% by agar plate culture and 16% by MBT. The SSTT also had the advantage of detecting multiple intestinal protozoa such as Blastocystis hominis (40%), Giardia intestinalis (29%) and Entamoeba histolytica/E. dispar (16%). The most common intestinal parasites found in this community were B. hominis, G. intestinalis, H. nana, S. stercoralis and hookworm. In conclusion, the SSTT is not inferior to Kato-Katz for the diagnosis of common STH infections but is largely superior for detecting intestinal protozoa and S. stercoralis larvae.

  17. Beamlet laser diagnostics

    SciTech Connect

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  18. Temporal changes in liver cancer incidence rates in Japan: accounting for death certificate inaccuracies and improving diagnostic techniques.

    PubMed

    Sharp, G B; Cologne, J B; Fukuhara, T; Itakura, H; Yamamoto, M; Tokuoka, S

    2001-09-01

    Primary liver cancer (PLC) rates have risen dramatically during the past few decades in some regions, particularly in Japan, where PLC is now the third major cause of cancer death. PLC is one of the most difficult tumors to diagnose correctly, because (i) the liver is a frequent site of cancer metastasis and (ii) death from PLC is often attributed to cirrhosis or chronic hepatitis. Also, because the disease is often rapidly fatal, a large proportion of liver cancer cases are identified based on death certificates alone without confirmation by clinical records. Thus, worldwide differences in published incidence rates for this disease reflect regional or national differences in both the accuracy of death certificates and the sensitivity of diagnostic methods. By comparing death certificate causes of death with those based on pathology review, we were able to adjust 1958--1994 incidence rates for a large Japanese cohort for these errors. Although the death certificate false-positive error rate declined, the false-negative error rate remained high throughout the study. The introduction of improved liver cancer diagnostic methods in Japan in the early 1980s was associated with a sharp increase in PLC incidence. We conclude that errors in death certificate causes of death and changes in liver cancer diagnostic techniques have had an important impact on the reported incidence of this disease. Taking these factors into account, rates of hepatocellular carcinoma rose between 2.4- and 4.3-fold in our Japanese cohort from 1960 to 1985, peaked about 1993 and declined thereafter. Incidence rates of cholangiocarcinoma remained stable through 1987.

  19. A fiber-optic diagnostic technique for mechanical detection of the laser-metal interaction underwater

    NASA Astrophysics Data System (ADS)

    Xu, R. Q.; Chen, X.; Shen, Z. H.; Lu, J.; Ni, X. W.

    2004-03-01

    A new fiber-optic force sensor based on optical beam deflection for the investigation of the mechanical effects during laser-metal interaction underwater is developed. This sensor is applied to detect the laser-induced plasma ablation force and liquid-jet impact during the cavitation bubble collapse near a solid boundary when a Q-switched laser is focused on a metal in water. The experimental results indicate the liquid-jet effect outweighs the well-known laser-induced plasma ablation force. This technique has the advantages of high-frequency response, simple structure, and nondestructive examination.

  20. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage induced in Rats by Contrast Enhanced Diagnostic Ultrasound?

    PubMed Central

    Miller, Douglas L.; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-01-01

    Objectives Glomerular capillary hemorrhage (GCH) can be induced by ultrasonic cavitation during contrast enhanced diagnostic ultrasound (CEDUS), an important nonthermal ultrasound bioeffect. Recent studies of pulmonary ultrasound exposure have shown that thresholds for another nonthermal bioeffect of ultrasound, pulmonary capillary hemorrhage, is strongly influenced by whether or not xylazine is included in the specific anesthetic technique. Methods In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for the induction of GCH in rats by 1.6 MHz intermittent diagnostic ultrasound with contrast agent (similar to Definity). GCH was measured as a percentage of glomeruli with hemorrhage found in histological sections for groups of rats scanned at different peak rarefactional pressure amplitudes. Results There was a significant difference between the magnitude of the GCH between the two anesthetics at 2.3 MPa with 45.6 % GCH for ketamine only, increasing to 63.2 % GCH for ketamine plus xylazine anesthesia (P<0.001). However, the thresholds for the two anesthesia methods were virtually identical at 1.0 MPa, based on linear regression of the exposure response data. Conclusions Therefore, thresholds for CEDUS induced injury of the microvasculature appears to be minimally affected by anesthesia methods. PMID:26764276

  1. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  2. New imaging technique using degree of polarization for the study of polarimetric properties for non-invasive biomedical diagnostic

    NASA Astrophysics Data System (ADS)

    Buscemi, Isabella C.; Guyot, Steve; Lemoine, Jacques

    2012-06-01

    This research proposes a new imaging technique for near real time multispectral acquisition using CCD RGB cameras of the so called "Degree Of Polarization" (DOP) in polarimetry for future clinical investigation. The aim of exploiting the DOP as the contrast element is to demonstrate that the elliptical DOP provides more information characterizing complex medium than the more traditional linear and circular ones. The system considers an incoherent input white light beam and opportunely calibrated nematic crystals (LCVR), so no mechanical tools are necessary. The particular features of the system indicate it to be the perfect candidate for a new imaging system considering in-vivo (as well as ex-vivo) non invasive superficial diagnostic for medical application as dermatologic diagnostics, since no type of sample preparation is necessary, i.e. tissue biopsy, radiation or contrast agent injection. Thus the biomedical application of this method suggests a simple, direct, fast and also easily exploitable future employment, as a desirable mean for clinical investigation but also for digital recognition in biometrics. Further new elements to improve the model of light scattering and matter-light interaction will be acquired, in particular considering a very complete characterization of the system response using latex microspheres suspension to simulate turbid media with different concentration.

  3. New analysis methods to push the boundaries of diagnostic techniques in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Lungaroni, M.; Murari, A.; Peluso, E.; Gelfusa, M.; Malizia, A.; Vega, J.; Talebzadeh, S.; Gaudio, P.

    2016-04-01

    In the last years, new and more sophisticated measurements have been at the basis of the major progress in various disciplines related to the environment, such as remote sensing and thermonuclear fusion. To maximize the effectiveness of the measurements, new data analysis techniques are required. First data processing tasks, such as filtering and fitting, are of primary importance, since they can have a strong influence on the rest of the analysis. Even if Support Vector Regression is a method devised and refined at the end of the 90s, a systematic comparison with more traditional non parametric regression methods has never been reported. In this paper, a series of systematic tests is described, which indicates how SVR is a very competitive method of non-parametric regression that can usefully complement and often outperform more consolidated approaches. The performance of Support Vector Regression as a method of filtering is investigated first, comparing it with the most popular alternative techniques. Then Support Vector Regression is applied to the problem of non-parametric regression to analyse Lidar surveys for the environments measurement of particulate matter due to wildfires. The proposed approach has given very positive results and provides new perspectives to the interpretation of the data.

  4. Diagnostic Value of Hook Wire Localization Technique for Non-Palpable Breast Lesions

    PubMed Central

    Demiral, Gokhan; Senol, Metin; Bayraktar, Baris; Ozturk, Hasan; Celik, Yahya; Boluk, Salih

    2016-01-01

    Background The aim of this study was to investigate the validity of hook wire localization biopsy for non-palpable breast lesions which were detected by ultrasonography (USG) or mammography (MMG). Methods In this retrospective study, USG or MMG-guided hook wire localization technique was performed on 83 patients who had non-palpable breast lesions. Then histopathological examination was performed on surgically removed specimens. All patients’ mammograms or ultrasonograms were categorized using Breast Imaging-Reporting and Data System (BI-RADS) classification. Results Radiologically, 27 (32.53%) patients were classified as BI-RADS 3, 49 (59.04%) BI-RADS 4, one (1.2%) BIRADS 5 and six (7.23%) BI-RADS 0. Histopathological results were benign in 68 (81.9%) and malignant in 15 (18.1%) patients. Twenty-seven patients were classified as BI-RADS 3 and definitive diagnoses for all were benign. Besides, 49 patients were classified as BI-RADS 4 and histopathologically 14 of them were reported as malignant, and 35 as benign. Sensitivity of MMG was 93% and specificity was 55%. For USG, the sensitivity was 100% and the specificity was 73%. Conclusion In early diagnosis of breast cancer, the validity of the imaging-guided hook wire localization biopsy of non-palpable breast lesions has been proved. The cooperation of surgeon, radiologist and pathologist increases the successfull results of hook wire localization technique. PMID:27081425

  5. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    PubMed Central

    Cordova-Fraga, Teodoro; Sosa, Modesto; Wiechers, Carlos; la Roca-Chiapas, Jose Maria De; Moreles, Alejandro Maldonado; Bernal-Alvarado, Jesus; Huerta-Franco, Raquel

    2008-01-01

    AIM: To study the esophageal transit time (ETT) and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI). METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright, fowler, and supine positions; 90º, 45º and 0º, respectively). RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions. The ETT means were 5.2 ± 1.1 s, 6.1 ± 1.5 s, and 23.6 ± 9.2 s for 90º, 45º and 0º, respectively. Pearson correlation results were r = -0.716 and P < 0.001 by subjects’ anatomical position, and r = -0.024 and P > 0.05 according the subject’s BMI. CONCLUSION: We demonstrated that using this biomagnetic technique, it is possible to measure the ETT and the effects of the anatomical position on the ETT. PMID:18837088

  6. An evaluation of diagnostic techniques utilized in the initial workup of pediatric patients with acute lymphocytic leukemia.

    PubMed

    Kuntz, D J; Leonard, J C; Nitschke, R M; Vanhoutte, J J; Wilson, D A; Basmadjian, G P

    1984-07-01

    The records of 32 pediatric patients with acute lymphocytic leukemia (ALL) were reviewed to evaluate the role of various diagnostic techniques used to assess the extent of extramedullary disease. Our findings indicate that adequate screening for hepatosplenomegaly is obtained by clinical assessment and for bone and renal involvement by bone scintigraphy including concomitant renal imaging. We recommend that radiographs be restricted to scintigraphically abnormal areas and/or sites of bone pain. Liver-spleen scintigraphy, gallium studies, intravenous pyelography, and ultrasound studies of the abdomen and pelvis should be utilized only to answer specific clinical questions. Evaluation in this manner reduces both radiation exposure and patient expense, while it adequately defines the extent of disease in these organs.

  7. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    SciTech Connect

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  8. A line-imaging velocity interferometer technique for shock diagnostics without x-ray preheat limitation

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Peng, Xiaoshi; Liu, Shenye; Xu, Tao; Mei, Lusheng; Jiang, Xiaohua; Ding, Yongkun

    2011-10-01

    A study was conducted with a line-imaging velocity interferometer on sandwich targets at the Shen Guang-III prototype laser facility in China, with the goal of eliminating the preheat effect. A sandwich target structure was used to reduce the x-ray preheat limitation (radiation temperature ˜170 eV) in a radiative drive shock experiment. With a thick ablator, the preheat effect appeared before the shock arrived at the window. After adding a shield layer of high-Z material on the ablator, x-rays which penetrated the ablator were so weak that the blank-out effect could not be measured. This experiment indicates that the sandwich target may provide a valuable technique in experiments such as equation of state and shock timing for inertial confinement fusion studies.

  9. MDR-TB screening in a setting with molecular diagnostic techniques: who got tested, who didn't and why?

    PubMed

    Shewade, H D; Govindarajan, S; Sharath, B N; Tripathy, J P; Chinnakali, P; Kumar, A M V; Muthaiah, M; Vivekananda, K; Paulraj, A K; Roy, G

    2015-06-21

    Contexte : Programme national révisé de Lutte contre la Tuberculose, Pondichéry, Inde, avec une structure de techniques de diagnostic moléculaire.Objectif : Déterminer l'abandon préalable au diagnostic et préalable au traitement et leurs raisons parmi des patients présumés atteints de tuberculose multirésistante (TB-MDR).Méthodes : Dans cette étude utilisant plusieurs méthodes, l'élément quantitatif consistait en une analyse de cohorte rétrospective, grâce à une revue de dossiers, de tous les patients présumés atteints de TB-MDR entre octobre 2012 et septembre 2013. L'élément qualitatif incluait des entretiens approfondis avec des informateurs clés impliqués dans la gestion programmatique des services de TB pharmacorésistante.Résultats : Sur 341 patients présumés TB-MDR éligibles, le taux d'abandon avant le diagnostic et avant le traitement a été de 45,5% (155/341) et 29% (2/7), respectivement. Les patients atteints de TB extra-pulmonaire (RR = 2,3), de coïnfection par le virus de l'immunodéficience humaine et TB (RR = 1,7), inscrits entre octobre et décembre 2012 (RR = 1,3) et identifiés à partir de centres de santé primaires/secondaires (RR = 1,8) avaient moins de chances d'être testés. Les thèmes qui ont émergé lors de l'analyse des données qualitatives ont été « l'absence d'un mécanisme systématique de suivi des patients référés pour culture et test de pharmaco sensibilité », « l'absence de services de coursier pour transporter les crachats », « le manque de connaissances et d'appropriation du personnel de santé en général », « les ruptures de stock de kits de diagnostic » et « la non-adhérence du patient ».Conclusion : En dépit de l'introduction de techniques de diagnostic moléculaire, les problèmes opérationnels de dépistage de la TB-MDR restent préoccupants et requièrent une attention urgente.

  10. Sheep as a Potential Source of Bovine TB: Epidemiology, Pathology and Evaluation of Diagnostic Techniques.

    PubMed

    Muñoz-Mendoza, M; Romero, B; Del Cerro, A; Gortázar, C; García-Marín, J F; Menéndez, S; Mourelo, J; de Juan, L; Sáez, J L; Delahay, R J; Balseiro, A

    2016-12-01

    Bovine tuberculosis (TB) infection is infrequently diagnosed in sheep. Most reports are from single individual cases or flock outbreaks. However, in Spain several outbreaks have been reported recently, all of which had epidemiological links with TB-infected cattle herds. A total of 897 sheep suspected of being infected with TB and belonging to 23 flocks cohabiting with TB-infected cattle herds and/or goats were tested between 2009 and 2013 in Galicia (north-western Spain), using pathological, immunological and molecular techniques. Of these, 50.44% were positive by culture, 83.23% by histopathology and 24.92%, 4.86% and 59.42% by single intradermal tuberculin test (SITT), interferon-γ and ELISA, respectively. Results suggest that in circumstances akin to those in our study, sheep may be considered as a potential source of TB. We conclude that under similar conditions, serious consideration should be given to TB testing sheep, as they may represent a potential risk to other susceptible co-habiting species. The SITT and ELISA are recommended as the simplest and most cost-effective initial approaches for the diagnosis of TB in sheep under field conditions. However, when possible, interferon-γ should be applied to increase sensitivity.

  11. Laser flash photolysis studies of atmospheric free radical chemistry using optical diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.

    1993-01-01

    Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.

  12. Diagnostic accuracy and safety of CT-guided fine needle aspiration biopsy of pulmonary lesions with non-coaxial technique: a single center experience with 442 biopsies

    PubMed Central

    Uzun, Çağlar; Akkaya, Zehra; Atman, Ebru Düşünceli; Üstüner, Evren; Peker, Elif; Gülpınar, Başak; Elhan, Atilla Halil; Ceyhan, Koray; Atasoy, Kayhan Çetin

    2017-01-01

    PURPOSE We aimed to evaluate the diagnostic accuracy and safety of computed tomography (CT)-guided biopsy of pulmonary lesions with fine needle aspiration (FNA) using non-coaxial technique. METHODS We analyzed 442 patients who underwent CT-guided lung biopsy with FNA and non-coaxial technique to determine the diagnostic outcomes, complication rates, and independent risk factors for diagnostic failure and pneumothorax. RESULTS Diagnostic accuracy, sensitivity, and specificity were 97.6%, 97.3%, and 100%, respectively. Age and >35 mm lesion size were significant risk factors for diagnostic failure. The rates of pneumothorax and chest tube placement were 19% and 2.9%, respectively. Middle and lower lobe location, lesion to pleura distance >7.5 mm, and >45° needle trajectory angle were significant risk factors for pneumothorax. CONCLUSION CT-guided FNA of pulmonary lesions with non-coaxial technique is a safe and reliable method with a relatively low pneumothorax rate and an acceptably high diagnostic accuracy. PMID:28029638

  13. Diagnostic limitations to accurate diagnosis of cholera.

    PubMed

    Alam, Munirul; Hasan, Nur A; Sultana, Marzia; Nair, G Balakrish; Sadique, A; Faruque, A S G; Endtz, Hubert P; Sack, R B; Huq, A; Colwell, R R; Izumiya, Hidemasa; Morita, Masatomo; Watanabe, Haruo; Cravioto, Alejandro

    2010-11-01

    The treatment regimen for diarrhea depends greatly on correct diagnosis of its etiology. Recent diarrhea outbreaks in Bangladesh showed Vibrio cholerae to be the predominant cause, although more than 40% of the suspected cases failed to show cholera etiology by conventional culture methods (CMs). In the present study, suspected cholera stools collected from every 50th patient during an acute diarrheal outbreak were analyzed extensively using different microbiological and molecular tools to determine their etiology. Of 135 stools tested, 86 (64%) produced V. cholerae O1 by CMs, while 119 (88%) tested positive for V. cholerae O1 by rapid cholera dipstick (DS) assay; all but three samples positive for V. cholerae O1 by CMs were also positive for V. cholerae O1 by DS assay. Of 49 stools that lacked CM-based cholera etiology despite most being positive for V. cholerae O1 by DS assay, 25 (51%) had coccoid V. cholerae O1 cells as confirmed by direct fluorescent antibody (DFA) assay, 36 (73%) amplified primers for the genes wbe O1 and ctxA by multiplex-PCR (M-PCR), and 31 (63%) showed El Tor-specific lytic phage on plaque assay (PA). Each of these methods allowed the cholera etiology to be confirmed for 97% of the stool samples. The results suggest that suspected cholera stools that fail to show etiology by CMs during acute diarrhea outbreaks may be due to the inactivation of V. cholerae by in vivo vibriolytic action of the phage and/or nonculturability induced as a host response.

  14. The problem of sexual imbalance and techniques of the self in the Diagnostic and Statistical Manual of Mental Disorders.

    PubMed

    Flore, Jacinthe

    2016-09-01

    This article examines the problematization of sexual appetite and its imbalances in the development of the Diagnostic and Statistical Manual of Mental Disorders (DSM) in the twentieth and twenty-first centuries. The dominant strands of historiographies of sexuality have focused on historicizing sexual object choice and understanding the emergence of sexual identities. This article emphasizes the need to contextualize these histories within a broader frame of historical interest in the problematization of sexual appetite. The first part highlights how sexual object choice, as a paradigm of sexual dysfunctions, progressively receded from medical interest in the twentieth century as the clinical gaze turned to the problem of sexual appetite and its imbalances. The second part uses the example of the newly introduced Female Sexual Interest/Arousal Disorder in the DSM-5 to explore how the Manual functions as a technique for taking care of the self. I argue that the design of the Manual and associated inventories and questionnaires paved the way for their interpretation and application as techniques for self-examination.

  15. Identifying Students' Mathematical Skills from a Multiple-Choice Diagnostic Test Using an Iterative Technique to Minimise False Positives

    ERIC Educational Resources Information Center

    Manning, S.; Dix, A.

    2008-01-01

    There is anecdotal evidence that a significant number of students studying computing related courses at degree level have difficulty with sub-GCE mathematics. Testing of students' skills is often performed using diagnostic tests and a number of computer-based diagnostic tests exist, which work, essentially, by testing one specific diagnostic skill…

  16. Applying InSAR technique to accurately relocate the epicentre for the 1999 Ms = 5.6 Kuqa earthquake in Xinjiang province, China

    NASA Astrophysics Data System (ADS)

    Zha, Xianjie; Fu, Rongshan; Dai, Zhiyang; Jing, Ping; Ni, Sidao; Huang, Jinshui

    2009-01-01

    The 1999 Ms = 5.6 Kuqa earthquake occurred in a seismically active belt between the Tianshan Mountain and the Traim basin. Because of the sparse seismic network and complex crustal structure, it is very difficult to accurately locate the epicentre for this event using seismic waves. The epicentres located by different research groups vary over a spatial range of 20-40km. Interferometric synthetic aperture radar (InSAR) is a geodetic technique with fine spatial resolution, good precision and wide coverage. An interferometric map of the epicentral region constrains the epicentre of this event. The arid climate and sparsely vegetation in the Kuqa region provide excellent conditions for InSAR studies. In this paper, we firstly construct a interferogram to map the coseismic deformation field due to the 1999 Kuqa earthquake using a coseismic interferometric pair of radar images acquired by the ESA ERS-2 satellite. Then, we develop a new geocoding method and apply it to the interferogram. Next, we infer the geometry of the seismogenic fault according to its focal mechanism and tectonic setting. To model the interferogram, we assume a dislocation buried in a uniform elastic half-space. Finally, we infer the epicentre of this earthquake to be located at (82.80°E, 41.92°N), which is close to the results of the National Earthquake Information Center of USGS and China Earthquake Administration. The epicentre location inferred from InSAR falls in the six-level isoseismal contour described by Xinjiang earthquake administration using the field investigations.

  17. Detection of Occult Lymph Node Metastases in Esophageal Cancer by Minimally Invasive Staging Combined with Molecular Diagnostic Techniques

    PubMed Central

    Kassis, Edmund S.; Nguyen, Ninh; Shriver, Sharon P.; Siegfried, Jill M.; Schauer, Philip R.

    1998-01-01

    Background and Objectives: Lymph node metastases are the most important prognostic factor in patients with esophageal cancer. Histologic examination misses micrometastases in up to 20% of lymph nodes evaluated. In addition, non-invasive imaging modalities are not sensitive enough to detect small lymph nodes metastases. The objective of this study was to investigate the use of reverse transcriptase-polymerase chain reaction (RT-PCR) of messenger RNA (mRNA) for carcinoembryonic antigen (CEA) to increase the detection of micrometastases in lymph nodes from patients with esophageal cancer. Methods: RT-PCR of CEA mRNA was performed in lymph nodes from patients with malignant and benign esophageal disease. Each specimen was examined histopathologically and by RT-PCR and the results were compared. Results: Metastases were present in 29 of 60 (48%) lymph nodes sample by minimally invasive staging from 13 patients with esophageal cancer when examined histopathologically. RT-PCR identified nodal metastases in 46 of these 60 (77%) samples. RT-PCR detected CEA mRNA in all 29 histologically positive samples and in 17 histologically negative lymph nodes. All lymph nodes from patients with benign disease (n=15) were negative both histopathologically and by RT-PCR. The stage of two patients was reclassified based on the RT-PCR results, which identified lymph node spread undetected histopathologically. Both of these patients developed recurrent disease after resection of the primary tumor. Conclusions: RT-PCR is more sensitive than histologic examination in the detection of lymph node metastases in esophageal cancer and can lead to diagnosis of a more advanced stage in some patients. The combination of minimally invasive surgical techniques in combination with new molecular diagnostic techniques may improve our ability to stage cancer patients. PMID:10036123

  18. Multispectral imaging techniques observing the dynamic changes in the hemoglobin concentrations as diagnostic tool for diseased tissues

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Noordmands, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf M.

    2010-02-01

    Tissue oxygenation imaging is a promising diagnostics tool to study the changes and dynamics of tissue perfusion reflecting pathologic and/or physiologic conditions of tissue. In clinical settings, imaging of local oxygenation or blood perfusion variations can be useful for e.g. detection of skin cancer, detection of early inflammation, effectiveness of peripheral nerve block anesthesia, study of the process of wound healing or localization of the cerebral area causing an epileptic attack. In this study, two oxygenation imaging methods based on multi-spectral techniques were evaluated: one system consisting of a CCD camera in combination with a Liquid Crystal Tunable Filter (420 - 730 nm or 650-1100 nm) and a broad band (white) light source, while the second system was a CCD camera in combination with a tunable multispectral LED light source (450-890nm). By collecting narrowband images at selected wavelengths, concentration changes of the different chromophores at the surface of the tissue (e.g. dO2Hb, dHHb and dtHb) can be calculated using the modified Lambert Beer equation. Two analyzing methods were used to calculate the concentration changes this to reduce the errors caused by movement of the tissue. In vivo measurements were obtained during skin oxygen changes induced by temporary arm clamping to validate the methods and algorithms. Functional information from the tissue surface was collected, in non-contact mode, by imaging the hemodynamic and oxygenation changes just below that surface. Both multi-spectral imaging techniques show promising results for detecting dynamic changes in the hemoglobin concentrations. The algorithms need to be optimized and image acquisition and processing needs to be developed top real time for practical clinical applications.

  19. Mutational Spectrum of DMD Mutations in Dystrophinopathy Patients: Application of Modern Diagnostic Techniques to a Large Cohort

    PubMed Central

    Flanigan, Kevin M.; Dunn, Diane; von Niederhausern, Andrew; Soltanzadeh, Payam; Gappmaier, Eduard; Howard, Michael T.; Sampson, Jacinda; Mendell, Jerry; Wall, Cheryl; King, Wendy; Pestronk, Alan; Florence, Julaine; Connolly, Anne; Mathews, Katherine D.; Stephan, Carrie; Laubenthal, Karla; Wong, Brenda; Morehart, Paula; Meyer, Amy; Finkel, Richard; Bonnemann, Carsten G.; Medne, Livija; Day, John W.; Dalton, Joline C.; Margolis, Marcia; Hinton, Veronica; Weiss, Robert B.

    2010-01-01

    Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X-linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with `private' mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multi-exon skipping approach directed toward exons 45 through 55. PMID:19937601

  20. Development of different diagnostic techniques for Endolimax piscium (archamoebae) and their applicability in Solea senegalensis clinical samples.

    PubMed

    Constenla, M; Padrós, F; Del Pozo, R; Palenzuela, O

    2016-12-01

    Systemic amoebiasis of sole is caused by Endolimax piscium, a cryptic parasitic archamoeba whose epidemiology and pathogeny are yet unknown. To establish reliable detection methods for this parasite, a battery of molecular diagnostic tools (ISH, PCR and qPCR) were developed and evaluated with a panel of clinical samples from symptomatic diseased fish and from apparently normal animals of different stocks. As there is neither enough background information on the epidemiology of the disease nor a validated reference method, comparison of tests used a composite reference method approach. The ISH technique was the most specific and sensitive in intestine samples and particularly useful as a reference confirmatory method, while the best method in muscle samples was qPCR. Application of the tests to asymptomatic fish demonstrated presence of parasites in a large proportion (>25%) of their intestines, suggesting that this is the point of entry of the amoebae and the initial stage in the development of the disease. The triggering factors that facilitate the breaching of the intestinal barrier by E. piscium, causing granulomatous lesions in other organs and systemic spreading, are not completely understood but our results point to the connective tissue as a preferential target for parasite development and migration.

  1. A Highly Accurate Technique for the Treatment of Flow Equations at the Polar Axis in Cylindrical Coordinates using Series Expansions. Appendix A

    NASA Technical Reports Server (NTRS)

    Constantinescu, George S.; Lele, S. K.

    2001-01-01

    Numerical methods for solving the flow equations in cylindrical or spherical coordinates should be able to capture the behavior of the exact solution near the regions where the particular form of the governing equations is singular. In this work we focus on the treatment of these numerical singularities for finite-differences methods by reinterpreting the regularity conditions developed in the context of pseudo-spectral methods. A generally applicable numerical method for treating the singularities present at the polar axis, when nonaxisymmetric flows are solved in cylindrical, coordinates using highly accurate finite differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing equations for the flow at the polar axis are derived using series expansions near r=0. The only information needed to calculate the coefficients in these equations are the values of the flow variables and their radial derivatives at the previous iteration (or time) level. These derivatives, which are multi-valued at the polar axis, are calculated without dropping the accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,2pi) to (-R,R)*(0,pi), where R is the radius of the computational domain. This allows the radial derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at points located on the polar axis. The proposed technique is illustrated by results from simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation (LES) methods. In term of the general robustness of the numerical method and smoothness of the solution close to the polar axis, the present results compare very favorably to similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r=0, following the method proposed recently by Mohseni and Colonius

  2. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  3. A New Diagnostic Mechanism of Instruction: A Dynamic, Real-Time and Non-Interference Quantitative Measurement Technique for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan; Chang, Te-Jeng; Wu, Ming-Hsiung

    2009-01-01

    The level of learners' expertise has been used as a metric and diagnostic mechanism of instruction. This metric influences mental effort directly according to the applications of cognitive load theory. Cognitive efficiency, an optimal measurement technique of expertise, was developed by Kalyuga and Sweller to replace instructional efficiency in…

  4. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  5. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  6. Prenatal Diagnosis Procedures and Techniques to Obtain a Diagnostic Fetal Specimen or Tissue: Maternal and Fetal Risks and Benefits.

    PubMed

    Wilson, R Douglas; Gagnon, Alain; Audibert, François; Campagnolo, Carla; Carroll, June

    2015-07-01

    Objectif : Offrir aux fournisseurs de soins de maternité et à leurs patientes des lignes directrices factuelles contemporaines en ce qui concerne les services de counseling traitant des risques et des avantages maternels propres à la tenue des interventions diagnostiques prénatales orientées par échographie (et/ou des techniques permettant l’établissement d’un diagnostic génétique) nécessaires dans les cas où il a été établi pendant la période prénatale que la grossesse serait exposée à des risques, ainsi qu’en ce qui concerne la prise de décisions subséquentes quant à la prise en charge de la grossesse (questions abordant des aspects tels que le niveau du fournisseur de soins obstétricaux, la surveillance prénatale, le lieu où devraient se dérouler les soins et l’accouchement, et la décision de poursuivre ou d’interrompre la grossesse). La présente directive clinique se limite aux services de counseling traitant des risques et des avantages maternels, et aux décisions en matière de prise en charge de la grossesse pour les femmes qui nécessitent (ou qui envisagent) la mise en œuvre d’une intervention ou d’une technique effractive orientée par échographie aux fins de l’établissement d’un diagnostic prénatal. Population de patientes : Femmes enceintes identifiées, à la suite de la mise en œuvre de protocoles établis de dépistage prénatal (taux sériques maternels ± imagerie, résultats d’analyse de l’ADN acellulaire indiquant des risques élevés, résultats anormaux au moment de l’imagerie fœtale diagnostique ou antécédents familiaux de troubles héréditaires), comme étant exposées à un risque accru d’anomalie génétique fœtale. Ces femmes pourraient nécessiter ou demander des services de counseling au sujet des risques et des avantages pour la grossesse de la tenue d’une intervention effractive orientée par échographie visant à déterminer l’étiologie, le diagnostic, et/ou la

  7. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  8. Toxoplasma gondii: history and diagnostic test development.

    PubMed

    Wyrosdick, Heidi M; Schaefer, John J

    2015-12-01

    Toxoplasma gondii is a protozoa that causes toxoplasmosis in people and other animals. It is considered one of the most common parasitic infections in the world due to its impressive range of hosts, widespread environmental contamination and the diverse means by which animals can be infected. Despite its ubiquity and numerous ongoing research efforts into both its basic biology and clinical management, many aspects of diagnosis and management of this disease are poorly understood. The range of diagnostic options that is available for veterinary diagnostic investigators are notably more limited than those available to medical diagnosticians, making accurate interpretation of each test result critical. The current review joins other reviews on the parasite with a particular emphasis on the history and continued development of diagnostic tests that are useful for veterinary diagnostic investigations. An understanding of the strengths and shortcomings of current diagnostic techniques will assist veterinary and public health officials in formulating effective treatment and control strategies in diverse animal populations.

  9. Fundamentals of quality assessment of molecular amplification methods in clinical diagnostics. International Federation of Clinical Chemistry Scientific Division Committee on Molecular Biology Techniques.

    PubMed

    Neumaier, M; Braun, A; Wagener, C

    1998-01-01

    The increasing interest in molecular biology diagnostics is a result of the tremendous gain of scientific knowledge in genetics, made possible especially since the introduction of amplification techniques. High expectations have been placed on genetic testing, and the number of laboratories now using the relevant technology is rapidly increasing--resulting in an obvious need for standardization and definition of laboratory organization. This communication is an effort towards that end. We address aspects that should be considered when structuring a new molecular diagnostic laboratory, and we discuss individual preanalytical and analytical procedures, from sampling to evaluation of assay results. In addition, different means of controlling contamination are discussed. Because the methodology is in constant change, no general standards can be defined. Accordingly, this publication is intended to serve as a recommendation for good laboratory practice and internal quality control and as a guide to troubleshooting, primarily in amplification techniques.

  10. Laser beam and tissue interactions: use of advanced therapeutic and diagnostic techniques: in-vitro experiments and in-vivo trials

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.

    2001-04-01

    The mechanism of laser beam and tissue interaction is governed by the technical characteristics of the laser beam and the optical properties of the tissue. The therapeutic laser wavelength, pulse duration and beam quality, as well as the laser radiation delivery systems, the ablation mechanisms and the diagnostic techniques to monitor a surgical process are studied in this work. Advanced therapeutic and diagnostic techniques, such as integrating sphere, atomic force microscopy and beam profiling are used in the experimental study. In vitro experiments on tissue, laser ablation and diagnosis using laser induced fluorescence are performed. Finally, in vivo animal trials of an endoscopic/laparoscopic laser prototype are realized, in the framework of the appropriate protocols.

  11. Calibration issues for neutron diagnostics

    SciTech Connect

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-12-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next.

  12. Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) are distinguished accurately: results of supervised learning techniques applied on clinical and inflammatory data.

    PubMed

    Maes, Michael; Twisk, Frank N M; Johnson, Cort

    2012-12-30

    There is much debate on the diagnostic classification of Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS) and chronic fatigue (CF). Post-exertional malaise (PEM) is stressed as a key feature. This study examines whether CF and CFS, with and without PEM, are distinct diagnostic categories. Fukuda's criteria were used to diagnose 144 patients with chronic fatigue and identify patients with CFS and CF, i.e. those not fulfilling the Fukuda's criteria. PEM was rated by means of a scale with defined scale steps between 0 and 6. CFS patients were divided into those with PEM lasting more than 24h (labeled: ME) and without PEM (labeled: CFS). The 12-item Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale was used to measure severity of illness. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, and lysozyme, and serum neopterin were employed as external validating criteria. Using fatigue, a subjective feeling of infection and PEM we found that ME, CFS, and CF were distinct categories. Patients with ME had significantly higher scores on concentration difficulties and a subjective experience of infection, and higher levels of IL-1, TNFα, and neopterin than patients with CFS. These biomarkers were significantly higher in ME and CFS than in CF patients. PEM loaded highly on the first two factors subtracted from the data set, i.e. "malaise-sickness" and "malaise-hyperalgesia". Fukuda's criteria are adequate to make a distinction between ME/CFS and CF, but ME/CFS patients should be subdivided into ME (with PEM) and CFS (without PEM).

  13. A New Automated Technique for the Construction of More Accurate Composite Depth Scales and an Analysis of Core Deformation in Different Sediment Types

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.

    2003-12-01

    A composite depth section reconstructs a continuous record of the sediment at a drilling site by splicing together cores from different holes; its corresponding composite depth scale describes the correlation of the sediments between holes. Both are important tools for analyzing the sediment recovered from a drilling site. The standard splicing technique for creating composite depth sections does not correct for distortion within cores, so that a sedimentary feature may have a slightly different composite depth in each hole. Additionally, the splicing technique often results in composite depths which are ˜10% greater than recorded drill depths. A new automated compositing technique aligns features between holes and prevents the artificial increase in composite depth. The results of this technique are compared with the traditional composite depth scale. Additionally, the new technique allows for analysis of the deformation and extension that occurs in cores during the drilling and extraction process. This study describes typical core deformation and its effect on calculated sedimentation rates for the carbonate and siliceous sediments of ODP Leg 138 and the terrigenous-dominated pelagic sediments of ODP Leg 154. Preliminary results indicate that cores from Leg 138 are stretched by more than 5% and those from Leg 154 by nearly 3%. For both legs, extension is greatest in the top half of cores, but variability in deformation may increase toward either end of a core.

  14. Non-invasive, photonics-based diagnostic, imaging, monitoring, and light delivery techniques for the recognition, quantification and treatment of malignant and chronic inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Davies, N.; Davies-Shaw, D.; Shaw, J. D.

    2007-02-01

    We report firsthand on innovative developments in non-invasive, biophotonic techniques for a wide range of diagnostic, imaging and treatment options, including the recognition and quantification of cancerous, pre-cancerous cells and chronic inflammatory conditions. These techniques have benefited from the ability to target the affected site by both monochromatic light and broad multiple wavelength spectra. The employment of such wavelength or color-specific properties embraces the fluorescence stimulation of various photosensitizing drugs, and the instigation and detection of identified fluorescence signatures attendant upon laser induced fluorescence (LIF) phenomena as transmitted and propagated by precancerous, cancerous and normal tissue. In terms of tumor imaging and therapeutic and treatment options, we have exploited the abilities of various wavelengths to penetrate to different depths, through different types of tissues, and have explored quantifiable absorption and reflection characteristics upon which diagnostic assumptions can be reliably based and formulated. These biophotonic-based diagnostic, sensing and imaging techniques have also benefited from, and have been further enhanced by, the integrated ability to provide various power levels to be employed at various stages in the procedure. Applications are myriad, including non-invasive, non destructive diagnosis of in vivo cell characteristics and functions; light-based tissue analysis; real-time monitoring and mapping of brain function and of tumor growth; real time monitoring of the surgical completeness of tumor removal during laser-imaged/guided brain resection; diagnostic procedures based on fluorescence life-time monitoring, the monitoring of chronic inflammatory conditions (including rheumatoid arthritis), and continuous blood glucose monitoring in the control of diabetes.

  15. Investigation of PACVD protective coating processes using advanced diagnostics techniques. Performance report, 1 September 1992--30 April 1993

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB{sub 2} and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB{sub 2}.

  16. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    NASA Astrophysics Data System (ADS)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  17. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  18. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    PubMed

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines.

  19. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion

    PubMed Central

    Otero-Millan, Jorge; Roberts, Dale C.; Lasker, Adrian; Zee, David S.; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines. PMID:26587699

  20. Technical note: Can the sulfur hexafluoride tracer gas technique be used to accurately measure enteric methane production from ruminally cannulated cattle?

    PubMed

    Beauchemin, K A; Coates, T; Farr, B; McGinn, S M

    2012-08-01

    An experiment was conducted to determine whether using ruminally cannulated cattle affects the estimate of enteric methane (CH(4)) emissions when using the sulfur hexafluoride (SF(6)) tracer technique with samples taken from a head canister. Eleven beef cattle were surgically fitted with several types of ruminal cannula (2C, 3C, 3C+washer, 9C; Bar Diamond, Parma, ID). The 2C and 3C models (outer and inner flanges with opposite curvature) had medium to high leakage, whereas the 9C models (outer and inner flanges with the same curvature) provided minimum to moderate leakage of gas. A total of 48 cow-day measurements were conducted. For each animal, a permeation tube containing sulfur hexafluoride (SF(6)) was placed in the rumen, and a sample of air from around the nose and mouth was drawn through tubing into an evacuated canister (head canister). A second sample of air was collected from outside the rumen near the cannula into another canister (cannula canister). Background concentrations were also monitored. The methane (CH(4)) emission was estimated from the daily CH(4) and SF(6) concentrations in the head canister (uncorrected). The permeation SF(6) release rate was then partitioned based on the proportion of the SF(6) concentration measured in the head vs. the cannula canister. The CH(4) emissions at each site were calculated using the two release rates and the two CH(4):SF(6) concentration ratios. The head and cannula emissions were summed to obtain the total emission (corrected). The difference (corrected - uncorrected) in CH4 emission was attributed to the differences in CH(4):SF(6) ratio at the 2 exit locations. The proportions of CH(4) and SF(6) recovered at the head were greater (P < 0.001) for the 9C cannulas (64% and 66%) compared with the other cannulas, which were similar (P > 0.05; 2C, 6% and 4%; 3C, 17% and 15%; 3C+washer, 19% and 14%). Uncorrected CH(4) emissions were ± 10% of corrected emissions for 53% of the cow-day measurements. Only when more

  1. Application of t-LASCA and speckle-averaging techniques for diagnostics of malignant tumors on animal models

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Laskavy, Vladislav; Golova, Alina; Polyanina, Tatyana; Ulianova, Onega; Feodorova, Valentina; Ulyanov, Alexander

    2011-10-01

    Method t-LASCA has been adopted for diagnostics of malignant tissue on animal models. Investigations of tumors on inbred mice (line BALB/c) after the inoculation of syngeneic myeloma cells (line Sp.2/0-Ag.8) have been carried out. The efficiency of application of t-LASCA for tumor investigations has been proven. It has been also found that map of time-averaged speckles is more informative rather than LASCA-image.

  2. Application of t-LASCA and speckle-averaging techniques for diagnostics of malignant tumors on animal models

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Laskavy, Vladislav; Golova, Alina; Polyanina, Tatyana; Ulianova, Onega; Feodorova, Valentina; Ulyanov, Alexander

    2012-03-01

    Method t-LASCA has been adopted for diagnostics of malignant tissue on animal models. Investigations of tumors on inbred mice (line BALB/c) after the inoculation of syngeneic myeloma cells (line Sp.2/0-Ag.8) have been carried out. The efficiency of application of t-LASCA for tumor investigations has been proven. It has been also found that map of time-averaged speckles is more informative rather than LASCA-image.

  3. Semi-Empirical Calibration Technique for the MSE Diagnostic on the JET and DIII-D Tokamaks

    SciTech Connect

    Makowski, M A; Brix, M; Hawkes, N C

    2008-06-02

    Calibration of the MSE diagnostic is technically straightforward but complicated by a number of practical considerations that potentially introduce systematic errors. We have developed a semi-empirical method to optimize calibrations that is based on constraining the calibration to agree with equilibria derived from simple current-ramp discharges. The optimized calibrations quantitatively improve the equilibrium reconstructions and yield good agreement between the onset of a variety of MHD phenomena and the predicted appearance of corresponding mode rational surfaces.

  4. [THE TECHNIQUE OF HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR SIMULTANEOUS DIAGNOSTIC OF INHERENT HYPERPLASIA OF ADRENAL GLANDS TYPE I AND II].

    PubMed

    Dutov, A A; Nikitin, D A; Lukyanova, Yu L; Shemiakina, N A

    2016-01-01

    The article considers the technique of high-performance liquid chromatography making it possible simultaneously detect cortisol, cortisone and secondary steroids in serum for consequent analysis of common reversed-phase high-performance liquid chromatography with ultraviolet under 240 nm. The liquid-liquid extraction from alkaline medium in diethyl ether The separation using column of 150x4.6 size ODS 3.5 mkm in isocratic mode. The eluent acetonitrile--0.02 M phosphate buffer pH 8.0--isopropanol (40:60:1). The application of proposed technique managed to separate cortisol, cortisone, dexamethasone, corticosterone, 11-desoxicortisol, testosterone, desoxicorticosterone, 17α-gidroxiprogesterone and androstendion in 20 minutes. The simplicity, reproducibility and sufficient selectivity and sensitivity of technique permit implement it in clinical practice for simultaneous diagnostic of inherent hyperplasia of adrenal glands type I and II.

  5. A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices.

    PubMed

    Whitty-Léveillé, Laurence; Turgeon, Keven; Bazin, Claude; Larivière, Dominic

    2017-04-08

    The recent commercialisation of inductively coupled plasma tandem mass spectrometric (ICP-MS/MS) instruments has provided analytical chemists with a new tool to properly quantify atomic composition in a variety of matrices with minimal sample preparation. In this article, we report on our assessment of the compatibility of 3 sample preparation techniques (open-vessel acid digestion, microwave digestion and alkaline fusion) for the quantification of rare earth elements (REEs) in mineral matrices. The combination of the high digestion temperatures (1050 °C) and using LiBO2 as a flux was the most effective strategy for the digestion of all rare earth elements in mineral matrices and was compatible with ICP-MS/MS measurements. We also assessed the analytical performances of ICP-MS/MS against other plasma-based instrumentation (microwave induced plasma and inductively coupled plasma atomic emission spectroscopy (MIP-AES and ICP-AES, respectively) and single quadrupole inductively coupled plasma mass spectrometry (ICP-MS). The comparative study showed that the concentrations obtained by ICP-MS/MS are in excellent agreement with the certified reference material values, and much more suited than the other analytical techniques tested for the quantification of REEs, which exhibited low detectability and/or spectral interferences for some elements/isotopes. Finally, the ruggedness of the analytical protocol proposed which combines a rapid sample dissolution step performed by an automated fusion unit and an ICP-MS/MS as a detector was established using various certified mineral matrices containing variable levels of REEs.

  6. Recording triggered EMG thresholds from axillary chest wall electrodes: a new refined technique for accurate upper thoracic (T2-T6) pedicle screw placement.

    PubMed

    Regidor, Ignacio; de Blas, Gema; Barrios, Carlos; Burgos, Jesús; Montes, Elena; García-Urquiza, Sergio; Hevia, Edurado

    2011-10-01

    This study was aimed at evaluating the sensitivity and safety of a new technique to record triggered EMG thresholds from axillary chest wall electrodes when inserting pedicle screws in the upper thoracic spine (T2-T6). A total of 248 (36.6%) of a total of 677 thoracic screws were placed at the T2-T6 levels in 92 patients with adolescent idiopathic scoliosis. A single electrode placed at the axillary midline was able to record potentials during surgery from all T2-T6 myotomes at each side. Eleven screws were removed during surgery because of malposition according to intraoperative fluoroscopic views. Screw position was evaluated after surgery in the remaining 237 screws using a CT scan. Malposition was detected in 35 pedicle screws (14.7%). Pedicle medial cortex was breached in 24 (10.1%). Six screws (2.5%) were located inside the spinal canal. Mean EMG threshold was 24.44 ± 11.30 mA in well-positioned screws, 17.98 ± 8.24 mA (p < 0.01) in screws violating the pedicle medial cortex, and 10.38 ± 3.33 mA (p < 0.005) in screws located inside the spinal canal. Below a threshold of 12 mA, 33.4% of the screws (10/30) were malpositioned. Furthermore, 36% of the pedicle screws with t-EMG stimulation thresholds within the range 6-12 mA were malpositioned. In conclusion, assessment of upper thoracic pedicle screw placement by recording tEMG at a single axillary electrode was highly reliable. Thresholds below 12 mA should alert surgeons to suspect screw malposition. This technique simplifies tEMG potential recording to facilitate safe placement of pedicle screws at upper thoracic levels.

  7. Accurate measurements of Primary Standard Gas Mixtures (PSMs) of CH4 in synthetic and scrubbed real air analyzed by two independent measuring techniques: CRDS and GC-FID

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Viallon, Joële; Moussay, Philippe; Choteau, Tiphaine; Wielgosz, Robert Ian

    2014-05-01

    In 2013 the BIPM organized the international comparison CCQM-K82 designed to evaluate the level of comparability between National Metrology Institutes (NMI) preparative capabilities for gravimetric methane in air primary reference mixtures in the range (1800-2200) nmol mol-1. This required the development of a measurement facility to compare standards, which was validated prior to the comparison with a suite of ten standards of methane in air prepared gravimetrically by NIST. The mixtures were intentionally prepared in two different air matrices, half in scrubbed real air and half in synthetic, to demonstrate that the use of synthetic air based standards did not introduced any bias for the measurement of atmospheric methane concentrations. The BIPM facility is based on two analytical techniques used under repeatability conditions, namely, cavity ring-down spectroscopy (CRDS) and gas chromatography (GC-FID). GC-FID measurements were performed following a traditional protocol including ratios to a stable control cylinder, giving a typical relative uncertainty of 0.025%. CRDS measurements were performed with the same protocol, but also in a much shorter process that did not use any control cylinder, allowing the reduction of the relative uncertainty to 0.01%. Using the ten standards as references to construct a calibration line, all protocols resulted in a good linearity with very similar residuals. In particular, no effect of the air matrix was observed, as could be especially expected in CRDS due to different pressure broadening parameters, demonstrating the close matching between synthetic and scrubbed real air matrices.

  8. An ultra-clean technique for accurately analysing Pb isotopes and heavy metals at high spatial resolution in ice cores with sub-pg g(-1) Pb concentrations.

    PubMed

    Burn, Laurie J; Rosman, Kevin J R; Candelone, Jean-Pierre; Vallelonga, Paul; Burton, Graeme R; Smith, Andrew M; Morgan, Vin I; Barbante, Carlo; Hong, Sungmin; Boutron, Claude F

    2009-02-23

    Measurements of Pb isotope ratios in ice containing sub-pg g(-1) concentrations are easily compromised by contamination, particularly where limited sample is available. Improved techniques are essential if Antarctic ice cores are to be analysed with sufficient spatial resolution to reveal seasonal variations due to climate. This was achieved here by using stainless steel chisels and saws and strict protocols in an ultra-clean cold room to decontaminate and section ice cores. Artificial ice cores, prepared from high purity water were used to develop and refine the procedures and quantify blanks. Ba and In, two other important elements present at pg g(-1) and fg g(-1) concentrations in Polar ice, were also measured. The final blank amounted to 0.2+/-0.2 pg of Pb with (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of 1.16+/-0.12 and 2.35+/-0.16, respectively, 1.5+/-0.4 pg of Ba and 0.6+/-2.0 fg of In, most of which probably originates from abrasion of the steel saws by the ice. The procedure was demonstrated on a Holocene Antarctic ice core section and was shown to contribute blanks of only approximately 5%, approximately 14% and approximately 0.8% to monthly resolved samples with respective Pb, Ba and In concentrations of 0.12 pg g(-1), 0.3 pg g(-1) and 2.3 fg g(-1). Uncertainties in the Pb isotopic ratio measurements were degraded by only approximately 0.2%.

  9. New diagnostic tools in schistosomiasis.

    PubMed

    Utzinger, J; Becker, S L; van Lieshout, L; van Dam, G J; Knopp, S

    2015-06-01

    Schistosomiasis is a water-based parasitic disease that affects over 250 million people. Control efforts have long been in vain, which is one reason why schistosomiasis is considered a neglected tropical disease. However, since the new millennium, interventions against schistosomiasis are escalating. The initial impetus stems from a 2001 World Health Assembly resolution, urging member states to scale-up deworming of school-aged children with the anthelminthic drug praziquantel. Because praziquantel is safe, efficacious and inexpensive when delivered through the school platform, diagnosis before drug intervention was deemed unnecessary and not cost-effective. Hence, there was little interest in research and development of novel diagnostic tools. With the recent publication of the World Health Organization (WHO) Roadmap to overcome the impact of neglected tropical diseases in 2020, we have entered a new era. Elimination of schistosomiasis has become the buzzword and this has important ramifications for diagnostic tools. Indeed, measuring progress towards the WHO Roadmap and whether local elimination has been achieved requires highly accurate diagnostic assays. Here, we introduce target product profiles for diagnostic tools that are required for different stages of a schistosomiasis control programme. We provide an update of the latest developments in schistosomiasis diagnosis, including microscopic techniques, rapid diagnostic tests for antigen detection, polymerase chain reaction (PCR) assays and proxy markers for morbidity assessments. Particular emphasis is placed on challenges and solutions for new technologies to enter clinical practice.

  10. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    SciTech Connect

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed and results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).

  11. [Epidemics of schistosomiasis in military staff assigned to endemic areas: standard diagnostic techniques and the development of real-time PCR techniques].

    PubMed

    Biance-Valero, E; De Laval, F; Delerue, M; Savini, H; Cheinin, S; Leroy, P; Soullié, B

    2013-05-01

    The authors report the results of molecular biology techniques for the early diagnosis of cases (invasion phase) of schistosomiasis during two epidemics occurring during French military projects in the Central African Republic and Madagascar. The use of these techniques in real time for subjects not residing in the endemic area significantly improves the sensitivity of screening. The attack rates of these episodes, according to a case definition that took positive specific PCR results into account, were 59% and 26%. These results are a concrete illustration of the proverb that "yaws begin where the trail stops".

  12. Clinical application of Acoustic Radiation Force Impulse Imaging with Virtual Touch IQ in breast ultrasound: diagnostic performance and reproducibility of a new technique.

    PubMed

    Kapetas, Panagiotis; Pinker-Domenig, Katja; Woitek, Ramona; Clauser, Paola; Bernathova, Maria; Spick, Claudio; Helbich, Thomas; Baltzer, Pascal A

    2017-02-01

    Background Virtual Touch IQ (VTIQ) is a novel technique of quantitative sonoelastography that applies acoustic radiation force impulse (ARFI). Purpose To evaluate breast ARFI imaging with VTIQ in the clinical setting, with regard to reproducibility and diagnostic performance, and to specify cutoff limits for the differentiation of benign and malignant lesions. Material and Methods This retrospective study included 83 patients with 85 breast lesions (51 benign, 34 malignant) who received ARFI imaging with VTIQ. Two independent ARFI measurements of each lesion were performed and shear wave velocities (SWV) of the lesion and the adjacent tissues were measured. A lesion-to-fat velocity ratio (L/F Ratio) was calculated for each lesion. Diagnostic performance of SWV measurements and L/F Ratios was evaluated with receiver operating curve (ROC) analysis. The intraclass correlation coefficient and Bland-Altman plots were used to evaluate measurement reproducibility. Results All measurements showed equal diagnostic performance, as measured by the area under the ROC curve (0.853 for SWV, 0.882 for the L/F Ratio). At a cutoff value of 3.23 m/s, sensitivity and specificity were 82.4% and 80.4%, respectively. An L/F Ratio cutoff value of 2.23 revealed a sensitivity and specificity of 89.7% and 76.5%. The reproducibility of the SWV measurements was moderate (limits of agreement, 40.3-44.4%) and higher than that of the L/F Ratios (54.5-60.2%). Conclusion ARFI imaging with VTIQ is a novel, moderately reproducible, quantitative elastography technique, which provides useful information for the differentiation of benign and malignant breast lesions in the clinical setting.

  13. Ante- and postmortem diagnostic techniques for anthrax: rethinking pathogen exposure and the geographic extent of the disease in wildlife.

    PubMed

    Bagamian, Karoun H; Alexander, Kathleen A; Hadfield, Ted L; Blackburn, Jason K

    2013-10-01

    Although antemortem approaches in wildlife disease surveillance are common for most zoonoses, they have been used infrequently in anthrax surveillance. Classically, anthrax is considered a disease with extremely high mortality. This is because anthrax outbreaks are often detected ex post facto through wildlife or livestock fatalities or spillover transmission to humans. As a result, the natural prevalence of anthrax infection in animal populations is largely unknown. However, in the past 20 yr, antemortem serologic surveillance in wildlife has indicated that not all species exposed succumb to infection, and anthrax exposure may be more widespread than originally appreciated. These studies brought about a multitude of new questions, many of which can be addressed by increased antemortem serologic surveillance in wildlife populations. To fully understand anthrax transmission dynamics and geographic extent, it is important to identify exposure in wildlife hosts and associated factors and, in turn, understand how these influences may drive environmental reservoir dynamics and concurrent disease risk in livestock and humans. Here we review our current understanding of the serologic response to anthrax among wildlife hosts and serologic diagnostic assays used to augment traditional postmortem anthrax surveillance strategies. We also provide recommendations for the use of serology and sentinel species surveillance approaches in anthrax research and management.

  14. Diagnostic performance of the Forced Oscillation Technique in the detection of early respiratory changes in rheumatoid arthritis.

    PubMed

    Faria, A D; Lopes, A J; Jansen, J M; Pinheiro, G C; Melo, P L

    2010-01-01

    The objective of this study was to evaluate the clinical potential of the Forced Oscillation Technique (FOT) in the detection of the early alterations in respiratory mechanics of Rheumatoid Arthritis (RA) patients. A total of 36 individuals were analyzed, 18 healthy and 18 with RA. The clinical usefulness of the parameters was evaluated investigating sensibility (Se), specificity (Sp) and the area under the receiver operating characteristic curve (AUC). In the RA group, all the 3 studied parameters obtained high accuracy for clinical use (AUC>0.9), while in spirometric parameters, no parameter obtained appropriate accuracy for clinical use (AUC < 0.7). In conclusion, the parameters obtained by FOT presented adequate Se and Sp, indicating that this technique can be helpful in the evaluation of the early respiratory mechanical alterations in patients with RA.

  15. Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs.

    PubMed

    Gallardo, C; Nieto, R; Soler, A; Pelayo, V; Fernández-Pinero, J; Markowska-Daniel, I; Pridotkas, G; Nurmoja, I; Granta, R; Simón, A; Pérez, C; Martín, E; Fernández-Pacheco, P; Arias, M

    2015-08-01

    This study represents a complete comparative analysis of the most widely used African swine fever (ASF) diagnostic techniques in the European Union (EU) using field and experimental samples from animals infected with genotype II ASF virus (ASFV) isolates circulating in Europe. To detect ASFV, three different PCRs were evaluated in parallel using 785 field and experimental samples. The results showed almost perfect agreement between the Universal ProbeLibrary (UPL-PCR) and the real-time (κ = 0.94 [95% confidence interval {CI}, 0.91 to 0.97]) and conventional (κ = 0.88 [95% CI, 0.83 to 0.92]) World Organisation for Animal Health (OIE)-prescribed PCRs. The UPL-PCR had greater diagnostic sensitivity for detecting survivors and allows earlier detection of the disease. Compared to the commercial antigen enzyme-linked immunosorbent assay (ELISA), good-to-moderate agreement (κ = 0.67 [95% CI, 0.58 to 0.76]) was obtained, with a sensitivity of 77.2% in the commercial test. For ASF antibody detection, five serological methods were tested, including three commercial ELISAs, the OIE-ELISA, and the confirmatory immunoperoxidase test (IPT). Greater sensitivity was obtained with the IPT than with the ELISAs, since the IPT was able to detect ASF antibodies at an earlier point in the serological response, when few antibodies are present. The analysis of the exudate tissues from dead wild boars showed that IPT might be a useful serological tool for determining whether or not animals had been exposed to virus infection, regardless of whether antibodies were present. In conclusion, the UPL-PCR in combination with the IPT was the most trustworthy method for detecting ASF during the epidemic outbreaks affecting EU countries in 2014. The use of the most appropriate diagnostic tools is critical when implementing effective control programs.

  16. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  17. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  18. Development of a temporal filtering technique for suppression of interferences in applied laser-induced fluorescence diagnostics.

    PubMed

    Ehn, Andreas; Kaldvee, Billy; Bood, Joakim; Aldén, Marcus

    2009-04-20

    A temporal filtering technique, complementary to spectral filtering, has been developed for laser-induced fluorescence measurements. The filter is applicable in cases where the laser-induced interfering signals and the signal of interest have different temporal characteristics. For the interfering-signal discrimination a picosecond laser system along with a fast time-gated intensified CCD camera were used. In order to demonstrate and evaluate the temporal filtering concept two measurement situations were investigated; one where toluene fluorescence was discriminated from interfering luminescence of an aluminum surface, and in the other one Mie scattering signals from a water aerosol were filtered out from acetone fluorescence images. A mathematical model was developed to simulate and evaluate the temporal filter for a general measurement situation based on pulsed-laser excitation together with time-gated detection. Using system parameters measured with a streak camera, the model was validated for LIF imaging of acetone vapor inside a water aerosol. The results show that the temporal filter is capable of efficient suppression of interfering signal contributions. The photophysical properties of several species commonly studied by LIF in combustion research have been listed and discussed to provide guidelines for optimum use of the technique.

  19. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  20. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    SciTech Connect

    Uhlig, W. Casey; Heine, Andreas

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  1. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends.

    PubMed

    Pereira, Jorge; Silva, Catarina Luís; Perestrelo, Rosa; Gonçalves, João; Alves, Vera; Câmara, José S

    2014-03-01

    The human population continues to grow exponentially in the fast developing and most populated countries, whereas in Western Europe it is getting older and older each year. This inevitably raises the demand for better and more efficient medical services without increasing the economic burden in the same proportion. To meet these requirements, improvement of medical diagnosis is certainly a key aspect to consider. Therefore, we need powerful analytical methodologies able to go deeper and further in the characterization of human metabolism and identification of disease biomarkers and endogenous molecules in body fluids and tissues. The ultimate goal is to have a reliable and early medical diagnosis, mitigating the disease complications as much as possible. Microextraction techniques (METs) represent a key step in these analytical methodologies by providing samples in the suitable volumes and purification levels necessary for the characterization of the target analytes. In this aspect, solid-phase microextraction (SPME) and, more recently, microextraction by packed sorbent (MEPS), are powerful sample preparation techniques, characterized by their reduced time of analysis, low solvent consumption, and broad application. Moreover, as miniaturized techniques, they can be easily automatized to have a high-throughput performance in the clinical environment. In this review, we explore some of the most interesting MEPS and SPME applications, focusing on recent trends and applications to medical diagnostic, particularly the in vivo and near real time applications.

  2. Novel Optical Diagnostic Techniques for Studying Particle Contact and Deposition Upon a Large Cylinder in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser (Technical Monitor); Yoda, Minami

    2004-01-01

    The objectives of this research project were: 1) To study the fluid dynamics of sheared particle-liquid suspensions and the impact of differential particle-fluid inertia; 2) To develop new techniques for observing suspension particle contact and deposition upon solid surfaces. Dr. Yoda was supported by the NASA Office of Biological and Physical Research on a four-year grant from March 2000 through November 2004 for a ground-based study on the fluid dynamics of sheared particle-liquid suspensions and the impact of differential particle-fluid inertia on such flows. Such inertial effects can only be observed in reduced-gravity environments since they are overwhelmed by buoyancy effects on Earth. Moreover, these inertial effects will have a significant impact upon suspension flows in microgravity. Suspension dynamics are of importance in a wide variety of advanced life systems applications, including water reclamation and dust mitigation in confined habitats.

  3. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  4. Diagnostic Lumbar Puncture

    PubMed Central

    Doherty, Carolynne M; Forbes, Raeburn B

    2014-01-01

    Diagnostic Lumbar Puncture is one of the most commonly performed invasive tests in clinical medicine. Evaluation of an acute headache and investigation of inflammatory or infectious disease of the nervous system are the most common indications. Serious complications are rare, and correct technique will minimise diagnostic error and maximise patient comfort. We review the technique of diagnostic Lumbar Puncture including anatomy, needle selection, needle insertion, measurement of opening pressure, Cerebrospinal Fluid (CSF) specimen handling and after care. We also make some quality improvement suggestions for those designing services incorporating diagnostic Lumbar Puncture. PMID:25075138

  5. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  6. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  7. Merits and Pitfalls of Currently Used Diagnostic Tools in Mycetoma

    PubMed Central

    van de Sande, Wendy W. J.; Fahal, Ahmed H.; Goodfellow, Michael; Mahgoub, El Sheikh; Welsh, Oliverio; Zijlstra, Ed E.

    2014-01-01

    Treatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma) and fungi (eumycetoma), are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of infections and to identify the causative agents of mycetoma. These include various imaging, cytological, histopathological, serological, and culture techniques; phenotypic characterisation; and molecular diagnostics. In this review, we summarize these techniques and identify their merits and pitfalls in the identification of the causative agents of mycetoma and the extent of the disease. We also emphasize the fact that there is no ideal diagnostic tool available to identify the causative agents and that future research should focus on the development of new and reliable diagnostic tools. PMID:24992636

  8. Trichomonas vaginalis: investigation of a novel diagnostic method in urine samples using cysteine proteinase 4 gene and PCR technique.

    PubMed

    Vatanshenassan, Mansoureh; Rezaie, Sassan; Mohebali, Mehdi; Niromand, Nasrin; Kazemi, Bahram; Babaei, Zahra; Rezaeian, Mostafa

    2010-10-01

    Trichomonas vaginalis is the agent of a highly prevalent sexually transmitted disease that leads to vaginitis, urethritis, ectocervicitis and has been associated with human immunodeficiency virus (HIV). Detection of T. vaginalis based on wet-mount microscopy and culture methods is insensitive and time consuming, respectively. Thus the quest for reliable PCR techniques of T. vaginalis in vaginal discharge and urine sample is more importance. In this study, 500 urine and vaginal-discharge samples were collected from women referred to Sexual Transmitted Disease Clinic of Mirzakuchakkhan Hospital in Tehran, Iran between May 2008 and March 2009. Wet-mount and culture methods were done on the vaginal discharges, and PCR assay targeting cysteine proteinase 4 (CP4) was performed on the urine samples. The present study demonstrated 16 (3.2%) of patients were infected with T. vaginalis using culture and wet-mount, whereas PCR assay using CP4 could detect 12 (2.4%) positivity. Sensitivity and specificity of urine PCR assay compared to culture were 80% (95% CI, 54-96) and 99.6% (95% CI, 98.96-100), respectively. These results indicate that using urine-based detection method for T. vaginalis may not be appropriate in women.

  9. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques

    NASA Astrophysics Data System (ADS)

    Müller, Larissa; Traub, Heike; Jakubowski, Norbert

    2016-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g-1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies.

  10. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.

    PubMed

    Herman, Daniel A; Gallimore, Alec D

    2008-01-01

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8 x 10(12) cm(-3) on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  11. Development of Dual TaqMan Based One-Step rRT-PCR Assay Panel for Rapid and Accurate Diagnostic Test of MERS-CoV: A Novel Human Coronavirus, Ahead of Hajj Pilgrimage

    PubMed Central

    Hashemzadeh, Mohammad Sadegh; Rasouli, Rahimeh; Zahraei, Bentolhoda; Izadi, Morteza; Tat, Mahdi; Saadat, Seyed Hassan; Najarasl, Mohammad; Khansari Nejad, Behzad; Dorostkar, Ruhollah

    2016-01-01

    Background Coronaviruses (CoVs) are large ribonucleic acid (RNA) viruses causing primarily respiratory disease in humans. A novel human coronavirus, subsequently named middle east respiratory syndrome coronavirus (MERS-CoV), was first reported in Saudi Arabia in September of 2012. With increasing numbers of infections and deaths from MERS-CoV, development of a rapid and reliable kit was crucial to prevent further spread of MERS-CoV. Objectives In this study, we present two real-time reverse-transcription polymerase chain reaction (rRT-PCR) assays for in-house rapid and sensitive diagnostic testing of MERS-CoV, detecting the regions upstream of the envelope gene (upE) and open reading frame (ORF) 1b, respectively, for initial screening and final confirmation of MERS-CoV infection, as recommended by the world health organization (WHO). Materials and Methods In this experimental study, acquiring patient samples was difficult; thus, according to WHO recommendations and standard protocols, we synthesized RNA sequences of upE and ORF1b genes as the template signatures and TaqMan based-diagnostic rRT-PCR assays were carried out using these synthetic genes for detection of MERS-CoV. In this research, we also inaugurated a cell-free system to transcribe these RNA sequences using the DNA templates synthesized. Results The upE and ORF1b based one-step rRT-PCR assays were optimized by testing several times via different synthetic RNAs, and validation results were highly successful. The sensitivity obtained for upE was fewer than ten copies of RNA template per reaction and for ORF1b was 50 or fewer copies per reaction. Conclusions This study showed that the developed rRT-PCR assays are rapid, reliable, reproducible, specific, sensitive, and simple tools for detection of MERS-CoV. Finally, a kit consisting of two assay signatures and controls was assembled, which can be distributed to public health laboratories in Iran to support international MERS-CoV surveillance and public

  12. Spiral computed tomography angiography (SCTA) and color coded duplex ultrasound (CCDUS): two complementary diagnostic techniques for assessment of extracranial cerebral artery stenosis.

    PubMed

    Scaroni, Reana; Cardaioli, Gabriela; Pelliccioli, Gian Piero; Gallai, Virgilio

    2002-01-01

    Atherosclerotic lesions of the extracranial cerebral arteries account for ischemic stroke in over half of all cases. The risk of stroke associated with symptomatic carotid artery disease is related to the severity of the stenosis. Results of the two major clinical trials, North American Symptomatic Carotid Endarterectomy Trial (NASCET) and European Carotid Surgery Trial (ECST), showed that patients with symptomatic carotid artery disease may benefit from carotid endarterectomy. Therefore, detection and quantification of stenosis are essential. Discrepancies in the angiographic criteria used in both NASCET and ECST trials resulted in continued controversy about the most accurate method of measuring carotid artery stenosis. Moreover, to avoid complications related to the angiography procedure, a good evaluation of vessel wall and plaque composition need to be considered. Both SCTA and CCDUS are non invasive techniques that could overcome angiographic complications and give detailed information on stenosis grading and plaque characteristics. They have been used to evaluate carotid stenosis as a single or combined methods.

  13. Diagnostic Development on NSTX

    SciTech Connect

    A.L. Roquemore; D. Johnson; R. Kaita; et al

    1999-12-16

    Diagnostics are described which are currently installed or under active development for the newly commissioned NSTX device. The low aspect ratio (R/a less than or equal to 1.3) and low toroidal field (0.1-0.3T) used in this device dictate adaptations in many standard diagnostic techniques. Technical summaries of each diagnostic are given, and adaptations, where significant, are highlighted.

  14. Comparison of the Kato-Katz, Wet Mount, and Formol-Ether Concentration Diagnostic Techniques for Intestinal Helminth Infections in Ethiopia.

    PubMed

    Endris, Mengistu; Tekeste, Zinaye; Lemma, Wossenseged; Kassu, Afework

    2013-01-01

    Objective. The aim of this study was to evaluate the operational characteristics (sensitivity and negative predictive value (NPV)) of wet mount, formol-ether concentration (FEC), and Kato-Katz techniques for the determination of intestinal parasitic infections. Method. A total of 354 faecal specimens were collected from students in Northwest Ethiopia and screened with Kato-Katz, wet mount, and FEC for the presence of intestinal parasitic infection. Since a gold standard test is not available for detection of intestinal parasites, the combined results from the three methods were used as diagnostic gold standard. Result. The prevalences of intestinal parasites using the single wet mount, FEC, and Kato-Katz thick smear techniques were 38.4%, 57.1%, and 59%, respectively. Taking the combined results of three techniques as a standard test for intestinal parasitic infection, the sensitivity and negative predictive value of Kato-Katz is 81.0% (confidence interval (CI) = 0.793-0.810) and 66.2% (CI = 0.63-0.622), respectively. The FEC detected 56 negative samples that were positive by the gold standard, indicating 78.3% (CI = 0.766-0.783) and 63.2% (CI = 0.603-63) sensitivity and NPV, respectively. Furthermore, Kato-Katz detects 113 cases that were negative by a single wet mount. The κ agreement between the wet mount and Kato-Katz methods for the diagnosis of Ascaris lumbricoides and hookworm was substantial (κ = 0.61 for Ascaris lumbricoides, κ = 0.65 for hookworm).

  15. Why currently used diagnostic techniques for heart failure in rheumatoid arthritis are not enough: the challenge of cardiovascular magnetic resonance imaging.

    PubMed

    Mavrogeni, Sophie; Dimitroulas, Theodoros; Gabriel, Sherine; Sfikakis, Petros P; Pohost, Gerald M; Kitas, George D

    2014-01-01

    Rheumatoid arthritis (RA) is a multiorgan inflammatory disorder affecting approximately 1% of the population that leads to progressive joint destruction and disability. Patients with RA exhibit a high risk of cardiovascular disease, which results in premature morbidity and mortality and reduced life expectancy, when compared with the general population. Among various guises of myocardial involvement, heart failure (HF) has been recently recognized as an important contributory factor to the excess cardiovascular mortality associated with RA. HF in RA typically presents with occult clinical symptomatology and is mainly associated with structural and functional left ventricular abnormalities leading to diastolic dysfunction, while systolic myocardial performance remains well preserved. As isolated diastolic dysfunction is a predictor of high mortality, the evaluation of patients in early asymptomatic stages, when treatment targeting the heart is more likely to be effective, is of great importance. Although patient history and physical examination remain the cornerstones of HF evaluation, noninvasive imaging of cardiac chambers, coronary arteries, and great vessels may be necessary. Echocardiography, nuclear techniques, and invasive coronary angiography are already established in the routine assessment of HF; however, many aspects of HF pathophysiology in RA remain obscure, due to the limitations of currently used techniques. The capability of cardiovascular magnetic resonance (CMR) to capture early tissue changes allows timely detection of pathophysiologic phenomena of HF in RA, such as myocardial inflammation and myocardial perfusion defects, due to either macrovascular (coronary artery disease) or microvascular (vasculitis) disease. Therefore, CMR may be a useful tool for early, accurate diagnosis and research in patients with RA.

  16. Nuclear Techniques for Plasma Diagnostics.

    DTIC Science & Technology

    1979-04-23

    ers ar e ’ usually u’~ett t o s ep ar a t e ’ t h e n eu t cons and x rays . In e x p e r i r n ’n t s w her e I ic x — r a \\ pu iso is Sn I S ic...DAViS EGSG , INC. ALBU QUER QUE D IV IS ION P.O. BOX 10218 ALBUQUERQUE, NM 87114 1 CV ATTN: TECHNICAL LIBRARY FORD AEROSPACE & COMMUNICATIONS CORP

  17. Novel Nonlinear Laser Diagnostic Techniques.

    DTIC Science & Technology

    1991-06-26

    possible. Measurement of ASE in a variety of flames demonstrate that the ASE signal intensity can be influenced by gas collisions. 14. SUBJECT TERMS...LASER B. MEASUREMENTS OF ATOMIC HYDROGEN IN LOW-PRESSURE FLAMES J40Dc IAccession For DT1i" TABRF .. . .. . .. . .. . ... 3L i ttr c Dis OBJECTIVES...beam splitter on, the beam path is evacuated. Light passing through the gas cell is collimated with a MgF2 lens and continues into a vacuum

  18. Novel Nonlinear Laser Diagnostic Techniques

    DTIC Science & Technology

    1993-07-01

    spectrometer, we found that much of the energy we generate is absorbed by the MgF2 optics we use, apparently through color center formation. 14 To take better... test this idea, we made measurements and developed a model of the bandwidth of hydrogen and oxygen atoms in low-pressure flames as a function of...Hermes Testing Facilities, Le Fauga, France, July 1990. D. E. Heard and J. B. Jeffries, "Measurements of Atomic Hydrogen in Low-Pressure Flames ," Western

  19. Novel Nonlinear Laser Diagnostic Techniques

    DTIC Science & Technology

    1992-07-10

    feasible from a variety of low-pressure flames . These environments have previously been well characterized and can now provide a testing ground for... flames were compared with simultaneous ASE observations. The band width of H atom ASE at 1200 and 1800 K was measured. Simultaneous 0 atom ASE and...evacuated. Light passing through the gas cell is collimated with a MgF2 lens and continues into a vacuum spectrometer or is dispersed with a MgF2 Pellin

  20. A pulsed electron-photon fluorescence diagnostic technique for temperature and specie concentration measurement at points in relatively dense, unseedded air flows

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Kunc, J. A.; Erwin, D. A.

    1987-01-01

    An analysis is presented on the use of the fluorescence stimulated by combined pulsed electron and photon beams for the study of gas flows up to densities equivalent to an altitude of about 20 km (number density of about 3 x 10 to the 18th/cu cm). The electron beam acts as a pump, requiring no seed gas, to provide a localized concentration of ions or excited state neutrals that can be probed by saturation optical pulses. A short pulse (10ns) electron beam can be used by itself to provide effectively quench-free emission up to number densities of around 10 to the 18th/cm, but is is difficult to maintain satisfactory spatial resolution at this high density. The use of a nearly simultaneous strong optical pulse increases the flexibility of the diagnostic technique, permitting use at densities greater than 10 to the 18th/cu cm with good spatial resolution. The use of flash X-ray sources combined with optical probing also appears promising for densities above 10 to the 19th/cu cm.

  1. High Energy Laser Diagnostic Sensors

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Goddard, Douglas N.; Lewis, Jay; Thomas, David

    2010-10-01

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures. We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  2. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer

  3. Upgraded multipulse laser and multipoint Thomson scattering diagnostics on EAST.

    PubMed

    Zang, Qing; Zhao, Junyu; Yang, Li; Hu, Qingsheng; Xi, Xiaoqi; Dai, Xingxing; Yang, Jianhua; Han, Xiaofeng; Li, Mengting; Hsieh, C L

    2011-06-01

    Recently a new Thomson scattering diagnostic system was upgraded in EAST tokamak experiment using a multipulse Nd:YAG (neodymium-yttrium aluminium garnet) laser and a multipoint observation volumes. This diagnostic uses a new optical laser alignment technique that was made to determine accurately the laser position, and a new lens collection system that enables the measurement of wider plasma's object. A composite control system made we can get the results in several seconds. Furthermore, a new data processing method was adopted for much exact results.

  4. Molecular malaria diagnostics: A systematic review and meta-analysis.

    PubMed

    Roth, Johanna M; Korevaar, Daniël A; Leeflang, Mariska M G; Mens, Pètra F

    2016-01-01

    Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high detection limit. With declining prevalence in many areas, there is an increasing need for more sensitive diagnostics. Molecular tools may be a suitable alternative, although costs and technical requirements currently hamper their implementation in resource limited settings. A range of (near) point-of-care diagnostics is therefore under development, including simplifications in sample preparation, amplification and/or read-out of the test. Accuracy data, in combination with technical characteristics, are essential in determining which molecular test, if any, would be the most promising to be deployed. This review presents a comprehensive overview of the currently available molecular malaria diagnostics, ranging from well-known tests to platforms in early stages of evaluation, and systematically evaluates their published accuracy. No important difference in accuracy was found between the most commonly used PCR-based assays (conventional, nested and real-time PCR), with most of them having high sensitivity and specificity, implying that there are no reasons other than practical ones to choose one technique over the other. Loop-mediated isothermal amplification and other (novel) diagnostics appear to be highly accurate as well, with some offering potential to be used in resource-limited settings.

  5. Taenia solium porcine cysticercosis in Madagascar: Comparison of immuno-diagnostic techniques and estimation of the prevalence in pork carcasses traded in Antananarivo city.

    PubMed

    Porphyre, V; Betson, M; Rabezanahary, H; Mboussou, Y; Zafindraibe, N J; Rasamoelina-Andriamanivo, H; Costard, S; Pfeiffer, D U; Michault, A

    2016-03-30

    Taenia solium cysticercosis was reported in official veterinary and medical statistics to be highly prevalent in pigs and humans in Madagascar, but few estimates are available for pigs. This study aimed to estimate the seroprevalence of porcine cysticercosis among pigs slaughtered in Antananarivo abattoirs. Firstly, the diagnostic performance of two antigen-ELISA techniques (B158B60 Ag-ELISA and HP10 Ag-ELISA) and an immunoblotting method were compared with meat inspection procedures on a sample of pigs suspected to be infected with (group 1; n=250) or free of (group 2; n=250) T. solium based on direct veterinary inspection in Madagascar. Sensitivity and specificity of the antigen ELISAs were then estimated using a Bayesian approach for detection of porcine cysticercosis in the absence of a gold standard. Then, a third set of pig sera (group 3, n=250) was randomly collected in Antananarivo slaughterhouses and tested to estimate the overall prevalence of T. solium contamination in pork meat traded in Antananarivo. The antigen ELISAs showed a high sensitivity (>84%), but the B158B60 Ag-ELISA appeared to be more specific than the HP10 Ag-ELISA (model 1: 95% vs 74%; model 2: 87% vs 71%). The overall prevalence of porcine cysticercosis in Antananarivo slaughterhouses was estimated at 2.3% (95% credibility interval [95%CrI]: 0.09-9.1%) to 2.6% (95%CrI: 0.1-10.3%) depending on the model and priors used. Since the sample used in this study is not representative of the national pig population, village-based surveys and longitudinal monitoring at slaughter are needed to better estimate the overall prevalence, geographical patterns and main risk factors for T. solium contamination, in order to improve control policies.

  6. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  7. Fast and accurate automated cell boundary determination for fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider

    2013-07-01

    Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.

  8. Diagnostics of Nanodusty Plasma

    NASA Astrophysics Data System (ADS)

    Greiner, Franko; Groth, Sebastian; Tadsen, Bejamin; Piel, Alexander

    2015-11-01

    The diagnostic of nanodusty plasmas, i.e. plasmas including nano-sized dust particles, is a challenging task. For both, the diagnostic of the nanodusty plasma itself, and the in-situ diagnostic of the nanoparticles, no standard diagnostic exist. Nanodust particle size and density can be estimated using light scattering techniques, namely kinetic Mie ellipsometry and extinction measurements. The charge of the nanoparticles can be estimated from the analysis of dust density waves (DDW). Parameters like the electron density, which give information about the plasma itself, may be deduced from the DDW analysis. We present detailed investigations on nanodust in a reactive Argon-Acetylene plasma created in an rf-driven parallel plate reactor at low pressure using the above mentioned portfolio of diagnostic. Funded by DFG under contract SFB TR-24/A2.

  9. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  10. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  11. Principles of plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian H.

    The physical principles, techniques, and instrumentation of plasma diagnostics are examined in an introduction and reference work for students and practicing scientists. Topics addressed include basic plasma properties, magnetic diagnostics, plasma particle flux, and refractive-index measurements. Consideration is given to EM emission by free and bound electrons, the scattering of EM radiation, and ion processes. Diagrams, drawings, graphs, sample problems, and a glossary of symbols are provided.

  12. Diagnostic hematology of reptiles.

    PubMed

    Stacy, Nicole I; Alleman, A Rick; Sayler, Katherine A

    2011-03-01

    The hematologic evaluation of reptiles is an indispensable diagnostic tool in exotic veterinary practice. The diversity of reptile species, their characteristic physiologic features, and effects of intrinsic and extrinsic factors present unique challenges for accurate interpretation of the hemogram. Combining the clinical presentation with hematologic findings provides valuable information in the diagnosis and monitoring of disease and helps guide the clinician toward therapy and further diagnostic testing. This article outlines the normal and pathologic morphology of blood cells of reptile species. The specific comparative aspects of reptiles are emphasized, and structural and functional abnormalities in the reptilian hemogram are described.

  13. Diagnostics for neutral-beam-heated tokamaks

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Diagnostic techniques for neutral-beam-heated tokamak plasmas fall into three categories: (1) magnetic diagnostics for measurements of gross stored energy, (2) profile diagnostics for measurements of stored thermal and beam energy, impurity content and plasma rotation, and (3) fast time resolution diagnostics to study MHD fluctuations and micro-turbulence.

  14. Diagnostic of shock wave processes

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.

    1992-05-01

    Experimental measurements of high rate processes taking place in a shock wave dynamic environment require that the diagnostic systems have fast response and high resolution. This is not a trivial requirement considering the fact that under shock loading one can expect not only sudden changes of state across the shock discontinuity but also subsequent changes in pressure, temperature and volume due to chemical reaction, phase change and other transformations which may also take place behind the shock wave. Among the various parameters which provide direct ties to theoretical studies of the equation of state and at the same time yield to relatively accurate experimental measurements are shock velocity, particle velocity and pressure. Described here are the optical techniques VISAR and Fabry Perot interferometer for observing particle and free surface velocities in transparent media as well as in situ foil gauges for measuring pressure and particle velocity within the sample. Although these techniques are not new they have been continuously improved and upgraded at our facility to yield greater accuracy, reliability and state of the art performance. The emphasis in this paper is on the operational features of the measuring techniques, but examples of experimental results are also included.

  15. [The evaluation of sensitivity and specificity of technique of detection of C-reactive protein under diagnostic of infectious complications in patients with acute lymphoblastic leucosis receiving chemotherapy].

    PubMed

    Vladimirova, S G; Tarasova, L N; Dokshina, I A; Cherepanova, V A

    2014-11-01

    The C-reactive protein is a generally recognized marker of inflammation and bacterial infection. However, issue of diagnostic effectiveness of this indicator is still open-ended in case of patients with oncologic hematological diseases. The level of C-reactive protein can increase under neoplastic processes. On the contrary, the inhibition of immune response observed under cytoplastic therapy can decrease synthesis of this protein. The study was organized to establish levels of C-reactive protein as markers of infection in adult patients with acute lymphoblastic leucosis under application of chemotherapy and to evaluate their diagnostic effectiveness. The sampling included 34 patients with acute lymphoblastic leucosis all patients had infectious complications at various stages of treatment. The levels of C-reactive protein in groups of patients with localized infections (mucositis, abscess, pneumonia, etc.) or fever of unknown genesis had no statistical differences but were reliably higher in patients without infectious complications. The concentrations of C-reactive protein in patients with syndrome of systemic inflammatory response and sepsis had no differences. At the same time, level of C-reactive protein under systemic infection (syndrome of systemic inflammatory response, sepsis) was reliably higher than in case of localized infection. The diagnostically reliable levels of C-reactive protein were established as follows: lower than 11 mg/l--infectious complications are lacking; higher than 11 mg/l--availability of infectious process; higher than 82 mg/l--generalization of infection. The given levels are characterized by high diagnostic sensitivity (92% and 97% correspondingly) and specificity (97% and 97%) when patients receive therapy without application of L-asparaginase. At the stages of introduction of this preparation effecting protein synthesizing function of liver sensitivity of proposed criteria are decreased (69% and 55% correspondingly). However; due

  16. Endodontic diagnostic terminology update.

    PubMed

    McClannahan, Scott B; Baisden, Michael K; Bowles, Walter R

    2011-01-01

    Determination of the etiology of the patient's chief complaint and a correct diagnosis are paramount prior to a recommendation of endodontic therapy. Reproduction of the patient's chief complaint is critical. If the chief complaint cannot be reproduced, consider consultation with or referral to an endodontist or orofacial pain specialist. The diagnostic terminology presented in this update provides for a more accurate description and communication of the health or pathological conditions of both pulpal and apical tissues. This information is summarized in Table I.

  17. Compact Optical Technique for Streak Camera Calibration

    SciTech Connect

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-04-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations.

  18. Longitudinal Diagnostics for Short Electron Beam Bunches

    SciTech Connect

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  19. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  20. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  1. Cotton-based Diagnostic Devices

    PubMed Central

    Lin, Shang-Chi; Hsu, Min-Yen; Kuan, Chen-Meng; Wang, Hsi-Kai; Chang, Chia-Ling; Tseng, Fan-Gang; Cheng, Chao-Min

    2014-01-01

    A good diagnostic procedure avoids wasting medical resources, is easy to use, resists contamination, and provides accurate information quickly to allow for rapid follow-up therapies. We developed a novel diagnostic procedure using a “cotton-based diagnostic device” capable of real-time detection, i.e., in vitro diagnostics (IVD), which avoids reagent contamination problems common to existing biomedical devices and achieves the abovementioned goals of economy, efficiency, ease of use, and speed. Our research reinforces the advantages of an easy-to-use, highly accurate diagnostic device created from an inexpensive and readily available U.S. FDA-approved material (i.e., cotton as flow channel and chromatography paper as reaction zone) that adopts a standard calibration curve method in a buffer system (i.e., nitrite, BSA, urobilinogen and uric acid assays) to accurately obtain semi-quantitative information and limit the cross-contamination common to multiple-use tools. Our system, which specifically targets urinalysis diagnostics and employs a multiple biomarker approach, requires no electricity, no professional training, and is exceptionally portable for use in remote or home settings. This could be particularly useful in less industrialized areas. PMID:25393975

  2. [Thalassaemia diagnostics].

    PubMed

    Kusters, Elske; Kerkhoffs, Jean-Louis H; van Rossum, André P

    2014-01-01

    The thalassaemias are characterised by quantitative aberrations in the production of the globin chains that make up haemoglobin, and are a subgroup of the haemoglobinopathies. In this LabQuiz we show how thalassaemia carrier status can be indicated in the results of regular laboratory tests, and discuss the laboratory diagnostics that can confirm or rule out thalassaemia. In these two cases we will present a man of Moroccan descent, and two brothers of Filipino descent, all with anaemia and microcytosis. We show it is possible to differentiate between iron-deficiency anaemia and thalassaemia carrier status on the basis of a complete blood count and measurement of ferritin levels, and which laboratory diagnostics can be subsequently performed in order to confirm a suspicion of thalassaemia. The background section discusses the properties and pitfalls of routine laboratory diagnostics for the thalassaemias, and thalassaemia diagnostics in the Dutch newborn screening programme.

  3. Molecular diagnostic and surveillance tools for global malaria control.

    PubMed

    Erdman, Laura K; Kain, Kevin C

    2008-01-01

    Malaria is the most devastating parasitic infection in the world, annually causing over 1 million deaths and extensive morbidity. The global burden of malaria has increased over the last several decades, as have rates of imported malaria into non-endemic regions. Rapid and accurate diagnostics are a crucial component of malaria control strategies, and epidemiological surveillance is required to monitor trends in malaria prevalence and antimalarial drug resistance. Conventional malaria diagnostic and surveillance tools can be cumbersome and slow with limitations in both sensitivity and specificity. New molecular techniques have been developed in an attempt to overcome these restrictions. These molecular techniques are discussed with regard to their technical advantages and disadvantages, with an emphasis on the practicality of implementation in malaria-endemic and non-endemic regions.

  4. The role of noninvasive and invasive diagnostic imaging techniques for detection of extra-cranial venous system anomalies and developmental variants

    PubMed Central

    2013-01-01

    The extra-cranial venous system is complex and not well studied in comparison to the peripheral venous system. A newly proposed vascular condition, named chronic cerebrospinal venous insufficiency (CCSVI), described initially in patients with multiple sclerosis (MS) has triggered intense interest in better understanding of the role of extra-cranial venous anomalies and developmental variants. So far, there is no established diagnostic imaging modality, non-invasive or invasive, that can serve as the “gold standard” for detection of these venous anomalies. However, consensus guidelines and standardized imaging protocols are emerging. Most likely, a multimodal imaging approach will ultimately be the most comprehensive means for screening, diagnostic and monitoring purposes. Further research is needed to determine the spectrum of extra-cranial venous pathology and to compare the imaging findings with pathological examinations. The ability to define and reliably detect noninvasively these anomalies is an essential step toward establishing their incidence and prevalence. The role for these anomalies in causing significant hemodynamic consequences for the intra-cranial venous drainage in MS patients and other neurologic disorders, and in aging, remains unproven. PMID:23806142

  5. Diagnostic optique de la température dans des moteurs-fusée à l'aide de techniques Raman cohérentes

    NASA Astrophysics Data System (ADS)

    Chaussard, Frédéric; Michaut, Xavier; Saint-Loup, Robert; Berger, Hubert; Bouchardy, Paul; Grisch, Frédéric

    2004-03-01

    This article reviews the study of Raman line shapes of molecular species involved in reactive media, such flames or engines, at high temperature and high pressure. This study is of interest from a fundamental as well as from a practical point of view with regards to the CARS temperature diagnostic of GH 2-LOX combustion systems. We will particularly draw attention to recent investigations by means of Stimulated Raman Spectroscopy (SRS) in H 2-H 2O mixtures at temperature up to 1800 K. Whereas H 2-X systems usually exhibit large inhomogeneous effects, due to the speed dependence of the collisional parameters, the absence of such apparent inhomogeneous signatures in the H 2-H 2O system allowed us to model the broadening coefficients with simple polynomial laws. These laws permit extrapolations with a narrow confidence interval, as required for temperature measurements. The applications of these results to the temperature diagnostic on the small-scale facility MASCOTTE at ONERA will be described. To cite this article: F. Chaussard et al., C. R. Physique 5 (2004).

  6. The role of noninvasive and invasive diagnostic imaging techniques for detection of extra-cranial venous system anomalies and developmental variants.

    PubMed

    Dolic, Kresimir; Siddiqui, Adnan H; Karmon, Yuval; Marr, Karen; Zivadinov, Robert

    2013-06-27

    The extra-cranial venous system is complex and not well studied in comparison to the peripheral venous system. A newly proposed vascular condition, named chronic cerebrospinal venous insufficiency (CCSVI), described initially in patients with multiple sclerosis (MS) has triggered intense interest in better understanding of the role of extra-cranial venous anomalies and developmental variants. So far, there is no established diagnostic imaging modality, non-invasive or invasive, that can serve as the "gold standard" for detection of these venous anomalies. However, consensus guidelines and standardized imaging protocols are emerging. Most likely, a multimodal imaging approach will ultimately be the most comprehensive means for screening, diagnostic and monitoring purposes. Further research is needed to determine the spectrum of extra-cranial venous pathology and to compare the imaging findings with pathological examinations. The ability to define and reliably detect noninvasively these anomalies is an essential step toward establishing their incidence and prevalence. The role for these anomalies in causing significant hemodynamic consequences for the intra-cranial venous drainage in MS patients and other neurologic disorders, and in aging, remains unproven.

  7. Surgical extraction of lower third molars: diagnostic tests and operative technique in the prevention of inferior alveolar nerve injury. Case study

    PubMed Central

    MELEO, D.; PACIFICI, L.

    2009-01-01

    SUMMARY Increased knowledge and technical refinement have broadened the limits of outpatient oral surgery; however, these changes have at the same time led to a greater number of complications and poor outcomes and, accordingly, to legal action for professional responsibility. Oral surgery represents 10% of all actions, and almost all of these are attributable to exodontic surgery, of which around a third are related to inferior alveolar nerve injury following the extraction of lower third molars. The aim of this case study is to suggest operative technical strategies in accordance with a correct clinical-diagnostic pathway in order to prevent neurological complications involving the inferior alveolar nerve subsequent to lower third molar extraction. Cases should be carefully selected and surgical intervention undertaken solely when genuinely necessary. The patient should be informed of the risks, the methods and the possible results of the treatment. These are the bases for correct indication, along with a sufficient diagnostic path and a good level of communication between operator and patient. PMID:23285341

  8. Implementation of Rapid Molecular Infectious Disease Diagnostics: the Role of Diagnostic and Antimicrobial Stewardship.

    PubMed

    Messacar, Kevin; Parker, Sarah K; Todd, James K; Dominguez, Samuel R

    2017-03-01

    New rapid molecular diagnostic technologies for infectious diseases enable expedited accurate microbiological diagnoses. However, diagnostic stewardship and antimicrobial stewardship are necessary to ensure that these technologies conserve, rather than consume, additional health care resources and optimally affect patient care. Diagnostic stewardship is needed to implement appropriate tests for the clinical setting and to direct testing toward appropriate patients. Antimicrobial stewardship is needed to ensure prompt appropriate clinical action to translate faster diagnostic test results in the laboratory into improved outcomes at the bedside. This minireview outlines the roles of diagnostic stewardship and antimicrobial stewardship in the implementation of rapid molecular infectious disease diagnostics.

  9. Accurate reservoir evaluation from borehole imaging techniques and thin bed log analysis: Case studies in shaly sands and complex lithologies in Lower Eocene Sands, Block III, Lake Maracaibo, Venezuela

    SciTech Connect

    Coll, C.; Rondon, L.

    1996-08-01

    Computer-aided signal processing in combination with different types of quantitative log evaluation techniques is very useful for predicting reservoir quality in complex lithologies and will help to increase the confidence level to complete and produce a reservoir. The Lower Eocene Sands in Block III are one of the largest reservoirs in Block III and it has produced light oil since 1960. Analysis of Borehole Images shows the reservoir heterogeneity by the presence of massive sands with very few shale laminations and thinnly bedded sands with a lot of laminations. The effect of these shales is a low resistivity that has been interpreted in most of the cases as water bearing sands. A reduction of the porosity due to diagenetic processes has produced a high-resistivity behaviour. The presence of bed boundaries and shales is detected by the microconductivity curves of the Borehole Imaging Tools allowing the estimation of the percentage of shale on these sands. Interactive computer-aided analysis and various image processing techniques are used to aid in log interpretation for estimating formation properties. Integration between these results, core information and production data was used for evaluating producibility of the reservoirs and to predict reservoir quality. A new estimation of the net pay thickness using this new technique is presented with the consequent improvement on the expectation of additional recovery. This methodology was successfully applied in a case by case study showing consistency in the area.

  10. Preoperative Diagnostic Angiogram and Endovascular Aortic Stent Placement for Appleby Resection Candidates: A Novel Surgical Technique in the Management of Locally Advanced Pancreatic Cancer

    PubMed Central

    Trabulsi, N.; Pelletier, J. S.; Abraham, C.; Vanounou, T.

    2015-01-01

    Background. Pancreatic adenocarcinoma of the body and tail usually presents late and is typically unresectable. The modified Appleby procedure allows resection of pancreatic body carcinoma with celiac axis (CA) invasion. Given that the feasibility of this technique is based on the presence of collateral circulation, it is crucial to confirm the presence of an anatomical and functional collateral system. Methods. We here describe a novel technique used in two patients who were candidates for Appleby resection. We present their clinical scenario, imaging, operative findings, and postoperative course. Results. Both patients had a preoperative angiogram for assessment of anatomical circulation and placement of an endovascular stent to cover the CA. We hypothesize that this new technique allows enhancement of collateral circulation and helps minimize intraoperative blood loss when transecting the CA at its takeoff. Moreover, extra length on the CA margin may be gained, as the artery can be transected at its origin without the need for vascular clamp placement. Conclusion. We propose this novel technique in the preoperative management of patients who are undergoing a modified Appleby procedure. While further experience with this technique is required, we believe that it confers significant advantages to the current standard of care. PMID:26491217

  11. Diagnostic testing for Giardia infections.

    PubMed

    Heyworth, Martin F

    2014-03-01

    The traditional method for diagnosing Giardia infections involves microscopic examination of faecal specimens for Giardia cysts. This method is subjective and relies on observer experience. From the 1980s onwards, objective techniques have been developed for diagnosing Giardia infections, and are superseding diagnostic techniques reliant on microscopy. Detection of Giardia antigen(s) by immunoassay is the basis of commercially available diagnostic kits. Various nucleic acid amplification techniques (NAATs) can demonstrate DNA of Giardia intestinalis, and have the potential to become standard approaches for diagnosing Giardia infections. Of such techniques, methods involving either fluorescent microspheres (Luminex) or isothermal amplification of DNA (loop-mediated isothermal amplification; LAMP) are especially promising.

  12. Astrovirus Diagnostics

    PubMed Central

    Pérot, Philippe; Lecuit, Marc; Eloit, Marc

    2017-01-01

    Various methods exist to detect an astrovirus infection. Current methods include electron microscopy (EM), cell culture, immunoassays, polymerase chain reaction (PCR) and various other molecular approaches that can be applied in the context of diagnostic or in surveillance studies. With the advent of metagenomics, novel human astrovirus (HAstV) strains have been found in immunocompromised individuals in association with central nervous system (CNS) infections. This work reviews the past and current methods for astrovirus detection and their uses in both research laboratories and for medical diagnostic purposes. PMID:28085120

  13. DIAGNOSTICS OF BNL ERL

    SciTech Connect

    POZDEYEV,E.; BEN-ZVI, I.; CAMERON, P.; GASSNER, D.; KAYRAN, D.; ET AL.

    2007-06-25

    The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlines requirements on the ERL diagnostics and describes its setup and modes of operation.

  14. Finding the sweet spot for non-apical RV pacing - "love's labor's lost or much ado about nothing:" a new angiographic technique to accomplish accurate physiological RV septal pacing in under 5 minutes from venous cannulation (or bust).

    PubMed

    Srivatsa, Sanjay S

    2014-03-01

    Right ventricular septal pacing has been long touted as a more physiologic alternative to right ventricular apical pacing. This article reviews the physiologic and clinical evidence for right ventricular septal versus apical pacing, and presents a novel angiographic technique for efficient attainment of the optimal septal pacing site. The reasons for equivocal clinical findings in septal versus apical pacing studies are discussed, and a new strategy for non-apical pacing clinical trial design utilizing comparative anatomic assessment of septal pacing site versus clinical outcome is proposed.

  15. Development of new source diagnostic methods and variance reduction techniques for Monte Carlo eigenvalue problems with a focus on high dominance ratio problems

    NASA Astrophysics Data System (ADS)

    Wenner, Michael T.

    Obtaining the solution to the linear Boltzmann equation is often is often a daunting task. The time-independent form is an equation of six independent variables which cannot be solved analytically in all but some special problems. Instead, numerical approaches have been devised. This work focuses on improving Monte Carlo methods for its solution in eigenvalue form. First, a statistical method of stationarity detection called the KPSS test adapted as a Monte Carlo eigenvalue source convergence test. The KPSS test analyzes the source center of mass series which was chosen since it should be indicative of overall source behavior, and is physically easy to understand. A source center of mass plot alone serves as a good visual source convergence diagnostic. The KPSS test and three different information theoretic diagnostics were implemented into the well known KENOV.a code inside of the SCALE (version 5) code package from Oak Ridge National Laboratory and compared through analysis of a simple problem and several difficult source convergence benchmarks. Results showed that the KPSS test can add to the overall confidence by identifying more problematic simulations than without its usage. Not only this, the source center of mass information on hand visually aids in the understanding of the problem physics. The second major focus of this dissertation concerned variance reduction methodologies for Monte Carlo eigenvalue problems. The CADIS methodology, based on importance sampling, was adapted to the eigenvalue problems. It was shown that the straight adaption of importance sampling can provide a significant variance reduction in determination of keff (in cases studied up to 30%?). A modified version of this methodology was developed which utilizes independent deterministic importance simulations. In this new methodology, each particle is simulated multiple times, once to every other discretized source region utilizing the importance for that region only. Since each particle

  16. MJO Simulation Diagnostics

    SciTech Connect

    Waliser, D; Sperber, K; Hendon, H; Kim, D; Maloney, E; Wheeler, M; Weickmann, K; Zhang, C; Donner, L; Gottschalck, J; Higgins, W; Kang, I; Legler, D; Moncrieff, M; Schubert, S; Stern, W; Vitart, F; Wang, B; Wang, W; Woolnough, S

    2008-06-02

    The Madden-Julian Oscillation (MJO) interacts with, and influences, a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, mid-latitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in our climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multi-model comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, due to the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the US CLIVAR MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation, to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life-cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.

  17. Diagnostic correlation between RET proto-oncogene mutation, imaging techniques, biochemical markers and morphological examination in MEN2A syndrome: case report and literature review.

    PubMed

    Sovrea, Alina Simona; Dronca, Eleonora; Galatâr, Mihaela; Radian, Serban; Vornicescu, Corina; Georgescu, Carmen

    2014-01-01

    Multiple endocrine neoplasia type 2 (MEN2) is a rare autosomal dominant monogenic disorder caused mostly by missense mutations in the RET (REarranged during Transfection) proto-oncogene on chromosome 10q11.2. MEN2A represents more than 50% of all MEN2 cases, having a regular pattern with medullary thyroid carcinoma (MTC) incidence of 90-100%, bilateral pheochromocytoma (PCC) incidence of 40-50% and primary hyperparathyroidism (HPT) incidence of 10-25%. Until recently, the diagnosis of MTC was most frequently based on fine-needle aspiration of thyroid nodules, after an ultrasound examination and endocrine evaluation of serum calcitonin levels. Nowadays, RET gene screening (starting with exons 10 and 11) is a mandatory test used for identification of both symptomatic and non-symptomatic MTC carriers or for exclusion of healthy individuals from subsequent periodical clinical/biochemical screening. In this context, and in the idea of PCC preceding MTC, the early detection of germline RET mutations are highly suggestive for hereditary disease. PCC diagnosis is established in classical manner by abdominal ultrasound imaging or computed tomography confirming the presence of adrenal gland masses, elevated plasma metanephrines and normetanephrines values and histopathological examination. Additional HPT diagnosis is acknowledged by serum ionized calcium and parathormone levels. Here we report a hereditary case of MEN2A in a two-generation Romanian family, along with data presenting the importance of correlative plurifactorial diagnostic scheme in this syndrome and a short literature review.

  18. Unmet Diagnostic Needs in Infectious Disease

    PubMed Central

    Blaschke, Anne J.; Hersh, Adam L.; Beekmann, Susan E.; Ince, Dilek; Polgreen, Philip M.; Hanson, Kimberly E.

    2014-01-01

    Accurate diagnosis is critical to providing appropriate care in infectious diseases. New technologies for infectious disease diagnostics are emerging, but gaps remain in test development and availability. The Emerging Infections Network surveyed Infectious Diseases physicians to assess unmet diagnostic needs. Responses reflected the urgent need to identify drug-resistant infections and highlighted the potential for early diagnosis to improve antibiotic stewardship. Information gained from this survey can help inform recommendations for new diagnostic test development in the future. PMID:25456043

  19. Application of a laser-induced breakdown time-of-flight technique in a flow diagnostic in a CO/sub 2/ free-jet expansion

    SciTech Connect

    Wantuck, P.J.; Hof, D.E.

    1986-01-01

    A time-of-flight velocity technique utilizing ions formed by the process of laser-induced (1.064 ..mu..m) breakdown has been used to measure axial flow speeds in a CO/sub 2/ free-jet expansion. For the nozzle stagnation pressure and temperature employed (p0 approx. = 200 torr, T0 approx. = 298K), the axial flow speed is on the order of 630 m/s. 5 refs., 3 figs., 1 tab.

  20. Development of a Microsphere-based Immunoassay for Serological Detection of African Horse Sickness Virus and Comparison with Other Diagnostic Techniques.

    PubMed

    Sánchez-Matamoros, A; Beck, C; Kukielka, D; Lecollinet, S; Blaise-Boisseau, S; Garnier, A; Rueda, P; Zientara, S; Sánchez-Vizcaíno, J M

    2016-12-01

    African horse sickness (AHS) is a viral disease that causes high morbidity and mortality rates in susceptible Equidae and therefore significant economic losses. More rapid, sensitive and specific assays are required by diagnostic laboratories to support effective surveillance programmes. A novel microsphere-based immunoassay (Luminex assay) in which beads are coated with recombinant AHS virus (AHSV) structural protein 7 (VP7) has been developed for serological detection of antibodies against VP7 of any AHSV serotype. The performance of this assay was compared with that of a commercial enzyme-linked immunosorbent assay (ELISA) and commercial lateral flow assay (LFA) on a large panel of serum samples from uninfected horses (n = 92), from a reference library of all AHSV serotypes (n = 9), on samples from horses experimentally infected with AHSV (n = 114), and on samples from West African horses suspected of having AHS (n = 85). The Luminex assay gave the same negative results as ELISA when used to test the samples from uninfected horses. Both assays detected antibodies to all nine AHSV serotypes. In contrast, the Luminex assay detected a higher rate of anti-VP7 positivity in the West African field samples than did ELISA or LFA. The Luminex assay detected anti-VP7 positivity in experimentally infected horses at 7 days post-infection, compared to 13 days for ELISA. This novel immunoassay provides a platform for developing multiplex assays, in which the presence of antibodies against multiple ASHV antigens can be detected simultaneously. This would be useful for serotyping or for differentiating infected from vaccinated animals.

  1. A Promising Future for Prostate Cancer Diagnostics

    PubMed Central

    Assinder, Stephen J.; Bhoopalan, Vanitha

    2017-01-01

    It has been estimated that globally there is a death attributable to prostate cancer every four minutes. As life expectancy in all world regions increases, so too incidence of this disease of the ageing male will increase. For many men diagnosis occurs after presentation with symptoms of altered urinary dynamics. Unfortunately, these changes, whilst also associated with benign disease, are evident quite late in the aetiology of prostate cancer. Early detection provides for better management and prognosis. This Special Issue provides an up to date view of the advances made towards early diagnosis and prognosis. It provides reviews of advanced imaging techniques (e.g., multiparametric MRI and protocols), and of biomaterials and molecular biomarkers currently being explored (e.g., microRNAs, proteomics) and the technologies that are revolutionizing this field. It describes the multi-disciplinary approaches that are essential to inexpensive, deliverable and accurate platforms for prostate cancer diagnostics. PMID:28106714

  2. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  3. Rapid diagnostic tests for malaria.

    PubMed

    Visser, Theodoor; Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-12-01

    Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them.

  4. Diagnostic accuracy of semi-quantitative and quantitative culture techniques for the diagnosis of catheter-related infections in newborns and molecular typing of isolated microorganisms

    PubMed Central

    2014-01-01

    Background Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). Microbiological evidence implicating catheters as the source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs. Semi-quantitative culture is used to determine the presence of microorganisms on the external catheter surface, whereas quantitative culture also isolates microorganisms present inside the catheter. The main objective of this study was to determine the sensitivity and specificity of these two techniques for the diagnosis of CR-BSIs in newborns from a neonatal ICU. In addition, PFGE was used for similarity analysis of the microorganisms isolated from catheters and blood cultures. Methods Semi-quantitative and quantitative methods were used for the culture of catheter tips obtained from newborns. Strains isolated from catheter tips and blood cultures which exhibited the same antimicrobial susceptibility profile were included in the study as positive cases of CR-BSI. PFGE of the microorganisms isolated from catheters and blood cultures was performed for similarity analysis and detection of clones in the ICU. Results A total of 584 catheter tips from 399 patients seen between November 2005 and June 2012 were analyzed. Twenty-nine cases of CR-BSI were confirmed. Coagulase-negative staphylococci (CoNS) were the most frequently isolated microorganisms, including S. epidermidis as the most prevalent species (65.5%), followed by S. haemolyticus (10.3%), yeasts (10.3%), K. pneumoniae (6.9%), S. aureus (3.4%), and E. coli (3.4%). The sensitivity of the semi-quantitative and quantitative techniques was 72.7% and 59.3%, respectively, and specificity was 95.7% and 94.4%. The diagnosis of CR-BSIs based on PFGE analysis of similarity between strains isolated from catheter tips and blood cultures showed 82.6% sensitivity and 100% specificity. Conclusion The semi

  5. Indirect CT venography of the abdominal cavity and lower limbs in patients with the suspicion of pulmonary embolism--indications, technique, diagnostic possibilities.

    PubMed

    Czekajska-Chehab, Elzbieta; Drop, Andrzej; Terlecka, Barbara; Trzeciak, Jadwiga; Trojanowska, Agnieszka; Odój, Magdalena

    2004-01-01

    Multi-slice computed tomography has become the main method to diagnose and evaluate the intensity of acute pulmonary embolism (PE). The most common cause of PE is thrombosis of veins of the lower limbs and pelvis. The paper presents various aspects of the use of combined pulmonary artery arteriography and indirect venography performed using multi-slice tomography in relation to other methods imaging the venous system used so far. The authors presented the techniques of CT examination of venous vessels of the lower limbs, abdominal cavity and pelvis in patients with the suspicion of PE, typical images of lesions, results of studies concerning these issues conducted to date and their own experience based on clinical practice.

  6. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  7. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  8. The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques.

    PubMed Central

    Sabattini, E; Bisgaard, K; Ascani, S; Poggi, S; Piccioli, M; Ceccarelli, C; Pieri, F; Fraternali-Orcioni, G; Pileri, S A

    1998-01-01

    AIM: To assess a newly developed immunohistochemical detection system, the EnVision++. METHODS: A large series of differently processed normal and pathological samples and 53 relevant monoclonal antibodies were chosen. A chessboard titration assay was used to compare the results provided by the EnVision++ system with those of the APAAP, CSA, LSAB, SABC, and ChemMate methods, when applied either manually or in a TechMate 500 immunostainer. RESULTS: With the vast majority of the antibodies, EnVision++ allowed two- to fivefold higher dilutions than the APAAP, LSAB, SABC, and ChemMate techniques, the staining intensity and percentage of expected positive cells being the same. With some critical antibodies (such as the anti-CD5), it turned out to be superior in that it achieved consistently reproducible results with differently fixed or overfixed samples. Only the CSA method, which includes tyramide based enhancement, allowed the same dilutions as the EnVision++ system, and in one instance (with the anti-cyclin D1 antibody) represented the gold standard. CONCLUSIONS: The EnVision++ is an easy to use system, which avoids the possibility of disturbing endogenous biotin and lowers the cost per test by increasing the dilutions of the primary antibodies. Being a two step procedure, it reduces both the assay time and the workload. Images PMID:9797726

  9. [Patent ductus arteriosus in the dog: a retrospective study of clinical presentation, diagnostics and comparison of interventional techniques in 102 dogs (2003-2011)].

    PubMed

    Meijer, M; Beijerink, N J

    2012-06-01

    A left-to-right shunting patent ductus arteriosus (PDA) is a common congenital heart defect in dogs. If it is left uncorrected, life expectancy in most cases is decreased due to the development of left-sided congestive heart failure. The aim of this study was to describe the dogs diagnosed with PDA in the Utrecht University Companion Animal Clinic from 2003 to 2011. The medical records of 102 patients were retrieved, and the clinical presentation and outcome of PDA closure by surgical ligation or transarterial catheter occlusion (TCO) were reviewed. In the TCO group, the result of coiling was compared with the placement of an Amplatz Canine Duct Occluder (ACDO). A predisposition to PDA was found in the German Brak, Stabyhoun, and Schapendoes. Dogs treated with surgical ligation were significantly older and heavier than those treated with TCO; within the TCO group, dogs treated with ACDO were significantly older and heavier The initial success rate (complete disappearance of the audible murmur in a patient that survived the procedure) was not significantly different between the different treatment modalities. Major complications were more common with surgical ligation, but the incidence of minor complications was not significantly different. There was no diference in survival between dogs treated with surgical ligation and dogs treated with TCO. This study shows a previously unreported predisposition to PDA in certain breeds. Both surgical ligation and TCO are suitable techniques for PDA closure, although major complications were more common with surgical ligation. ACDO appears to be the method with the least complications and thus can be considered the safest method.

  10. Salivary diagnostics

    PubMed Central

    Lee, J.M.; Garon, E.; Wong, D.T.

    2010-01-01

    The ability to monitor health status, disease onset and progression, and treatment outcome through non-invasive means is a most desirable goal in the health care promotion and delivery. There are three prerequisites to materialize this goal: specific biomarkers associated with a health or disease state; a non-invasive approach to detect and monitor the biomarkers; and the technologies to discriminate the biomarkers. A national initiative catalyzed by the National Institute of Dental & Craniofacial Research (NIDCR) has created a roadmap to achieve these goals through the use of oral fluids as the diagnostic medium to scrutinize the health and/or disease status of individuals. Progress has shown this is an ideal opportunity to bridge state of the art saliva-based biosensors, optimized to disease discriminatory salivary biomarkers, for diagnostic applications. Oral fluid being the ‘mirror of body’ is a perfect medium to be explored for health and disease surveillance. The translational applications and opportunities are enormous. PMID:19627522

  11. 2009 Laser Diagnostics in Combustion GRC

    SciTech Connect

    Volker Sick

    2009-08-16

    Non-intrusive laser diagnostics for the spatially and temporally resolved measurement of temperature, chemical composition, and flow parameters have emerged over the last few decades as major tools for the study of both fundamental and applied combustion science. Many of the important advances in the field can be attributed to the discussions and ideas emanating from this meeting. This conference, originating in 1981 and held biennially, focuses on laser-based methods for measurement of both macroscopic parameters and the underlying microscale physical and chemical processes. Applications are discussed primarily to elucidate new chemical and physical issues and/or interferences that need to be addressed to improve the accuracy and precision of the various diagnostic approaches or to challenge the community of diagnosticians to invent new measurement techniques. Combustion environments present special challenges to the optical diagnostics community as they address measurements relevant to turbulence, spray and mixture formation, or turbulence/chemistry interactions important in practical combustion systems as well as fundamental chemical reactions in stationary laminar flames. The diagnostics considered may be generally classed as being incoherent, where the signals are radiated isotropically, or coherent, where the signals are generated in a directed, beam-like fashion. Both of the foregoing may employ either electronic or Raman resonance enhancement or a combination of both. Prominent incoherent approaches include laser induced fluorescence (LIF), spontaneous Raman scattering, Rayleigh scattering, laser induced incandescence, molecular flow tagging, and Mie scattering and their two- and three-dimensional imaging variants. Coherent approaches include coherent anti-Stokes Raman scattering (CARS), degenerate four wave mixing (DFWM), polarization spectroscopy (PS), laser induced grating spectroscopy (LIGS) and laser-based absorption spectroscopy. Spectroscopic

  12. Implementation of a new atomic basis for the He I equilibrium line ratio technique for electron temperature and density diagnostic in the SOL for H-mode plasmas in DIII-D

    SciTech Connect

    Burgos, JMM; Schmitz, O.; Unterberg, Ezekial A; Loch, S. D.; Ballance, C. P.

    2011-01-01

    Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. (C) 2010 Elsevier B.V. All rights reserved.

  13. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  14. ICF diagnostics. Revision 1

    SciTech Connect

    Coleman, L.W.

    1982-12-17

    In the past several years there have been significant advances and accomplishments in the field of Inertial Confinement Fusion (ICF) research which are directly attributable to an active experimental program supported by the development and applications of sophisticated and specialized diagnostics instruments and techniques. The continued development of high temporal-and spatial-resolution diagnostics, although with a somewhat different technical emphasis than previously, is essential for maintaining progress in ICF. With the generation of inertial fusion drivers now becoming available progress toward higher density compression of fusion fuel will be attained at the expense of temperature, and consequently emissions from the targets will be limited. At the same time since the targets are being driven to higher density they are more opaque to the low-to-moderate energy x-rays (up to a few keV) and particles (alpha particles, protons, and knock-on charged particles) that have been utilized for diagnosing target performance.

  15. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  16. Computational Techniques for More Accurate and Diverse Recommendations

    ERIC Educational Resources Information Center

    Kwon, YoungOk

    2011-01-01

    Recommender systems are becoming an increasingly important research area due to the growing demand for personalized recommendations. The volume of information available to each user and the number of products carried in e-commerce marketplaces have grown tremendously. Thus, recommender systems are needed to help individual users find the most…

  17. High-Accurate, Physics-Based Wake Simulation Techniques

    DTIC Science & Technology

    2015-01-27

    artificial viscos- ity sensor that has been augmented to make it more applicable to different this problem. Artificial viscosity is a necessity in...h is the minimum length, and ν is the maximum applicable viscosity . The maximum viscosity coefficient is be found by using a simple relationship...Global viscosity , or the application of viscosity to all locations, was also plotted to show how much more effective using a sensor is. The figure shows

  18. Aging techniques for deep vein thrombosis: a systematic review.

    PubMed

    Dharmarajah, B; Sounderajah, V; Rowland, S P; Leen, E L S; Davies, A H

    2015-03-01

    Deep vein thrombosis is common with an incidence of 1 in 1000. Acute thrombus removal for extensive proximal deep vein thrombosis using catheter-directed techniques highlights the need for accurate assessment of thrombus age. This systematic review summarises experimental and clinical evidence of imaging techniques for aging deep vein thrombosis. Ultrasound elastography and magnetic resonance imaging were highlighted as the most studied imaging modalities. Elastography was shown to distinguish between acute and chronic clots, despite demonstrating difficulty in accurate aging of clots older than 10 days in rat models. Elastography is noted as a feasible adjunct to current first-line imaging for deep vein thrombosis using duplex ultrasonography. Combinations of magnetic resonance imaging techniques can identify acute, sub-acute and chronic thrombi using endogenous contrast agents and provide objective standardisation of the diagnostic process, with reduced onus upon operator dependency. Further validation is required of these novel imaging techniques prior to clinical implementation for deep vein thrombosis aging.

  19. Cytomorphology of male breast lesions: diagnostic pitfalls and clinical implications.

    PubMed

    Rosa, Marilin; Masood, Shahla

    2012-02-01

    Because lesions of the male breast have been exceeded in number by those of the female breast, marginal attention was given to these lesions in the past. Fortunately, this has changed over the years leading to an increased awareness about male breast cancer. Although male breast cancer constitutes only about 1% of all diagnosed breast cancer cases, an increased mortality is seen in this patient population. This is probably caused by late diagnosis as a consequence of low level of concern about breast cancer among male patients. However, the vast majority of lesions of the male breast are benign, gynecomastia being the number one cause of unilateral or bilateral breast mass. Since it is important to avoid unnecessary surgical treatment without missing malignancy, accurate diagnostic tools are necessary in order to triage these patients. Fine-needle aspiration biopsy has demonstrated excellent accuracy in the diagnosis and management of breast lesions in female patients. In addition, several authors have proven the value of this technique in the evaluation of lesions of the male breast. Fine-needle aspiration biopsy permits accurate diagnosis in many lesions arising in the male breast. It also allows gathering cytological material that can be used for ancillary studies which enhances the diagnostic value of this technique.

  20. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview.

    PubMed

    Sawhney, Rajesh; Berry, Vandana

    2009-07-01

    Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  1. Diagnostic imaging in bovine orthopedics.

    PubMed

    Kofler, Johann; Geissbühler, Urs; Steiner, Adrian

    2014-03-01

    Although a radiographic unit is not standard equipment for bovine practitioners in hospital or field situations, ultrasound machines with 7.5-MHz linear transducers have been used in bovine reproduction for many years, and are eminently suitable for evaluation of orthopedic disorders. The goal of this article is to encourage veterinarians to use radiology and ultrasonography for the evaluation of bovine orthopedic disorders. These diagnostic imaging techniques improve the likelihood of a definitive diagnosis in every bovine patient but especially in highly valuable cattle, whose owners demand increasingly more diagnostic and surgical interventions that require high-level specialized techniques.

  2. Planetary Transmission Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  3. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  4. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  5. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts.

  6. Microfluidic technology for molecular diagnostics.

    PubMed

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  7. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  8. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  9. Oral cancer: current and future diagnostic techniques.

    PubMed

    Scully, Crispian; Bagan, José V; Hopper, Colin; Epstein, Joel B

    2008-08-01

    Oral cancer is among the 10 most common cancers worldwide, and is especially seen in disadvantaged elderly males. Early detection and prompt treatment offer the best chance for cure. As patient awareness regarding the danger of oral cancer increases, the demand for "screening" is expected to increase. The signs and symptoms of oral cancer often resemble less serious conditions more commonly found and similarly usually presenting as a lump, red or white patch or ulcer. If any such lesion does not heal within 3 weeks, a malignancy or some other serious disorder must be excluded and a biopsy may be indicated. Dental health care workers have a duty to detect benign and potentially malignant oral lesions such as oral cancer and are generally the best trained health care professionals in this field. Prompt referral to an appropriate specialist allows for the best management but, if this is not feasible, the dental practitioner should take the biopsy which should be sent to an oral/head and neck pathologist for histological evaluation.

  10. Survey of Diagnostic Techniques for Dynamic Components

    DTIC Science & Technology

    2010-01-01

    Bearing Condition. Applied Acoustics 1998, 53 (1–3), 221–226. 10. Randall, R. B. Cepstrum Analysis and Gearbox Fault Diagnosis . B&K Instruments...with gearbox faults ) 4. It is non-dimensional in a way that makes it relatively insensitive to load changes, but not speed. 5. It is also fairly...traditional methods for fault diagnosis are categorized as pattern classification, knowledge- based inference, and numerical modeling. Pattern

  11. Wiring System Diagnostic Techniques for Legacy Aircraft

    DTIC Science & Technology

    2003-02-01

    hydrolysis) and ultra- violet radiation Alternative wire insulation materials include cross-linked TefzelTM (MIL-W- 22759 /33- 44) which is a cross-linked...with conductor corrosion in silver plated wire (red plague). Another widely used type of insulation in Air Force aircraft is Teflon (MIL- W- 22759 ...primarily Teflon with a small percentage of a modified aromatic polyimide (MIL-W- 22759 /88-). Much of the original development and testing was part of an

  12. Novel Chemical and Optical Diagnostic Techniques

    DTIC Science & Technology

    1991-03-01

    acid is commercially available in anhydrous To determine the amount of hydrazine and hydrazine form. in monohydrate form. and in other hydrated...with amonia day prior to UOMH exposure. 1H3(): Tubing cleaned with ammonia irmediately prior to UDMH exposure, "IIi Im I Ii II lI 37 PFA Tubing Exposures

  13. Assessment of Diagnostic Techniques of Urinary Tuberculosis

    PubMed Central

    Ghaleb, Khaled; Afifi, Magdy; El-Gohary, Mohamad

    2013-01-01

    Early diagnosis of active tuberculosis remains an elusive challenge. In addition, one third of the world’s population is latently infected with Mycobacterium tuberculosis (Mtb) and up to 10% of infected individuals develop tuberculosis (TB) in their lifetime. In this investigation, the incidence of urinary tuberculosis among renal patients was studied. Three hundreds urine samples were processed for detection of Mtb by Ziehl-Neelsen (ZN) smear examination, Lowenstein Jensen (LJ) medium, radiometric BACTEC460 system as well as polymerase chain reaction (PCR) followed by DNA Enzyme Immunoassay (DEIA) test. Out of 300 urine samples, 2 were positive by both ZN smears and LJ medium with incidence rate of 0.66 %, 3 positive samples by BACTEC460 culture system with incidence of 1%. PCR assay gave more positive results than smear and culture examination (i.e. 8 positive samples with incidence rate of 2.6%). The specificities were 25% for both ZN smears and LJ medium, 37.5% for BACTEC460 culture system, and 100% for PCR test, while sensitivities of all assays were 100%. Thus PCR is a rapid and sensitive method for the early diagnosis of urinary tuberculosis. PMID:23795272

  14. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  15. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.

    PubMed

    Esparcia, Oscar; Montemayor, Michel; Ginovart, Gemma; Pomar, Virginia; Soriano, Germán; Pericas, Roser; Gurgui, Mercedes; Sulleiro, Elena; Prats, Guillem; Navarro, Ferran; Coll, Pere

    2011-02-01

    The diagnostic accuracy of a 16S ribosomal DNA (rDNA) gene-based molecular technique for bacterial meningitis (BM), early-onset neonatal sepsis (EONS), and spontaneous bacterial peritonitis (SBP) is evaluated. The molecular approach gave better results for BM diagnosis: sensitivity (S) was 90.6% compared to 78.1% for the bacterial culture. Percentages of cases correctly diagnosed (CCD) were 91.7% and 80.6%, respectively. For EONS diagnosis, S was 60.0% for the molecular approach and 70.0% for the bacterial culture; and CCD was 95.2% and 96.4%, respectively. For SPB diagnosis, the molecular approach gave notably poorer results than the bacterial cultures. S and CCD were 48.4% and 56.4% for the molecular approach and 80.6% and 89.1% for bacterial cultures. Nevertheless, bacterial DNA was detected in 53.3% of culture-negative samples. Accuracy of the 16S rDNA PCR approach differs depending on the sample, the microorganisms involved, the expected bacterial load, and the presence of bacterial DNA other than that from the pathogen implied in the infectious disease.

  16. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    SciTech Connect

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  17. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Pace, D C

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  18. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  19. Diagnostics in Japan's microgravity experiments

    NASA Technical Reports Server (NTRS)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  20. Diagnostic modalities.

    PubMed

    Elstob, Alison; Gonsalves, Michael; Patel, Uday

    2016-12-01

    The incidental detection of small renal masses on imaging undertaken to evaluate unrelated symptoms or conditions is an increasingly common occurrence. Accurate imaging characterisation is fundamental to determining optimum patient management. The goals of imaging small renal masses include determining whether a lesion is solid or cystic, if there are signs of biological aggressiveness and whether the lesion is likely benign or malignant. The current imaging practices and the evidence supporting the use of different imaging modalities for the characterisation of small renal masses are discussed. CT remains the primary imaging modality and is able to classify most masses into surgical or non-surgical lesions. MRI and contrast enhanced ultrasound are most often employed to problem solve in lesions deemed indeterminate on contrast enhanced CT or for patients in which CECT is contraindicated. Percutaneous biopsy should be considered in lesions that remain indeterminate after initial imaging investigations. Given the central role of imaging in the management of small renal masses, all multidisciplinary team members involved in renal cancer care should have an understanding of the performance of the different imaging modalities.

  1. Pattern classification approach to rocket engine diagnostics

    SciTech Connect

    Tulpule, S.

    1989-01-01

    This paper presents a systems level approach to integrate state-of-the-art rocket engine technology with advanced computational techniques to develop an integrated diagnostic system (IDS) for future rocket propulsion systems. The key feature of this IDS is the use of advanced diagnostic algorithms for failure detection as opposed to the current practice of redline-based failure detection methods. The paper presents a top-down analysis of rocket engine diagnostic requirements, rocket engine operation, applicable diagnostic algorithms, and algorithm design techniques, which serve as a basis for the IDS. The concepts of hierarchical, model-based information processing are described, together with the use uf signal processing, pattern recognition, and artificial intelligence techniques which are an integral part of this diagnostic system. 27 refs.

  2. Diagnostic neuroradiology for the interventional neuroradiologist

    PubMed Central

    Pereira, Vitor Mendes; Vargas, Maria Isabel; Marcos, Ana; Bijlenga, Philippe; Narata, Ana Paula; Haller, Sven; Lövblad, Karl-Olof

    2013-01-01

    In order to further improve the impact of the continuously evolving neurointerventional techniques, the interventional neuroradiologist needs to have at his disposal more powerful techniques to image the central nervous system. With the recent development of diagnostics techniques that are computed tomography and magnetic resonance based we are now able to assess not just morphology, but also physiology, physiopathology and function. This review discusses the place of diagnostic techniques in the evaluation that the interventional neuroradiologist hast to make when confronted with patients. We provide an overview of current techniques for the brain and spine. PMID:24349643

  3. Timely Diagnostic Feedback for Database Concept Learning

    ERIC Educational Resources Information Center

    Lin, Jian-Wei; Lai, Yuan-Cheng; Chuang, Yuh-Shy

    2013-01-01

    To efficiently learn database concepts, this work adopts association rules to provide diagnostic feedback for drawing an Entity-Relationship Diagram (ERD). Using association rules and Asynchronous JavaScript and XML (AJAX) techniques, this work implements a novel Web-based Timely Diagnosis System (WTDS), which provides timely diagnostic feedback…

  4. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review

    PubMed Central

    Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio

    2009-01-01

    Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310

  5. Chronic Meningitis: Simplifying a Diagnostic Challenge.

    PubMed

    Baldwin, Kelly; Whiting, Chris

    2016-03-01

    Chronic meningitis can be a diagnostic dilemma for even the most experienced clinician. Many times, the differential diagnosis is broad and encompasses autoimmune, neoplastic, and infectious etiologies. This review will focus on a general approach to chronic meningitis to simplify the diagnostic challenges many clinicians face. The article will also review the most common etiologies of chronic meningitis in some detail including clinical presentation, diagnostic testing, treatment, and outcomes. By using a case-based approach, we will focus on the key elements of clinical presentation and laboratory analysis that will yield the most rapid and accurate diagnosis in these complicated cases.

  6. Serologic autoantibodies as diagnostic cancer biomarkers--a review.

    PubMed

    Zaenker, Pauline; Ziman, Melanie R

    2013-12-01

    Current diagnostic techniques used for the early detection of cancers are successful but subject to detection bias. A recent focus lies in the development of more accurate diagnostic tools. An increase in serologic autoantibody levels has been shown to precede the development of cancer disease symptoms. Therefore, autoantibody levels in patient blood serum have been proposed as diagnostic biomarkers for early-stage diagnosis of cancers. Their clinical application has, however, been hindered by low sensitivity, specificity, and low predictive value scores. These scores have been shown to improve when panels of multiple diagnostic autoantibody biomarkers are used. A five-marker biomarker panel has been shown to increase the sensitivity of prostate cancer diagnosis to 95% as compared with 12.2% for prostate-specific antigen alone. New potential biomarker panels were also discovered for lung, colon, and stomach cancer diagnosis with sensitivity of 76%, 65.4%, and 50.8%, respectively. Studies in breast and liver cancer, however, seem to favor single markers, namely α-2-HS-glycoprotein and des-γ-carboxyprothrombin with sensitivities of 79% and 89% for the early detection of the cancers. The aim of this review is to discuss the relevance of autoantibodies in cancer diagnosis and to outline the current methodologies used in the detection of autoantibodies. The review concludes with a discussion of the autoantibodies currently used in the diagnosis of cancers of the prostate, breast, lung, colon, stomach, and liver. A discussion of the potential future use of autoantibodies as diagnostic cancer biomarkers is also included in this review.

  7. Rapid infectious diseases diagnostics using Smartphones

    PubMed Central

    Bates, Matthew

    2015-01-01

    The “Smartphone” is an almost universal possession in high-income populations, and is rapidly becoming so in lower-income regions, particularly among urban populations, and serves social networking and a quest for information and knowledge. The field of infectious disease diagnostics is at a potential watershed moment, with the essential building blocks for the development of diagnostic assays being ever more available and affordable, which is leading to creative innovative approaches to developing much-needed accurate and simple point-of-care (POC) diagnostic tools for high disease burden, low-income settings. We review the importance and implications of a paper published in Science Translational Medicine on the development of a smartphone-powered and -controlled multiplex immunological assay that tests for HIV and syphilis simultaneously. This is reviewed in the context of other prototype smartphone-enabled/assisted diagnostic devices, and how such developments might shape the future of the POC diagnostics field. PMID:26488011

  8. Accurate tracking of high dynamic vehicles with translated GPS

    NASA Astrophysics Data System (ADS)

    Blankshain, Kenneth M.

    The GPS concept and the translator processing system (TPS) which were developed for accurate and cost-effective tracking of various types of high dynamic expendable vehicles are described. A technique used by the translator processing system (TPS) to accomplish very accurate high dynamic tracking is presented. Automatic frequency control and fast Fourier transform processes are combined to track 100 g acceleration and 100 g/s jerk with 1-sigma velocity measurement error less than 1 ft/sec.

  9. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  10. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  11. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  12. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  13. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  14. Diagnostic Potential of Pulsed Arterial Spin Labeling in Alzheimer's Disease

    PubMed Central

    Trebeschi, Stefano; Riederer, Isabelle; Preibisch, Christine; Bohn, Karl P.; Förster, Stefan; Alexopoulos, Panagiotis; Zimmer, Claus; Kirschke, Jan S.; Valentinitsch, Alexander

    2016-01-01

    Alzheimers disease (AD) is the most common cause of dementia. Although the underlying pathology is still not completely understood, several diagnostic methods are available. Frequently, the most accurate methods are also the most invasive. The present work investigates the diagnostic potential of Pulsed Arterial Spin Labeling (PASL) for AD: a non-invasive, MRI-based technique for the quantification of regional cerebral blood flow (rCBF). In particular, we propose a pilot computer aided diagnostic (CAD) procedure able to discriminate between healthy and diseased subjects, and at the same time, providing visual informative results. This method encompasses the creation of a healthy model, the computation of a voxel-wise likelihood function as comparison between the healthy model and the subject under examination, and the correction of the likelihood function via prior distributions. The discriminant analysis is carried out to maximize the accuracy of the classification. The algorithm has been trained on a dataset of 81 subjects and achieved a sensitivity of 0.750 and a specificity of 0.875. Moreover, in accordance with the current pathological knowledge, the parietal lobe, and limbic system are shown to be the main discriminant factors. PMID:27147946

  15. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  16. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  17. Biopsy techniques for intraocular tumors

    PubMed Central

    Rishi, Pukhraj; Dhami, Abhinav; Biswas, Jyotirmay

    2016-01-01

    Biopsy involves the surgical removal of a tissue specimen for histopathologic evaluation. Most intraocular tumors are reliably diagnosed based on the clinical evaluation or with noninvasive diagnostic techniques. However, accurately diagnosing a small percentage of tumors can be challenging. A tissue biopsy is thus needed to establish a definitive diagnosis and plan the requisite treatment. From fine-needle aspiration biopsy (FNAB) to surgical excision, all tissue collection techniques have been studied in the literature. Each technique has its indications and limitations. FNAB has been reported to provide for 88–95% reliable and safe ophthalmic tumor diagnosis and has gained popularity for prognostic purposes and providing eye conserving treatment surgeries. The technique and instrumentation for biopsy vary depending upon the tissue involved (retina, choroid, subretinal space, vitreous, and aqueous), suspected diagnosis, size, location, associated retinal detachment, and clarity of the media. The cytopathologist confers a very important role in diagnosis and their assistance plays a key role in managing and planning the treatment for malignancies. PMID:27488148

  18. Invasive mycoses: diagnostic challenges.

    PubMed

    Ostrosky-Zeichner, Luis

    2012-01-01

    Despite the availability of newer antifungal drugs, outcomes for patients with invasive fungal infections (IFIs) continue to be poor, in large part due to delayed diagnosis and initiation of appropriate antifungal therapy. Standard histopathologic diagnostic techniques are often untenable in at-risk patients, and culture-based diagnostics typically are too insensitive or nonspecific, or provide results after too long a delay for optimal IFI management. Newer surrogate markers of IFIs with improved sensitivity and specificity are needed to enable earlier diagnosis and, ideally, to provide prognostic information and/or permit therapeutic monitoring. Surrogate assays should also be accessible and easy to implement in the hospital. Several nonculture-based assays of newer surrogates are making their way into the medical setting or are currently under investigation. These new or up-and-coming surrogates include antigens/antibodies (mannan and antimannan antibodies) or fungal metabolites (d-arabinitol) for detection of invasive candidiasis, the Aspergillus cell wall component galactomannan used to detect invasive aspergillosis, or the fungal cell wall component and panfungal marker β-glucan. In addition, progress continues with use of polymerase chain reaction- or other nucleic acid- or molecular-based assays for diagnosis of either specific or generic IFIs, although the various methods must be better standardized before any of these approaches can be more fully implemented into the medical setting. Investigators are also beginning to explore the possibility of combining newer surrogate markers with each other or with more standard diagnostic approaches to improve sensitivity, specificity, and capacity for earlier diagnosis, at a time when fungal burden is still relatively low and more responsive to antifungal therapy.

  19. AST Combustion Workshop: Diagnostics Working Group Report

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.

    1996-01-01

    A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.

  20. Immunosensors in Clinical Laboratory Diagnostics.

    PubMed

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2016-01-01

    The application of simple, cost-effective, rapid, and accurate diagnostic technologies for detection and identification of cardiac and cancer biomarkers has been a central point in the clinical area. Biosensors have been recognized as efficient alternatives for the diagnostics of various diseases due to their specificity and potential for application on real samples. The role of nanotechnology in the construction of immunological biosensors, that is, immunosensors, has contributed to the improvement of sensitivity, since they are based in the affinity between antibody and antigen. Other analytes than biomarkers such as hormones, pathogenic bacteria, and virus have also been detected by immunosensors for clinical point-of-care applications. In this chapter, we first introduced the various types of immunosensors and discussed their applications in clinical diagnostics over the recent 6 years, mainly as point-of-care technologies for the determination of cardiac and cancer biomarkers, hormones, pathogenic bacteria, and virus. The future perspectives of these devices in the field of clinical diagnostics are also evaluated.

  1. ULTRASONOGRAPHY, AN EFFECTIVE TOOL IN DIAGNOSING PLANTAR FASCIITIS: A SYSTEMATIC REVIEW OF DIAGNOSTIC TRIALS

    PubMed Central

    Wyland, Matthew; Applequist, Lee; Bolowsky, Erin; Klingensmith, Heather; Virag, Isaac

    2016-01-01

    Background Plantar fasciitis (PF) is the most common cause of heel pain that affects 10% of the general population, whether living an athletic or sedentary lifestyle. The most frequent mechanism of injury is an inflammatory response that is caused by repetitive micro trauma. Many techniques are available to diagnose PF, including the use of ultrasonography (US). Purpose The purpose of this study is to systematically review and appraise previously published articles published between the years 2000 and 2015 that evaluated the effectiveness of using US in the process of diagnosing PF, as compared to alternative diagnostic methods. Methods A total of eight databases were searched to systematically review scholarly (peer reviewed) diagnostic and intervention articles pertaining to the ability of US to diagnose PF. Results Using specific key words the preliminary search yielded 264 articles, 10 of which were deemed relevant for inclusion in the study. Two raters independently scored each article using the 15 point modified QUADAS scale. Discussion Six studies compared the diagnostic efficacy of US to another diagnostic technique to diagnose PF, and four studies focused on comparing baseline assessment of plantar fascia before subsequent intervention. The most notable US outcomes measured were plantar fascia thickness, enthesopathy, and hypoechogenicity. Conclusion US was found to be accurate and reliable compared to alternative reference standards like MRI in the diagnosis of PF. The general advantages of US (e.g. cost efficient, ease of administration, non-invasive, limited contraindications) make it a superior diagnostic modality in the diagnosis of PF. US should be considered in rehabilitation clinics to effectively diagnose PF and to accurately monitor improvement in the disease process following rehabilitation interventions. Level of Evidence 1A PMID:27757279

  2. Diagnostic errors in interactive telepathology.

    PubMed

    Stauch, G; Schweppe, K W; Kayser, K

    2000-01-01

    Telepathology (TP) as a service in pathology at a distance is now widely used. It is integrated in the daily workflow of numerous pathologists. Meanwhile, in Germany 15 departments of pathology are using the telepathology technique for frozen section service; however, a common recognised quality standard in diagnostic accuracy is still missing. In a first step, the working group Aurich uses a TP system for frozen section service in order to analyse the frequency and sources of errors in TP frozen section diagnoses for evaluating the quality of frozen section slides, the important components of image quality and their influences an diagnostic accuracy. The authors point to the necessity of an optimal training program for all participants in this service in order to reduce the risk of diagnostic errors. In addition, there is need for optimal cooperation of all partners involved in TP service.

  3. Laboratory Diagnostics of Botulism

    PubMed Central

    Lindström, Miia; Korkeala, Hannu

    2006-01-01

    Botulism is a potentially lethal paralytic disease caused by botulinum neurotoxin. Human pathogenic neurotoxins of types A, B, E, and F are produced by a diverse group of anaerobic spore-forming bacteria, including Clostridium botulinum groups I and II, Clostridium butyricum, and Clostridium baratii. The routine laboratory diagnostics of botulism is based on the detection of botulinum neurotoxin in the patient. Detection of toxin-producing clostridia in the patient and/or the vehicle confirms the diagnosis. The neurotoxin detection is based on the mouse lethality assay. Sensitive and rapid in vitro assays have been developed, but they have not yet been appropriately validated on clinical and food matrices. Culture methods for C. botulinum are poorly developed, and efficient isolation and identification tools are lacking. Molecular techniques targeted to the neurotoxin genes are ideal for the detection and identification of C. botulinum, but they do not detect biologically active neurotoxin and should not be used alone. Apart from rapid diagnosis, the laboratory diagnostics of botulism should aim at increasing our understanding of the epidemiology and prevention of the disease. Therefore, the toxin-producing organisms should be routinely isolated from the patient and the vehicle. The physiological group and genetic traits of the isolates should be determined. PMID:16614251

  4. [Diagnostic Management of Exophthalmos].

    PubMed

    Klingenstein, A; Hintschich, C

    2017-01-01

    Exophthalmos is a common and important symptom in orbital consultation. It can be either uni- or bilateral. A wide spectrum of benign and malignant diseases has to be considered and evaluated for differential diagnosis, in order to maintain complete ocular function and to lead the patient to adequate therapy. Exophthalmos can be accompanied by variable symptoms, ranging from neurogenic or myogenic to corneal alterations. Symptoms at presentation depend on the underlying disease and may manifest systemically. Interdisciplinary teamwork is essential for diagnostics and therapy of exophthalmos. In addition to ophthalmological routine diagnostics, various supplementary examinations are available which are of importance for disease monitoring. Exact radiological imaging is important for the detailed visualisation of the pathology, surgery as well as treatment planning. Magnetic resonance imaging (MRI) and computed tomography (CT) are the standard imaging techniques used. Contrast enhancement and specific sequences can answer specific problems in detail. Combined positron emission tomography (PET) with CT permits evaluation of metabolic and morphological data and is employed in diagnosis of meningioma, lymphoma and metastases. In summary, the reader should learn important differential diagnoses and accompanying symptoms of exophthalmos, thus enabling essential clinical examinations and adequate imaging.

  5. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    Typical estimates of standing wood derived from remote sensing sources take advantage of aggregate measurements of canopy heights (e.g. LIDAR) and canopy diameters (segmentation of IKONOS imagery) to obtain a wood volume estimate by assuming homogeneous species and a fixed function that returns volume. The validation of such techniques use manually measured diameter at breast height records (DBH). Our goal is to improve the accuracy and applicability of biomass estimation methods to heterogeneous forests and transitional areas. We are developing estimates with quantifiable uncertainty using a new form of estimation function, active sampling, and volumetric reconstruction image rendering for species specific mass truth. Initially we are developing a Bayesian adaptive sampling method for BRDF associated with the MISR Rahman model with respect to categorical biomes. This involves characterizing the probability distributions of the 3 free parameters of the Rahman model for the 6 categories of biomes used by MISR. Subsequently, these distributions can be used to determine the optimal sampling methodology to distinguish biomes during acquisition. We have a remotely controlled semi-autonomous helicopter that has stereo imaging, lidar, differential GPS, and spectrometers covering wavelengths from visible to NIR. We intend to automatically vary the way points of the flight path via the Bayesian adaptive sampling method. The second critical part of this work is in automating the validation of biomass estimates via using machine vision techniques. This involves taking 2-D pictures of trees of known species, and then via Bayesian techniques, reconstructing 3-D models of the trees to estimate the distribution moments associated with wood volume. Similar techniques have been developed by the medical imaging community. This then provides probability distributions conditional upon species. The final part of this work is in relating the BRDF actively sampled measurements to species

  6. Huntington Disease: Molecular Diagnostics Approach.

    PubMed

    Bastepe, Murat; Xin, Winnie

    2015-10-06

    Huntington disease (HD) is caused by expansion of a CAG trinucleotide repeat in the first exon of the Huntingtin (HTT) gene. Molecular testing of Huntington disease for diagnostic confirmation and disease prediction requires detection of the CAG repeat expansion. There are three main types of HD genetic testing: (1) diagnostic testing to confirm or rule out disease, (2) presymptomatic testing to determine whether an at-risk individual inherited the expanded allele, and (3) prenatal testing to determine whether the fetus has inherited the expanded allele. This unit includes protocols that describe the complementary use of polymerase chain reactions (PCR) and Southern blot hybridization to accurately measure the CAG trinucleotide repeat size and interpret the test results. In addition, an indirect linkage analysis that does not reveal the unwanted parental HD status in a prenatal testing will also be discussed.

  7. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  8. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  9. Clinically based diagnostic wax-up for optimal esthetics: the diagnostic mock-up.

    PubMed

    Simon, Harel; Magne, Pascal

    2008-05-01

    A diagnostic wax-up can enhance the predictability of treatment by modeling the desired result in wax prior to treatment. It is critical to correlate the wax-up to the patient to avoid a result that appears optimal on the casts but does not correspond to the patient's smile. This article reviews the applications and techniques for clinically based diagnostic wax-up, and focuses on the diagnostic mock-up philosophy as a means to obtain predictable esthetics and function.

  10. Diagnostic vitrectomy for infectious uveitis

    PubMed Central

    Jeroudi, Abdallah; Yeh, Steven

    2014-01-01

    The identification of an infectious or noninfectious uveitis syndrome is important to determine the range of therapeutic and prognostic implications of that disease entity. Diagnostic dilemmas arise with atypical history, atypical clinical presentations, inconclusive diagnostic workup, and persistent or worsened inflammation despite appropriate immunosuppression. More invasive intraocular testing is indicated in these situations particularly in infectious uveitis where a delay in treatment may result in worsening of the patient’s disease and a poor visual outcome. Laboratory analysis of vitreous fluid via diagnostic pars plana vitrectomy is an important technique in the diagnostic armamentarium, but the most important aspects of sample collection include rapid processing, close coordination with an ophthalmic pathology laboratory, and directed testing on this limited collected sample. Culture and staining has utility in bacterial, fungal, and nocardial infection. Polymerase chain reaction (PCR) analysis has shown promising results for bacterial endophthalmitis and infection with mycobacterium tuberculosis whereas PCR testing for viral retinitides and ocular toxoplasmosis has a more established role. Antibody testing is appropriate for toxoplasmosis and toxocariasis, and may be complementary to PCR for viral retinitis. Masquerade syndromes represent neoplastic conditions that clinically appear as infectious or inflammatory conditions and should be considered as part of the differential diagnosis. Diagnostic vitrectomy and chorioretinal biopsy are thus critical tools for the management of patients in whom an infectious etiology of uveitis is suspected. PMID:24613892

  11. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  12. Diagnostic imaging for aortic dissection.

    PubMed

    Kapustin, Andrew J; Litt, Harold I

    2005-01-01

    Diagnostic imaging for aortic dissection has dramatically changed in recent years. Previously, imaging consisted of conventional X-ray radiography, followed by invasive catheter angiography. Now imaging of dissection is performed primarily with multidetector CT, and to a lesser extent, with ultrasound and MRI. Catheter angiography is used primarily as a means of treating complications. Which modality to choose depends on patient factors, physician preference, and differences in availability of state-of-the-art equipment. All three modalities are highly accurate in experienced hands and have revolutionized the detection and evaluation of this condition.

  13. Evaluation of Commercially Available Serologic Diagnostic Tests for Chikungunya Virus

    PubMed Central

    Flusin, Olivier; Panella, Amanda; Tenebray, Bernard; Lanciotti, Robert; Leparc-Goffart, Isabelle

    2014-01-01

    Chikungunya virus (CHIKV) is present or emerging in dengue virus–endemic areas. Infections caused by these viruses share some common signs/symptoms, but prognosis, patient care, and persistent symptoms differ. Thus, accurate diagnostic methods are essential for differentiating the infections. We evaluated 4 CHIKV serologic diagnostic tests, 2 of which showed poor sensitivity and specificity. PMID:25418184

  14. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies.

  15. Intelligent diagnostics systems

    NASA Technical Reports Server (NTRS)

    Mcquiston, Barbara M.; Dehoff, Ronald L.

    1992-01-01

    Intelligent systems have been applied to today's problems and could also be applied to space operations integrity. One of these systems is the XMAN tool designed for 'troubleshooting' jet engines. XMAN is the eXpert MAiNtenance tool developed to be an expert information analysis tool which stores trending and diagnostic data on Air Force engines. XMAN operates with a 'network topology' which follows a flow chart containing engine management information reports required by the governments technical order procedures. With XMAN technology, the user is able to identify engine problems by presenting the assertions of the fault isolation logic and attempting to satisfy individual assertions by referring to the databases created by an engine monitoring system. The troubleshooting process requires interaction between the technician and the computer to acquire new evidence form auxiliary maintenance tests corroboration of analytical results to accurately diagnose equipment malfunctions. This same technology will be required for systems which are functioning in space either with an onboard crew, or with an unmanned system. The technology and lessons learned developing this technology while suggesting definite applications for its use with developing space systems are addressed.

  16. An improved molecular diagnostic assay for canine and feline dermatophytosis.

    PubMed

    Cafarchia, Claudia; Gasser, Robin B; Figueredo, Luciana A; Weigl, Stefania; Danesi, Patrizia; Capelli, Gioia; Otranto, Domenico

    2013-02-01

    The few studies attempting to specifically characterize dermatophytes from hair samples of dogs and cats using PCR-based methodology relied on sequence-based analysis of selected genetic markers. The aim of the present investigation was to establish and evaluate a PCR-based approach employing genetic markers of nuclear DNA for the specific detection of dermatophytes on such specimens. Using 183 hair samples, we directly compared the test results of our one-step and nested-PCR assays with those based on conventional microscopy and in vitro culture techniques (using the latter as the reference method). The one step-PCR was highly accurate (AUC > 90) for the testing of samples from dogs, but only moderately accurate (AUC = 78.6) for cats. A nested-PCR was accurate (AUC = 93.6) for samples from cats, and achieved higher specificity (94.1 and 94.4%) and sensitivity (100 and 94.9%) for samples from dogs and cats, respectively. In addition, the nested-PCR allowed the differentiation of Microsporum canis from Trichophyton interdigitale (zoophilic) and geophilic dermatophytes (i.e., Microsporum gypseum or Trichophyton terrestre), which was not possible using the one step-assay. The PCRs evaluated here provide practical tools for diagnostic applications to support clinicians in initiating prompt and targeted chemotherapy of dermatophytoses.

  17. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  18. R&D ERL: Diagnostics

    SciTech Connect

    Gassner, D.

    2010-01-01

    The Energy Recovery Linac (ERL) prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This report outlines requirements on the ERL diagnostics and describes its setup and modes of operation. The BNL Prototype ERL is an R&D effort aimed at reducing risks and costs associated with the proposed RHIC II electron cooler and eRHIC collider. The ERL will serve as a test bed for developing and testing instrumentation and studying physics and technological issues relevant to very high current ERL's. The prototype ERL, mated to a high current SRF gun, is expected to demonstrate production and energy recovery of high intensity, low emittance beams with a current of up to a few hundred milliamps. To successfully accomplish this task the ERL will include beam diagnostics required to characterize and tune beam parameters, as well as for machine protection. A preliminary diagnostics plan was presented in earlier publications. In this report, we describe the diagnostics presently planned to provide the data needed to meet these goals.

  19. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  20. Wearable diagnostic system for age-related macular degeneration.

    PubMed

    Mohaghegh, N; Zadeh, E Ghafar; Magierowski, S

    2016-08-01

    This paper presents a novel head-mounted point-of-care diagnostic system for detection and continuous monitoring of Age-related Macular Degeneration (AMD). This wearable embedded open-source platform enables accurate monitoring of AMD by taking advantage of multiple standard graphical interface techniques such as Amsler Grid, Threshold Amsler Grid, Macular Computerized Psychophysical Test and Preferential Hyperacuity Perimeter (PHP). Here, we describe the proposed multi-Grid or so-called NGRID software and elaborate on the hardware prototype. This prototype includes a commercially available Oculus HMD incorporated with a single board computer. As the first step towards a fully integrated wearable system, this paper successfully proves the functionality of head-mounted graphical interface device ready for a live demonstration. Participants can experience this device and take a 10-minute AMD eye-exam. Furthermore, NGRID has been approved and permitted for an in-hospital clinical trial.

  1. Two terminal diagnostics for cells in series connected photovoltaic modules

    SciTech Connect

    McMahon, T.J.; Basso, T.S.

    1995-11-01

    The authors have developed a method that allows us to know if a cell`s shunt resistance is affecting the output of a two-terminal, series-connected photovoltaic module, without the need of encapsulation. This two-terminal diagnostic method directly measures the shunt resistance of the individual cells within a series-connected module non-intrusively. Being a phase sensitive, lock-in technique, individual cell shunt resistance values are measured over a wide range, from a fraction of an ohm to thousands of ohms. The authors have applied this method to amorphous Si, Si and CuInSe{sub 2}-based modules, some with as few as eight cells in series, but usually with 28 to 68 cells. ``Two-terminal values`` are more accurate for cells that have lower shunt resistance, i.e., the ``problem`` cells. Cells with visual defects may be a significant problem if they provide a substantial shunt path.

  2. Molecular diagnostics and parasitic disease.

    PubMed

    Vasoo, Shawn; Pritt, Bobbi S

    2013-09-01

    Molecular parasitology represents an emerging field in microbiology diagnostics. Although most assays use nonstandardized, laboratory-developed methods, a few commercial systems have recently become available and are slowly being introduced into larger laboratories. In addition, a few methodologies show promise for use in field settings in which parasitic infections are endemic. This article reviews the available techniques and their applications to major parasitic diseases such as malaria, leishmaniasis, and trichomoniasis.

  3. Foresight begins with FMEA. Delivering accurate risk assessments.

    PubMed

    Passey, R D

    1999-03-01

    If sufficient factors are taken into account and two- or three-stage analysis is employed, failure mode and effect analysis represents an excellent technique for delivering accurate risk assessments for products and processes, and for relating them to legal liability. This article describes a format that facilitates easy interpretation.

  4. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    PubMed

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  5. Diagnostic Algorithm Benchmarking

    NASA Technical Reports Server (NTRS)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  6. Prenatal Genetic Diagnostic Tests

    MedlinePlus

    ... Education & Events Advocacy For Patients About ACOG Prenatal Genetic Diagnostic Tests Home For Patients Search FAQs Prenatal ... Pamphlets - Spanish FAQ164, September 2016 PDF Format Prenatal Genetic Diagnostic Tests Pregnancy What is prenatal genetic testing? ...

  7. Diagnostics for ITER

    SciTech Connect

    Donne, A. J. H.; Hellermann, M. G. von; Barnsley, R.

    2008-10-22

    After an introduction into the specific challenges in the field of diagnostics for ITER (specifically high level of nuclear radiation, long pulses, high fluxes of particles to plasma facing components, need for reliability and robustness), an overview will be given of the spectroscopic diagnostics foreseen for ITER. The paper will describe both active neutral-beam based diagnostics as well as passive spectroscopic diagnostics operating in the visible, ultra-violet and x-ray spectral regions.

  8. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  9. Establishment and Comparison of Two Different Diagnostic Platforms for Detection of DENV1 NS1 Protein

    PubMed Central

    Tang, Yin-Liang; Chiu, Chien-Yu; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Destura, Raul V.; Chao, Day-Yu; Wu, Han-Chung

    2015-01-01

    Dengue virus (DENV) infection is currently at pandemic levels, with populations in tropical and subtropical regions at greatest risk of infection. Early diagnosis and management remain the cornerstone for good clinical outcomes, thus efficient and accurate diagnostic technology in the early stage of the disease is urgently needed. Serotype-specific monoclonal antibodies (mAbs) against the DENV1 nonstructural protein 1 (NS1), DA12-4, DA13-2, and DA15-3, which were recently generated using the hybridoma technique, are suitable for use in diagnostic platforms. Immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA) and Western blot analysis further confirmed the serotype specificity of these three monoclonal antibodies. The ELISA-based diagnostic platform was established using the combination of two highly sensitive mAbs (DA15-3 and DB20-6). The same combination was also used for the flow cytometry-based diagnostic platform. We report here the detection limits of flow cytometry-based and ELISA-based diagnostic platforms using these mAbs to be 0.1 and 1 ng/mL, respectively. The collected clinical patient serum samples were also assayed by these two serotyping diagnostic platforms. The sensitivity and specificity for detecting NS1 protein of DENV1 are 90% and 96%, respectively. The accuracy of our platform for testing clinical samples is more advanced than that of the two commercial NS1 diagnostic platforms. In conclusion, our platforms are suitable for the early detection of NS1 protein in DENV1 infected patients. PMID:26610481

  10. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  11. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing.

    PubMed

    White, Helen E; Durston, Victoria J; Seller, Anneke; Fratter, Carl; Harvey, John F; Cross, Nicholas C P

    2005-01-01

    Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.

  17. Strategy and optimization of diagnostic imaging in painful hip in adults.

    PubMed

    Blum, A; Raymond, A; Teixeira, P

    2015-02-01

    Diagnostic imaging strategy in painful hip depends on many factors, but in all cases, plain X-ray is the first investigation. It may be sufficient to reach diagnosis and determine treatment options. More effective but more expensive exploration is indicated in two circumstances: when plain X-ray is non-contributive, and when diagnosis has been established but more accurate imaging assessment is needed to guide treatment. Following radiography, the choice of imaging techniques depends not only on the suspected pathology but also on the availability of equipment and its performance. MRI is probably the technique that provides the most comprehensive results; recent improved accessibility has significantly simplified the diagnostic algorithm. CT remains invaluable, and current techniques have reduced patient irradiation to a level similar to that of standard X-ray. Finally, cost is an important consideration in choosing the means of exploration, but the overall financial impact of the various strategies for diagnosis of painful hip is not well established. This article aims to provide a simple and effective diagnostic strategy for the assessment of painful hip, taking account of the clinical situation, and to detail the most typical semiologic patterns of each disease affecting this joint.

  18. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  19. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at

  20. Improved microbiological diagnostic due to utilization of a high-throughput homogenizer for routine tissue processing.

    PubMed

    Redanz, Sylvio; Podbielski, Andreas; Warnke, Philipp

    2015-07-01

    Tissue specimens are valuable materials for microbiological diagnostics and require swift and accurate processing. Established processing methods are complex, labor intensive, hardly if at all standardizable, and prone to incorporate contaminants. To improve analyses from tissue samples in routine microbiological diagnostics, by facilitating, fastening, and standardizing processing as well as increasing the microbial yield, performance of Precellys 24 high-throughput tissue homogenizer was evaluated. Therefore, tissue samples were artificially inoculated with Staphylococcus aureus, Escherichia coli, and Candida albicans in 3 different ways on the surface and within the material. Microbial yield from homogenized samples was compared to direct plating method. Further, as proof of principle, routine tissue samples from knee and hip endoprosthesis infections were analyzed. The process of tissue homogenization with Precellys 24 homogenizer is easy and fast to perform and allows for a high degree of standardization. Microbial yield after homogenization was significantly higher as compared to conventional plating technique.

  1. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  2. Target Diagnostics Supports NIF's Path to Ignition

    SciTech Connect

    Shelton, R

    2011-12-07

    The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by

  3. Diagnostics for Fast Ignition Science

    SciTech Connect

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  4. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    SciTech Connect

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh; Hernandez, JC; Elledge, Stacy; del Valle, Yamille; Grimaldo, Jose; Deku, Kodzo

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  5. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  6. Diagnostic procedures in immunodermatology.

    PubMed

    Cormane, R H; Asghar, S S

    1976-07-01

    Most immunologic diseases are caused by the derailment of the humoral or cellular pathways of the immunologic defense system. This derailment results from numerous factors such as the inability of the patient to remove the pathogen; the consumption, defect, or deficiency in any component of these pathways, and the overproduction of any of the components. To diagnose these immunologic disorders one has to detect the pathogen and the reactions caused by it and to determine the cause of its nonclearance. The immunofluorescence techniques has been invaluable in detecting both the antigen that causes the disease and the reactions initiated by the antigen, such as the production of antibodies and the activation of the complement system. The immunoperoxidase technique has also been used for these purposes in certain instances. For detecting the circulating immune complexes which occur as intermediates in the chain of reactions initiated by the antigen, various physiochemical and biologic techniques have been used. However, none of these tests seems to be totally reliable for determining whether circulating immune complexes are present. The consumption of complement was detected by hemolytic estimations and radial immunodiffusion or rocket electrphoresis. These techniques were also useful in detecting the hereditary deficiencies in immunoglobulins and components of classical and alternative pathways of complement activation. Since these techniques cannot be used to estimate IgE, the radioallergosorbent test was used to measure such levels in the atopic patients. Cellular hypersensitivity was detected with skin tests together with methods which assess the ability of lymphocytes to produce mediators in response to antigen. Many of these mediator assays, however, are not suitable for this purpose. A satisfactory substitute appears to be to determine the factor in antigen-stimulated, lymphocyte culture supernatants which activates macrophages to take up radiolabeled colloidal

  7. [Diagnostic criteria for neuromyelitisoptica spectrum disorders].

    PubMed

    Belova, A N; Boiko, A N; Belova, E M

    2016-01-01

    The review is devoted to revised international diagnostic criteria for neuromyelitisoptica spectrum disorders (NMOSD).Current diagnostic criteria allow NMOSD diagnosis not only for serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG)-seropositive patients but for AQP4-IgG-seronegative patients as well. New criteria are expected to make NMOSD diagnosis earlier and more accurate as well as to facilitate the differentiation with multiple sclerosis. Furthermore, unify international criteria should help to perform comparable epidemiologic studies and clinical trials of new drugs for NMOSD.

  8. Commissioning activities of the initial magnetic diagnostics for KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Lee, Sang Gon; Gyo Bak, Jun; Mie Ka, Eun

    2007-11-01

    The initial magnetic diagnostics for the KSTAR superconducting tokamak including three Rogowski coils, five flux/voltage loops, and sixty-four magnetic field probes have been successfully installed. The Rogowski coils, flux/voltage loops, and magnetic field probes measure the total plasma current, poloidal flux and loop voltage, and local poloidal magnetic field for the plasma position control and equilibrium studies, respectively. Accurate position measurements after installation for all of these initial magnetic diagnostics and in situ calibration for the Rogowski coils were finished. Data acquisition systems for these initial magnetic diagnostics are currently under preparation. Detail commissioning activities before the first plasma from these initial magnetic diagnostics will be presented.

  9. Recent advances in diagnostic bronchoscopy

    PubMed Central

    Ong, Philip G.; Debiane, Labib G.

    2016-01-01

    The field of diagnostic bronchoscopy has been revolutionized in the last decade primarily with the advent of endobronchial ultrasound (EBUS) but also with the addition of multiple different techniques for “guided-bronchoscopy”. These advances have had a substantial impact in the management of lung cancer with bronchoscopy now providing both diagnosis and mediastinal staging in a single procedure. EBUS has, in fact, become the first choice for staging of the mediastinum over cervical mediastinoscopy (CM). Although EBUS is now a well-established technique, there are continuous efforts from the scientific community to improve its diagnostic performance, and these will be reviewed in this manuscript. The term “guided-bronchoscopy” was recently coined to describe a myriad of techniques that guide our bronchoscopes or bronchoscopic tools into the periphery of the lungs in addition to our conventional fluoroscopy. Electromagnetic and non-electromagnetic navigation, thin and ultrathin scopes, as well as radial-probe EBUS have collectively increased our yield for smaller peripheral lung lesions and continue to evolve. Despite this improved diagnostic yield, there is still ample room for improvement and newer techniques are under way. With new therapies available for patients with interstitial lung disease, achieving a specific histologic diagnosis is now of paramount importance. Given the high morbidity and mortality of surgical biopsies, bronchoscopic cryobiopsy is being rapidly adopted as a safer and effective alternative, and it is likely going to play a major role in the management of these diseases in the near future. This manuscript we will focus on recent advances in EBUS, guided-bronchoscopy, and the use of cryobiopsy. PMID:28149581

  10. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  11. [Diagnostic imaging of lying].

    PubMed

    Lass, Piotr; Sławek, Jarosław; Sitek, Emilia; Szurowska, Edyta; Zimmermann, Agnieszka

    2013-01-01

    Functional diagnostic imaging has been applied in neuropsychology for more than two decades. Nowadays, the functional magnetic resonance (fMRI) seems to be the most important technique. Brain imaging in lying has been performed and discussed since 2001. There are postulates to use fMRI for forensic purposes, as well as commercially, e.g. testing the loyalty of employees, especially because of the limitations of traditional polygraph in some cases. In USA fMRI is performed in truthfulness/lying assessment by at least two commercial companies. Those applications are a matter of heated debate of practitioners, lawyers and specialists of ethics. The opponents of fMRI use for forensic purposes indicate the lack of common agreement on it and the lack of wide recognition and insufficient standardisation. Therefore it cannot serve as a forensic proof, yet. However, considering the development of MRI and a high failure rate of traditional polygraphy, forensic applications of MRI seem to be highly probable in future.

  12. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer?

    PubMed

    Halliday, C L; Kidd, S E; Sorrell, T C; Chen, S C-A

    2015-04-01

    Rapid, accurate diagnostic laboratory tests are needed to improve clinical outcomes of invasive fungal disease (IFD). Traditional direct microscopy, culture and histological techniques constitute the 'gold standard' against which newer tests are judged. Molecular diagnostic methods, whether broad-range or fungal-specific, have great potential to enhance sensitivity and speed of IFD diagnosis, but have varying specificities. The use of PCR-based assays, DNA sequencing, and other molecular methods including those incorporating proteomic approaches such as matrix-assisted laser desorption ionisation-time of flight mass spectroscopy (MALDI-TOF MS) have shown promising results. These are used mainly to complement conventional methods since they require standardisation before widespread implementation can be recommended. None are incorporated into diagnostic criteria for defining IFD. Commercial assays may assist standardisation. This review provides an update of molecular-based diagnostic approaches applicable to biological specimens and fungal cultures in microbiology laboratories. We focus on the most common pathogens, Candida and Aspergillus, and the mucormycetes. The position of molecular-based approaches in the detection of azole and echinocandin antifungal resistance is also discussed.

  13. Studies of Background Levels for the NIF Yield Diagnostics from Neutron and Gamma Radiation

    SciTech Connect

    Song, P; Eder, D; Moran, M; Landen, O; O'Brien, D; Hsing, W

    2007-08-27

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is nearing completion of construction and is preparing for the National Ignition Campaign (NIC) with potentially significant yield in 2010. The design of a wide range of yield diagnostics in and outside the target-bay of the NIF must consider scattered background neutrons and neutron-induced gamma rays to measure neutrons and x-rays from target. The large and complex target chamber and facility make the calculation of scattered neutrons and gamma rays extremely challenging. The NIF was designed with shielded locations for many of the yield diagnostics including the neutron alcove and four diagnostic mezzanines. Accurate calculation of the background levels in these shielded locations requires advanced Monte Carlo techniques, e.g., variance reduction. Placement, size, and materials of collimators on the line of sight (LOS) through the shielding must be evaluated to trade off signal levels and unwanted backgrounds. The background at these locations is also affected by neutrons that pass through the laser beam tubes and scatter off of structures and walls in the switch yards. Detailed 3D Monte Carlo analyses are performed to determine neutron and gamma fluxes for some of the yield diagnostics.

  14. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    PubMed Central

    Parkash, Om; Hanim Shueb, Rafidah

    2015-01-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  15. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques.

    PubMed

    Parkash, Om; Shueb, Rafidah Hanim

    2015-10-19

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  16. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  17. Highlights from the 7th European meeting on molecular diagnostics.

    PubMed

    Loonen, Anne Jm; Schuurman, Rob; van den Brule, Adriaan Jc

    2012-01-01

    This report presents the highlights of the 7th European Meeting on Molecular Diagnostics held in Scheveningen, The Hague, The Netherlands, 12-14 October 2011. The areas covered included molecular diagnostics applications in medical microbiology, virology, pathology, hemato-oncology, clinical genetics and forensics. Novel real-time amplification approaches, novel diagnostic applications and new technologies, such as next-generation sequencing, PCR electrospray-ionization TOF mass spectrometry and techniques based on the detection of proteins or other molecules, were discussed. Furthermore, diagnostic companies presented their future visions for molecular diagnostics in human healthcare.

  18. Clinical Significance of Molecular Diagnostic Tools for Bacterial Bloodstream Infections: A Systematic Review

    PubMed Central

    Nyirahabimana, Therese

    2016-01-01

    Bacterial bloodstream infection (bBSI) represents any form of invasiveness of the blood circulatory system caused by bacteria and can lead to death among critically ill patients. Thus, there is a need for rapid and accurate diagnosis and treatment of patients with septicemia. So far, different molecular diagnostic tools have been developed. The majority of these tools focus on amplification based techniques such as polymerase chain reaction (PCR) which allows the detection of nucleic acids (both DNA and small RNAs) that are specific to bacterial species and sequencing or nucleic acid hybridization that allows the detection of bacteria in order to reduce delay of appropriate antibiotic therapy. However, there is still a need to improve sensitivity of most molecular techniques to enhance their accuracy and allow exact and on time antibiotic therapy treatment. In this regard, we conducted a systematic review of the existing studies conducted in molecular diagnosis of bBSIs, with the main aim of reporting on clinical significance and benefits of molecular diagnosis to patients. We searched both Google Scholar and PubMed. In total, eighteen reviewed papers indicate that shift from conventional diagnostic methods to molecular tools is needed and would lead to accurate diagnosis and treatment of bBSI. PMID:27974890

  19. What Is Diagnostic Testing?

    MedlinePlus

    ... Primary care providers Specialists Getting covered Research Basic science research Research in people ... screening Diagnostic testing Direct-to-consumer genetic testing Newborn screening Pharmacogenomic testing ...

  20. Role of molecular diagnostics in the management of infectious disease emergencies.

    PubMed

    Krishna, Neel K; Cunnion, Kenji M

    2012-11-01

    In the setting of infectious disease emergencies, rapid and accurate identification of the causative agent is critical to optimizing antimicrobial therapy in a timely manner. It is clearly evident that the age of molecular diagnostics is now upon us, with real-time PCR becoming the standard of diagnosis for many infectious disease emergencies in either monoplex or multiplex format. Other molecular techniques such as whole or partial genome sequencing, microarrays, broad-range PCR, restriction fragment length polymorphisms, and molecular typing are also being used. However, for most small clinical laboratories, implementation of these advanced molecular techniques is not feasible owing to the high cost of instrumentation and reagents. If these tests are not available in-house, samples can be sent to national reference laboratories (eg, Mayo Medical Laboratories and Quest Diagnostics) for real-time PCR assays that can be completed in 1 day. It is anticipated that over time commercial real-time PCR tests and instrumentation will become more standardized and affordable, allowing individual laboratories to conduct tests locally, thus further reducing turnaround time. Although real-time PCR has been proved to expand our diagnostic capability, it must be stressed that such molecular methodology constitutes only an additional tool in the diagnosis of infectious diseases in emergency situations. Phenotypic methodologies (staining, cultures, biochemical tests, and serology) still play a critical role in identifying, confirming, and providing antibiotic susceptibility testing for many microbial pathogens. As multiplex assays become increasingly available, there will be even greater temptation for taking a “shotgun” approach to diagnostic testing. These new technologies will not substitute for a proper history and physical examination leading to a thoughtful differential diagnosis. None the less, these new molecular tests increase the capability of the diagnostician to

  1. Diagnostic Accuracy of MRI-guided Percutaneous Transthoracic Needle Biopsy of Solitary Pulmonary Nodules

    SciTech Connect

    Liu, Shangang; Li, Chengli; Yu, Xuejuan; Liu, Ming; Fan, Tingyong Chen, Dong Zhang, Pinliang Ren, Ruimei

    2015-04-15

    ObjectiveThe purpose of our study was to evaluate the diagnostic accuracy of MRI-guided percutaneous transthoracic needle biopsy (PTNB) of solitary pulmonary nodules (SPNs).MethodsRetrospective review of 69 patients who underwent MR-guided PTNB of SPNs was performed. Each case was reviewed for complications. The final diagnosis was established by surgical pathology of the nodule or clinical and imaging follow-up. Pneumothorax rate and diagnostic accuracy were compared between two groups according to nodule diameter (≤2 vs. >2 cm) using χ{sup 2} chest and Fisher’s exact test, respectively.ResultsThe success rate of single puncture was 95.6 %. Twelve (17.4 %) patients had pneumothorax, with 1 (1.4 %) requiring chest tube insertion. Mild hemoptysis occurred in 7 (7.2 %) patients. All of the sample material was sufficient for histological diagnostic evaluation. Pathological analysis of biopsy specimens showed 46 malignant, 22 benign, and 1 nondiagnostic nodule. The final diagnoses were 49 malignant nodules and 20 benign nodules basing on postoperative histopathology and clinical follow-up data. One nondiagnostic sample was excluded from calculating diagnostic performance. A sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in diagnosing SPNs were 95.8, 100, 97.0, 100, and 90.9 %, respectively. Pneumothorax rate, diagnostic sensitivity, and accuracy were not significantly different between the two groups (P > 0.05).ConclusionsMRI-guided PTNB is safe, feasible, and high accurate diagnostic technique for pathologic diagnosis of pulmonary nodules.

  2. Diagnostics for Dust Monitoring in Tokamak Environment

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Hong, S. H.; Worms, J.

    2008-03-12

    During ITER lifetime, dusts and flakes will be produced due to the interaction of plasmas with the in-vessel materials or due to maintenance. They will be made of carbon, beryllium and tungsten and will be activated, tritiated and chemically reactive and toxic. Safety limits have been set in order to reduce dust hazards. Thus dust diagnostics and removal methods need to be developed for ITER within the constraints linked to magnetic field, radiation, vacuum and temperature. This paper reviews potential diagnostics to monitor the dust content using techniques already used for erosion or deposition monitoring or techniques specially developed for measuring dust in suspension.

  3. Instrumentation for localized superconducting cavity diagnostics

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-03-01

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  4. Elastographic techniques of thyroid gland: current status.

    PubMed

    Andrioli, Massimiliano; Persani, Luca

    2014-08-01

    Thyroid nodules are very common with malignancies accounting for about 5 %. Fine-needle biopsy is the most accurate test for thyroid cancer diagnosis. Elastography, a new technology directly evaluating the elastic property of the tissue, has been recently added to the diagnostic armamentarium of the endocrinologists as noninvasive predictor of thyroid malignancy. In this paper, we critically reviewed characteristics and applications of elastographic methods in thyroid gland. Elastographic techniques can be classified on the basis of the following: source-of-tissue compression (free-hand, carotid vibration, ultrasound pulses), processing time (real-time, off-line), stiffness expression (qualitative, semi-quantitative, or quantitative). Acoustic radiation force impulse and aixplorer shear wave are the newest and most promising quantitative elastographic methods. Primary application of elastography is the detection of nodular lesions suspicious for malignancy. Published data show a high sensitivity and negative predictive value of the technique. Insufficient data are available on the possible application of elastography in the differential diagnosis of indeterminate lesions and in thyroiditis. Elastography represents a noninvasive tool able to increase the performance of ultrasound in the selection of thyroid nodules at higher risk of malignancy. Some technical improvements and definition of more robust quantitative diagnostic criteria are required for assigning a definite role in the management of thyroid nodules and thyroiditis to elastography.

  5. Retrospective dosimetry using EPR and TL techniques: a status report

    SciTech Connect

    Haskell, E.H.

    1996-12-31

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance.

  6. Cone-beam computed tomography versus digital periapical radiography in the detection of artificially created periapical lesions: A pilot study of the diagnostic accuracy of endodontists using both techniques

    PubMed Central

    Campello, Andrea Fagundes; Gonçalves, Lucio Souza; Guedes, Fábio Ribeiro

    2017-01-01

    Purpose The aim of this study was to compare the diagnostic accuracy of previously trained endodontists in the detection of artificially created periapical lesions using cone-beam computed tomography (CBCT) and digital periapical radiography (DPR). Materials and Methods An ex vivo model using dry skulls was used, in which simulated apical lesions were created and then progressively enlarged using #1/2, #2, #4, and #6 round burs. A total of 11 teeth were included in the study, and 110 images were obtained with CBCT and with an intraoral digital periapical radiographic sensor (Instrumentarium dental, Tuusula, Finland) initially and after each bur was used. Specificity and sensitivity were calculated. All images were evaluated by 10 previously trained, certified endodontists. Agreement was calculated using the kappa coefficient. The accuracy of each method in detecting apical lesions was calculated using the chi-square test. Results The kappa coefficient between examiners showed low agreement (range, 0.17-0.64). No statistical difference was found between CBCT and DPR in teeth without apical lesions (P=.15). The accuracy for CBCT was significantly higher than for DPR in all corresponding simulated lesions (P<.001). The correct diagnostic rate for CBCT ranged between 56.9% and 73.6%. The greatest difference between CBCT and DPR was seen in the maxillary teeth (CBCT, 71.4%; DPR, 28.6%; P<.01) and multi-rooted teeth (CBCT, 83.3%; DPR, 33.3%; P<.01). Conclusion CBCT allowed higher accuracy than DPR in detecting simulated lesions for all simulated lesions tested. Endodontists need to be properly trained in interpreting CBCT scans to achieve higher diagnostic accuracy. PMID:28361026

  7. Multigrid time-accurate integration of Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  8. Enhancing and evaluating diagnostic accuracy.

    PubMed

    Swets, J A; Getty, D J; Pickett, R M; D'Orsi, C J; Seltzer, S E; McNeil, B J

    1991-01-01

    Techniques that may enhance diagnostic accuracy in clinical settings were tested in the context of mammography. Statistical information about the relevant features among those visible in a mammogram and about their relative importances in the diagnosis of breast cancer was the basis of two decision aids for radiologists: a checklist that guides the radiologist in assigning a scale value to each significant feature of the images of a particular case, and a computer program that merges those scale values optimally to estimate a probability of malignancy. A test set of approximately 150 proven cases (including normals and benign and malignant lesions) was interpreted by six radiologists, first in their usual manner and later with the decision aids. The enhancing effect of these feature-analytic techniques was analyzed across subsets of cases that were restricted progressively to more and more difficult cases, where difficulty was defined in terms of the radiologists' judgements in the standard reading condition. Accuracy in both standard and enhanced conditions decreased regularly and substantially as case difficulty increased, but differentially, such that the enhancement effect grew regularly and substantially. For the most difficult case sets, the observed increases in accuracy translated into an increase of about 0.15 in sensitivity (true-positive proportion) for a selected specificity (true-negative proportion) of 0.85 or a similar increase in specificity for a selected sensitivity of 0.85. That measured accuracy can depend on case-set difficulty to different degrees for two diagnostic approaches has general implications for evaluation in clinical medicine. Comparative, as well as absolute, assessments of diagnostic performances--for example, of alternative imaging techniques--may be distorted by inadequate treatments of this experimental variable. Subset analysis, as defined and illustrated here, can be useful in alleviating the problem.

  9. Accurate superimposition of perimetry data onto fundus photographs.

    PubMed

    Bek, T; Lund-Andersen, H

    1990-02-01

    A technique for accurate superimposition of computerized perimetry data onto the corresponding retinal locations seen on fundus photographs was developed. The technique was designed to take into account: 1) that the photographic field of view of the fundus camera varies with ametropia-dependent camera focusing 2) possible distortion by the fundus camera, and 3) that corrective lenses employed during perimetry magnify or minify the visual field. The technique allowed an overlay of perimetry data of the central 60 degrees of the visual field onto fundus photographs with an accuracy of 0.5 degree. The correlation of localized retinal morphology to localized retinal function was therefore limited by the spatial resolution of the computerized perimetry, which was 2.5 degrees in the Dicon AP-2500 perimeter employed for this study. The theoretical assumptions of the technique were confirmed by comparing visual field records to fundus photographs from patients with morphologically well-defined non-functioning lesions in the retina.

  10. Automotive Diagnostic Technologies.

    ERIC Educational Resources Information Center

    Columbus State Community Coll., OH.

    This document contains materials developed for and about the automotive diagnostic technologies tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an automotive/diagnostic technologies program in grades 11 and 12 that leads to entry-level employment or a 2-year automotive…

  11. Diagnostic management of renal colic.

    PubMed

    Nicolau, C; Salvador, R; Artigas, J M

    2015-01-01

    Renal colic is a common reason for presentation to emergency departments, and imaging has become fundamental for the diagnosis and clinical management of this condition. Ultrasonography and particularly noncontrast computed tomography have good diagnostic performance in diagnosing renal colic. Radiologic management will depend on the tools available at the center and on the characteristics of the patient. It is essential to use computed tomography techniques that minimize radiation and to use alternatives like ultrasonography in pregnant patients and children. In this article, we review the epidemiology, clinical and radiologic presentations, and clinical management of ureteral lithiasis.

  12. Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania.

    PubMed

    Knopp, Stefanie; Salim, Nahya; Schindler, Tobias; Karagiannis Voules, Dimitrios A; Rothen, Julian; Lweno, Omar; Mohammed, Alisa S; Singo, Raymond; Benninghoff, Myrna; Nsojo, Anthony A; Genton, Blaise; Daubenberger, Claudia

    2014-03-01

    Sensitive diagnostic tools are crucial for an accurate assessment of helminth infections in low-endemicity areas. We examined stool samples from Tanzanian individuals and compared the diagnostic accuracy of a real-time polymerase chain reaction (PCR) with the FLOTAC technique and the Kato-Katz method for hookworm and the Baermann method for Strongyloides stercoralis detection. Only FLOTAC had a higher sensitivity than the Kato-Katz method for hookworm diagnosis; the sensitivities of PCR and the Kato-Katz method were equal. PCR had a very low sensitivity for S. stercoralis detection. The cycle threshold values of the PCR were negatively correlated with the logarithm of hookworm egg and S. stercoralis larvae counts. The median larvae count was significantly lower in PCR false negatives than true positives. All methods failed to detect very low-intensity infections. New diagnostic approaches are needed for monitoring of progressing helminth control programs, confirmation of elimination, or surveillance of disease recrudescence.

  13. Diagnostic Accuracy of Kato–Katz, FLOTAC, Baermann, and PCR Methods for the Detection of Light-Intensity Hookworm and Strongyloides stercoralis Infections in Tanzania

    PubMed Central

    Knopp, Stefanie; Salim, Nahya; Schindler, Tobias; Karagiannis Voules, Dimitrios A.; Rothen, Julian; Lweno, Omar; Mohammed, Alisa S.; Singo, Raymond; Benninghoff, Myrna; Nsojo, Anthony A.; Genton, Blaise; Daubenberger, Claudia

    2014-01-01

    Sensitive diagnostic tools are crucial for an accurate assessment of helminth infections in low-endemicity areas. We examined stool samples from Tanzanian individuals and compared the diagnostic accuracy of a real-time polymerase chain reaction (PCR) with the FLOTAC technique and the Kato–Katz method for hookworm and the Baermann method for Strongyloides stercoralis detection. Only FLOTAC had a higher sensitivity than the Kato–Katz method for hookworm diagnosis; the sensitivities of PCR and the Kato–Katz method were equal. PCR had a very low sensitivity for S. stercoralis detection. The cycle threshold values of the PCR were negatively correlated with the logarithm of hookworm egg and S. stercoralis larvae counts. The median larvae count was significantly lower in PCR false negatives than true positives. All methods failed to detect very low-intensity infections. New diagnostic approaches are needed for monitoring of progressing helminth control programs, confirmation of elimination, or surveillance of disease recrudescence. PMID:24445211

  14. Rayleigh Scattering Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard (Compiler)

    1996-01-01

    The Rayleigh Scattering Diagnostics Workshop was held July 25-26, 1995 at the NASA Lewis Research Center in Cleveland, Ohio. The purpose of the workshop was to foster timely exchange of information and expertise acquired by researchers and users of laser based Rayleigh scattering diagnostics for aerospace flow facilities and other applications. This Conference Publication includes the 12 technical presentations and transcriptions of the two panel discussions. The first panel was made up of 'users' of optical diagnostics, mainly in aerospace test facilities, and its purpose was to assess areas of potential applications of Rayleigh scattering diagnostics. The second panel was made up of active researchers in Rayleigh scattering diagnostics, and its purpose was to discuss the direction of future work.

  15. Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

    NASA Astrophysics Data System (ADS)

    Wee, Chong-Yaw; Yap, Pew-Thian; Brownyke, Jeffery N.; Potter, Guy G.; Steffens, David C.; Welsh-Bohmer, Kathleen; Wang, Lihong; Shen, Dinggang

    Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.

  16. Optimal target VOI size for accurate 4D coregistration of DCE-MRI

    NASA Astrophysics Data System (ADS)

    Park, Brian; Mikheev, Artem; Zaim Wadghiri, Youssef; Bertrand, Anne; Novikov, Dmitry; Chandarana, Hersh; Rusinek, Henry

    2016-03-01

    Dynamic contrast enhanced (DCE) MRI has emerged as a reliable and diagnostically useful functional imaging technique. DCE protocol typically lasts 3-15 minutes and results in a time series of N volumes. For automated analysis, it is important that volumes acquired at different times be spatially coregistered. We have recently introduced a novel 4D, or volume time series, coregistration tool based on a user-specified target volume of interest (VOI). However, the relationship between coregistration accuracy and target VOI size has not been investigated. In this study, coregistration accuracy was quantitatively measured using various sized target VOIs. Coregistration of 10 DCE-MRI mouse head image sets were performed with various sized VOIs targeting the mouse brain. Accuracy was quantified by measures based on the union and standard deviation of the coregistered volume time series. Coregistration accuracy was determined to improve rapidly as the size of the VOI increased and approached the approximate volume of the target (mouse brain). Further inflation of the VOI beyond the volume of the target (mouse brain) only marginally improved coregistration accuracy. The CPU time needed to accomplish coregistration is a linear function of N that varied gradually with VOI size. From the results of this study, we recommend the optimal size of the VOI to be slightly overinclusive, approximately by 5 voxels, of the target for computationally efficient and accurate coregistration.

  17. DNA Microarray-Based Diagnostics.

    PubMed

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

  18. Diagnostics for PLX-alpha

    NASA Astrophysics Data System (ADS)

    Gilmore, Mark; Hsu, Scott

    2015-11-01

    The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.

  19. Ultrasensitive microanalytical diagnostic methods for rickettsial pathogens

    SciTech Connect

    Hatch, A. V.

    2012-03-01

    A strategic CRADA was established between Sandia National Laboratories (SNL) and the University of Texas Medical Branch (UTMB) at Galveston to address pressing needs for US protection against biological weapons of mass destruction (WMD) and emerging infectious diseases. The combination of unique expertise and facilities at UTMB and SNL enabled interdisciplinary research efforts in the development of rapid and accurate diagnostic methods for early detection of trace priority pathogen levels. Outstanding postdoctoral students were also trained at both institutions to help enable the next generation of scientists to tackle the challenging interdisciplinary problems in the area of biodefense and emerging infectious diseases. Novel approaches to diagnostics were developed and the both the speed of assays as well as the detection sensitivity were improved by over an order of magnitude compared to traditional methods. This is a significant step toward more timely and specific detection of dangerous infections. We developed in situ polymerized porous polymer monoliths that can be used as (1) size exclusion elements for capture and processing of rickettsial infected cells from a sample, (2) photopatternable framework for grafting high densities of functionalized antibodies/fluorescent particles using novel monolith chemistry. Grafting affinity reagents specific to rickettsial particles enables rapid, ultra-sensitive assays by overcoming transport limitations of traditional planar assay approaches. We have selectively trapped particles and bacteria at the cell trap and have also detected picomolar mouse IL-6 captured with only 20 minutes total incubation times using the densely patterned monolith framework. As predicted, the monolith exhibits >10x improvements in both capture speed and capture density compared to traditional planar approaches. The most significant advancements as part of this CRADA is the optimization of techniques allowing the detection of <10 rickettsial

  20. Interviewing Children Versus Tossing Coins: Accurately Assessing the Diagnosticity of Children’s Disclosures of Abuse

    PubMed Central

    LYON, THOMAS D.; AHERN, ELIZABETH C.; SCURICH, NICHOLAS

    2014-01-01

    We describe a Bayesian approach to evaluating children’s abuse disclosures and review research demonstrating that children’s disclosure of genital touch can be highly probative of sexual abuse, with the probative value depending on disclosure spontaneity and children’s age. We discuss how some commentators understate the probative value of children’s disclosures by: confusing the probability of abuse given disclosure with the probability of disclosure given abuse, assuming that children formally questioned about sexual abuse have a low prior probability of sexual abuse, misstating the probative value of abuse disclosure, and confusing the distinction between disclosure and nondisclosure with the distinction between true and false disclosures. We review interviewing methods that increase the probative value of disclosures, including interview instructions, narrative practice, noncontingent reinforcement, and questions about perpetrator/caregiver statements and children’s reactions to the alleged abuse. PMID:22339423