Science.gov

Sample records for accurate diagnostic technique

  1. SOPROLIFE System: An Accurate Diagnostic Enhancer

    PubMed Central

    Zeitouny, Mona; Feghali, Mireille; Nasr, Assaad; Abou-Samra, Philippe; Saleh, Nadine; Bourgeois, Denis; Farge, Pierre

    2014-01-01

    Objectives. The aim of this study was to evaluate a light-emitting diode fluorescence tool, the SOPROLIFE light-induced fluorescence evaluator, and compare it to the international caries detection and assessment system-II (ICDAS-II) in the detection of occlusal caries. Methods. A total of 219 permanent posterior teeth in 21 subjects, with age ranging from 15 to 65 years, were examined. An intraclass correlation coefficient (ICC) was computed to assess the reliability between the two diagnostic methods. Results. The results showed a high reliability between the two methods (ICC = 0.92; IC = 0.901–0.940; P < 0.001). The SOPROLIFE blue fluorescence mode had a high sensitivity (87%) and a high specificity (99%) when compared to ICDAS-II. Conclusion. Compared to the most used visual method in the diagnosis of occlusal caries lesions, the finding from this study suggests that SOPROLIFE can be used as a reproducible and reliable assessment tool. At a cut-off point, categorizing noncarious lesions and visual change in enamel, SOPROLIFE shows a high sensitivity and specificity. We can conclude that financially ICDAS is better than SOPROLIFE. However SOPROLIFE is easier for clinicians since it is a simple evaluation of images. Finally in terms of efficiency SOPROLIFE is not superior to ICDAS but tends to be equivalent with the same advantages. PMID:25401161

  2. Selected microgravity combustion diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Greenberg, Paul S.

    1993-01-01

    During FY 1989-1992, several diagnostic techniques for studying microgravity combustion have moved from the laboratory to use in reduced-gravity facilities. This paper discusses current instrumentation for rainbow schlieren deflectometry and thermophoretic sampling of soot from gas jet diffusion flames.

  3. Diagnostic techniques for thermal plasmas

    SciTech Connect

    Fincke, J.R.; Snyder, S.C.; Swank, W.D.; Haggard, D.C.; Reynolds, L.D.

    1994-12-31

    The plasma diagnostic techniques discussed are Rayleigh and coherent Thomson scattering, Coherent-Anti-Stokes-Raman Spectroscopy (CARS) and enthalpy probes. The quantities measured are heavy species and electron temperature, ionized fraction, plasma composition, and velocity. Examples of results from both subsonic and supersonic jets are presented and limitations discussed.

  4. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  5. Diagnostic methodology is critical for accurately determining the prevalence of ichthyophonus infections in wild fish populations

    USGS Publications Warehouse

    Kocan, R.; Dolan, H.; Hershberger, P.

    2011-01-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus, particularly when the exposure history of the population is not known.

  6. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  7. A diagnostic wax-up technique.

    PubMed

    Morgan, D W; Comella, M C; Staffanou, R S

    1975-02-01

    A procedural outline has been presented for the accomplishment of a diagnostic wax-up as a preliminary step to actual preparation of the teeth as suggested by the proponents of gnathologic techniques. 8.9) The use of this technique will decrease the possibility of error in the construction of any extensive fixed partial denture prosthesis. The success of any procedure required the willingness of general dentists and specialists to, 'Spend more time planning than doing.'

  8. Comparative diagnostic techniques for cryptosporidium infection.

    PubMed

    Omoruyi, Beauty E; Nwodo, Uchechukwu U; Udem, Chukwuneke S; Okonkwo, Francis O

    2014-02-24

    Diarrhoea caused by Cryptosporidium is usually mild in immune competent individuals but severe in the young and those with underlying disease leading to compromised immunity. The conventional diagnosis of Cryptosporidium requires observation of the infective oocysts however, their tiny size yields indistinct results, thus limiting the effectiveness of the conventional diagnostic technique, modified Ziehl-Neelsen (ZN) differential staining. Consequent to the abovementioned limitation, ZN staining, sandwich antigen detection enzyme linked immunosorbent assay (sad-ELISA) and a direct polymerase chain reaction (PCR) assay techniques were evaluated for diagnostic efficacy. Stool samples were collected from 180 consenting adult patients attending outpatient and inpatient clinics at Victoria Hospital, Alice, Eastern Cape Province of South Africa. Subjects were stratified as; 35 HIV-positive and diarrhoeagenic, 125 HIV-negative diarrhoeagenic and 20 apparently healthy controls. Cryptosporidium incidence following diagnostic techniques were 13 (37.1%; ZN staining), 26 (74.3%; sad-ELISA) and 23 (65.7%; PCR), respectively, among HIV-positive diarrhoeagenic patients and 34 (27.2%; ZN staining), 96 (76.8%; sad-ELISA) and 89 (71.2%; PCR) among HIV-negative diarrhoeagenic patients. Sensitivity, specificity and predictive values of the diagnostic techniques' efficiency were: sensitivity: 46.2% (HIV-positive) and 32.3% (HIV-negative) against the ZN technique and 96.9% against sad-ELISA and PCR, respectively, for both HIV-positive and -negative patients; specificity was 88.9% (HIV-positive) and 96.6% (HIV-negative) against the ZN technique. Lastly, the predictive values were 92.3% (HIV-positive) and 96.9% (HIV-negative), respectively, following ZN staining. The sad-ELISA technique proved more suitable for the determination of the presence of Cryptosporidium oocysts. The high incidence of Cryptosporidium in HIV-positive subjects as compared to the HIV-negative population accentuates

  9. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  10. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  11. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  12. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  13. Using Copula Distributions to Support More Accurate Imaging-Based Diagnostic Classifiers for Neuropsychiatric Disorders

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.

    2014-01-01

    Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging

  14. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  15. [Diagnostic imaging techniques for hepatic metastases from colorectal cancer].

    PubMed

    Mollerup, Talie Khadem; Lorentzen, Torben; Møller, Jakob M; Nørgaard, Henrik; Achiam, Michael P

    2015-07-27

    Hepatic metastases (HM) are amongst the most important prognostic factors in patient survival from colorectal cancer. The diagnostic imaging techniques for accurate detection and characterization of colorectal metastases are therefore vital. In a review of the literature, MRI showed the highest sensitivity for detection of HM lesions < 1 cm, but the amount of MR scanners is insufficient. Contrast-enhanced ultrasound and computed tomography have similar sensitivity for detection of HM, but each method also have limitation such as operator dependency or enhanced risk of cancer due to ionizing radiation. PMID:26238008

  16. Magnetic separation techniques in diagnostic microbiology.

    PubMed Central

    Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M

    1994-01-01

    The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection

  17. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  18. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    NASA Astrophysics Data System (ADS)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  19. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  20. Diagnostics techniques in nonmuscle invasive bladder cancer

    PubMed Central

    Soubra, Ayman; Risk, Michael C.

    2015-01-01

    Introduction: Nonmuscle invasive bladder cancer (NMIBC) is the most common presentation of bladder cancer and is often treatable with endoscopic resection and intravesical therapies. Cystoscopy and urine cytology are the gold standard in diagnosis and surveillance but are limited by their sensitivity in some situations. We seek to provide an overview of recent additions to the diagnostic armamentarium for urologists treating this disease. Methods: Articles were identified through a literature review of articles obtained through PubMed searches including the terms “bladder cancer” and various diagnostic techniques described in the article. Results: A variety of urinary biomarkers are available to assist the diagnosis and management of patients with NMIBC. Many have improved sensitivity over urine cytology, but less specificity. There are certain situations in which this has proved valuable, but as yet these are not part of the standard guidelines for NMIBC. Fluorescence cystoscopy has level 1 evidence demonstrating increased rates of tumor detection and prolonged recurrence-free survival when utilized for transurethral resection. Other technologies seeking to enhance cystoscopy, such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography are still under evaluation. Conclusions: A variety of urine biomarker and adjunctive endoscopic technologies have been developed to assist the management of NMIBC. While some, such as fluorescence cystoscopy, have demonstrated a definite benefit in this disease, others are still finding their place in the diagnosis and treatment of this disease. Future studies should shed light on how these can be incorporated to improve outcomes in NMIBC. PMID:26604438

  1. Photonic Diagnostic Technique For Thin Photoactive Films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1996-01-01

    Photonic diagnostic technique developed for use in noninvasive, rapid evaluation of thin paraelectric/ferroelectric films. Method proves useful in basic research, on-line monitoring for quality control at any stage of fabrication, and development of novel optoelectronic systems. Used to predict imprint-prone memory cells, and to study time evolution of defects in ferroelectric memories during processing. Plays vital role in enabling high-density ferroelectric memory manufacturing. One potential application lies in use of photoresponse for nondestructive readout of polarization memory states in high-density, high-speed memory devices. In another application, extension of basic concept of method makes possible to develop specially tailored ferrocapacitor to act as programmable detector, wherein remanent polarization used to modulate photoresponse. Large arrays of such detectors useful in optoelectronic processing, computing, and communication.

  2. A novel technique for highly accurate gas exchange measurements

    NASA Astrophysics Data System (ADS)

    Kalkenings, R. K.; Jähne, B. J.

    2003-04-01

    The Heidelberg Aeolotron is a circular wind-wave facility for investigating air-sea gas exchange. In this contribution a novel technique for measuring highly accurate transfer velocities k of mass transfer will be presented. Traditionally, in mass balance techniques the constant of decay for gas concentrations over time is measured. The major drawback of this concept is the long time constant. At low wind speeds and a water height greater than 1 m the period of observation has to be several days. In a gas-tight facility such as the Aeolotron, the transfer velocity k can be computed from the concentration in the water body and the change of concentration in the gas space. Owing to this fact, transfer velocities are gained while greatly reducing the measuring times to less than one hour. The transfer velocity k of a tracer can be parameterized as k=1/β \\cdot u_* \\cdot Sc^n, with the Schmidt Number Sc, shear velocity u_* and the dimensionless transfer resistance β. The Schmidt Number exponent n can be derived from simultaneous measurements of different tracers. Since these tracers are of different Schmidt number, the shear velocity is not needed. To allow for Schmidt numbers spanning a hole decade, in our experiments He, H_2, N_2O and F12 are used. The relative accuracy of measuring the transfer velocity was improved to less than 2%. In 9 consecutive experiments conducted at a wind speed of 6.2 m/s, the deviation of the Schmidt number exponent was found to be just under 0.02. This high accuracy will allow precisely determining the transition of the Schmidt number exponent from n=2/3 to n=0.5 from a flat to wavy water surface. In order to quantify gas exchange not only the wind speed is important. Surfactants have a pronounced effect on the wave field and lead to a drastic reduction in the transfer velocity. In the Aeolotron measurements were conducted with a variety of measuring devices, ranging from an imaging slope gauge (ISG) to thermal techniques with IR

  3. [Research Development of Diagnostic Techniques for Tropical Infectious Diseases].

    PubMed

    Zhang, Dong-mei

    2015-12-01

    Tropical infectious diseases remain predominant among emerging infectious diseases, and some of those are showing a spreading trend worldwide. Improvement of diagnostic techniques is a key to the control of tropical diseases. In this review, we provide an overview on research development of diagnostic techniques for the diseases, especially the development of immunological and molecular detection techniques.

  4. How accurate was GMENAC?--A retrospective review of supply projections for diagnostic radiologists.

    PubMed

    Sunshine, J H; Evens, R G; Chan, W C

    1992-02-01

    In 1982, the Graduate Medical Education National Advisory Committee (GMENAC), a prominent national panel, predicted there would be 25,650 full-time equivalent (FTE) diagnostic radiologists, a 34% oversupply, by 1990. The radiologists involved in GMENAC, however, using models developed by the American College of Radiology, projected 19,800 FTE diagnostic radiologists in 1990, which was similar to the GMENAC estimate of need. The disagreement arose principally from different assumptions about residents entering the specialty. Recent data show there actually were approximately 21,900 FTE diagnostic radiologists in 1990. The radiologists' projection was 10% below this figure; the GMENAC projection was 17% above it. GMENAC erred principally in assuming diagnostic radiology residencies would not replace general radiology residencies, but rather be an addition to them. The radiologists erred principally in their assumption about the effects of the financial problems of hospitals on the number of residency positions. Accurate long-term projection of physician supply in individual specialties may well not be feasible.

  5. Laboratory diagnostic techniques for Entamoeba species.

    PubMed

    Fotedar, R; Stark, D; Beebe, N; Marriott, D; Ellis, J; Harkness, J

    2007-07-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  6. Laboratory Diagnostic Techniques for Entamoeba Species

    PubMed Central

    Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J.

    2007-01-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  7. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI.

    PubMed

    Eswaraiah, R; Sreenivasa Reddy, E

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.

  8. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI

    PubMed Central

    Eswaraiah, R.; Sreenivasa Reddy, E.

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss. PMID:25328515

  9. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  10. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  11. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  12. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  13. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect

    Haque, Aeraj Ul

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  14. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  15. Comparative analyses of plasma probe diagnostics techniques

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-01

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  16. Mechanical system diagnostics using vibration testing techniques

    NASA Technical Reports Server (NTRS)

    Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.

    1990-01-01

    The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.

  17. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  18. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  19. Calibration techniques for fast-ion Dα diagnostics.

    PubMed

    Heidbrink, W W; Bortolon, A; Muscatello, C M; Ruskov, E; Grierson, B A; Podestá, M

    2012-10-01

    Fast-ion D(α) measurements are an application of visible charge-exchange recombination (CER) spectroscopy that provide information about the energetic ion population. Like other CER diagnostics, the standard intensity calibration is obtained with an integrating sphere during a vacuum vessel opening. An alternative approach is to create plasmas where the fast-ion population is known, then calculate the expected signals with a synthetic diagnostic code. The two methods sometimes agree well but are discrepant in other cases. Different background subtraction techniques and simultaneous measurements of visible bremsstrahlung and of beam emission provide useful checks on the calibrations and calculations.

  20. Diagnostic Emergency Ultrasound: Assessment Techniques In The Pediatric Patient.

    PubMed

    Guttman, Joshua; Nelson, Bret P

    2016-01-01

    Emergency ultrasound is performed at the point of care to answer focused clinical questions in a rapid manner. Over the last 20 years, the use of this technique has grown rapidly, and it has become a core requirement in many emergency medicine residencies and in some pediatric emergency medicine fellowships. The use of emergency ultrasound in the pediatric setting is increasing due to the lack of ionizing radiation with these studies, as compared to computed tomography. Utilizing diagnostic ultrasound in the emergency department can allow clinicians to arrive at a diagnosis at the bedside rather than sending the patient out of the department for another study. This issue focuses on common indications for diagnostic ultrasound, as found in the pediatric literature or extrapolated from adult literature where pediatric evidence is scarce. Limitations, current trends, controversies, and future directions of diagnostic ultrasound in the emergency department are also discussed.

  1. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique

    PubMed Central

    2012-01-01

    Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new class of agent with great potential for clinical applications. This is partly due to their long blood circulation time and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes. PMID:22809406

  2. Diagnostic Implication and Clinical Relevance of Ancillary Techniques in Clinical Pathology Practice

    PubMed Central

    Makki, Jaafar S.

    2016-01-01

    Hematoxylin–eosin-stained slide preparation is one of the most durable techniques in medicine history, which has remained unchanged since implemented. It allows an accurate microscopic diagnosis of the vast majority of tissue samples. In many circumstances, this technique cannot answer all the questions posed at the initial diagnostic level. The pathologist has always been looking for additional ancillary techniques to answer pending questions. In our daily histopathology practice, we referred to those techniques as special stains, but nowadays, they are more than stains and are collectively called ancillary tests. They include a wide range of techniques starting from histochemical stains and ending in one or more advanced techniques, such as immunohistochemistry, immunofluorescence, molecular studies, cytogenetic studies, electron microscopy, flow cytometry, and polymerase chain reaction. PMID:27042154

  3. Diagnostic Implication and Clinical Relevance of Ancillary Techniques in Clinical Pathology Practice.

    PubMed

    Makki, Jaafar S

    2016-01-01

    Hematoxylin-eosin-stained slide preparation is one of the most durable techniques in medicine history, which has remained unchanged since implemented. It allows an accurate microscopic diagnosis of the vast majority of tissue samples. In many circumstances, this technique cannot answer all the questions posed at the initial diagnostic level. The pathologist has always been looking for additional ancillary techniques to answer pending questions. In our daily histopathology practice, we referred to those techniques as special stains, but nowadays, they are more than stains and are collectively called ancillary tests. They include a wide range of techniques starting from histochemical stains and ending in one or more advanced techniques, such as immunohistochemistry, immunofluorescence, molecular studies, cytogenetic studies, electron microscopy, flow cytometry, and polymerase chain reaction. PMID:27042154

  4. Swept-frequency acoustic interferometry technique for noninvasive chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.N.; Han, Wei; Lizon, D.C.; Houlton, R.J.

    1997-02-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range from outside a container (e.g., reactor vessel, tank, pipe, industrial containers etc.). From the frequency dependence of sound attenuation, fluid density can also be determined. These physical parameters. when combined together, can be used to identify a range of chemicals. This technique can be adapted for chemical diagnostic applications, particularly in process control where monitoring of acoustic properties of chemicals (liquids, mixtures, emulsions, suspensions, etc.) may provide appropriate feedback information. The SFAI theory is discussed and experimental techniques are presented. Examples of several novel applications of the SFAI technique are also presented.

  5. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  6. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    PubMed Central

    Dingari, Narahara Chari; Horowitz, Gary L.; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future. PMID:22393405

  7. Low pressure plasma diagnostics by cars and other techniques

    SciTech Connect

    Hata, N. )

    1989-01-01

    Within the past several years, intensive research activities relating amorphous-silicon technology have stimulated plasma-chemical-vapor-deposition (plasma-CVD) diagnostics by laser-spectroscopic techniques. Among them, coherent anti-Stokes Raman spectroscopy (CARS) has attracted much attention because of its great success in combustion diagnostics, and has been employed for low-pressure-plasma studies. Gas-phase species such as SiH{sub 4}, H{sub 2}, Si{sub 2}H{sub 6}, SiH{sub 2}, and GeH{sub 4} have been detected, time dependences of their concentration and spatial profiles of their concentration and rotational temperature have been determined, and the gas-phase mechanisms have been discussed. This talk will employ those results as examples, and discuss (1) the potential of CARS for gas-phase analysis in CVD (including (i) what species are monitored, (ii) what information is obtained, and (iii) what are the advantages and limitations), and (2) some other diagnostic techniques that provide additional information for better understandings of CVD mechanisms.

  8. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  9. LeRC rail accelerators - Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1984-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. Previously announced in STAR as N83-35053

  10. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between

  11. A technique for managing and accurate registration of periimplant soft tissues.

    PubMed

    Ntounis, Athanasios; Petropoulou, Aikaterini

    2010-10-01

    This article describes an indirect impression technique that accurately captures the soft tissue contours around an implant-supported provisional restoration. Customized impression copings are used to transfer the soft tissue architecture created by the interim prosthesis. The definitive restoration is shaped like the provisional restoration, maintaining the emergence profile and optimizing esthetics.

  12. Smartphone-Based Accurate Analysis of Retinal Vasculature towards Point-of-Care Diagnostics

    PubMed Central

    Xu, Xiayu; Ding, Wenxiang; Wang, Xuemin; Cao, Ruofan; Zhang, Maiye; Lv, Peilin; Xu, Feng

    2016-01-01

    Retinal vasculature analysis is important for the early diagnostics of various eye and systemic diseases, making it a potentially useful biomarker, especially for resource-limited regions and countries. Here we developed a smartphone-based retinal image analysis system for point-of-care diagnostics that is able to load a fundus image, segment retinal vessels, analyze individual vessel width, and store or uplink results. The proposed system was not only evaluated on widely used public databases and compared with the state-of-the-art methods, but also validated on clinical images directly acquired with a smartphone. An Android app is also developed to facilitate on-site application of the proposed methods. Both visual assessment and quantitative assessment showed that the proposed methods achieved comparable results to the state-of-the-art methods that require high-standard workstations. The proposed system holds great potential for the early diagnostics of various diseases, such as diabetic retinopathy, for resource-limited regions and countries. PMID:27698369

  13. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  14. A novel, integrated PET-guided MRS technique resulting in more accurate initial diagnosis of high-grade glioma.

    PubMed

    Kim, Ellen S; Satter, Martin; Reed, Marilyn; Fadell, Ronald; Kardan, Arash

    2016-06-01

    Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas.

  15. Accurate Point-of-Care Detection of Ruptured Fetal Membranes: Improved Diagnostic Performance Characteristics with a Monoclonal/Polyclonal Immunoassay

    PubMed Central

    Rogers, Linda C.; Scott, Laurie; Block, Jon E.

    2016-01-01

    OBJECTIVE Accurate and timely diagnosis of rupture of membranes (ROM) is imperative to allow for gestational age-specific interventions. This study compared the diagnostic performance characteristics between two methods used for the detection of ROM as measured in the same patient. METHODS Vaginal secretions were evaluated using the conventional fern test as well as a point-of-care monoclonal/polyclonal immunoassay test (ROM Plus®) in 75 pregnant patients who presented to labor and delivery with complaints of leaking amniotic fluid. Both tests were compared to analytical confirmation of ROM using three external laboratory tests. Diagnostic performance characteristics were calculated including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. RESULTS Diagnostic performance characteristics uniformly favored ROM detection using the immunoassay test compared to the fern test: sensitivity (100% vs. 77.8%), specificity (94.8% vs. 79.3%), PPV (75% vs. 36.8%), NPV (100% vs. 95.8%), and accuracy (95.5% vs. 79.1%). CONCLUSIONS The point-of-care immunoassay test provides improved diagnostic accuracy for the detection of ROM compared to fern testing. It has the potential of improving patient management decisions, thereby minimizing serious complications and perinatal morbidity. PMID:27199579

  16. Accurate Histological Techniques to Evaluate Critical Temperature Thresholds for Prostate In Vivo

    NASA Astrophysics Data System (ADS)

    Bronskill, Michael; Chopra, Rajiv; Boyes, Aaron; Tang, Kee; Sugar, Linda

    2007-05-01

    Various histological techniques have been compared to evaluate the boundaries of thermal damage produced by ultrasound in vivo in a canine model. When all images are accurately co-registered, H&E stained micrographs provide the best assessment of acute cellular damage. Estimates of the boundaries of 100% and 0% cell killing correspond to maximum temperature thresholds of 54.6 ± 1.7°C and 51.5 ± 1.9°C, respectively.

  17. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  18. An universal and accurate replica technique for scanning electron microscope study in clinical dentistry.

    PubMed

    Lambrechts, P; Vanherle, G; Davidson, C

    1981-09-01

    One of the main concerns of dental research is the observation of the oral tissues and the materials applied to the dentition. The changes in composition and structure of the outer surfaces and the materials deposited on these surfaces are of special interest. In the literature, a variety of replica techniques for these purposes is described (Grundy in 1971 [12]; Saxton in 1973 [25]). The use of these techniques is limited because of artifacts in the samples, and a restricted resolution power resulting from useful magnifications in the order of 800x. An accurate and universal replica technique for the examination of specimens to be viewed under the SEM has been developed. The first impression is made by a light body silicone elastomer (President Coltene). The positive replica is made by electrodeposition of copper in an electro plating bath (Acru plat 5 electronic, Dr. Th. Wieland, D-7530 Pforzheim). The reliability and accuracy of this replica technique was verified by a scanning electron microscopic comparison of the replicas and the actual structures of etched enamel. To illustrate the applicability of the replica technique to structures with much lower hardness, also high resolution images of dental plaque were produced. The copper surface offers a perfect, original and proper electroconductive medium that withstands the bombardment of electrons and the relatively severe conditions in the scanning electron microscope. Reproducibility was accurate as judged by the duplication in position, size, and shape of the fine detail at magnifications of 7500x offering a resolution of 25 nm.

  19. Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson's disease

    PubMed Central

    Mahlknecht, Philipp; Pechlaner, Raimund; Boesveldt, Sanne; Volc, Dieter; Pinter, Bernardette; Reiter, Eva; Müller, Christoph; Krismer, Florian; Berendse, Henk W.; van Hilten, Jacobus J.; Wuschitz, Albert; Schimetta, Wolfgang; Högl, Birgit; Djamshidian, Atbin; Nocker, Michael; Göbel, Georg; Gasperi, Arno; Kiechl, Stefan; Willeit, Johann; Poewe, Werner

    2016-01-01

    ABSTRACT Introduction The aim of this study was to evaluate odor identification testing as a quick, cheap, and reliable tool to identify PD. Methods Odor identification with the 16‐item Sniffin' Sticks test (SS‐16) was assessed in a total of 646 PD patients and 606 controls from three European centers (A, B, and C), as well as 75 patients with atypical parkinsonism or essential tremor and in a prospective cohort of 24 patients with idiopathic rapid eye movement sleep behavior disorder (center A). Reduced odor sets most discriminative for PD were determined in a discovery cohort derived from a random split of PD patients and controls from center A using L1‐regularized logistic regression. Diagnostic accuracy was assessed in the rest of the patients/controls as validation cohorts. Results Olfactory performance was lower in PD patients compared with controls and non‐PD patients in all cohorts (each P < 0.001). Both the full SS‐16 and a subscore of the top eight discriminating odors (SS‐8) were associated with an excellent discrimination of PD from controls (areas under the curve ≥0.90; sensitivities ≥83.3%; specificities ≥82.0%) and from non‐PD patients (areas under the curve ≥0.91; sensitivities ≥84.1%; specificities ≥84.0%) in all cohorts. This remained unchanged when patients with >3 years of disease duration were excluded from analysis. All 8 incident PD cases among patients with idiopathic rapid eye movement sleep behavior disorder were predicted with the SS‐16 and the SS‐8 (sensitivity, 100%; positive predictive value, 61.5%). Conclusions Odor identification testing provides excellent diagnostic accuracy in the distinction of PD patients from controls and diagnostic mimics. A reduced set of eight odors could be used as a quick tool in the workup of patients presenting with parkinsonism and for PD risk indication. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and

  20. A technique for the vibration signal analysis in vehicle diagnostics

    NASA Astrophysics Data System (ADS)

    Puchalski, Andrzej

    2015-05-01

    The method of utilising signals of vibration acceleration in the on-line and off-line diagnostics of mechanical defects of internal combustion engines is presented in the paper. The monitored vibration signals of the spark ignition (SI) engine in various maintenance states of the valve system were investigated. The suggested technique is based on mathematical methods of the lower triangular-orthogonal (LQ) factorisation and the singular value decomposition (SVD) of observation subspaces computed on a vibration time series after their angular resampling without any transformations in the frequency domain. The applied algorithm of data processing filters excessive information and allows the selection of diagnostic features (essential from the maintenance point of view) and generates the empirical model and matrix residuals assessed in the no-fault state as being 'zero'. Then, statistical feature vectors, for which the averaged successive singular values of the residuals of the observation subspaces of the vibration signals were assumed as components, were analysed. As a result of this procedure the vectors of lower dimensions reduced to components, allowing the classification of observations within all defined classes, were obtained. On the basis of these vectors a scalar measure - sensitive to the kind of defect - was proposed and verified.

  1. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  2. Diagnostic techniques in thermal plasma processing (Part II). Volume 2

    SciTech Connect

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000/sup 0/K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light. (WRF)

  3. A New Diagnostic Technique for the Solar Corona

    NASA Technical Reports Server (NTRS)

    Nelson, R.; Davila, Joseph M.; St.Cyr, O. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Over the last 30-40 years spectroscopic observation of the EUV (extreme ultraviolet) line emission has proved invaluable as a diagnostic of the solar coronal plasma state. Line ratios have been used to determine electron density, electron temperature and ion flow velocity. In this paper, we present results obtained with a new measurement technique that uses spectroscopic observations of the white light corona to obtain the electron density, temperature, and flow velocity. A prototype instrument has been designed and built to obtain visible light spectra (3800-4300 A) with modest resolution. This instrument was used to obtain coronal observations during the June 2001 eclipse in Zambia. The data were corrected for sky and instrument transmission to derive the electron temperature and flow speed. Results from these measurements will be discussed.

  4. Radial artery blood pressure measurement in neonates: an accurate and convenient technique in clinical practice.

    PubMed

    Gevers, M; van Genderingen, H R; Lafeber, H N; Hack, W W

    1995-01-01

    To achieve accurate blood pressure measurement through radial artery catheters in infants, we previously developed an experimental high-fidelity catheter-manometer system (CMS). As this system lacks facilities for flushing and for blood sampling, we aimed to further develop this technique in order to make the system suitable for clinical practice. In addition, we aimed to develop methods to automate processing of the pressure wave forms. The high-fidelity system to be improved consisted of a 24 Gauge catheter, a threeway stopcock and a tip-manometer. We inserted this system in the catheter-manometer system as routinely used i.e. the remaining end of the stopcock was connected to the fluid-filled CMS as used routinely. This combined system became clinically applicable, since blood samples could be obtained and flushing could be performed. The measurement chain was completed by application of a modified physiological monitor and a computerized method to analyze pressure wave forms. In this manner accurate beat-to-beat pressure parameters were obtained. This technique was applied to 25 neonates admitted for intensive care and requiring arterial access. Gestational age of these infants ranged from 25-40 (median 29) weeks and birth weight ranges from 500-3375 (median 1060) grams. In all infants the technique was found to be convenient and the high-fidelity blood pressure measurements were performed without any problems. The advantage of the present system is the potential for both correct intermittent recordings of arterial wave forms in close relation to clinical condition and for the establishment of accurate radial artery beat-to-beat pressure values in clinical practice.

  5. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses.

    PubMed

    Myers, Risa B; Herskovic, Jorge R

    2011-12-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDWs) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a Clinical Data Warehouse containing synthetic patient data. We present a synthetic Clinical Data Warehouse, and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing's sensitivity and specificity both by conducting a "Simulated Expert Review" where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a "Bayesian Chain", using Bayes' Theorem to calculate the probability of a patient having a condition after each visit. The second method is a "one-shot" approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition. Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes' Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of

  6. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  7. H sup minus temperature measurements by a slit diagnostic technique

    SciTech Connect

    Sherman, J.D.; Smith, H.V. Jr.; Geisik, C.; Allison, P.

    1991-01-01

    H{sup {minus}} ion beams are extracted at 5-25 kV from a long, narrow slit on a Penning surface-plasma source (the 8X source). The extraction geometry produces negligible transverse electric fields (focusing effects) along the slit length. Therefore, the ion angular spread reflects the distribution of ion energies at the plasma surface. The angular distributions are measured with an electric-sweep emittance scanner whose slits are oriented normal to the long dimension of the emission slit. The nearly-Maxwellian angular distributions measured over the central portions of the ribbon beam give kT{sub H{sup {minus}}} of 0.1 to 0.2 eV for a 2-A dc discharge and 0.8 to 1.0 eV for 350- to 500-A pulsed discharges. This diagnostic technique has sufficient position resolution to allow measurement of the kT{sub H{sup {minus}}} spatial distributions. It also allows study of the kT{sub H{sup {minus}}} dependencies on ion source parameters (e.g., increasing the H{sub 2} gas flow lowers kT{sub H{sup {minus}}}). 7 refs., 7 figs.

  8. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  9. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  10. Diagnostic Assessment of Driver Problems: Volume 2. Assessment Techniques for Operational Users: Final Report.

    ERIC Educational Resources Information Center

    McBride, Robin S.; Stroad, Kenneth W., Jr.

    Volume 2 studies the operational feasibility of the diagnostic assessment of driver problems. Target groups for driver countermeasures are identified from research on diagnostic predictors and performance criteria. A diagnostic assessment model is presented which incorporates assessment techniques that were useful in an operational setting. The…

  11. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  12. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  13. Internal Mammary Sentinel Lymph Node Biopsy With Modified Injection Technique: High Visualization Rate and Accurate Staging.

    PubMed

    Qiu, Peng-Fei; Cong, Bin-Bin; Zhao, Rong-Rong; Yang, Guo-Ren; Liu, Yan-Bing; Chen, Peng; Wang, Yong-Sheng

    2015-10-01

    Although the 2009 American Joint Committee on Cancer incorporated the internal mammary sentinel lymph node biopsy (IM-SLNB) concept, there has been little change in surgical practice patterns because of the low visualization rate of internal mammary sentinel lymph nodes (IMSLN) with the traditional radiotracer injection technique. In this study, various injection techniques were evaluated in term of the IMSLN visualization rate, and the impact of IM-SLNB on the diagnostic and prognostic value were analyzed.Clinically, axillary lymph nodes (ALN) negative patients (n = 407) were divided into group A (traditional peritumoral intraparenchymal injection) and group B (modified periareolar intraparenchymal injection). Group B was then separated into group B1 (low volume) and group B2 (high volume) according to the injection volume. Clinically, ALN-positive patients (n = 63) were managed as group B2. Internal mammary sentinel lymph node biopsy was performed for patients with IMSLN visualized.The IMSLN visualization rate was significantly higher in group B than that in group A (71.1% versus 15.5%, P < 0.001), whereas the axillary sentinel lymph nodes were reliably identified in both groups (98.9% versus 98.3%, P = 0.712). With high injection volume, group B2 was found to have higher IMSLN visualization rate than group B1 (75.1% versus 45.8%, P < 0.001). The IMSLN metastasis rate was only 8.1% (12/149) in clinically ALN-negative patients with successful IM-SLNB, and adjuvant treatment was altered in a small proportion. The IMSLN visualization rate was 69.8% (44/63) in clinically ALN-positive patients with the IMSLN metastasis rate up to 20.5% (9/44), and individual radiotherapy strategy could be guided with the IM-SLNB results.The modified injection technique (periareolar intraparenchymal, high volume, and ultrasound guidance) significantly improved the IMSLN visualization rate, making the routine IM-SLNB possible in daily practice. Internal mammary

  14. Internal Mammary Sentinel Lymph Node Biopsy With Modified Injection Technique: High Visualization Rate and Accurate Staging.

    PubMed

    Qiu, Peng-Fei; Cong, Bin-Bin; Zhao, Rong-Rong; Yang, Guo-Ren; Liu, Yan-Bing; Chen, Peng; Wang, Yong-Sheng

    2015-10-01

    Although the 2009 American Joint Committee on Cancer incorporated the internal mammary sentinel lymph node biopsy (IM-SLNB) concept, there has been little change in surgical practice patterns because of the low visualization rate of internal mammary sentinel lymph nodes (IMSLN) with the traditional radiotracer injection technique. In this study, various injection techniques were evaluated in term of the IMSLN visualization rate, and the impact of IM-SLNB on the diagnostic and prognostic value were analyzed.Clinically, axillary lymph nodes (ALN) negative patients (n = 407) were divided into group A (traditional peritumoral intraparenchymal injection) and group B (modified periareolar intraparenchymal injection). Group B was then separated into group B1 (low volume) and group B2 (high volume) according to the injection volume. Clinically, ALN-positive patients (n = 63) were managed as group B2. Internal mammary sentinel lymph node biopsy was performed for patients with IMSLN visualized.The IMSLN visualization rate was significantly higher in group B than that in group A (71.1% versus 15.5%, P < 0.001), whereas the axillary sentinel lymph nodes were reliably identified in both groups (98.9% versus 98.3%, P = 0.712). With high injection volume, group B2 was found to have higher IMSLN visualization rate than group B1 (75.1% versus 45.8%, P < 0.001). The IMSLN metastasis rate was only 8.1% (12/149) in clinically ALN-negative patients with successful IM-SLNB, and adjuvant treatment was altered in a small proportion. The IMSLN visualization rate was 69.8% (44/63) in clinically ALN-positive patients with the IMSLN metastasis rate up to 20.5% (9/44), and individual radiotherapy strategy could be guided with the IM-SLNB results.The modified injection technique (periareolar intraparenchymal, high volume, and ultrasound guidance) significantly improved the IMSLN visualization rate, making the routine IM-SLNB possible in daily practice. Internal mammary

  15. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  16. Developpement de techniques de diagnostic non intrusif par tomographie optique

    NASA Astrophysics Data System (ADS)

    Dubot, Fabien

    Que ce soit dans les domaines des procedes industriels ou de l'imagerie medicale, on a assiste ces deux dernieres decennies a un developpement croissant des techniques optiques de diagnostic. L'engouement pour ces methodes repose principalement sur le fait qu'elles sont totalement non invasives, qu'elle utilisent des sources de rayonnement non nocives pour l'homme et l'environnement et qu'elles sont relativement peu couteuses et faciles a mettre en oeuvre comparees aux autres techniques d'imagerie. Une de ces techniques est la Tomographie Optique Diffuse (TOD). Cette methode d'imagerie tridimensionnelle consiste a caracteriser les proprietes radiatives d'un Milieu Semi-Transparent (MST) a partir de mesures optiques dans le proche infrarouge obtenues a l'aide d'un ensemble de sources et detecteurs situes sur la frontiere du domaine sonde. Elle repose notamment sur un modele direct de propagation de la lumiere dans le MST, fournissant les predictions, et un algorithme de minimisation d'une fonction de cout integrant les predictions et les mesures, permettant la reconstruction des parametres d'interet. Dans ce travail, le modele direct est l'approximation diffuse de l'equation de transfert radiatif dans le regime frequentiel tandis que les parametres d'interet sont les distributions spatiales des coefficients d'absorption et de diffusion reduit. Cette these est consacree au developpement d'une methode inverse robuste pour la resolution du probleme de TOD dans le domaine frequentiel. Pour repondre a cet objectif, ce travail est structure en trois parties qui constituent les principaux axes de la these. Premierement, une comparaison des algorithmes de Gauss-Newton amorti et de Broyden- Fletcher-Goldfarb-Shanno (BFGS) est proposee dans le cas bidimensionnel. Deux methodes de regularisation sont combinees pour chacun des deux algorithmes, a savoir la reduction de la dimension de l'espace de controle basee sur le maillage et la regularisation par penalisation de Tikhonov

  17. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  18. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  19. Nonintrusive spectroscopic techniques for supersonic/hypersonic aerodynamics and combustion diagnostics

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1992-01-01

    This paper presents an overview of the primary nonintrusive diagnostic techniques being developed by the NASA Langley Research Center to address the validation needs of Computational Fluid Dynamic (CFD) codes. The techniques include absorption in the UV and IR, Laser Induced Fluorescence, electron beam fluorescence, and a number of scattering techniques including Rayleigh, spontaneous Raman, and several coherent Raman spectroscopies. Most of the techniques are highly specialized, require complex data interpretation, and can satisfy only a few of the CFD needs. For these reasons, the evolving trend in flowfield diagnostics appears to favor a mode in which the diagnostic researcher, the experimental aerodynamicist, and the CFD community jointly define experiments based on the aeronautical requirements and on available diagnostic techniques.

  20. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  1. [Applicability of new diagnostic techniques in microbiology; technological innovation].

    PubMed

    Cantón, Rafael; Loza, Elena; Romero, José

    2015-09-01

    Different new techniques have been introduced in microbiology laboratories during the last years, including mass spectrometry and next generation sequencing. These techniques, in addition to automation, microfludics, nanotechnology and informatics, have impelled innovation in the prevention and management of patients with infectious diseases. These approaches are relevant for revitalization and consolidation Clinical Microbiology laboratories. PMID:26365725

  2. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  3. Beam-diagnostics techniques for multiterawatt CO2 lasers

    NASA Astrophysics Data System (ADS)

    Bigio, I. J.; Jackson, S. V.; Laird, A.; Seagrave, J.

    1980-03-01

    The mechanical, optical and electrical designs of beam-diagnostics system for the eight-beam 10-kJ, Helios CO2 laser fusion facility at Los Alamos are described. The measurement of the prepulse, main pulse and postpulse regions of the temporal distribution of energy is discussed; signals are recorded by individually timed, linear gated, charge-integrating digitizers. For prepulse energy, photoconductive detectors with low-noise properties and fast rise time (about 0.5 nsec) are considered, while a simple photon-drag detector can be used for mainpulse vs. postpulse energy measurements. In addition, a combined pyroelectric detector and 5-GHz oscilloscope is suitable for measuring temporal pulse shape.

  4. Hypersonic Wake Diagnostics Using Laser Induced Fluorescence Techniques

    NASA Technical Reports Server (NTRS)

    Mills, Jack L.; Sukenik, Charles I.; Balla, Robert J.

    2011-01-01

    A review of recent research performed in iodine that involves a two photon absorption of light at 193 nm will be discussed, and it's potential application to velocimetry measurements in a hypersonic flow field will be described. An alternative seed atom, Krypton, will be presented as a good candidate for performing nonintrusive hypersonic flow diagnostics. Krypton has a metastable state with a lifetime of approximately 43 s which would prove useful for time of flight measurement (TOF) and a sensitivity to collisions that can be utilized for density measurements. Calculations using modest laser energies and experimental values show an efficiency of excited state production to be on the order of 10(exp -6) for a two photon absorption at 193 nm.

  5. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  6. The diagnostic contribution of CT volumetric rendering techniques in routine practice

    PubMed Central

    Perandini, Simone; Faccioli, N; Zaccarella, A; Re, TJ; Mucelli, R Pozzi

    2010-01-01

    Computed tomography (CT) volumetric rendering techniques such as maximum intensity projection (MIP), minimum intensity projection (MinIP), shaded surface display (SSD), volume rendering (VR), and virtual endoscopy (VE) provide added diagnostic capabilities. The diagnostic value of such reconstruction techniques is well documented in literature. These techniques permit the exploration of fine anatomical detail that would be difficult to evaluate using axial reconstructions alone. Although these techniques are now widely available, many radiologists are either unfamiliar with them or do not fully utilize their potential in daily clinical practice. This paper is intended to provide an overview of the most common CT volumetric rendering techniques and their practical use in everyday diagnostics. PMID:20607017

  7. Analyses of Different Techniques for the Plasma Probe Diagnostics

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Benjamin

    2015-09-01

    The subject of this publication is comparison of the plasma parameters inferred from classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured EEDF using double differentiation of the probe characteristic We concluded that the plasma parameters inferred by the classical Langmuir procedure are subjected to significant inaccuracy due to non-Maxwellian EEDF, uncertainty of locating the plasma potential and arbitrariness in approximation of the ion current. The plasma density inferred from the ion part of the probe characteristic was found to diverge by as much as an order of magnitude from the density calculated as the EEDF integral, while the electron temperature is derived with significant uncertainty. Such inaccuracy is attributed to deficiencies in the ion current theories, i.e. unrealistic assumptions about Maxwellian-shaped EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and some others. We concluded that for highly non-equilibrium gas discharge plasmas at low gas pressure the probe measurements based on EEDF diagnostics is single reliable tool of for the basic research and industrial applications. Examples of EEDF measurements reiterate significance of the instrument technical characteristics, such as high energy resolution and wide dynamic range and importance of displaying the probe current derivatives in real time.

  8. An accurate, convective energy equation based automated meshing technique for analysis of blood vessels and tissues.

    PubMed

    White, J A; Dutton, A W; Schmidt, J A; Roemer, R B

    2000-01-01

    An automated three-element meshing method for generating finite element based models for the accurate thermal analysis of blood vessels imbedded in tissue has been developed and evaluated. The meshing method places eight noded hexahedral elements inside the vessels where advective flows exist, and four noded tetrahedral elements in the surrounding tissue. The higher order hexahedrals are used where advective flow fields occur, since high accuracy is required and effective upwinding algorithms exist. Tetrahedral elements are placed in the remaining tissue region, since they are computationally more efficient and existing automatic tetrahedral mesh generators can be used. Five noded pyramid elements connect the hexahedrals and tetrahedrals. A convective energy equation (CEE) based finite element algorithm solves for the temperature distributions in the flowing blood, while a finite element formulation of a generalized conduction equation is used in the surrounding tissue. Use of the CEE allows accurate solutions to be obtained without the necessity of assuming ad hoc values for heat transfer coefficients. Comparisons of the predictions of the three-element model to analytical solutions show that the three-element model accurately simulates temperature fields. Energy balance checks show that the three-element model has small, acceptable errors. In summary, this method provides an accurate, automatic finite element gridding procedure for thermal analysis of irregularly shaped tissue regions that contain important blood vessels. At present, the models so generated are relatively large (in order to obtain accurate results) and are, thus, best used for providing accurate reference values for checking other approximate formulations to complicated, conjugated blood heat transfer problems.

  9. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity.

    PubMed

    Locke, C R; Stuart, D; Ivanov, E N; Luiten, A N

    2009-11-23

    It has become a significant challenge to accurately characterise the properties of recently developed very high finesse optical resonators (F > 10(6)). A similar challenge is encountered when trying to measure the properties of cavities in which either the probing laser or the cavity length is intrinsically unstable. We demonstrate in this article the means by which the finesse, mode-matching, free spectral range, mirror transmissions and dispersion may be measured easily and accurately even when the laser or cavity has a relatively poor intrinsic frequency stability. PMID:19997438

  10. Diagnostic analysis of vibration signals using adaptive digital filtering techniques

    NASA Technical Reports Server (NTRS)

    Jewell, R. E.; Jones, J. H.; Paul, J. E.

    1983-01-01

    Signal enhancement techniques are described using recently developed digital adaptive filtering equipment. Adaptive filtering concepts are not new; however, as a result of recent advances in microprocessor-based electronics, hardware has been developed that has stable characteristics and of a size exceeding 1000th order. Selected data processing examples are presented illustrating spectral line enhancement, adaptive noise cancellation, and transfer function estimation in the presence of corrupting noise.

  11. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  12. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  13. [THE CYTOMETRIC TECHNIQUE OF BINDING OF EOSIN-5-MALEIMIDE IN DIAGNOSTIC OF INHERENT SPHEROCYTOSIS].

    PubMed

    Kuzminova, J A; Plyasunova, S A; Jogov, V V; Smetanina, N S

    2016-03-01

    The laboratory diagnostic of inherent spherocytosis is based on detection of spherocytes in peripheral blood, decreasing of index of sphericity, decreasing of osmotic resistance of erythrocytes. The new test of diagnostic of hereditary spherocytosis build on molecular defect was developed on the basis of binding extracellular fragments of protein of band 3 with eosin-5-maleimide (EMA-test). The study was carried out to implement comparative analysis of sensitivity and specificity of techniques applied to diagnose inherent spherocytosis. The sampling of 94 patients with various forms of anemias was analyzed All patients were applied complex clinical laboratory examination including analysis of osmotic resistance of erythrocytes, erythrocytometry and EMA-test as specific techniques of diagnostic of inherent spherocytosis. In 51 out of 94 patients (54%) decreasing of values of EMA-test was detected and in 47 patients diagnosis of inherent spherocytosis was confirmed. The standard values of EMA-test were established in 43 patients (46%) and 12 patients out of them with established diagnosis of inherent spherocytosis. Therefore, sensitivity of EMA-test made up to 79% and specificity - 80%. The most sensitive techniques of diagnostic remain osmotic resistance of erythrocytes (91%) and index of sphericity (up to 96%). But the highest specificity in this respect has EMA-test (80%). Nowadays, none of implemented techniques of diagnostic of inherent spherocytosis can be applied as a universal one. The implementation of complex examination is needed for proper diagnostic of disease.

  14. Analysis of diagnostic calorimeter data by the transfer function technique.

    PubMed

    Delogu, R S; Poggi, C; Pimazzoni, A; Rossi, G; Serianni, G

    2016-02-01

    This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing. PMID:26932104

  15. Cardiovascular procedures/diagnostic techniques and therapeutic procedures

    SciTech Connect

    Tilkian, A.G.; Daily, E.K.

    1986-01-01

    This book covers the technical and therapeutic aspects of cardiovascular procedures in immense detail. There are large and appropriate diagrams and tables. The topics of the chapters are tools for catheterization, venous access, arterial access, hemodynamic monitoring, cardiac catheterization and coronary arteriography, ergonovine provocation testing for coronary artery spasm, pulmonary angiography, endomyocredial biopsy, electrophysiologic studies, pericardiocentesis and drainage, intraaortic balloon pumping, direct current cardioversion and defibrilaltion, pacemaker implantation of the automatic implantable cardioverter/defibrillator, coronary angioplasty, thrombolytic therapy, transluminal catheter extraction and resolution of intracardiac catheter knots, cardiopulmonary resuscitation, contrast media toxicity and allergic reactions, radiation hazards, and medicolegal concerns. An appendix and index follow these chapters. In general, each chapter covers historical aspects, indications, complications, techniques, and preoperative and postoperative care.

  16. Coherent Rayleigh-Brillouin scattering as a flow diagnostic technique

    SciTech Connect

    Graul, J. S.; Lilly, T. C.

    2014-12-09

    Broadband coherent Rayleigh-Brillouin scattering (CRBS) was used to measure translational gas temperatures for nitrogen at the ambient pressure of 0.8 atm using a purpose-built Fabry-Perot etalon spectrometer. Temperatures derived from the CRBS spectral analysis were compared with experimentally-measured temperatures, and were found to be, on average, within 2% of the experimentally-measured value. Axial flow velocities from a double jet at a pressure ratio of 0.38 were also measured by looking at the Doppler shift of the CRBS line shape. With recent developments in chirped laser technology and the capacity of CRBS to simultaneously provide thermodynamic and bulk flow information, the CRBS line shape acquisition and analysis technique presented here may allow for future time-resolved, characterization of aerospace flows.

  17. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  18. Computational Diagnostic Techniques for Electromagnetic Scattering: Analytical Imaging, Near Fields, and Surface Currents

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.; Talcott, Noel A., Jr.; Shaeffer, John

    1997-01-01

    This paper presents three techniques and the graphics implementations which can be used as diagnostic aides in the design and understanding of scattering structures: Imaging, near fields, and surface current displays. The imaging analysis is a new bistatic k space approach which has potential for much greater information than standard experimental approaches. The near field and current analysis are implementations of standard theory while the diagnostic graphics displays are implementations exploiting recent computer engineering work station graphics libraries.

  19. Mini-FLOTAC, an Innovative Direct Diagnostic Technique for Intestinal Parasitic Infections: Experience from the Field

    PubMed Central

    Barda, Beatrice Divina; Rinaldi, Laura; Ianniello, Davide; Zepherine, Henry; Salvo, Fulvio; Sadutshang, Tsetan; Cringoli, Giuseppe; Clementi, Massimo; Albonico, Marco

    2013-01-01

    Background Soil-transmitted helminths and intestinal protozoa infection are widespread in developing countries, yet an accurate diagnosis is rarely performed. The aim of this study was to evaluate the recently developed mini–FLOTAC method and to compare with currently more widely used techniques for the diagnosis of intestinal parasitic infections in different settings. Methodology/Principal Findings The study was carried out in Dharamsala, Himachal Pradesh, India, and in Bukumbi, Tanzania. A total of 180 pupils from two primary schools had their stool analyzed (n = 80 in Dharamsala and n = 100 in Bukumbi) for intestinal parasitic infections with three diagnostic methods: direct fecal smear, formol-ether concentration method (FECM) and mini-FLOTAC. Overall, 72% of the pupils were positive for any intestinal parasitic infection, 24% carried dual infections and 11% three infections or more. The most frequently encountered intestinal parasites were Entamoeba coli, Entamoeba histolytica/dispar, Giardia intestinalis, hookworm, (and Schistosoma mansoni, in Tanzania). Statistically significant differences were found in the detection of parasitic infections among the three methods: mini-FLOTAC was the most sensitive method for helminth infections (90% mini-FLOTAC, 60% FECM, and 30% direct fecal smear), whereas FECM was most sensitive for intestinal protozoa infections (88% FECM, 70% direct fecal smear, and 68% mini-FLOTAC). Conclusion/Significance We present the first experiences with the mini-FLOTAC for the diagnosis of intestinal helminths and protozoa. Our results suggest that it is a valid, sensitive and potentially low-cost alternative technique that could be used in resource-limited settings — particularly for helminth diagnosis. PMID:23936577

  20. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  1. Auto Diagnostics of Lung Nodules Using Minimal Characteristics Extraction Technique

    PubMed Central

    Peña, Diego M.; Luo, Shouhua; Abdelgader, Abdeldime M. S.

    2016-01-01

    Computer-aided detection (CAD) systems provide useful tools and an advantageous process to physicians aiming to detect lung nodules. This paper develops a method composed of four processes for lung nodule detection. The first step employs image acquisition and pre-processing techniques to isolate the lungs from the rest of the body. The second stage involves the segmentation process using a 2D algorithm to affect every layer of a scan eliminating non-informative structures inside the lungs, and a 3D blob algorithm associated with a connectivity algorithm to select possible nodule shape candidates. The combinations of these algorithms efficiently eliminate the high rates of false positives. The third process extracts eight minimal representative characteristics of the possible candidates. The final step utilizes a support vector machine for classifying the possible candidates into nodules and non-nodules depending on their features. As the objective is to find nodules bigger than 4mm, the proposed approach demonstrated quite encouraging results. Among 65 computer tomography (CT) scans, 94.23% of sensitivity and 84.75% in specificity were obtained. The accuracy of these two results was 89.19% taking into consideration that 45 scans were used for testing and 20 for training. The rate of false positives was 0.2 per scan. PMID:26959065

  2. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  3. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  4. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required. PMID:18488965

  5. Development of detection techniques and diagnostics for airborne carbon nanoparticles.

    SciTech Connect

    Michelsen, Hope A.; Witze, Peter O.; Settersten, Thomas B.

    2003-11-01

    We have recorded time-resolved LII signals from a laminar ethylene diffusion flame over a wide range of laser fluences at 532 nm. We have performed these experiments using an injection-seeded NdYAG laser with a pulse duration of 7 ns. The beam was spatially filtered and imaged into the flame to provide a homogeneous spatial profile. These data were used to aid in the development of a model, which will be used to test the validity of the LII technique under varying environmental conditions. The new model describes the heating of soot particles during the laser pulse and the subsequent cooling of the particles by radiative emission, sublimation, and conduction. The model additionally includes particle heating by oxidation, accounts for the likelihood of particle annealing, and incorporates a mechanism for nonthermal photodesorption, which is required for good agreement with our experimental results. In order to investigate the fast photodesorption mechanism in more detail, we have recorded LII temporal profiles using a regeneratively amplified Nd:YAG laser with a pulse duration of 70 ps to heat the particles and a streak camera with a temporal resolution of {approx}65 ps to collect the signal. Preliminary results confirm earlier indications of a fast mechanism leading to signal decay rates of much less than a nanosecond. Parameters to which the model is sensitive include the initial soot temperature, the temperature of the ambient gas, and the partial pressure of oxygen. In order to narrow the model uncertainties, we have developed a source of soot that allows us to determine and control these parameters. Soot produced by a burner is extracted, diluted, and cooled in a flow tube, which is equipped with a Scanning Mobility Particle Sizer (SMPS) for characterization of the aggregates.

  6. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  7. Development and application of accurate detection and assay techniques for oilfield scale inhibitors in produced water samples

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.; Boak, L.S.; Taylor, K.; Blilie, L.

    1995-11-01

    In the application of chemical inhibitors in field squeeze treatments for the prevention of sulfate and carbonate mineral scale formation, it is very important that the chemical species involved can be accurately assayed. When the inhibitor concentration drops below a predetermined threshold level for scale inhibition (C{sub t}) then the well may need to be resqueezed. The accurate assay of scale inhibitors down to concentration levels of a few ppm in real field brines can be a difficult task. In this paper, the authors examine a number of interferences which often make assay techniques very difficult to apply in field produced brines. The inhibitors examined include phosphonates (PH), polyacrylates (PAA) and phosphinopolycarboxylates (PPCA). The main objective of this work is to develop suitable pre-treatment/purification techniques which allow the standard wet chemical techniques to be applied effectively after appropriate modification. Successful techniques all based on careful modification of existing methods have been developed by which these common inhibitors can be assayed very accurately at ppm and sub-ppm levels in a variety of North Sea field produced waters. This paper examines some of the major problems and interferences associated with poor analysis and introduces modified methods which can be applied in the field without the use of expensive equipment. It is also shown that different detection methods can often be employed in order to avoid more extensive clean-up strategies. Finally, instrumental methods such as ICP analysis (commonly used for phosphonates) are examined and pre-treatment methods are developed which allow phosphino-polycarboxylic acid based inhibitors to be assayed very accurately by this method. The results from an independent assessment by a North Sea operator, using spiked field produced water, are also presented as an independent verification of the accuracy of the techniques which have been developed in this work.

  8. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  9. Bronchoalveolar lavage cell differential on microscope glass cover. A simple and accurate technique

    SciTech Connect

    Laviolette, M.; Carreau, M.; Coulombe, R.

    1988-08-01

    We describe a quick and easy technique to perform cell differentials on bronchoalveolar lavage: the microscope glass cover. Lavage fluids of 72 subjects were analyzed by 3 techniques: glass cover, filter, and cytocentrifuge preparations. Seventy-seven other lavages were analyzed by glass cover and cytocentrifuge preparations alone. Data for the 72 subjects studied by all 3 techniques showed that the cell counts on glass cover and filter preparations were similar, e.g., lymphocytes, 19.2% (range, 0.5 to 94%) and 20.9% (range, 3 to 95%), respectively (Spearman's correlation coefficient, 0.98). However, on cytocentrifuge preparations, lymphocyte counts were lower (8.3%; range, zero to 87%) and macrophage counts were higher (p less than 0.005). Comparison of glass cover and cytocentrifuge preparation mixtures with varying amounts (20 to 80%) of purified blood leukocytes labeled with 51Cr (greater than or equal to 72% lymphocytes) showed that a significant amount of radioactive cells was lost during the cytocentrifuge technique in contrast to the glass cover technique. Because neutrophils represented a low proportion of lavage cells, we also evaluated cell suspensions with known neutrophil contents (10 to 70%); we found no difference in neutrophil counts obtained with the 3 techniques. Lavage data analysis of 40 young nonsmoking volunteers showed that glass cover lymphocyte count was also higher than counts on cytocentrifuge preparations: 16.5% (range, 3 to 45%) and 8.2% (range, 2.5 to 35%), respectively. In this group, the distribution of glass cover lymphocyte percentages was normal (p = 0.21, chi 2 test), and the one-tailed 95% confidence interval was 18.6 to 34.7% (mean plus 1.65 standard deviation).

  10. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  11. A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Yousefi, Hossein; Delkhosh, Mehdi; Ghaderi, Amin

    2016-07-01

    In this paper, a new algorithm based on the fractional order of rational Euler functions (FRE) is introduced to study the Thomas-Fermi (TF) model which is a nonlinear singular ordinary differential equation on a semi-infinite interval. This problem, using the quasilinearization method (QLM), converts to the sequence of linear ordinary differential equations to obtain the solution. For the first time, the rational Euler (RE) and the FRE have been made based on Euler polynomials. In addition, the equation will be solved on a semi-infinite domain without truncating it to a finite domain by taking FRE as basic functions for the collocation method. This method reduces the solution of this problem to the solution of a system of algebraic equations. We demonstrated that the new proposed algorithm is efficient for obtaining the value of y'(0) , y(x) and y'(x) . Comparison with some numerical and analytical solutions shows that the present solution is highly accurate.

  12. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  13. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  14. An accurate scatter measurement and correction technique for cone beam breast CT imaging using scanning sampled measurement (SSM)technique

    NASA Astrophysics Data System (ADS)

    Liu, Xinming; Shaw, Chris C.; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C.; Kappadath, S. Cheenu

    2006-03-01

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images. Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  15. Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan; Chang, Te-Jeng

    2011-01-01

    The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…

  16. The Sandtray Technique for Swedish Children 1945-1960: Diagnostics, Psychotherapy and Processes of Individualisation

    ERIC Educational Resources Information Center

    Nelson, Karin Zetterqvist

    2011-01-01

    The present article examines the development of a diagnostic and therapeutic technique named The Sandtray at the Erica Foundation, a privately-run child counselling service in Stockholm. Originally it was called The World, developed by the British paediatrician and child psychiatrist Margaret Lowenfeld. In the 1930s it was imported to Sweden,…

  17. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  18. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.

    PubMed

    Allen, Kenneth W; Scott, Mark M; Reid, David R; Bean, Jeffrey A; Ellis, Jeremy D; Morris, Andrew P; Marsh, Jeramy M

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10(-3) for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands. PMID:27250447

  19. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  20. Calibration techniques for fast-ion D{sub {alpha}} diagnostics

    SciTech Connect

    Heidbrink, W. W.; Bortolon, A.; Muscatello, C. M.; Ruskov, E.; Grierson, B. A.; Podesta, M.

    2012-10-15

    Fast-ion D{sub {alpha}} measurements are an application of visible charge-exchange recombination (CER) spectroscopy that provide information about the energetic ion population. Like other CER diagnostics, the standard intensity calibration is obtained with an integrating sphere during a vacuum vessel opening. An alternative approach is to create plasmas where the fast-ion population is known, then calculate the expected signals with a synthetic diagnostic code. The two methods sometimes agree well but are discrepant in other cases. Different background subtraction techniques and simultaneous measurements of visible bremsstrahlung and of beam emission provide useful checks on the calibrations and calculations.

  1. Two-dimensional two-wavelength emission technique for soot diagnostics.

    PubMed

    Cignoli, F; De Iuliis, S; Manta, V; Zizak, G

    2001-10-20

    A two-dimensional soot diagnostic technique has been developed as an extension of the well-known two-color pyrometry. Two flame images are simultaneously collected on a CCD at selected wavelengths through suitable optics. By use of the dependence of soot emissivity on the soot volume fraction and by comparison with images from a calibrated light source, both the temperature field and the soot distribution can be determined. Validation was carried out through data obtained with other soot diagnostic methods on ethylene diffusion and Diesel oil-rich premixed flames. The current technique readily allowed us to obtain a large amount of data for a thorough description of the soot distribution within the flame. As an example of the technique's potential, data about methane and propane diffusion flames are reported.

  2. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  3. Dual diagnostic catheter technique in the endovascular management of anterior communicating artery complex aneurysms

    PubMed Central

    Griessenauer, Christoph J.; Fusco, Matthew R.; He, Lucy; Chua, Michelle; Sieber, Sarah; Mazketly, Abd A.; Reddy, Arra S.; Ogilvy, Christopher S.; Thomas, Ajith J.

    2016-01-01

    Background: The configuration of the anterior communicating artery (AcomA) complex is important in the endovascular treatment of AcomA complex aneurysms. In cases of codominant anterior cerebral arteries (ACA), coil embolization may result in inadvertent occlusion of the contralateral ACA due to poor visualization. A second diagnostic catheter in the contralateral carotid artery may help with visualization of this angiographic blind spot. To our knowledge, the safety and efficacy of this dual diagnostic catheter technique have never been assessed. Methods: A cohort of consecutive patients that underwent coil embolization of an AcomA complex aneurysm at a major academic institution in the United States between 2007 and 2014 were retrospectively reviewed. Results: Eighty-two patients who had an AcomA complex aneurysm treated with coil embolization were identified. The dual diagnostic catheter technique was used in 17 (20.7%) patients. Aneurysms treated with the dual diagnostic catheter technique were less frequently ruptured and had less favorable dome-to-neck ratios as well as neck width for primary coil embolization. The rate of codominant ACAs was significantly higher and stent-assisted coil embolization was performed more frequently. The rate of thromboembolic complications, angiographic outcome, and retreatment did not differ between both the groups. Conclusions: The dual diagnostic catheter technique is a safe and effective method during coil embolization of AcomA complex aneurysms and preferred for aneurysms with codominant ACAs, incorporation of either A1 or A2 segments into the aneurysm, and aneurysms with a wide neck and low dome-to-neck ratios. PMID:27713853

  4. Tzanck smear as an accurate and rapid diagnostic tool for cutaneous alternariosis in a renal transplant recipient.

    PubMed

    Karataş Toğral, A; Güleç, A T

    2016-10-01

    Alternaria species are becoming increasingly important opportunistic pathogens in recipients of solid organ transplant, as it has been shown that dissemination with systemic involvement is not as rare as previously reported. Therefore, rapid and accurate diagnosis is necessary for appropriate patient management. We report a patient with renal transplant who developed recurrent cutaneous alternariosis. Tzanck smear successfully and very rapidly revealed hyphae and spores in both the primary and subsequent lesions. Furthermore, Tzanck smear provided guidance for histopathological examination of the second lesion, which failed to disclose the fungal elements until additional deeper serial sections were performed. The present case emphasizes that the Tzanck smear is a useful clinical tool leading to the immediate correct diagnosis even in deep fungal infections. PMID:27663148

  5. A new automatic blood pressure kit auscultates for accurate reading with a smartphone: A diagnostic accuracy study.

    PubMed

    Wu, Hongjun; Wang, Bingjian; Zhu, Xinpu; Chu, Guang; Zhang, Zhi

    2016-08-01

    The widely used oscillometric automated blood pressure (BP) monitor was continuously questioned on its accuracy. A novel BP kit named Accutension which adopted Korotkoff auscultation method was then devised. Accutension worked with a miniature microphone, a pressure sensor, and a smartphone. The BP values were automatically displayed on the smartphone screen through the installed App. Data recorded in the phone could be played back and reconfirmed after measurement. They could also be uploaded and saved to the iCloud. The accuracy and consistency of this novel electronic auscultatory sphygmomanometer was preliminarily verified here. Thirty-two subjects were included and 82 qualified readings were obtained. The mean differences ± SD for systolic and diastolic BP readings between Accutension and mercury sphygmomanometer were 0.87 ± 2.86 and -0.94 ± 2.93 mm Hg. Agreements between Accutension and mercury sphygmomanometer were highly significant for systolic (ICC = 0.993, 95% confidence interval (CI): 0.989-0.995) and diastolic (ICC = 0.987, 95% CI: 0.979-0.991). In conclusion, Accutension worked accurately based on our pilot study data. The difference was acceptable. ICC and Bland-Altman plot charts showed good agreements with manual measurements. Systolic readings of Accutension were slightly higher than those of manual measurement, while diastolic readings were slightly lower. One possible reason was that Accutension captured the first and the last korotkoff sound more sensitively than human ear during manual measurement and avoided sound missing, so that it might be more accurate than traditional mercury sphygmomanometer. By documenting and analyzing of variant tendency of BP values, Accutension helps management of hypertension and therefore contributes to the mobile heath service. PMID:27512876

  6. High-Energy X-ray Absorption Diagnostics as an Experimental Combustion Technique

    NASA Astrophysics Data System (ADS)

    Dunnmon, Jared; Sobhani, Sadaf; Hinshaw, Waldo; Fahrig, Rebecca; Ihme, Matthias

    2015-11-01

    X-ray diagnostics such as X-ray Computed Tomography (XCT) have recently been utilized for measurement of scalar concentration fields in gas-phase flow phenomena. In this study, we apply high-energy X-ray absorption techniques to visualize a laboratory-scale flame via fluoroscopic measurements by using krypton as a radiodense tracer media. Advantages of X-ray absorption diagnostics in a combustion context, including application to optically inaccessible environments and lack of ambient photon interference, are demonstrated. Analysis methods and metrics for extracting physical insights from these data are presented. The accuracy of the diagnostic is assessed via comparison to known results from canonical flame configurations, and the potential for further applications is discussed. Support from the NDSEG fellowship, Bosch, and NASA are gratefully acknolwedged.

  7. Ultrasound techniques in the evaluation of the mediastinum, part 2: mediastinal lymph node anatomy and diagnostic reach of ultrasound techniques, clinical work up of neoplastic and inflammatory mediastinal lymphadenopathy using ultrasound techniques and how to learn mediastinal endosonography.

    PubMed

    Jenssen, Christian; Annema, Jouke Tabe; Clementsen, Paul; Cui, Xin-Wu; Borst, Mathias Maximilian; Dietrich, Christoph Frank

    2015-10-01

    Ultrasound imaging has gained importance in pulmonary medicine over the last decades including conventional transcutaneous ultrasound (TUS), endoscopic ultrasound (EUS), and endobronchial ultrasound (EBUS). Mediastinal lymph node (MLN) staging affects the management of patients with both operable and inoperable lung cancer (e.g., surgery vs. combined chemoradiation therapy). Tissue sampling is often indicated for accurate nodal staging. Recent international lung cancer staging guidelines clearly state that endosonography should be the initial tissue sampling test over surgical staging. Mediastinal nodes can be sampled from the airways [endobronchial ultrasound combined with transbronchial needle aspiration (EBUS-TBNA)] or the esophagus [endoscopic ultrasound fine needle aspiration (EUS-FNA)]. EBUS and EUS have a complementary diagnostic yield and in combination virtually all MLNs can be biopsied. Additionally endosonography has an excellent yield in assessing granulomas in patients suspected of sarcoidosis. The aim of this review in two integrative parts is to discuss the current role and future perspectives of all ultrasound techniques available for the evaluation of mediastinal lymphadenopathy and mediastinal staging of lung cancer. A specific emphasis will be on learning mediastinal endosonography. Part 1 deals with an introduction into ultrasound techniques, MLN anatomy and diagnostic reach of ultrasound techniques and part 2 with the clinical work up of neoplastic and inflammatory mediastinal lymphadenopathy using ultrasound techniques and how to learn mediastinal endosonography.

  8. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  9. Modern non-invasive diagnostic techniques in the detection of early cutaneous melanoma.

    PubMed

    Kardynal, Agnieszka; Olszewska, Malgorzata

    2014-03-31

    Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Melanoma is a malignant tumor with a high tendency to metastasize. Therefore, an extremely important part of the therapeutic process is to identify the disease at an early stage: in situ or stage I. Many tools for early diagnosis of melanoma are available today, including dermoscopy, videodermoscopy and in vivo reflectance confocal microscopy. Other methods such as high frequency ultrasound, optical coherence tomography and electrical impedance spectroscopy may serve as additional diagnostic aids. Modern imaging techniques also allow the monitoring of melanocytic skin lesions over months or years to detect the moment of malignant transformation. This review summarizes the current knowledge about modern diagnostic techniques, which may aid early diagnosis of melanoma. PMID:24748903

  10. In vitro amplification techniques for the detection of nucleic acids: new tools for the diagnostic laboratory.

    PubMed

    Persing, D H; Landry, M L

    1989-01-01

    The acceptance of nucleic acid probes as diagnostic tools for the clinical laboratory has been hampered by a number of factors, including laborious techniques and limited sensitivity. The focus of this review is on the recent development of amplification techniques to enhance the signal generated by nucleic acid-based detection systems. Three general areas are discussed: (1) amplification of target sequences using the polymerase chain reaction or the transcript amplification system, (2) amplification of the probe sequences using Q beta replicase, and (3) amplification of probe-generated signals with compound or "Christmas tree" probes. The hope of these new technologies is to simplify yet improve on the sensitivity of nucleic acid-based tests to enable them to attain a more prominent place in the diagnostic repertoire of the clinical laboratory.

  11. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  12. The Functional Anaesthetic Discogram: Description of a Novel Diagnostic Technique and Report of 3 Cases

    PubMed Central

    Malek, Farbod; Carragee, Eugene; Kim, Mi-Jung

    2008-01-01

    Background The diagnostic evaluation of patients with presumed discogenic low back pain is controversial; recent studies have brought the specificity of the traditional technique, provocative lumbar discography, into question. One of the explanations for the relative lack of predictability in treatment outcomes for patients with discogenic low back pain may be a corresponding lack of certainty in the diagnosis. Purpose A new diagnostic technique is described for the evaluation of patients with presumptive discogenic low back pain; the cases of 3 patients in whom the technique was used are presented. Study Design/Setting Case report; university practice. Methods A technique is described in which an anaesthetic catheter is placed into putative symptomatic lumbar discs, the patient elicits his or her typical pain via a position or activity, and anaesthetic or placebo is delivered to the disc. The effect of the injected substance on the patient's pain is then noted. Results In one patient, the new test was confirmatory of the results of the provocative discogram; in two patients, the test results were divergent. Conclusions These case studies and technical description are presented as a first step in examining this method of preoperative assessment. Further study of the technique will allow us to make more definitive recommendations with regards to its validity and utility. Level of Evidence Level 4 – Case Series PMID:25802610

  13. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  14. A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers.

    PubMed

    Dong, Liang

    2011-06-20

    A vector boundary matching technique has been proposed and demonstrated for finding photonic bandgaps in photonic bandgap fibers with circular nodes. Much improved accuracy, comparing to earlier works, comes mostly from using more accurate cell boundaries for each mode at the upper and lower edges of the band of modes. It is recognized that the unit cell boundary used for finding each mode at band edges of the 2D cladding lattice is not only dependent on whether it is a mode at upper or lower band edge, but also on the azimuthal mode number and lattice arrangements. Unit cell boundaries for these modes are determined by mode symmetries which are governed by the azimuthal mode number as well as lattice arrangement due to mostly geometrical constrains. Unit cell boundaries are determined for modes at both upper and lower edges of bands of modes dominated by m = 1 and m = 2 terms in their longitudinal field Fourier-Bessel expansion series, equivalent to LP0s and LP1s modes in the approximate LP mode representations, for hexagonal lattice to illustrate the technique. The novel technique is also implemented in vector form and incorporates a transfer matrix algorithm for the consideration of nodes with arbitrary refractive index profiles. Both are desired new capabilities for further explorations of advanced new designs of photonic bandgap fibers. PMID:21716499

  15. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  16. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions.

    PubMed

    Polgár, László; García-Reyes, Juan F; Fodor, Péter; Gyepes, Attila; Dernovics, Mihály; Abrankó, László; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2012-08-01

    In recent years, the detection and characterization of relevant pesticide metabolites in food is an important task in order to evaluate their formation, kinetics, stability, and toxicity. In this article, a methodology for the systematic screening of pesticides and their main metabolites in fruit and vegetable samples is described, using LC-HRMS and accurate-mass database search of parent compounds and their diagnostic fragment ions. The approach is based on (i) search for parent pesticide molecules; (ii) search for their metabolites in the positive samples, assuming common fragmentation pathways between the metabolites and parent pesticide molecules; and (iii) search for pesticide conjugates using the data from both parent species and diagnostic fragment ions. An accurate-mass database was constructed consisting of 1396 compounds (850 parent compounds, 447 fragment ions and 99 metabolites). The screening process was performed by the software in an automated fashion. The proposed methodology was evaluated with 29 incurred samples and the output obtained was compared to standard pesticide testing methods (targeted LC-MS/MS). Examples on the application of the proposed approach are shown, including the detection of several pesticide glycosides derivatives, which were found with significantly relevant intensities. Glucose-conjugated forms of parent compounds (e.g., fenhexamid-O-glucoside) and those of metabolites (e.g., despropyl-iprodione-N-glycoside) were detected. Facing the lack of standards for glycosylated pesticides, the study was completed with the synthesis of fenhexamid-O-glucoside for quantification purposes. In some cases the pesticide derivatives were found in a relatively high ratio, drawing the attention to these kinds of metabolites and showing that they should not be neglected in multi-residue methods. The global coverage obtained on the 29 analyzed samples showed the usefulness and benefits of the proposed approach and highlights the practical

  17. Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis).

    PubMed

    Britton, Louise E; Cassidy, Joseph P; O'Donovan, Jim; Gordon, Stephen V; Markey, Bryan

    2016-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (paratuberculosis), a chronic wasting disease in cattle with important welfare, economic and potential public health implications. Current tests are unable to recognise all stages of the disease, which makes it difficult to diagnose and control. This review explores emerging diagnostic techniques that could complement and enhance the diagnosis of MAP infection, including bacteriophage analysis, new MAP-specific antigens, host protein expression in response to infection, transcriptomic studies, analysis of microRNAs and investigation of the gastrointestinal microbiome. It emphasises the inherent challenges of diagnosing bovine Johne's disease and investigates novel areas which may have the potential both to advance our understanding of the immunopathology of MAP infection and to augment current diagnostic tests. PMID:26831164

  18. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  19. The diagnostic value of immunohistochemistry and silver impregnation techniques for characterization of normal, reactive and tumoral astrocytes.

    PubMed

    Şovrea, Alina Simona; Boşca, Adina Bianca; Georgiu, Carmen; Constantin, Anne-Marie; Ben Abdalah, Mohamed Amine; Gheban, Dan

    2014-01-01

    Astrocytes represent a heterogeneous population of specialized glial cells responsible not only for accomplishing various important functions in the healthy nervous tissue, but also for reacting to all types of the central nervous system diseases and trauma. GFAP immunostaining is considered to be the most accurate of the routine techniques used for identifying astrocytes; however, silver impregnation techniques, which are inexpensive and approachable, might be a reliable alternative. The present research has brought into question and tried to assess the sensitivity and specificity of these classical methods for identifying and differentiating normal and reactive from tumoral astrocytes. Our study included 10 supratentorial gliomas specimens of various grade and two normal brain samples. We performed a histological study on consecutive seriated sections labeled using four methods: the immunostaining for GFAP (glial fibrillary acidic protein) and the three silver impregnation techniques: Ramón y Cajal, Bielschowsky-Cajal and Gömöri. For each tumoral case, two areas were examined: the tumoral parenchyma and the tumor borders (considered as reactive gliosis) and were both compared to healthy brain parenchyma; for each area, three microscopic fields were assessed and two parameters were recorded: a semi-quantitative score (the astrocytes' density) and a qualitative score (the color intensity). We used a complex statistical analysis in order to process the data and to compare the diagnostic value of silver impregnation techniques versus GFAP immunostaining (the reference method) in terms of tumoral grading and differentiating tumoral from normal and reactive astrocytes. Our results indicated that there data provided by both GFAP immunostaining and silver impregnation techniques were comparable.

  20. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    NASA Astrophysics Data System (ADS)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  1. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  2. Intestinal helminths in immigrants in Naples (Italy): a comparison between two different diagnostic techniques

    PubMed Central

    Esposito, Silvano; Noviello, Silvana; Leone, Sebastiano; Pascale, Renato; Russo, Enrico; Gualdieri, Luciano

    2013-01-01

    Objective To compare two different methods for detection of intestinal parasitic in immigrants from high risk geographic areas for intestinal parasitic diseases. Methods A total of 307 stool specimens were analysed by Ridley method and FLOTAC, a new technique performing a direct count of all parasitic elements. Results : Compared to Ridley method, FLOTAC technique led to fewer negative results (P<0.05), index of a higher sensibility. Conclusions Performing a more accurate detection of parasites appears a goal to reach in terms of public health.

  3. A diagnostic analysis of the VVP single-doppler retrieval technique

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    1995-01-01

    A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.

  4. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications. PMID:27472008

  5. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  6. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  7. Mycoplasma pneumoniae: Current Knowledge on Nucleic Acid Amplification Techniques and Serological Diagnostics.

    PubMed

    Loens, Katherine; Ieven, Margareta

    2016-01-01

    Mycoplasma pneumoniae (M. pneumoniae) belongs to the class Mollicutes and has been recognized as a common cause of respiratory tract infections (RTIs), including community-acquired pneumonia (CAP), that occur worldwide and in all age groups. In addition, M. pneumoniae can simultaneously or sequentially lead to damage in the nervous system and has been associated with a wide variety of other acute and chronic diseases. During the past 10 years, the proportion of LRTI in children and adults, associated with M. pneumoniae infection has ranged from 0 to more than 50%. This variation is due to the age and the geographic location of the population examined but also due to the diagnostic methods used. The true role of M. pneumoniae in RTIs remains a challenge given the many limitations and lack of standardization of the applied diagnostic tool in most cases, with resultant wide variations in data from different studies. Correct and rapid diagnosis and/or management of M. pneumoniae infections is, however, critical to initiate appropriate antibiotic treatment and is nowadays usually done by PCR and/or serology. Several recent reviews, have summarized current methods for the detection and identification of M. pneumoniae. This review will therefore provide a look at the general principles, advantages, diagnostic value, and limitations of the most currently used detection techniques for the etiological diagnosis of a M. pneumoniae infection as they evolve from research to daily practice. PMID:27064893

  8. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  9. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  10. Diagnostic procedures in tularaemia with special focus on molecular and immunological techniques.

    PubMed

    Splettstoesser, W D; Tomaso, H; Al Dahouk, S; Neubauer, H; Schuff-Werner, P

    2005-08-01

    Tularaemia is a severe bacterial zoonosis caused by the highly infectious agent Francisella tularensis. It is endemic in countries of the northern hemisphere ranging from North America to Europe, Asia and Japan. Very recently, Francisella-like strains causing disease in humans were described from tropical northern Australia. In the last decade, efforts have been made to develop sensitive and specific immunological and molecular techniques for the laboratory diagnosis of tularaemia and also for the definite identification of members of the species F. tularensis and its four subspecies. Screening for the keyword 'Francisella' a Medline search over the last decade was performed and articles describing diagnostic methods for tularaemia and its causative agent were selected. Besides classical microbiological techniques (cultivation, biochemical profiling, susceptibility testing) several new immunological and molecular approaches to identify F. tularensis have been introduced employing highly specific antibodies and various polymerase chain reaction (PCR)-based methods. Whereas direct antigen detection by enzyme-linked immunosorbent assay (ELISA) or immunofluorescence might allow early presumptive diagnosis of tularaemia, these methods--like all PCR techniques--still await further evaluation. Therefore, diagnosis of tularaemia still relies mainly on the demonstration of specific antibodies in the host. ELISA and immunoblot methods started to replace the standard tube or micro-agglutination assays. However, the diagnostic value of antibody detection in the very early clinical phase of tularaemia is limited. Francisella tularensis is regarded as a 'highest priority' biological agent (category 'A' according to the CDC, Atlanta, GA, USA), thus rapid and reliable diagnosis of tularaemia is required not only for a timely onset of therapy, the handling of outbreak investigations but also for the surveillance of endemic foci. Only very recently, evaluated test kits for

  11. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

    SciTech Connect

    McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.

    2014-12-15

    was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.

  12. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.

    PubMed

    Bachir, Alexia I; Kolin, David L; Heinze, Katrin G; Hebert, Benedict; Wiseman, Paul W

    2008-06-14

    Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution

  13. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma.

    PubMed

    Warszawik-Hendzel, Olga; Olszewska, Małgorzata; Maj, Małgorzata; Rakowska, Adriana; Czuwara, Joanna; Rudnicka, Lidia

    2015-12-31

    Squamous cell carcinoma is the second most common cutaneous malignancy after basal cell carcinoma. Although the gold standard of diagnosis for squamous cell carcinoma is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Dermoscopy has become one of the basic diagnostic methods in clinical practice. The most common dermoscopic features of squamous cell carcinoma include clustered vascular pattern, glomerular vessels and hyperkeratosis. Under reflectance confocal microscopy, squamous cell carcinoma shows an atypical honeycomb or disarranged pattern of the spinous-granular layer of the epidermis, round nucleated bright cells in the epidermis and round vessels in the dermis. High frequency ultrasound and optical coherence tomography may be helpful in predominantly in pre-surgical evaluation of tumor size. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of squamous cell carcinoma of the skin, lip, oral mucosa, vulva or other tissues include high-definition optical coherence tomography, in vivo multiphoton tomography, direct oral microscopy, electrical impedance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, elastic scattering spectroscopy, differential path-length spectroscopy, nuclear magnetic resonance spectroscopy, and angle-resolved low coherence interferometry.

  14. Z-pinch diagnostics, plasma and liner instabilities and new x-ray techniques

    SciTech Connect

    Oona, H.; Anderson, B.; Benage, J.

    1996-09-01

    Pulse power experiments of the last several decades have contributed greatly to the understanding of high temperature and high density plasmas and, more recently, to the study of hydrodynamic effects in thick imploding cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load, with the resulting Lorenz force compressing the load to produce hydrodynamic motion and/or high temperature, high density plasma. In Los Alamos, Pulsed power experiments are carried out at two facilities. Experiments at low current (from several million to ten million Amperes) are conducted on the Pegasus II capacitor bank. Experiments with higher currents (10`s to 100`s MA range) are performed in Ancho Canyon with the explosively driven Procyon and MAGO magnetic flux compression generator systems. In this paper, the authors present a survey of diagnostic capabilities and results from several sets of experiments. First, they discuss the initiation and growth of instabilities in plasmas generated from the implosion of hollow z-pinches in the pegasus and Procyon experiments. Next they discuss spectroscopic data from the plasmas produced by the MAGO system. They also show time resolved imaging data from thick ({approximately} .4 mm) liner implosions. Finally, the authors discuss improvements to x-ray and visible light imaging and spectrographic diagnostic techniques. The emphasis of this paper is not so much a detailed discussion of the experiments, but a presentation of imaging and spectroscopic results and the implications of these observations to the experiments.

  15. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma.

    PubMed

    Warszawik-Hendzel, Olga; Olszewska, Małgorzata; Maj, Małgorzata; Rakowska, Adriana; Czuwara, Joanna; Rudnicka, Lidia

    2015-12-31

    Squamous cell carcinoma is the second most common cutaneous malignancy after basal cell carcinoma. Although the gold standard of diagnosis for squamous cell carcinoma is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Dermoscopy has become one of the basic diagnostic methods in clinical practice. The most common dermoscopic features of squamous cell carcinoma include clustered vascular pattern, glomerular vessels and hyperkeratosis. Under reflectance confocal microscopy, squamous cell carcinoma shows an atypical honeycomb or disarranged pattern of the spinous-granular layer of the epidermis, round nucleated bright cells in the epidermis and round vessels in the dermis. High frequency ultrasound and optical coherence tomography may be helpful in predominantly in pre-surgical evaluation of tumor size. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of squamous cell carcinoma of the skin, lip, oral mucosa, vulva or other tissues include high-definition optical coherence tomography, in vivo multiphoton tomography, direct oral microscopy, electrical impedance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, elastic scattering spectroscopy, differential path-length spectroscopy, nuclear magnetic resonance spectroscopy, and angle-resolved low coherence interferometry. PMID:26848316

  16. A Review of the Diagnostic Scope of Biomarker Techniques, Genetic Screening and Virtual Scanning

    PubMed Central

    Ewing, Graham Wilfred

    2013-01-01

    The purpose of this article is to compare and evaluate the advantages and benefits of the cognitive screening technique Virtual Scanning with contemporary diagnostic and screening techniques, in particular genetic screening and biomarkers. In the last 50 years biomarker techniques and more recently genetic screening have been developed to characterise the onset, progression and regression of pathologies. Nevertheless the scientific picture is not yet complete. It does not yet include an understanding of relationship between genotype and phenotype; the regulatory function of the autonomic nervous system; or the rate or level of the expressed protein, protein conformation, the rate at which proteins react, and the reaction conditions such as pH, levels of minerals and cofactors, and temperature. By contrast, Virtual Scanning is based upon the light absorbing and emitting properties of proteins and how this bioluminescence influences colour perception. It provides a measure of the level of expressed protein and the rate at which such expressed protein subsequently reacts with its reactive substrate. The article highlights the limitations of genetic screening and biomarkers and the perceived advantages which Virtual Scanning may have for routine mass screening e.g. of diabetes, cardiovascular disease, cancers, depression, migraine, etc. PMID:26005505

  17. [Techniques and strategy of pathological sampling in the diagnostic and therapeutic management of lung cancer].

    PubMed

    Remmelink, M; Sokolow, Y; Leduc, D

    2015-04-01

    Histopathology is key to the diagnosis and staging of lung cancer. This analysis requires tissue sampling from primary and/or metastatic lesions. The choice of sampling technique is intended to optimize diagnostic yield while avoiding unnecessarily invasive procedures. Recent developments in targeted therapy require increasingly precise histological and molecular characterization of the tumor. Therefore, pathologists must be economical with tissue samples to ensure that they have the opportunity to perform all the analyses required. More than ever, good communication between clinician, endoscopist or surgeon, and pathologist is essential. This is necessary to ensure that all participants in the process of lung cancer diagnosis collaborate to ensure that the appropriate number and type of biopsies are performed with the appropriate tissue sampling treatment. This will allow performance of all the necessary analyses leading to a more precise characterization of the tumor, and thus the optimal treatment for patients with lung cancer.

  18. Profiling local optima in K-means clustering: developing a diagnostic technique.

    PubMed

    Steinley, Douglas

    2006-06-01

    Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate distributions of clusters; and (e) various multidimensional data structures. The results are evaluated in terms of the Hubert-Arabie adjusted Rand index, and several observations concerning the performance of K-means clustering are made. Finally, the article concludes with the proposal of a diagnostic technique indicating when the partitioning given by a K-means cluster analysis can be trusted. By combining the information from several observable characteristics of the data (number of clusters, number of variables, sample size, etc.) with the prevalence of unique local optima in several thousand implementations of the K-means algorithm, the author provides a method capable of guiding key data-analysis decisions. PMID:16784337

  19. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  20. Evaluation of Possible Nuclear Magnetic Resonance Diagnostic Techniques for Tokamak Experiments

    SciTech Connect

    S.J. Zweben; T.W. Kornack; D. Majeski; G. Schilling; C.H. Skinner; R. Wilson

    2002-08-05

    Potential applications of nuclear magnetic resonance (NMR) diagnostic techniques to tokamak experiments are evaluated. NMR frequencies for hydrogen isotopes and low-Z nuclei in such experiments are in the frequency range approximately equal to 20-200 MHz, so existing RF [radio-frequency] antennas could be used to rotate the spin polarization and to make the NMR measurements. Our tentative conclusion is that such measurements are possible if highly spin polarized H or (superscript)3He gas sources (which exist) are used to fuel these plasmas. In addition, NMR measurements of the surface layers of the first wall (without plasma) may also be possible, e.g., to evaluate the inventory of tritium inside the vessel.

  1. Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics.

    PubMed

    Bourquin, Yannyk; Syed, Abeer; Reboud, Julien; Ranford-Cartwright, Lisa C; Barrett, Michael P; Cooper, Jonathan M

    2014-05-26

    One significant challenge in medical diagnostics lies in the development of label-free methods to separate different cells within complex biological samples. Here we demonstrate a generic, low-power ultrasonic separation technique, able to enrich different cell types based upon their physical properties. For malaria, we differentiate between infected and non-infected red blood cells in a fingerprick-sized drop of blood. We are able to achieve an enrichment of circulating cells infected by the ring stage of the parasite over nonparasitized red blood cells by between two and three orders of magnitude in less than 3 seconds (enabling detection at parasitemia levels as low as 0.0005%). In a second example, we also show that our methods can be used to enrich different cell types, concentrating Trypanosoma in blood at very low levels of infection, on disposable, low-cost chips. PMID:24677583

  2. Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics**

    PubMed Central

    Bourquin, Yannyk; Syed, Abeer; Reboud, Julien; Ranford-Cartwright, Lisa C; Barrett, Michael P; Cooper, Jonathan M

    2014-01-01

    One significant challenge in medical diagnostics lies in the development of label-free methods to separate different cells within complex biological samples. Here we demonstrate a generic, low-power ultrasonic separation technique, able to enrich different cell types based upon their physical properties. For malaria, we differentiate between infected and non-infected red blood cells in a fingerprick-sized drop of blood. We are able to achieve an enrichment of circulating cells infected by the ring stage of the parasite over nonparasitized red blood cells by between two and three orders of magnitude in less than 3 seconds (enabling detection at parasitemia levels as low as 0.0005 %). In a second example, we also show that our methods can be used to enrich different cell types, concentrating Trypanosoma in blood at very low levels of infection, on disposable, low-cost chips. PMID:24677583

  3. Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, kai

    2007-01-01

    Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.

  4. Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms

    PubMed Central

    Masood, Ammara; Al-Jumaily, Adel Ali

    2013-01-01

    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126

  5. Magnetic Resonance Imaging and GeneXpert: A Rapid and Accurate Diagnostic Tool for the Management of Tuberculosis of the Spine

    PubMed Central

    Chhabra, Harvinder Singh; Mahajan, Rajat; Chabra, Tarun; Batra, Sahil

    2016-01-01

    Study Design Retrospective study. Purpose The aim of this study was to analyze various diagnostic tools, including GeneXpert, for the management of tuberculosis of the spine. Overview of Literature Traditional diagnostic methods of microscopy, histology, and culture have low sensitivity and specificity for the management of tuberculosis of the spine. Methods Of the 262 treated cases of spinal tuberculosis, data on 1 year follow-up was available for 217 cases. Of these, only 145 cases with a confirmed diagnosis were selected for retrospective analysis. Results In 145 of the 217 patients (66.80%), diagnosis was confirmed on the basis of a culture. Of the 145 patients with a confirmed diagnosis, 98 (66.20%) patients were diagnosed on the basis of clinical presentation, whereas 123 (84.8%) exhibited a typical magnetic resonance imaging (MRI) picture. In 99 surgically treated patients, the diagnosis was confirmed on the basis of an intraoperative tissue biopsy. Among the 46 patients treated conservatively, 35 underwent a transpedicular biopsy, 4 patients underwent computed tomography-guided biopsy, 6 patients were diagnosed on the basis of material obtained from a cold abscess, and 1 patient underwent an open biopsy. The sensitivity of the culture for the detection of Mycobacterium tuberculosis was 66.80% (145/217) in our patients. Among the cases in which GeneXpert was used, the sensitivity for the detection of Mycobacterium tuberculosis was 93.4% (43/46). Moreover, the sensitivity of GeneXpert to detect rifampicin resistance was 100% (7/7) in our study. Conclusions Majority of the patients with tuberculosis of the spine can be diagnosed on the basis of a typical radiological presentation via MRI. In our study, 84.8% cases exhibited typical MRI findings. For patients presenting with atypical MRI features, a rapid and accurate diagnosis is possible by combining GeneXpert with MRI. The combined use of MRI and GeneXpert is a rapid and highly sensitive tool to diagnose

  6. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview

  7. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  8. Accurate localization of a fall in pH within the ileocecal region: validation using a dual-scintigraphic technique.

    PubMed

    Zarate, Natalia; Mohammed, Sahar D; O'Shaughnessy, Emma; Newell, Margaret; Yazaki, Etsuro; Williams, Norman S; Lunniss, Peter J; Semler, Jack R; Scott, S Mark

    2010-12-01

    Stereotypical changes in pH occur along the gastrointestinal (GI) tract. Classically, there is an abrupt increase in pH on exit from the stomach, followed later by a sharp fall in pH, attributed to passage through the ileocecal region. However, the precise location of this latter pH change has never been conclusively substantiated. We aimed to determine the site of fall in pH using a dual-scintigraphic technique. On day 1, 13 healthy subjects underwent nasal intubation with a 3-m-long catheter, which was allowed to progress to the distal ileum. On day 2, subjects ingested a pH-sensitive wireless motility capsule labeled with 4 MBq (51)Chromium [EDTA]. The course of this, as it travelled through the GI tract, was assessed with a single-headed γ-camera using static and dynamic scans. Capsule progression was plotted relative to a background of 4 MBq ¹¹¹Indium [diethylenetriamine penta-acetic acid] administered through the catheter. Intraluminal pH, as recorded by the capsule, was monitored continuously, and position of the capsule relative to pH was established. A sharp fall in pH was recorded in all subjects; position of the capsule relative to this was accurately determined anatomically in 9/13 subjects. In these nine subjects, a pH drop of 1.5 ± 0.2 U, from 7.6 ± 0.05 to 6.1 ± 0.1 occurred a median of 7.5 min (1-16) after passage through the ileocecal valve; location was either in the cecum (n = 5), ascending colon (n = 2), or coincident with a move from the cecum to ascending colon (n = 2). This study provides conclusive evidence that the fall in pH seen within the ileocolonic region actually occurs in the proximal colon. This phenomenon can be used as a biomarker of transition between the small and large bowel and validates assessment of regional GI motility using capsule technology that incorporates pH measurement. PMID:20847301

  9. Review of current optical diagnostic techniques for non-muscle-invasive bladder cancer

    PubMed Central

    Kołodziej, Anna; Matuszewski, Michał; Tupikowski, Krzysztof

    2016-01-01

    Introduction Urinary bladder urothelial cell carcinoma is one of the most commonly diagnosed cancers in Europe. After prostate, lung and colon cancers, bladder cancer rates as the fourth most common cancer in men in the world. Urinary bladder cancer detection, treatment, and staging have traditionally been based on an endoscopic examination – cystoscopy. Material and methods A Medline, and Web of Science database search was performed on September 2015 without setting time limits, using the terms ‘bladder cancer’ in conjunction with ‘cystoscopy’, ‘diagnosis’, ‘detection’, ‘fluorescence’, ‘blue-light’, ‘PDD’, ‘narrow band imaging’, ‘molecular imaging’, ‘optical coherence tomography’ or ‘confocal laser endomicroscopy’. Results The new imaging techniques can be classified according to their scope as macroscopic, microscopic, and molecular. Macroscopic techniques, such as narrow band imaging, are similar to white light cystoscopy; however, they help visualize even very minute lesions in the bladder mucosa by means of contrast enhancement. Microscopic imaging techniques, such as optical coherence tomography and confocal laser endomicroscopy, provide high-resolution cross-sectional views of vesicular tissues, which resemble images obtained by histopathological examination. Therefore, these are referred as ‘optical biopsy’. Molecular imaging methods offer highly specific real-time visualization of cancer cells and their differentiation from healthy tissue, by combining optical imaging with fluorescent labeling of elements such as antibodies. Conclusions In this article we present a review of studies and literature concerning modern optical diagnostic techniques for non-muscle-invasive bladder cancer. We present available technology with its advantages and disadvantages, and studies regarding its effectiveness. PMID:27551551

  10. Comparison of JAK2V617F mutation assessment employing different molecular diagnostic techniques

    PubMed Central

    Veneri, Dino; Capuzzo, Enrico; de Matteis, Giovanna; Franchini, Massimo; Baritono, Elisabetta; Benati, Marco; Solero, G. Pietro; Ambrosetti, Achille; Quaresmini, Giulia; Pizzolo, Giovanni

    2009-01-01

    Background The JAK2V617F mutation is present in the majority of patients with polycythaemia vera and in approximately half of patients with essential thrombocythaemia and primary myelofibrosis. In this study we compare the results of JAK2V617F mutation detection using three different molecular techniques in the same group of patients affected by essential thrombocythaemia. Patients and methods The JAK2 mutation was investigated with a qualitative method in 115 consecutive outpatients with a diagnosis of essential thrombocythaemia made according to WHO 2001 criteria. In 48/115 (41.7%) the allele burden was also evaluated with two different qualitative methods, of which one was a method developed in-house and the other was a commercially available method. Results The JAK2V617F mutation was detected by the qualitative method in 81/115 (69.6%) of the patients. Among the 48/115 patients in whom all three methods were applied, the qualitative method detected the mutation in 38 (79%). According to the quantitative method developed in-house, the mutation was present in 35/48 (73%) of the patients: of these, 2/35 (5.7%) patients were homozygous for the JAK2V617F mutation. The commercial quantitative method showed the mutation in 37/48 (77%) patients: of these, 9/37 (18%) patients were homozygous. Three of the 13 patients in whom no mutation was detected by the in-house method were positive for the JAK2V617F according to the commercial method. In one patient the search for the JAK2V617F mutation was positive with the in-house method but negative with the commercial kit. Conclusion Detection of the JAK2V617F mutation may depend on the molecular technique used. Considering that detection of this mutation will not only have a diagnostic value, but also a role in treatment given the development of JAK2V617F pathway inhibiting drugs, indications on a reference molecular diagnostic technique for JAK2V617F assessment and quantification of its allele burden from a panel of experts

  11. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements.

    PubMed

    Alshuhri, Abdullah A; Holsgrove, Timothy P; Miles, Anthony W; Cunningham, James L

    2015-08-01

    Current techniques for diagnosing early loosening of a total hip replacement (THR) are ineffective, especially for the acetabular component. Accordingly, new, accurate, and quantifiable methods are required. The aim of this study was to investigate the viability of vibrational analysis for accurately detecting acetabular component loosening. A simplified acetabular model was constructed using a Sawbones(®) foam block. By placing a thin silicone layer between the acetabular component and the Sawbones block, 2- and 4-mm soft tissue membranes were simulated representing different loosening scenarios. A constant amplitude sinusoidal excitation with a sweep range of 100-1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of observed harmonic frequencies. Both measurement methods were sufficient to measure the output vibration. Vibrational analysis reliably detected loosening corresponding to both 2 and 4 mm tissue membranes at driving frequencies between 100 and 1000 Hz (p < 0.01) using the accelerometer. In contrast, ultrasound detected 2-mm loosening at a frequency range of 850-1050 Hz (p < 0.01) and 4-mm loosening at 500-950 Hz (p < 0.01). PMID:26054805

  12. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  13. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.

    PubMed

    Kasetsirikul, Surasak; Buranapong, Jirayut; Srituravanich, Werayut; Kaewthamasorn, Morakot; Pimpin, Alongkorn

    2016-01-01

    The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article. PMID:27405995

  14. Characterisation of the properties of a negative hydrogen ion beam by several beam diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Maurizio, R.; Fantz, U.; Bonomo, F.; Serianni, G.

    2016-06-01

    The beam properties of the BATMAN negative ion source, which is the prototype of one module of the source for the ITER neutral beam injection system, are characterised by means of three diagnostic techniques: beam emission spectroscopy (BES), the experimental calorimeter mini-STRIKE and a copper calorimeter. The main beam parameters—beam divergence, homogeneity and top-bottom asymmetries—are studied in different operational scenarios: with different magnetic filter field setups, source settings and with different gases (hydrogen or deuterium). Among all dependences, the influence of the magnetic field configuration on the beam and the evolution of the beam features during some conditioning days are investigated in detail. Data show that the stronger the filter field in the beam region, the higher the beam top-bottom asymmetry—likely a v× B effect. During the conditioning of the source, such vertical beam asymmetry increases as well, suggesting an inhomogeneous H -production at the first grid of the extraction system.

  15. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  16. Diagnostic value of endobronchial and endoscopic ultrasound-guided fine needle aspiration for accessible lung cancer lesions after non-diagnostic conventional techniques: a prospective study

    PubMed Central

    2013-01-01

    Background Lung cancer diagnosis is usually achieved through a set of bronchoscopic techniques or computed tomography guided-transthoracic needle aspiration (CT-TTNA). However these procedures have a variable diagnostic yield and some patients remain without a definite diagnosis despite being submitted to an extensive workup. The aim of this study was to evaluate the efficacy and cost of linear endobronchial (EBUS) and endoscopic ultrasound (EUS) guided fine needle aspiration (FNA), performed with one echoendoscope, for the diagnosis of suspicious lung cancer lesions after failure of conventional procedures. Methods One hundred and twenty three patients with an undiagnosed but suspected malignant lung lesion (paratracheal, parabronchial, paraesophageal) or with a peripheral lesion and positron emission tomography positive mediastinal lymph nodes who had undergone at least one diagnostic flexible bronchoscopy or CT-TTNA attempt were submitted to EBUS and EUS-FNA. Patients with endobronchial lesions were excluded. Results Of the 123 patients, 88 had a pulmonary nodule/mass and 35 were selected based on mediastinal PET positive lymph nodes. Two patients were excluded because an endobronchial mass was detected at the time of the procedure. The target lesion could be visualized in 121 cases and FNA was performed in 118 cases. A definitive diagnosis was obtained in 106 cases (87.6%). Eighty-eight patients (72.7%) had non-small cell lung cancer, 15 (12.4%) had small cell lung cancer and metastatic disease was found in 3 patients (2.5%). The remaining 15 negative cases were subsequently diagnosed by surgical procedures. Twelve patients (9.9%) had a malignant tumor and in 3 (2.5%) a benign lesion was found. The overall sensitivity, specificity, positive and negative predictive values of EBUS and EUS-FNA to diagnose malignancy were 89.8%, 100%, 100% and 20.0% respectively. The diagnostic accuracy was 90.1% in a population with 97.5% prevalence of cancer. The ultrasonographic

  17. Breast Cancer-Related Arm Lymphedema: Incidence Rates, Diagnostic Techniques, Optimal Management and Risk Reduction Strategies

    SciTech Connect

    Shah, Chirag; Vicini, Frank A.

    2011-11-15

    As more women survive breast cancer, long-term toxicities affecting their quality of life, such as lymphedema (LE) of the arm, gain importance. Although numerous studies have attempted to determine incidence rates, identify optimal diagnostic tests, enumerate efficacious treatment strategies and outline risk reduction guidelines for breast cancer-related lymphedema (BCRL), few groups have consistently agreed on any of these issues. As a result, standardized recommendations are still lacking. This review will summarize the latest data addressing all of these concerns in order to provide patients and health care providers with optimal, contemporary recommendations. Published incidence rates for BCRL vary substantially with a range of 2-65% based on surgical technique, axillary sampling method, radiation therapy fields treated, and the use of chemotherapy. Newer clinical assessment tools can potentially identify BCRL in patients with subclinical disease with prospective data suggesting that early diagnosis and management with noninvasive therapy can lead to excellent outcomes. Multiple therapies exist with treatments defined by the severity of BCRL present. Currently, the standard of care for BCRL in patients with significant LE is complex decongestive physiotherapy (CDP). Contemporary data also suggest that a multidisciplinary approach to the management of BCRL should begin prior to definitive treatment for breast cancer employing patient-specific surgical, radiation therapy, and chemotherapy paradigms that limit risks. Further, prospective clinical assessments before and after treatment should be employed to diagnose subclinical disease. In those patients who require aggressive locoregional management, prophylactic therapies and the use of CDP can help reduce the long-term sequelae of BCRL.

  18. Millimeter-wave interferometry: an attractive technique for fast and accurate sensing of civil and mechanical structures

    NASA Astrophysics Data System (ADS)

    Kim, Seoktae; Nguyen, Cam

    2014-04-01

    This paper discusses the RF interferometry at millimeter-wave frequencies for sensing applications and reports the development of a millimeter-wave interferometric sensor operating around 35 GHz. The sensor is completely realized using microwave integrated circuits (MICs) and microwave monolithic integrated circuits (MMICs). It has been used for various sensing including displacement and velocity measurement. The sensor achieves a resolution and maximum error of only 10 μm and 27 μm, respectively, for displacement sensing and can measure velocity as low as 27.7 mm/s with a resolution about 2.7mm/s. Quick response and accurate sensing, as demonstrated by the developed millimeter-wave interferometric sensor, make the millimeter-wave interferometry attractive for sensing of various civil and mechanical structures.

  19. Highly time-resolved evaluation technique of instantaneous amplitude and phase difference using analytic signals for multi-channel diagnostics.

    PubMed

    Ohshima, S; Kobayashi, S; Yamamoto, S; Nagasaki, K; Mizuuchi, T; Kado, S; Okada, H; Minami, T; Lee, H Y; Zang, L; Kenmochi, N; Kasajima, K; Ohtani, Y; Shi, N; Nagae, Y; Konoshima, S; Sano, F

    2014-11-01

    A fluctuation analysis technique using analytic signals is proposed. Analytic signals are suitable to characterize a single mode with time-dependent amplitude and frequency, such as an MHD mode observed in fusion plasmas since the technique can evaluate amplitude and frequency at a specific moment without limitations of temporal and frequency resolutions, which is problematic in Fourier-based analyses. Moreover, a concept of instantaneous phase difference is newly introduced, and error of the evaluated phase difference and its error reduction techniques using conditional/ensemble averaging are discussed. These techniques are applied to experimental data of the beam emission spectroscopic measurement in the Heliotron J device, which demonstrates that the technique can describe nonlinear evolution of MHD instabilities. This technique is widely applicable to other diagnostics having necessity to evaluate phase difference.

  20. The Rule of Histology in the Diagnosis of Periprosthetic Infection: Specific Granulocyte Counting Methods and New Immunohistologic Staining Techniques may Increase the Diagnostic Value

    PubMed Central

    Boettner, Friedrich; Koehler, Gabriele; Wegner, Alexander; Schmidt-Braekling, Tom; Gosheger, Georg; Goetze, Christian

    2016-01-01

    Objective: The current study investigates the diagnostic accuracy of the criteria described for frozen sections and whether modern leukocyte specific staining techniques including leukocyte peroxidase and Naphtol-AS-D-chloroacetate-esterase will improve the accuracy of the intra-operative histology. Method: 77 patients undergoing revision total hip and knee arthroplasty were included in this retrospective study. Patients were grouped into septic and aseptic based on intraoperative cultures. Tissue samples were analyzed utilizing the Mirra, Feldman, Lonner, Banit and Athanasou criteria. Results: An experienced pathologist had a high specificity (96%), but rather low sensitivity (57%) diagnosing infection. By using the Banit-, Mirra-, or Athanasou-criteria the sensitivity is increased to 0.90. The Feldman- and Lonner-criteria have a lower sensitivity (0.48 and 0.38), however, an increased specificity of 0.96 and 0.98, respectively. The Banit cut off has the highest accuracy (86%). MPOX and NACE staining increased the sensitivity and accuracy up to 100% and 92% respectively. Conclusion: Banit’s cut off is the most accurate histologic criteria to diagnose infection. Modern leukocyte specific staining techniques slightly improve the accuracy. The synovial fluid white blood cell count appears to be the most accurate intraoperative test. PMID:27708741

  1. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  2. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  3. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hun; Lee, J. H.; Yamada, I.; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ2 method. The best results were obtained for 103 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ2 method and performs the calculation twenty times faster.

  4. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  5. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  6. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  7. Principles for new optical techniques in medical diagnostics for mHealth applications

    NASA Astrophysics Data System (ADS)

    Balsam, Joshua Michael

    Medical diagnostics is a critical element of effective medical treatment. However, many modern and emerging diagnostic technologies are not affordable or compatible with the needs and conditions found in low-income and middle-income countries and regions. Resource-poor areas require low-cost, robust, easy-to-use, and portable diagnostics devices compatible with telemedicine (i.e. mHealth) that can be adapted to meet diverse medical needs. Many suitable devices will need to be based on optical technologies, which are used for many types of biological analyses. This dissertation describes the fabrication and detection principles for several low-cost optical technologies for mHealth applications including: (1) a webcam based multi-wavelength fluorescence plate reader, (2) a lens-free optical detector used for the detection of Botulinum A neurotoxin activity, (3) a low cost micro-array reader that allows the performance of typical fluorescence based assays demonstrated for the detection of the toxin staphylococcal enterotoxin (SEB), and (4) a wide-field flow cytometer for high throughput detection of fluorescently labeled rare cells. This dissertation discusses how these technologies can be harnessed using readily available consumer electronics components such as webcams, cell phones, CCD cameras, LEDs, and laser diodes. There are challenges in developing devices with sufficient sensitivity and specificity, and approaches are presented to overcoming these challenges to create optical detectors that can serve as low cost medical diagnostics in resource-poor settings for mHealth.

  8. Validation of multiple diagnostic techniques to detect Cryptosporidium sp. and Giardia sp. in free-ranging western lowland gorillas (Gorilla gorilla gorilla) and observations on the prevalence of these protozoan infections in two populations in Gabon.

    PubMed

    van Zijll Langhout, Martine; Reed, Patricia; Fox, Mark

    2010-06-01

    Anthropozoonotic diseases threaten the survival of western lowland gorillas (Gorilla gorilla gorilla). Use of accurate diagnostic techniques in gorilla health monitoring contributes to the conservation of gorillas by providing robust information for appropriate management decisions. To identify suitable protozoa diagnostic techniques for wild gorillas, 95 fecal specimens were collected in Lopé National Park and east of Moukalaba-Doudou National Park in Gabon, areas with high and low levels of human activity, respectively. The samples were examined for Cryptosporidium sp. and Giardia sp. by using the following diagnostic techniques: a commercially available immunofluorescent antibody test kit, Merifluor, and a rapid immune-assay, ImmunoCard STAT!, to detect Cryptosporidium sp. and Giardia sp., and a modified Ziehl-Neelsen stain to detect Cryptosporidium sp. oocysts. The results obtained from the Merifluor test, considered the "gold standard" in human studies, were used to estimate the prevalence of Cryptosporidium sp. and Giardia sp. infections in Lopé National Park (19.0% and 22.6%, respectively) and east of Moukalaba-Doudou National Park (0% and 9.1%, respectively). The difference in prevalence in both areas may be associated with differing levels of anthropogenic disturbance. The sensitivity and specificity of the latter two diagnostic techniques were calculated by using the Merifluor test as a control. The ImmunoCard STAT! was found suitable for Giardia sp. antigen detection (specific but not sensitive) and inappropriate for Cryptosporidium sp. antigen detection (not specific or sensitive). The modified Ziehl-Neelsen stain was found to be highly specific but not sensitive in the detection of Cryptosporidium sp. oocysts. These results underline the necessity of using ancillary tests and concentration methods to correctly identify positive samples. This is the first report of Cryptosporidium sp. and Giardia sp. infections in free-ranging western lowland gorillas

  9. [THE SCREENING OF DIAGNOSTIC POTENTIAL OF NATIVE PROTEIN FRACTIONS OF MYCOBACTERIUM TUBERCULOSIS USING TECHNIQUE OF IMMUNE BLOTTING].

    PubMed

    Tsibulkin, A P; Khaertinova, I M; Urazov, N G; Khaertinov, K S

    2016-02-01

    The technique of immune blotting was used to analyze surface proteins obtained from cells M Tuberculosis exposed to partialmode of delipidization. At that, there were applied serums of patients with tuberculosis of lungs; HIV agents and patients with concomitant infection tuberculosis-AIDS and also HIV-negative patients without clinical signs of disease of lungs and with chronic diseases of lungs of other etiology The fractions oflow-molecular antigens with molecular mass 6.5-30 kilodaltons became diagnostically significant. To this fraction of antigens reacted serums of all patients with tuberculosis of lungs and serums of 91% of patients with concomitant tuberculosis-AIDS infection. The antigens of protein fractions with high (70-100 kilodaltons) and interim (30-69 kilodaltons) molecular mass became diagnostically insignificant. PMID:27455562

  10. Studies of protection and recovery techniques of diagnostic mirrors for ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Matveeva, M.; Buzi, L.; Vera, L.; Krasikov, Y.; Kotov, V.; Panin, A.; Wienhold, P.; Philipps, V.; Castaño Bardawil, D.; Akiyama, T.; Biel, W.; Neubauer, O.; Mertens, Ph.; Linsmeier, Ch.; Reiter, D.; Börner, P.; Freisinger, M.; Richter, S.

    2015-09-01

    In optical diagnostic systems of ITER, mirrors will be used to guide the light from plasma towards detectors and cameras. The mirrors will be subjected to erosion due to fast particles and to deposition of impurities from the plasma which will affect adversely the mirror reflectivity and therefore must be suppressed or mitigated at the maximum possible extent. Predictive modeling envisages the successful suppression of deposition in the diagnostic ducts with fins trapping the impurities on their way towards mirrors located in the end of these ducts. To validate modeling predictions, cylindrical and cone-shaped diagnostic ducts were exposed in TEXTOR for 3960 s of plasma operation. After exposure, no drastic suppression of deposition was observed in the cylindrical ducts with fins. At the same time, no detectable deposition was found on the mirrors located at the end of cone-shaped ducts outlining the advantages of the cone geometry. Analyses of exposure provide evidence that the contamination of exposed mirrors was due to wall conditioning discharges and not due to working plasma exposure. Cleaning by plasma sputtering was performed on molybdenum mirrors pre-coated with a 100 nm thick aluminum film. Aluminum was used as a proxy of beryllium. During exposure in electron cyclotron resonance-generated helium plasma, the entire coating was sputtered within nine hours, leaving no trace of aluminum and leading to the full recovery of the specular reflectivity without detrimental effects on the mirror surface.

  11. Accuracy of five different diagnostic techniques in mild-to-moderate pelvic inflammatory disease.

    PubMed Central

    Gaitán, Hernando; Angel, Edith; Diaz, Rodrigo; Parada, Arturo; Sanchez, Lilia; Vargas, Cara

    2002-01-01

    OBJECTIVE: To evaluate the clinical diagnosis of pelvic inflammatory disease (PID) compared with the diagnosis of PID made by laparoscopy, endometrial biopsy, transvaginal ultrasound, and cervical and endometrial cultures. Study design: A diagnostic performance test study was carried out by cross-sectional analysis in 61 women. A group presenting PID (n = 31) was compared with a group (n = 30) presenting another cause for non-specific lower abdominal pain (NSLAP). Diagnosis provided by an evaluated method was compared with a standard diagnosis (by surgical findings, histopathology, and microbiology). The pathologist was unaware of the visual findings and presumptive diagnoses given by other methods. RESULTS: All clinical and laboratory PID criteria showed low discrimination capacity. Adnexal tenderness showed the greatest sensitivity. Clinical diagnosis had 87% sensitivity, while laparoscopy had 81% sensitivity and 100% specificity; transvaginal ultrasound had 30% sensitivity and 67% specificity; and endometrial culture had 83% sensitivity and 26% specificity. CONCLUSIONS: Clinical criteria represent the best diagnostic method for discriminating PID. Laparoscopy showed the best specificity and is thus useful in those cases having an atypical clinical course for discarding abdominal pain when caused by another factor. The other diagnostic methods might have limited use. PMID:12648310

  12. [Results of a study of Streptococcus infection by the currently available microbiological diagnostic techniques in patients with chronic osteomyelitis].

    PubMed

    2007-06-01

    In the period of 1999 to 2003, a comprehensive bacteriological study was made in patients with chronic osteomyelitis (CM) by the routine and also improved methods for isolating and identifying the microflora, by using the up-to-date diagnostic equipment and new nutrient media. In some years, the number of streptococci was shown to increase up to 9.2% of the isolated strains, which should be taken into account in the treatment of patients. The use of current studies has made it possible to increase the rate of diagnosis of Streptococcus infection by 55% as compared by the routine studies and most completely and accurately identify the species-specific composition of streptococci that are encountered in patients with CM.

  13. [THE MOLECULAR TECHNIQUES OF DIAGNOSTIC OF GINGIVITIS AND PERIODONTITIS IN HIV-INFECTED PATIENTS].

    PubMed

    Tsarev, V N; Nikolaeva, E N; Iagodina, E V; Trefilova, Yu A; Ippolitov, E V

    2016-01-01

    The examination was carried out in the Moscow clinical infectious hospital No 2 concerning 102 patients with verified diagnosis "AIDS-infection" and seropositive according results of detection of anti-HIV-antibodies in blood serum. The study was organized to analyze rate ofcolonization of gums with virulent anaerobic bacteria in HIV-infected (polymerase chain reaction) and antibodies to HIV in gingival fluid (enzyme-linked immunosorbent assay). It is established that in HIV-infected patients, in scrape from gingival sulcus dominate anaerobic bacteria P. gigngivalis and A. ctinomycetemcomitans and in case of periodontitis--P. gingivalis and T. forsythia. The received data permits recommending the test-system "Multident-5" for polymerase chain reaction diagnostic. The reagents kit "Calypte®HIV-1/2"--for enzyme-linked immunosorbent assay gingival fluid. The results of polymerase chain reaction and enzyme-linked immunosorbent assay have no impact of concomitant stomatological (periodontitis, gingivitis) and somatic pathology.

  14. Dielectric properties of human diabetic blood: Thermodynamic characterization and new prospective for alternative diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Farsaci, F.; Ficarra, S.; Russo, A.; Galtieri, A.; Tellone, E.

    2015-07-01

    In this paper, we will show the possibility of studying physical properties and irreversible phenomena that occur in blood by applying the dielectric Kluitenberg's nonequilibrium thermodynamic theory. Namely, we shall use some recent extensions of this theory that allow to infer its main characteristic parameters from experimental measures. Applying these results to the study of normal and diabetic blood we show, by comparing them, that it is possible to determine the difference, in some details, of the amount of particular phenomena occurring inside them and give a biological meaning to these phenomena. Moreover, observing a correspondence between a particular value of the frequency for which state coefficients are equal and glucose levels we introduce an alternative diagnostic method to measure the values of the glucose in the blood by determining only this frequency value. The thermodynamic description will be completed by determining the trend of the entropy production.

  15. [THE MOLECULAR TECHNIQUES OF DIAGNOSTIC OF GINGIVITIS AND PERIODONTITIS IN HIV-INFECTED PATIENTS].

    PubMed

    Tsarev, V N; Nikolaeva, E N; Iagodina, E V; Trefilova, Yu A; Ippolitov, E V

    2016-01-01

    The examination was carried out in the Moscow clinical infectious hospital No 2 concerning 102 patients with verified diagnosis "AIDS-infection" and seropositive according results of detection of anti-HIV-antibodies in blood serum. The study was organized to analyze rate ofcolonization of gums with virulent anaerobic bacteria in HIV-infected (polymerase chain reaction) and antibodies to HIV in gingival fluid (enzyme-linked immunosorbent assay). It is established that in HIV-infected patients, in scrape from gingival sulcus dominate anaerobic bacteria P. gigngivalis and A. ctinomycetemcomitans and in case of periodontitis--P. gingivalis and T. forsythia. The received data permits recommending the test-system "Multident-5" for polymerase chain reaction diagnostic. The reagents kit "Calypte®HIV-1/2"--for enzyme-linked immunosorbent assay gingival fluid. The results of polymerase chain reaction and enzyme-linked immunosorbent assay have no impact of concomitant stomatological (periodontitis, gingivitis) and somatic pathology. PMID:27183732

  16. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  17. Practical method for highly accurate large-scale surface calculations. [of linearized muffin-tin orbital technique for chemisorption and magnetism

    NASA Technical Reports Server (NTRS)

    Fernando, G. W.; Cooper, B. R.; Ramana, M. V.; Krakauer, H.; Ma, C. Q.

    1986-01-01

    An accurate and efficient film linearized muffin-tin orbital (FLMTO) technique for surface electronic-structure calculations is presented which uses only 60-70 basis functions, as opposed to the 300 functions used in the linear augmented plane-wave method. Calculations for three different (3d and 4d) transition-metal films resulted in high quality results for five-layer slabs of Cu(001), Fe(001), and Ru(001), in addition to good results for the work functions and projected density of states. By retaining the LMTO small basis size, computer time and memory are reduced, making practical the study of systems with a larger number of atoms in the two-dimensional unit cell.

  18. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  19. Diagnostic use of 3 techniques for identification of microsporidian spores among AIDS patients in Portugal.

    PubMed

    Matos, Olga; Lobo, Maria L; Gonçalves, Luzia; Antunes, Francisco

    2002-01-01

    The calcofluor stain (CF), the monoclonal antibody (MAb) 3B6 indirect immunofluorescence assay (IFA) and the modified trichrome blue stain (MT) were compared in terms of their reproducibility in a routine laboratory and in order to evaluate the percentage of cases of microsporidiosis in Portuguese HIV patients. A total of 166 faeces samples, 71 pulmonary specimens and 43 urine samples were studied using the 3 techniques. CF had a high sensitivity and a moderate specificity when applied to faeces samples. The sensitivity was lower with pulmonary specimens. The method is easy and quick to perform but readings take a long time to obtain. The MAb 3B6 IFA had a good to excellent sensitivity when applied to faeces and urine samples, but moderate sensitivity in pulmonary specimens. Readings were quick and easy to obtain, but the assay took longer to perform than the other 2 techniques. There was a greater correlation between the results obtained with the MT and MAb 3B6 IFA techniques than between those obtained with the MT and CF techniques. In conclusion, the MT performed better than the MAb 3B6 IFA and CF and continues to have an important place in a routine laboratory for the diagnosis of microsporidiosis. This work also confirms the existence of a relatively high proportion (30%) of cases of infection with Microsporidia, especially intestinal microsporidiosis, in HIV patients in Portugal.

  20. A Diagnostic Technique for Formulating Market Strategies in Higher Education Based on Relative Competitive Position.

    ERIC Educational Resources Information Center

    Dolinsky, Arthur L.; Quazi, Hesan A.

    1994-01-01

    Importance-performance analysis, a marketing research technique using analysis of consumer attitudes toward salient product or service attributes, is found useful for colleges and universities in developing marketing strategies, particularly when competition is considered as an important dimension. Data are drawn from a survey of 252 students at 1…

  1. Auditory Processing Disorder (APD): Progress in Diagnostics So Far. A Mini-Review on Imaging Techniques.

    PubMed

    Micallef, Lara Angelle

    2015-12-01

    Auditory processing disorder (APD) is a disorder that affects the perception of sound, both verbal and non-verbal. Patients who are generally diagnosed with APD present with abnormal hearing but have normal audiograms. There is no gold standard investigation for APD and no standardized criteria for diagnosis. Because of its disabling effect and the overlap that exists with other neurodevelopmental disorders, there is an urgent need to develop tools and criteria for appropriate diagnosis. There is a current significant focus in research on imaging techniques that can possibly be used in the future for the appropriate diagnosis of APD. Over the years, several imaging techniques have contributed significantly to defining this disorder. To date, no studies have reported the routine use of imaging for the diagnosis of APD. PMID:26915160

  2. Combining polarimetry and spectropolarimetry techniques in diagnostics of cancer changes in biological tissues

    NASA Astrophysics Data System (ADS)

    Yermolenko, Sergey; Ivashko, Pavlo; Gruia, Ion; Gruia, Maria; Peresunko, Olexander; Zelinska, Natalia; Voloshynskyi, Dmytro; Fedoruk, Olexander; Zimnyakov, Dmitry; Alonova, Marina

    2015-02-01

    The aim of the study is combining polarimetry and spectropolarimetry techniques for identifying the changes of opticalgeometrical structure in different kinds of biotissues with solid tumours. It is researched that a linear dichroism appears in biotissues (human esophagus, muscle tissue of rats, human prostate tissue, cervical smear) with cancer diseases, magnitude of which depends on the type of the tissue and on the time of cancer process development.

  3. Structural Diagnostics of Ballistic-Like Damage Variation via Wave Propagation-Based Filtering Techniques

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Apetre, N.; Ruzzene, M.

    2010-02-01

    This paper evaluates the ability of wave filtering techniques to identify and quantify defect variations in structures. The proposed techniques are based on the evaluation of reflection, transmission, and conversion of different Lamb wave modes in the presence of damages and of the spatial evaluation of their phases. The structure is excited by an enhanced fundamental symmetric mode, and the damage is initially located by evaluating the phase gradient of the converted Lamb mode. The process relies on mode separation and incident-wave removal procedures implemented in the frequency/wavenumber domain. Such procedures rely on the spatial integration of wave amplitudes in contrast to point-wise estimation previously proposed in the literature, as a way to reduce the effect of noise. Numerical and experimental parametric studies are conducted, where the specific damage geometry is varied to represent common external ballistic impact, from a sharp rectangular notch to a semi-circular depression. Likewise, the techniques are demonstrated on experimental data obtained from a Scanning Laser Doppler Vibrometer setup.

  4. Diagnosis of soil-transmitted helminthiasis in an Amazonic community of Peru using multiple diagnostic techniques.

    PubMed

    Machicado, Jorge D; Marcos, Luis A; Tello, Raul; Canales, Marco; Terashima, Angelica; Gotuzzo, Eduardo

    2012-06-01

    An observational descriptive study was conducted in a Shipibo-Conibo/Ese'Eja community of the rainforest in Peru to compare the Kato-Katz method and the spontaneous sedimentation in tube technique (SSTT) for the diagnosis of intestinal parasites as well as to report the prevalence of soil-transmitted helminth (STH) infections in this area. A total of 73 stool samples were collected and analysed by several parasitological techniques, including Kato-Katz, SSTT, modified Baermann technique (MBT), agar plate culture, Harada-Mori culture and the direct smear examination. Kato-Katz and SSTT had the same rate of detection for Ascaris lumbricoides (5%), Trichuris trichiura (5%), hookworm (14%) and Hymenolepis nana (26%). The detection rate for Strongyloides stercoralis larvae was 16% by SSTT and 0% by Kato-Katz, but 18% by agar plate culture and 16% by MBT. The SSTT also had the advantage of detecting multiple intestinal protozoa such as Blastocystis hominis (40%), Giardia intestinalis (29%) and Entamoeba histolytica/E. dispar (16%). The most common intestinal parasites found in this community were B. hominis, G. intestinalis, H. nana, S. stercoralis and hookworm. In conclusion, the SSTT is not inferior to Kato-Katz for the diagnosis of common STH infections but is largely superior for detecting intestinal protozoa and S. stercoralis larvae.

  5. Beamlet laser diagnostics

    SciTech Connect

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  6. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  7. Diagnostic Value of Hook Wire Localization Technique for Non-Palpable Breast Lesions

    PubMed Central

    Demiral, Gokhan; Senol, Metin; Bayraktar, Baris; Ozturk, Hasan; Celik, Yahya; Boluk, Salih

    2016-01-01

    Background The aim of this study was to investigate the validity of hook wire localization biopsy for non-palpable breast lesions which were detected by ultrasonography (USG) or mammography (MMG). Methods In this retrospective study, USG or MMG-guided hook wire localization technique was performed on 83 patients who had non-palpable breast lesions. Then histopathological examination was performed on surgically removed specimens. All patients’ mammograms or ultrasonograms were categorized using Breast Imaging-Reporting and Data System (BI-RADS) classification. Results Radiologically, 27 (32.53%) patients were classified as BI-RADS 3, 49 (59.04%) BI-RADS 4, one (1.2%) BIRADS 5 and six (7.23%) BI-RADS 0. Histopathological results were benign in 68 (81.9%) and malignant in 15 (18.1%) patients. Twenty-seven patients were classified as BI-RADS 3 and definitive diagnoses for all were benign. Besides, 49 patients were classified as BI-RADS 4 and histopathologically 14 of them were reported as malignant, and 35 as benign. Sensitivity of MMG was 93% and specificity was 55%. For USG, the sensitivity was 100% and the specificity was 73%. Conclusion In early diagnosis of breast cancer, the validity of the imaging-guided hook wire localization biopsy of non-palpable breast lesions has been proved. The cooperation of surgeon, radiologist and pathologist increases the successfull results of hook wire localization technique. PMID:27081425

  8. New analysis methods to push the boundaries of diagnostic techniques in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Lungaroni, M.; Murari, A.; Peluso, E.; Gelfusa, M.; Malizia, A.; Vega, J.; Talebzadeh, S.; Gaudio, P.

    2016-04-01

    In the last years, new and more sophisticated measurements have been at the basis of the major progress in various disciplines related to the environment, such as remote sensing and thermonuclear fusion. To maximize the effectiveness of the measurements, new data analysis techniques are required. First data processing tasks, such as filtering and fitting, are of primary importance, since they can have a strong influence on the rest of the analysis. Even if Support Vector Regression is a method devised and refined at the end of the 90s, a systematic comparison with more traditional non parametric regression methods has never been reported. In this paper, a series of systematic tests is described, which indicates how SVR is a very competitive method of non-parametric regression that can usefully complement and often outperform more consolidated approaches. The performance of Support Vector Regression as a method of filtering is investigated first, comparing it with the most popular alternative techniques. Then Support Vector Regression is applied to the problem of non-parametric regression to analyse Lidar surveys for the environments measurement of particulate matter due to wildfires. The proposed approach has given very positive results and provides new perspectives to the interpretation of the data.

  9. Molecular Diagnostics

    PubMed Central

    Choe, Hyonmin; Deirmengian, Carl A.; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid, polymerase chain reaction–based detection of bacterial genes, and metabolomic determination of responses to orthopaedic infection. PMID:25808967

  10. Role of wavelength and pulse duration in laser ablation: implications to beam delivery, surface modifications, and diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.

    1999-05-01

    The basic interaction mechanism of pulsed laser ablation of tissue reveals a complexity of parameters, such as the optical properties of the tissue and the technical characteristics of the laser beam. The role of the laser wavelength, the pulse duration, the energy fluence, etc. as well as the implications on the beam delivery means, the ablated surface modifications and the diagnostic techniques employed are under investigation. For example, it was experimentally verified that when using mid-infrared lasers with pulse durations in the ns range, the photothermal mechanism involved exhibits strong absorption restricting the residual thermal damage to a relatively small zone. On the other hand the ablation of tissue with ultrashort, picosecond and femtosecond, visible and near-infrared laser pulses has been investigated as an alternative, as the energy threshold for ablation biological tissue, depends approximately on the square root of the pulse duration. However the pulse length shortening creates problems to the fibers or the waveguides ends, due to the very high laser power densities involved. Conventional and advanced microscopy, scanning electron microscopy--SEM and atomic force microscopy--AFM, were used to study the surface and ends alterations of the delivery system involved and the surface alterations of the soft or the hard tissue target in pulsed laser ablation. Finally differentiation between the normal and the pathological tissue was achieved by employing the laser induced fluorescence--LIF diagnostic technique in a long term effort to develop a computer aided system, which will facilitate the automated, real-time characterization of healthy or atherosclerotic plaques in a less invasive laser ablation clinical procedure.

  11. Resonance ultrasonic vibrations in Cz-Si wafers as a possible diagnostic technique in ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Ostapenko, S.; Anundson, R.; Tvinnereim, M.; Belyaev, A.; Anthony, M.

    2001-07-01

    The semiconductor industry does not have effective metrology for well implants. The ability to measure such deep level implants will become increasingly important as we progress along the technology road map. This work explores the possibility of using the acoustic whistle effect on ion implanted silicon wafers. The technique detects the elastic stress and defects in silicon wafers by measuring the sub-harmonic f/2 resonant vibrations on a wafer induced via backside contact to create standing waves, which are measured by a non-contact ultrasonic probe. Preliminary data demonstrates that it is sensitive to implant damage, and there is a direct correlation between this sub-harmonic acoustic mode and some of the implant and anneal conditions. This work presents the results of a feasibility study to assess and quantify the correspondent whistle effect to implant damage, residual damage after annealing and intrinsic defects.

  12. MDR-TB screening in a setting with molecular diagnostic techniques: who got tested, who didn't and why?

    PubMed

    Shewade, H D; Govindarajan, S; Sharath, B N; Tripathy, J P; Chinnakali, P; Kumar, A M V; Muthaiah, M; Vivekananda, K; Paulraj, A K; Roy, G

    2015-06-21

    Contexte : Programme national révisé de Lutte contre la Tuberculose, Pondichéry, Inde, avec une structure de techniques de diagnostic moléculaire.Objectif : Déterminer l'abandon préalable au diagnostic et préalable au traitement et leurs raisons parmi des patients présumés atteints de tuberculose multirésistante (TB-MDR).Méthodes : Dans cette étude utilisant plusieurs méthodes, l'élément quantitatif consistait en une analyse de cohorte rétrospective, grâce à une revue de dossiers, de tous les patients présumés atteints de TB-MDR entre octobre 2012 et septembre 2013. L'élément qualitatif incluait des entretiens approfondis avec des informateurs clés impliqués dans la gestion programmatique des services de TB pharmacorésistante.Résultats : Sur 341 patients présumés TB-MDR éligibles, le taux d'abandon avant le diagnostic et avant le traitement a été de 45,5% (155/341) et 29% (2/7), respectivement. Les patients atteints de TB extra-pulmonaire (RR = 2,3), de coïnfection par le virus de l'immunodéficience humaine et TB (RR = 1,7), inscrits entre octobre et décembre 2012 (RR = 1,3) et identifiés à partir de centres de santé primaires/secondaires (RR = 1,8) avaient moins de chances d'être testés. Les thèmes qui ont émergé lors de l'analyse des données qualitatives ont été « l'absence d'un mécanisme systématique de suivi des patients référés pour culture et test de pharmaco sensibilité », « l'absence de services de coursier pour transporter les crachats », « le manque de connaissances et d'appropriation du personnel de santé en général », « les ruptures de stock de kits de diagnostic » et « la non-adhérence du patient ».Conclusion : En dépit de l'introduction de techniques de diagnostic moléculaire, les problèmes opérationnels de dépistage de la TB-MDR restent préoccupants et requièrent une attention urgente.

  13. Laser flash photolysis studies of atmospheric free radical chemistry using optical diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.

    1993-01-01

    Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.

  14. Development of advanced laser systems and spectroscopic techniques for combustion diagnostic applications

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna Dasal

    50 ppm in H2/air flames using ERE-CARS. NO ERE-CARS signals were also recorded in heavily sooting C2H2/air flames with minimal background interferences. These findings are very significant for the development of ERE-CARS as a technique for measuring NO concentrations in high-pressure combustion environments.

  15. The problem of sexual imbalance and techniques of the self in the Diagnostic and Statistical Manual of Mental Disorders.

    PubMed

    Flore, Jacinthe

    2016-09-01

    This article examines the problematization of sexual appetite and its imbalances in the development of the Diagnostic and Statistical Manual of Mental Disorders (DSM) in the twentieth and twenty-first centuries. The dominant strands of historiographies of sexuality have focused on historicizing sexual object choice and understanding the emergence of sexual identities. This article emphasizes the need to contextualize these histories within a broader frame of historical interest in the problematization of sexual appetite. The first part highlights how sexual object choice, as a paradigm of sexual dysfunctions, progressively receded from medical interest in the twentieth century as the clinical gaze turned to the problem of sexual appetite and its imbalances. The second part uses the example of the newly introduced Female Sexual Interest/Arousal Disorder in the DSM-5 to explore how the Manual functions as a technique for taking care of the self. I argue that the design of the Manual and associated inventories and questionnaires paved the way for their interpretation and application as techniques for self-examination.

  16. Optical diagnostic techniques in tribological analysis: Applications to wear film characterization, solid lubricant chemical transition, and electrical sliding contacts

    NASA Astrophysics Data System (ADS)

    Windom, Bret C.

    Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light's small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ˜2 mum and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high

  17. Multispectral imaging techniques observing the dynamic changes in the hemoglobin concentrations as diagnostic tool for diseased tissues

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Noordmands, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf M.

    2010-02-01

    Tissue oxygenation imaging is a promising diagnostics tool to study the changes and dynamics of tissue perfusion reflecting pathologic and/or physiologic conditions of tissue. In clinical settings, imaging of local oxygenation or blood perfusion variations can be useful for e.g. detection of skin cancer, detection of early inflammation, effectiveness of peripheral nerve block anesthesia, study of the process of wound healing or localization of the cerebral area causing an epileptic attack. In this study, two oxygenation imaging methods based on multi-spectral techniques were evaluated: one system consisting of a CCD camera in combination with a Liquid Crystal Tunable Filter (420 - 730 nm or 650-1100 nm) and a broad band (white) light source, while the second system was a CCD camera in combination with a tunable multispectral LED light source (450-890nm). By collecting narrowband images at selected wavelengths, concentration changes of the different chromophores at the surface of the tissue (e.g. dO2Hb, dHHb and dtHb) can be calculated using the modified Lambert Beer equation. Two analyzing methods were used to calculate the concentration changes this to reduce the errors caused by movement of the tissue. In vivo measurements were obtained during skin oxygen changes induced by temporary arm clamping to validate the methods and algorithms. Functional information from the tissue surface was collected, in non-contact mode, by imaging the hemodynamic and oxygenation changes just below that surface. Both multi-spectral imaging techniques show promising results for detecting dynamic changes in the hemoglobin concentrations. The algorithms need to be optimized and image acquisition and processing needs to be developed top real time for practical clinical applications.

  18. A New Diagnostic Mechanism of Instruction: A Dynamic, Real-Time and Non-Interference Quantitative Measurement Technique for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan; Chang, Te-Jeng; Wu, Ming-Hsiung

    2009-01-01

    The level of learners' expertise has been used as a metric and diagnostic mechanism of instruction. This metric influences mental effort directly according to the applications of cognitive load theory. Cognitive efficiency, an optimal measurement technique of expertise, was developed by Kalyuga and Sweller to replace instructional efficiency in…

  19. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  20. A Highly Accurate Technique for the Treatment of Flow Equations at the Polar Axis in Cylindrical Coordinates using Series Expansions. Appendix A

    NASA Technical Reports Server (NTRS)

    Constantinescu, George S.; Lele, S. K.

    2001-01-01

    Numerical methods for solving the flow equations in cylindrical or spherical coordinates should be able to capture the behavior of the exact solution near the regions where the particular form of the governing equations is singular. In this work we focus on the treatment of these numerical singularities for finite-differences methods by reinterpreting the regularity conditions developed in the context of pseudo-spectral methods. A generally applicable numerical method for treating the singularities present at the polar axis, when nonaxisymmetric flows are solved in cylindrical, coordinates using highly accurate finite differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing equations for the flow at the polar axis are derived using series expansions near r=0. The only information needed to calculate the coefficients in these equations are the values of the flow variables and their radial derivatives at the previous iteration (or time) level. These derivatives, which are multi-valued at the polar axis, are calculated without dropping the accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,2pi) to (-R,R)*(0,pi), where R is the radius of the computational domain. This allows the radial derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at points located on the polar axis. The proposed technique is illustrated by results from simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation (LES) methods. In term of the general robustness of the numerical method and smoothness of the solution close to the polar axis, the present results compare very favorably to similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r=0, following the method proposed recently by Mohseni and Colonius

  1. Quantitative 3-d diagnostic ultrasound imaging using a modified transducer array and an automated image tracking technique.

    PubMed

    Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S

    2002-08-01

    An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.

  2. Why Are Some GCSE Examination Questions Harder to Mark Accurately than Others? Using Kelly's Repertory Grid Technique to Identify Relevant Question Features

    ERIC Educational Resources Information Center

    Suto, W. M. Irenka; Nadas, Rita

    2009-01-01

    It has long been established that marking accuracy in public examinations varies considerably among subjects and markers. This is unsurprising, given the diverse cognitive strategies that the marking process can entail, but what makes some questions harder to mark accurately than others? Are there distinct but subtle features of questions and…

  3. Prenatal Diagnosis Procedures and Techniques to Obtain a Diagnostic Fetal Specimen or Tissue: Maternal and Fetal Risks and Benefits.

    PubMed

    Wilson, R Douglas; Gagnon, Alain; Audibert, François; Campagnolo, Carla; Carroll, June; Brock, Jo-Ann; Chong, Karen; Johnson, Jo-Ann; MacDonald, William; Okun, Nanette; Pastuck, Melanie; Vallee-Pouliot, Karine

    2015-07-01

    Objectif : Offrir aux fournisseurs de soins de maternité et à leurs patientes des lignes directrices factuelles contemporaines en ce qui concerne les services de counseling traitant des risques et des avantages maternels propres à la tenue des interventions diagnostiques prénatales orientées par échographie (et/ou des techniques permettant l’établissement d’un diagnostic génétique) nécessaires dans les cas où il a été établi pendant la période prénatale que la grossesse serait exposée à des risques, ainsi qu’en ce qui concerne la prise de décisions subséquentes quant à la prise en charge de la grossesse (questions abordant des aspects tels que le niveau du fournisseur de soins obstétricaux, la surveillance prénatale, le lieu où devraient se dérouler les soins et l’accouchement, et la décision de poursuivre ou d’interrompre la grossesse). La présente directive clinique se limite aux services de counseling traitant des risques et des avantages maternels, et aux décisions en matière de prise en charge de la grossesse pour les femmes qui nécessitent (ou qui envisagent) la mise en œuvre d’une intervention ou d’une technique effractive orientée par échographie aux fins de l’établissement d’un diagnostic prénatal. Population de patientes : Femmes enceintes identifiées, à la suite de la mise en œuvre de protocoles établis de dépistage prénatal (taux sériques maternels ± imagerie, résultats d’analyse de l’ADN acellulaire indiquant des risques élevés, résultats anormaux au moment de l’imagerie fœtale diagnostique ou antécédents familiaux de troubles héréditaires), comme étant exposées à un risque accru d’anomalie génétique fœtale. Ces femmes pourraient nécessiter ou demander des services de counseling au sujet des risques et des avantages pour la grossesse de la tenue d’une intervention effractive orientée par échographie visant à déterminer l’étiologie, le diagnostic, et/ou la

  4. Two-compartment, two-sample technique for accurate estimation of effective renal plasma flow: Theoretical development and comparison with other methods

    SciTech Connect

    Lear, J.L.; Feyerabend, A.; Gregory, C.

    1989-08-01

    Discordance between effective renal plasma flow (ERPF) measurements from radionuclide techniques that use single versus multiple plasma samples was investigated. In particular, the authors determined whether effects of variations in distribution volume (Vd) of iodine-131 iodohippurate on measurement of ERPF could be ignored, an assumption implicit in the single-sample technique. The influence of Vd on ERPF was found to be significant, a factor indicating an important and previously unappreciated source of error in the single-sample technique. Therefore, a new two-compartment, two-plasma-sample technique was developed on the basis of the observations that while variations in Vd occur from patient to patient, the relationship between intravascular and extravascular components of Vd and the rate of iodohippurate exchange between the components are stable throughout a wide range of physiologic and pathologic conditions. The new technique was applied in a series of 30 studies in 19 patients. Results were compared with those achieved with the reference, single-sample, and slope-intercept techniques. The new two-compartment, two-sample technique yielded estimates of ERPF that more closely agreed with the reference multiple-sample method than either the single-sample or slope-intercept techniques.

  5. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  6. Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) are distinguished accurately: results of supervised learning techniques applied on clinical and inflammatory data.

    PubMed

    Maes, Michael; Twisk, Frank N M; Johnson, Cort

    2012-12-30

    There is much debate on the diagnostic classification of Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS) and chronic fatigue (CF). Post-exertional malaise (PEM) is stressed as a key feature. This study examines whether CF and CFS, with and without PEM, are distinct diagnostic categories. Fukuda's criteria were used to diagnose 144 patients with chronic fatigue and identify patients with CFS and CF, i.e. those not fulfilling the Fukuda's criteria. PEM was rated by means of a scale with defined scale steps between 0 and 6. CFS patients were divided into those with PEM lasting more than 24h (labeled: ME) and without PEM (labeled: CFS). The 12-item Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale was used to measure severity of illness. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, and lysozyme, and serum neopterin were employed as external validating criteria. Using fatigue, a subjective feeling of infection and PEM we found that ME, CFS, and CF were distinct categories. Patients with ME had significantly higher scores on concentration difficulties and a subjective experience of infection, and higher levels of IL-1, TNFα, and neopterin than patients with CFS. These biomarkers were significantly higher in ME and CFS than in CF patients. PEM loaded highly on the first two factors subtracted from the data set, i.e. "malaise-sickness" and "malaise-hyperalgesia". Fukuda's criteria are adequate to make a distinction between ME/CFS and CF, but ME/CFS patients should be subdivided into ME (with PEM) and CFS (without PEM).

  7. Diagnostic imaging.

    PubMed

    Morris, Peter; Perkins, Alan

    2012-04-21

    Physical techniques have always had a key role in medicine, and the second half of the 20th century in particular saw a revolution in medical diagnostic techniques with the development of key imaging instruments: x-ray imaging and emission tomography (nuclear imaging and PET), MRI, and ultrasound. These techniques use the full width of the electromagnetic spectrum, from gamma rays to radio waves, and sound. In most cases, the development of a medical imaging device was opportunistic; many scientists in physics laboratories were experimenting with simple x-ray images within the first year of the discovery of such rays, the development of the cyclotron and later nuclear reactors created the opportunity for nuclear medicine, and one of the co-inventors of MRI was initially attempting to develop an alternative to x-ray diffraction for the analysis of crystal structures. What all these techniques have in common is the brilliant insight of a few pioneering physical scientists and engineers who had the tenacity to develop their inventions, followed by a series of technical innovations that enabled the full diagnostic potential of these instruments to be realised. In this report, we focus on the key part played by these scientists and engineers and the new imaging instruments and diagnostic procedures that they developed. By bringing the key developments and applications together we hope to show the true legacy of physics and engineering in diagnostic medicine. PMID:22516558

  8. Diagnostic Imaging

    MedlinePlus

    Diagnostic imaging lets doctors look inside your body for clues about a medical condition. A variety of machines and techniques can create pictures of the structures and activities inside your body. The type of imaging your doctor uses depends on your symptoms and ...

  9. Investigation of PACVD protective coating processes using advanced diagnostics techniques. Performance report, 1 September 1992--30 April 1993

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB{sub 2} and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB{sub 2}.

  10. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    NASA Astrophysics Data System (ADS)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  11. Non-invasive, photonics-based diagnostic, imaging, monitoring, and light delivery techniques for the recognition, quantification and treatment of malignant and chronic inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Davies, N.; Davies-Shaw, D.; Shaw, J. D.

    2007-02-01

    We report firsthand on innovative developments in non-invasive, biophotonic techniques for a wide range of diagnostic, imaging and treatment options, including the recognition and quantification of cancerous, pre-cancerous cells and chronic inflammatory conditions. These techniques have benefited from the ability to target the affected site by both monochromatic light and broad multiple wavelength spectra. The employment of such wavelength or color-specific properties embraces the fluorescence stimulation of various photosensitizing drugs, and the instigation and detection of identified fluorescence signatures attendant upon laser induced fluorescence (LIF) phenomena as transmitted and propagated by precancerous, cancerous and normal tissue. In terms of tumor imaging and therapeutic and treatment options, we have exploited the abilities of various wavelengths to penetrate to different depths, through different types of tissues, and have explored quantifiable absorption and reflection characteristics upon which diagnostic assumptions can be reliably based and formulated. These biophotonic-based diagnostic, sensing and imaging techniques have also benefited from, and have been further enhanced by, the integrated ability to provide various power levels to be employed at various stages in the procedure. Applications are myriad, including non-invasive, non destructive diagnosis of in vivo cell characteristics and functions; light-based tissue analysis; real-time monitoring and mapping of brain function and of tumor growth; real time monitoring of the surgical completeness of tumor removal during laser-imaged/guided brain resection; diagnostic procedures based on fluorescence life-time monitoring, the monitoring of chronic inflammatory conditions (including rheumatoid arthritis), and continuous blood glucose monitoring in the control of diabetes.

  12. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  13. Completely automated multiresolution edge snapper (CAMES): a new technique for an accurate carotid ultrasound IMT measurement and its validation on a multi-institutional database

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Loizou, Christos; Zeng, Guang; Pattichis, Costantinos; Pantziaris, Marios; Liboni, William; Nicolaides, Andrew; Suri, Jasjit S.

    2011-03-01

    Since 2005, our research team has been developing automated techniques for carotid artery (CA) wall segmentation and intima-media thickness (IMT) measurement. We developed a snake-based technique (which we named CULEX1,2), a method based on an integrated approach of feature extraction, fitting, and classification (which we named CALEX3), and a watershed transform based algorithm4. Each of the previous methods substantially consisted in two distinct stages: Stage-I - Automatic carotid artery detection. In this step, intelligent procedures were adopted to automatically locate the CA in the image frame. Stage-II - CA wall segmentation and IMT measurement. In this second step, the CA distal (or far) wall is segmented in order to trace the lumen-intima (LI) and media-adventitia (MA) boundaries. The distance between the LI/MA borders is the IMT estimation. The aim of this paper is the description of a novel and completely automated technique for carotid artery segmentation and IMT measurement based on an innovative multi-resolution approach.

  14. A binary image reconstruction technique for accurate determination of the shape and location of metal objects in x-ray computed tomography.

    PubMed

    Wang, Jing; Xing, Lei

    2010-01-01

    The presence of metals in patients causes streaking artifacts in X-ray CT and has been recognized as a problem that limits various applications of CT imaging. Accurate localization of metals in CT images is a critical step for metal artifacts reduction in CT imaging and many practical applications of CT images. The purpose of this work is to develop a method of auto-determination of the shape and location of metallic object(s) in the image space. The proposed method is based on the fact that when a metal object is present in a patient, a CT image can be divided into two prominent components: high density metal and low density normal tissues. This prior knowledge is incorporated into an objective function as the regularization term whose role is to encourage the solution to take a form of two intensity levels. A computer simulation study and four experimental studies are performed to evaluate the proposed approach. Both simulation and experimental studies show that the presented algorithm works well even in the presence of complicated shaped metal objects. For a hexagonally shaped metal embedded in a water phantom, for example, it is found that the accuracy of metal reconstruction is within sub-millimeter.

  15. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    PubMed

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines. PMID:26587699

  16. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion

    PubMed Central

    Otero-Millan, Jorge; Roberts, Dale C.; Lasker, Adrian; Zee, David S.; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines. PMID:26587699

  17. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    PubMed

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines.

  18. [THE TECHNIQUE OF HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR SIMULTANEOUS DIAGNOSTIC OF INHERENT HYPERPLASIA OF ADRENAL GLANDS TYPE I AND II].

    PubMed

    Dutov, A A; Nikitin, D A; Lukyanova, Yu L; Shemiakina, N A

    2016-01-01

    The article considers the technique of high-performance liquid chromatography making it possible simultaneously detect cortisol, cortisone and secondary steroids in serum for consequent analysis of common reversed-phase high-performance liquid chromatography with ultraviolet under 240 nm. The liquid-liquid extraction from alkaline medium in diethyl ether The separation using column of 150x4.6 size ODS 3.5 mkm in isocratic mode. The eluent acetonitrile--0.02 M phosphate buffer pH 8.0--isopropanol (40:60:1). The application of proposed technique managed to separate cortisol, cortisone, dexamethasone, corticosterone, 11-desoxicortisol, testosterone, desoxicorticosterone, 17α-gidroxiprogesterone and androstendion in 20 minutes. The simplicity, reproducibility and sufficient selectivity and sensitivity of technique permit implement it in clinical practice for simultaneous diagnostic of inherent hyperplasia of adrenal glands type I and II. PMID:27183726

  19. [THE TECHNIQUE OF HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR SIMULTANEOUS DIAGNOSTIC OF INHERENT HYPERPLASIA OF ADRENAL GLANDS TYPE I AND II].

    PubMed

    Dutov, A A; Nikitin, D A; Lukyanova, Yu L; Shemiakina, N A

    2016-01-01

    The article considers the technique of high-performance liquid chromatography making it possible simultaneously detect cortisol, cortisone and secondary steroids in serum for consequent analysis of common reversed-phase high-performance liquid chromatography with ultraviolet under 240 nm. The liquid-liquid extraction from alkaline medium in diethyl ether The separation using column of 150x4.6 size ODS 3.5 mkm in isocratic mode. The eluent acetonitrile--0.02 M phosphate buffer pH 8.0--isopropanol (40:60:1). The application of proposed technique managed to separate cortisol, cortisone, dexamethasone, corticosterone, 11-desoxicortisol, testosterone, desoxicorticosterone, 17α-gidroxiprogesterone and androstendion in 20 minutes. The simplicity, reproducibility and sufficient selectivity and sensitivity of technique permit implement it in clinical practice for simultaneous diagnostic of inherent hyperplasia of adrenal glands type I and II.

  20. New diagnostic tools in schistosomiasis.

    PubMed

    Utzinger, J; Becker, S L; van Lieshout, L; van Dam, G J; Knopp, S

    2015-06-01

    Schistosomiasis is a water-based parasitic disease that affects over 250 million people. Control efforts have long been in vain, which is one reason why schistosomiasis is considered a neglected tropical disease. However, since the new millennium, interventions against schistosomiasis are escalating. The initial impetus stems from a 2001 World Health Assembly resolution, urging member states to scale-up deworming of school-aged children with the anthelminthic drug praziquantel. Because praziquantel is safe, efficacious and inexpensive when delivered through the school platform, diagnosis before drug intervention was deemed unnecessary and not cost-effective. Hence, there was little interest in research and development of novel diagnostic tools. With the recent publication of the World Health Organization (WHO) Roadmap to overcome the impact of neglected tropical diseases in 2020, we have entered a new era. Elimination of schistosomiasis has become the buzzword and this has important ramifications for diagnostic tools. Indeed, measuring progress towards the WHO Roadmap and whether local elimination has been achieved requires highly accurate diagnostic assays. Here, we introduce target product profiles for diagnostic tools that are required for different stages of a schistosomiasis control programme. We provide an update of the latest developments in schistosomiasis diagnosis, including microscopic techniques, rapid diagnostic tests for antigen detection, polymerase chain reaction (PCR) assays and proxy markers for morbidity assessments. Particular emphasis is placed on challenges and solutions for new technologies to enter clinical practice.

  1. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    SciTech Connect

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed and results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).

  2. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.

    PubMed

    Steensma, David P

    2006-09-01

    In early 2005, several groups of investigators studying myeloid malignancies described a novel somatic point mutation (V617F) in the conserved autoinhibitory pseudokinase domain of the Janus kinase 2 (JAK2) protein, which plays an important role in normal hematopoietic growth factor signaling. The V617F mutation is present in blood and marrow from a large proportion of patients with classic BCR/ABL-negative chronic myeloproliferative disorders and of a few patients with other clonal hematological diseases such as myelodysplastic syndrome, atypical myeloproliferative disorders, and acute myeloid leukemia. The JAK2 V617F mutation causes constitutive activation of the kinase, with deregulated intracellular signaling that mimics continuous hematopoietic growth factor stimulation. Within 7 months of the first electronic publication describing this new mutation, clinical molecular diagnostic laboratories in the United States and Europe began offering JAK2 mutation testing on a fee-for-service basis. Here, I review the various techniques used by research groups and clinical laboratories to detect the genetic mutation underlying JAK2 V617F, including fluorescent dye chemistry sequencing, allele-specific polymerase chain reaction (PCR), real-time PCR, DNA-melting curve analysis, pyrosequencing, and others. I also discuss diagnostic sensitivity, performance, and other practical concerns relevant to the clinical laboratorian in addition to the potential diagnostic utility of JAK2 mutation tests.

  3. [Epidemics of schistosomiasis in military staff assigned to endemic areas: standard diagnostic techniques and the development of real-time PCR techniques].

    PubMed

    Biance-Valero, E; De Laval, F; Delerue, M; Savini, H; Cheinin, S; Leroy, P; Soullié, B

    2013-05-01

    The authors report the results of molecular biology techniques for the early diagnosis of cases (invasion phase) of schistosomiasis during two epidemics occurring during French military projects in the Central African Republic and Madagascar. The use of these techniques in real time for subjects not residing in the endemic area significantly improves the sensitivity of screening. The attack rates of these episodes, according to a case definition that took positive specific PCR results into account, were 59% and 26%. These results are a concrete illustration of the proverb that "yaws begin where the trail stops".

  4. Electroencephalographic recordings in dogs suffering from idiopathic and symptomatic epilepsy: diagnostic value of interictal short time EEG protocols supplemented by two activation techniques.

    PubMed

    Brauer, Christina; Kästner, Sabine B R; Rohn, Karl; Schenk, Henning C; Tünsmeyer, Julia; Tipold, Andrea

    2012-07-01

    The diagnostic value of interictal short time electroencephalographic (EEG) recordings in epileptic dogs under general anaesthesia with propofol and the muscle relaxant rocuronium bromide was investigated. Two activation techniques, namely photic stimulation and hyperventilation, were evaluated for their potential to enhance the diagnostic validity of these recordings. Sixty-one dogs suffering from idiopathic epilepsy and 28 dogs suffering from symptomatic epilepsy were included. Electroencephalograms were recorded using five subdermal EEG electrodes (F3, F4, Cz, O1 and O2). All 89 EEGs were analysed visually and 61 were also evaluated quantitatively with fast Fourier transformation. Interictal paroxysmal epileptiform activity was found in 25% of idiopathic and in 29% of symptomatic epileptic dogs. Quantitative analysis of the EEGs (qEEGs) detected significant differences of frequency analysis in single reading points without any continuous changes of frequency bands. A comparison between healthy and affected brain hemispheres in seven dogs with focal lesions of one hemisphere did not show any significant differences in qEEG analysis. qEEG was not more sensitive than visual evaluation. Despite the use of activation techniques, the results showed that short time EEG recordings in epileptic dogs can detect interictal epileptic activity in less than one third of all seizuring dogs and is not a useful screening method.

  5. Ante- and postmortem diagnostic techniques for anthrax: rethinking pathogen exposure and the geographic extent of the disease in wildlife.

    PubMed

    Bagamian, Karoun H; Alexander, Kathleen A; Hadfield, Ted L; Blackburn, Jason K

    2013-10-01

    Although antemortem approaches in wildlife disease surveillance are common for most zoonoses, they have been used infrequently in anthrax surveillance. Classically, anthrax is considered a disease with extremely high mortality. This is because anthrax outbreaks are often detected ex post facto through wildlife or livestock fatalities or spillover transmission to humans. As a result, the natural prevalence of anthrax infection in animal populations is largely unknown. However, in the past 20 yr, antemortem serologic surveillance in wildlife has indicated that not all species exposed succumb to infection, and anthrax exposure may be more widespread than originally appreciated. These studies brought about a multitude of new questions, many of which can be addressed by increased antemortem serologic surveillance in wildlife populations. To fully understand anthrax transmission dynamics and geographic extent, it is important to identify exposure in wildlife hosts and associated factors and, in turn, understand how these influences may drive environmental reservoir dynamics and concurrent disease risk in livestock and humans. Here we review our current understanding of the serologic response to anthrax among wildlife hosts and serologic diagnostic assays used to augment traditional postmortem anthrax surveillance strategies. We also provide recommendations for the use of serology and sentinel species surveillance approaches in anthrax research and management.

  6. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Munro, D. H.; Spears, B. K.; Marinak, M. M.; Jones, O. S.; Patel, M. V.; Haan, S. W.; Salmonson, J. D.; Landen, O. L.; Boehly, T. R.; Nikroo, A.

    2008-05-01

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of <= +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.

  7. IDENTIFICATION OF CANINE VISCERAL LEISHMANIASIS IN A PREVIOUSLY UNAFFECTED AREA BY CONVENTIONAL DIAGNOSTIC TECHNIQUES AND CELL-BLOCK FIXATION

    PubMed Central

    ABRANTES, Tuanne Rotti; MADEIRA, Maria de Fátima; da SILVA, Denise Amaro; PERIÉ, Carolina dos Santos F. S.; V. MENDES, Artur Augusto; MENEZES, Rodrigo Caldas; SILVA, Valmir Laurentino; FIGUEIREDO, Fabiano Borges

    2016-01-01

    After the report of a second case of canine visceral leishmaniasis (CVL) in São Bento da Lagoa, Itaipuaçu, in the municipality of Maricá, Rio de Janeiro State, an epidemiological survey was carried out, through active search, totaling 145 dogs. Indirect immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA), and rapid chromatographic immunoassay based on dual-path platform (DPP(r)) were used to perform the serological examinations. The parasitological diagnosis of cutaneous fragments was performed by parasitological culture, histopathology, and immunohistochemistry. In the serological assessment, 21 dogs were seropositive by IFA, 17 by ELISA, and 11 by DPP(r), with sensitivity of 66.7%, 66.7% and 50%, and specificity of 87.2%, 90.2% and 94%, respectively for each technique. The immunohistochemistry of bone marrow using the cell-block technique presented the best results, with six positive dogs found, three of which tested negative by the other parasitological techniques. Leishmania sp. was isolated by parasitological culture in three dogs. The detection of autochthonous Leishmania infantum in Itaipuaçu, and the high prevalence of seropositive dogs confirm the circulation of this parasite in the study area and alert for the risk of expansion in the State of Rio de Janeiro. PMID:26910449

  8. Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs

    PubMed Central

    Nieto, R.; Soler, A.; Pelayo, V.; Fernández-Pinero, J.; Markowska-Daniel, I.; Pridotkas, G.; Nurmoja, I.; Granta, R.; Simón, A.; Pérez, C.; Martín, E.; Fernández-Pacheco, P.; Arias, M.

    2015-01-01

    This study represents a complete comparative analysis of the most widely used African swine fever (ASF) diagnostic techniques in the European Union (EU) using field and experimental samples from animals infected with genotype II ASF virus (ASFV) isolates circulating in Europe. To detect ASFV, three different PCRs were evaluated in parallel using 785 field and experimental samples. The results showed almost perfect agreement between the Universal ProbeLibrary (UPL-PCR) and the real-time (κ = 0.94 [95% confidence interval {CI}, 0.91 to 0.97]) and conventional (κ = 0.88 [95% CI, 0.83 to 0.92]) World Organisation for Animal Health (OIE)-prescribed PCRs. The UPL-PCR had greater diagnostic sensitivity for detecting survivors and allows earlier detection of the disease. Compared to the commercial antigen enzyme-linked immunosorbent assay (ELISA), good-to-moderate agreement (κ = 0.67 [95% CI, 0.58 to 0.76]) was obtained, with a sensitivity of 77.2% in the commercial test. For ASF antibody detection, five serological methods were tested, including three commercial ELISAs, the OIE-ELISA, and the confirmatory immunoperoxidase test (IPT). Greater sensitivity was obtained with the IPT than with the ELISAs, since the IPT was able to detect ASF antibodies at an earlier point in the serological response, when few antibodies are present. The analysis of the exudate tissues from dead wild boars showed that IPT might be a useful serological tool for determining whether or not animals had been exposed to virus infection, regardless of whether antibodies were present. In conclusion, the UPL-PCR in combination with the IPT was the most trustworthy method for detecting ASF during the epidemic outbreaks affecting EU countries in 2014. The use of the most appropriate diagnostic tools is critical when implementing effective control programs. PMID:26041901

  9. Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs.

    PubMed

    Gallardo, C; Nieto, R; Soler, A; Pelayo, V; Fernández-Pinero, J; Markowska-Daniel, I; Pridotkas, G; Nurmoja, I; Granta, R; Simón, A; Pérez, C; Martín, E; Fernández-Pacheco, P; Arias, M

    2015-08-01

    This study represents a complete comparative analysis of the most widely used African swine fever (ASF) diagnostic techniques in the European Union (EU) using field and experimental samples from animals infected with genotype II ASF virus (ASFV) isolates circulating in Europe. To detect ASFV, three different PCRs were evaluated in parallel using 785 field and experimental samples. The results showed almost perfect agreement between the Universal ProbeLibrary (UPL-PCR) and the real-time (κ = 0.94 [95% confidence interval {CI}, 0.91 to 0.97]) and conventional (κ = 0.88 [95% CI, 0.83 to 0.92]) World Organisation for Animal Health (OIE)-prescribed PCRs. The UPL-PCR had greater diagnostic sensitivity for detecting survivors and allows earlier detection of the disease. Compared to the commercial antigen enzyme-linked immunosorbent assay (ELISA), good-to-moderate agreement (κ = 0.67 [95% CI, 0.58 to 0.76]) was obtained, with a sensitivity of 77.2% in the commercial test. For ASF antibody detection, five serological methods were tested, including three commercial ELISAs, the OIE-ELISA, and the confirmatory immunoperoxidase test (IPT). Greater sensitivity was obtained with the IPT than with the ELISAs, since the IPT was able to detect ASF antibodies at an earlier point in the serological response, when few antibodies are present. The analysis of the exudate tissues from dead wild boars showed that IPT might be a useful serological tool for determining whether or not animals had been exposed to virus infection, regardless of whether antibodies were present. In conclusion, the UPL-PCR in combination with the IPT was the most trustworthy method for detecting ASF during the epidemic outbreaks affecting EU countries in 2014. The use of the most appropriate diagnostic tools is critical when implementing effective control programs.

  10. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  11. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  12. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    SciTech Connect

    Uhlig, W. Casey; Heine, Andreas

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  13. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    NASA Astrophysics Data System (ADS)

    Uhlig, W. Casey; Heine, Andreas

    2015-11-01

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  14. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  15. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  16. A film projecting system as a diagnostic and training technique for eye movements of cerebral palsied children.

    PubMed

    Gauthier, G M; Hofferer, J M; Martin, B

    1978-07-01

    Films are presented for tracking on a translucent screen after reflection from a galvanometer driven mirror. A wave function generator produces picture displacements of amplitude and velocity capable of stimulating selectively (or simultaneously) the saccadic and smooth pursuit systems. This audiovisual signal permits prolonged eye movement recording and training sessions because of increased motivation and alertness. Optokinetic and vestibulo-ocular reflexes can also be tested. An infra-red photoelectric device monitors the horizontal component of eye movement. Records provide the necessary information for syndrome definition and training progress evaluation. Preliminary results show the technique to be perfectly suitable for the diagnosis of functional disorders and sensory-motor training of the cerebral palsied child's oculomotor system. PMID:78816

  17. Novel Optical Diagnostic Techniques for Studying Particle Contact and Deposition Upon a Large Cylinder in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser (Technical Monitor); Yoda, Minami

    2004-01-01

    The objectives of this research project were: 1) To study the fluid dynamics of sheared particle-liquid suspensions and the impact of differential particle-fluid inertia; 2) To develop new techniques for observing suspension particle contact and deposition upon solid surfaces. Dr. Yoda was supported by the NASA Office of Biological and Physical Research on a four-year grant from March 2000 through November 2004 for a ground-based study on the fluid dynamics of sheared particle-liquid suspensions and the impact of differential particle-fluid inertia on such flows. Such inertial effects can only be observed in reduced-gravity environments since they are overwhelmed by buoyancy effects on Earth. Moreover, these inertial effects will have a significant impact upon suspension flows in microgravity. Suspension dynamics are of importance in a wide variety of advanced life systems applications, including water reclamation and dust mitigation in confined habitats.

  18. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  19. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  20. Merits and Pitfalls of Currently Used Diagnostic Tools in Mycetoma

    PubMed Central

    van de Sande, Wendy W. J.; Fahal, Ahmed H.; Goodfellow, Michael; Mahgoub, El Sheikh; Welsh, Oliverio; Zijlstra, Ed E.

    2014-01-01

    Treatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma) and fungi (eumycetoma), are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of infections and to identify the causative agents of mycetoma. These include various imaging, cytological, histopathological, serological, and culture techniques; phenotypic characterisation; and molecular diagnostics. In this review, we summarize these techniques and identify their merits and pitfalls in the identification of the causative agents of mycetoma and the extent of the disease. We also emphasize the fact that there is no ideal diagnostic tool available to identify the causative agents and that future research should focus on the development of new and reliable diagnostic tools. PMID:24992636

  1. Comparison of diagnostic techniques for the detection and differentiation of Cherry leaf roll virus strains for quarantine purposes.

    PubMed

    Lebas, B S M; Veerakone, S; Liefting, L W; Tang, J; Perez-Egusquiza, Z; von Bargen, S; Ward, L

    2016-08-01

    Some strains of Cherry leaf roll virus (CLRV) are considered as quarantine pests in New Zealand. CLRV was detected in seven plant host species: Actinidia chinensis, Hydrangea macrophylla, Malus domestica, Plantago major, Ribes rubrum, Rubus idaeus and Rumex sp. collected from New Zealand between 2005 and 2012. Biological, serological and molecular techniques were compared for the detection and differentiation of CLRV isolates. The biological analysis revealed differences in symptomatology and disease severity among the isolates. The five isolates tested by ELISA were serologically related to each other using polyclonal antisera with only one out of four commercially-available antisera successfully detecting all of them. The phylogenetic analysis of sequences obtained from parts of the coat protein, polymerase and 3'-untranslated regions revealed that the New Zealand CLRV isolates clustered into two closely related but distinct phylogenetic groups with some isolates grouping differently depending on the gene studied. The New Zealand CLRV isolates were clearly distinct to overseas isolates found in phylogenetic groups A, D and E. The conventional RT-PCR using primers targeting the CLRV coat protein coding region is recommended for determining sequence differences between strains. These findings will be useful in making regulatory decisions with regard to the testing requirements and the CLRV strains to be regulated in New Zealand. PMID:27129669

  2. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system

    SciTech Connect

    Herman, Daniel A.; Gallimore, Alec D.

    2008-01-15

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8x10{sup 12} cm{sup -3} on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  3. Diagnostic Development on NSTX

    SciTech Connect

    A.L. Roquemore; D. Johnson; R. Kaita; et al

    1999-12-16

    Diagnostics are described which are currently installed or under active development for the newly commissioned NSTX device. The low aspect ratio (R/a less than or equal to 1.3) and low toroidal field (0.1-0.3T) used in this device dictate adaptations in many standard diagnostic techniques. Technical summaries of each diagnostic are given, and adaptations, where significant, are highlighted.

  4. Diagnostics for pulmonary tuberculosis

    PubMed Central

    Cudahy, Patrick

    2016-01-01

    Tuberculosis (TB) remains a leading cause of human suffering and mortality despite decades of effective treatment being available. Accurate and timely diagnosis remains an unmet goal. The HIV epidemic has also led to new challenges in the diagnosis of TB. Several new developments in TB diagnostics have the potential to positively influence the global campaign against TB. We aim to review the performance of both established as well as new diagnostics for pulmonary TB in adults, and discuss the ongoing challenges. PMID:27005271

  5. Metabolite identification of artemether by data-dependent accurate mass spectrometric analysis using an LTQ-Orbitrap hybrid mass spectrometer in combination with the online hydrogen/deuterium exchange technique.

    PubMed

    Liu, Tian; Du, Fuying; Zhu, Fanping; Xing, Jie

    2011-11-15

    Artemether (ARM), the O-methyl ether prodrug of dihydroartemisinin (DHA), is a first-line antimalarial drug used in areas of multi-drug resistance. Artemisinin drugs can be metabolized extensively in vivo and this seems related to their autoinduction pharmacokinetics. In the present study, the metabolite identification of ARM was performed by the generic data-dependent accurate mass spectrometric analysis, using high-resolution (HR) liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) and tandem mass spectrometry (MS/MS) LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange for rapid structural characterization. The LC separation was improved allowing the separation of ARM parent drugs and their metabolites from their diastereomers. A total of 77 phase I metabolites of ARM were identified in rat liver microsomal incubates and rat urine, including dihydroartemisinin and artemisinin. In rat bile, 12 phase II metabolites were found. Accurate mass data were obtained in both full scan and HR-MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC/HR-ESI-MS experiments provided additional evidence in differentiating dihydroxylated deoxy-ARM from mono-hydroxylated ARM. The results showed the main phase I metabolites of artemether are hydroxylated, dehydro, demethylated and deoxy products, and they will undergo subsequent phase II glucuronidation processes. Most metabolites were reported for the first time. This study also demonstrated the effectiveness of high-resolution mass spectrometry in combination with an online H/D exchange LC/HR-MS(n) technique in rapid identification of drug metabolites. PMID:22006394

  6. A pulsed electron-photon fluorescence diagnostic technique for temperature and specie concentration measurement at points in relatively dense, unseedded air flows

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Kunc, J. A.; Erwin, D. A.

    1987-01-01

    An analysis is presented on the use of the fluorescence stimulated by combined pulsed electron and photon beams for the study of gas flows up to densities equivalent to an altitude of about 20 km (number density of about 3 x 10 to the 18th/cu cm). The electron beam acts as a pump, requiring no seed gas, to provide a localized concentration of ions or excited state neutrals that can be probed by saturation optical pulses. A short pulse (10ns) electron beam can be used by itself to provide effectively quench-free emission up to number densities of around 10 to the 18th/cm, but is is difficult to maintain satisfactory spatial resolution at this high density. The use of a nearly simultaneous strong optical pulse increases the flexibility of the diagnostic technique, permitting use at densities greater than 10 to the 18th/cu cm with good spatial resolution. The use of flash X-ray sources combined with optical probing also appears promising for densities above 10 to the 19th/cu cm.

  7. High Energy Laser Diagnostic Sensors

    SciTech Connect

    Luke, James R.; Goddard, Douglas N.; Thomas, David; Lewis, Jay

    2010-10-08

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures.We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  8. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer

  9. Why currently used diagnostic techniques for heart failure in rheumatoid arthritis are not enough: the challenge of cardiovascular magnetic resonance imaging.

    PubMed

    Mavrogeni, Sophie; Dimitroulas, Theodoros; Gabriel, Sherine; Sfikakis, Petros P; Pohost, Gerald M; Kitas, George D

    2014-01-01

    Rheumatoid arthritis (RA) is a multiorgan inflammatory disorder affecting approximately 1% of the population that leads to progressive joint destruction and disability. Patients with RA exhibit a high risk of cardiovascular disease, which results in premature morbidity and mortality and reduced life expectancy, when compared with the general population. Among various guises of myocardial involvement, heart failure (HF) has been recently recognized as an important contributory factor to the excess cardiovascular mortality associated with RA. HF in RA typically presents with occult clinical symptomatology and is mainly associated with structural and functional left ventricular abnormalities leading to diastolic dysfunction, while systolic myocardial performance remains well preserved. As isolated diastolic dysfunction is a predictor of high mortality, the evaluation of patients in early asymptomatic stages, when treatment targeting the heart is more likely to be effective, is of great importance. Although patient history and physical examination remain the cornerstones of HF evaluation, noninvasive imaging of cardiac chambers, coronary arteries, and great vessels may be necessary. Echocardiography, nuclear techniques, and invasive coronary angiography are already established in the routine assessment of HF; however, many aspects of HF pathophysiology in RA remain obscure, due to the limitations of currently used techniques. The capability of cardiovascular magnetic resonance (CMR) to capture early tissue changes allows timely detection of pathophysiologic phenomena of HF in RA, such as myocardial inflammation and myocardial perfusion defects, due to either macrovascular (coronary artery disease) or microvascular (vasculitis) disease. Therefore, CMR may be a useful tool for early, accurate diagnosis and research in patients with RA. PMID:25662926

  10. Taenia solium porcine cysticercosis in Madagascar: Comparison of immuno-diagnostic techniques and estimation of the prevalence in pork carcasses traded in Antananarivo city.

    PubMed

    Porphyre, V; Betson, M; Rabezanahary, H; Mboussou, Y; Zafindraibe, N J; Rasamoelina-Andriamanivo, H; Costard, S; Pfeiffer, D U; Michault, A

    2016-03-30

    Taenia solium cysticercosis was reported in official veterinary and medical statistics to be highly prevalent in pigs and humans in Madagascar, but few estimates are available for pigs. This study aimed to estimate the seroprevalence of porcine cysticercosis among pigs slaughtered in Antananarivo abattoirs. Firstly, the diagnostic performance of two antigen-ELISA techniques (B158B60 Ag-ELISA and HP10 Ag-ELISA) and an immunoblotting method were compared with meat inspection procedures on a sample of pigs suspected to be infected with (group 1; n=250) or free of (group 2; n=250) T. solium based on direct veterinary inspection in Madagascar. Sensitivity and specificity of the antigen ELISAs were then estimated using a Bayesian approach for detection of porcine cysticercosis in the absence of a gold standard. Then, a third set of pig sera (group 3, n=250) was randomly collected in Antananarivo slaughterhouses and tested to estimate the overall prevalence of T. solium contamination in pork meat traded in Antananarivo. The antigen ELISAs showed a high sensitivity (>84%), but the B158B60 Ag-ELISA appeared to be more specific than the HP10 Ag-ELISA (model 1: 95% vs 74%; model 2: 87% vs 71%). The overall prevalence of porcine cysticercosis in Antananarivo slaughterhouses was estimated at 2.3% (95% credibility interval [95%CrI]: 0.09-9.1%) to 2.6% (95%CrI: 0.1-10.3%) depending on the model and priors used. Since the sample used in this study is not representative of the national pig population, village-based surveys and longitudinal monitoring at slaughter are needed to better estimate the overall prevalence, geographical patterns and main risk factors for T. solium contamination, in order to improve control policies.

  11. Diagnostics of thermal spray processes by in-flight measurement of particle size and shape with innovative particle-shape-imaging (PSI) technique

    NASA Astrophysics Data System (ADS)

    Streibl, Tilo; Duda, Thomas; Landes, Klaus D.

    2001-04-01

    In the simplest terms possible, thermal spraying coating involves heating a material, in powder or wire form, to a molten or semi-molten state. The material is propelled using a heat source, e.g. a very high temperature plasma flame to deposit it, creating a surface structure on a given substrate. The process is very complex because it depends on numerous parameters influencing each other. A necessary condition to improve process efficiency and quality of produced coatings is the determination of in-flight particle properties. The innovative Particle-Shape-Imaging (PSI) technique offers a new potential in particle diagnostics. It is intended for the analysis of size and shape of single particles within the plasma jet. The method is based on telemicroscopic imaging of the particle shades. A cw-laser beam is split into two beams of equal intensities, which are superimposed in the focal plane of a long-distance-microscope. The detection system consists of a CCD camera with a Micro- Channel-Plate intensifier allowing exposure times of a few nanoseconds. When a particle passes the measuring volume, the laser beams generate two individual shades. The position of the particle relatively to the focal plane is determined from the separation of the two shades in the image plane. From the evaluation of area and contour of the shades, particles can be classified in regard to size and form. Corresponding distributions of the particles within the plasma jet as well as changes of the particle form in the melting process can be determined.

  12. A Focal-Spot Diagnostic for On-Shot Characterization of High-Energy Petawatt Lasers

    SciTech Connect

    Bromage, J.; Bahk, S.-W.; Irwin, D.; Kwiatkowski, J.; Pruyne, A.; Millecchia, M.; Moore, M.; Zuegel, J.D.

    2008-10-07

    An on-shot focal-spot diagnostic for characterizing high-energy, petawatt-class laser systems is presented. Accurate measurements at full energy are demonstrated using high-resolution wavefront sensing in combination with techniques to calibrate on-shot measurements with low-power sample beams. Results are shown for full-energy activation shots of the OMEGA EP Laser System.

  13. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  14. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  15. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into pre-formed liposomes for diagnostic imaging and radionuclide therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2010-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ((99m)Tc), for non-invasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ((186/188)Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load (99m)Tc or (186/188)Re into pre-formed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport (99m)Tc or (186/188)Re across the lipid bilayer of the pre-formed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the (99m)Tc and (186/188)Re within the liposomes. In the first method, (99m)Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and (99m)Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, (99m)Tc or (186/188)Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and (99m)Tc-BMEDA or (186/188)Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for (99m)Tc or (186/188)Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, (99m)Tc/(186/188)Re-BMEDA complex becomes protonated and more hydrophilic, which

  16. Diagnostic hematology of reptiles.

    PubMed

    Stacy, Nicole I; Alleman, A Rick; Sayler, Katherine A

    2011-03-01

    The hematologic evaluation of reptiles is an indispensable diagnostic tool in exotic veterinary practice. The diversity of reptile species, their characteristic physiologic features, and effects of intrinsic and extrinsic factors present unique challenges for accurate interpretation of the hemogram. Combining the clinical presentation with hematologic findings provides valuable information in the diagnosis and monitoring of disease and helps guide the clinician toward therapy and further diagnostic testing. This article outlines the normal and pathologic morphology of blood cells of reptile species. The specific comparative aspects of reptiles are emphasized, and structural and functional abnormalities in the reptilian hemogram are described.

  17. Diagnostics for neutral-beam-heated tokamaks

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Diagnostic techniques for neutral-beam-heated tokamak plasmas fall into three categories: (1) magnetic diagnostics for measurements of gross stored energy, (2) profile diagnostics for measurements of stored thermal and beam energy, impurity content and plasma rotation, and (3) fast time resolution diagnostics to study MHD fluctuations and micro-turbulence.

  18. The Development of a Phonics Diagnostic Inventory: Assessment of Instrument Validity via Concurrent and Predictive Validity Techniques and a Path Model of Literacy Development

    ERIC Educational Resources Information Center

    Farrell-Meier, Colleen

    2010-01-01

    Data from instruments which are technically adequate and which inform instruction are not only considered best practice, but are legally mandated by laws such as the Individuals with Disabilities Education Improvement Act and No Child Left Behind. The Phonics Diagnostic Inventory (PDI) was designed to assess students' proficiency with specific…

  19. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  20. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  1. Comparison of the diagnostic value of pump and gravity cavernosometry in the evaluation of the cavernous veno-occlusive mechanism.

    PubMed

    Meuleman, E J; Wijkstra, H; Doesburg, W H; Debruyne, F M

    1991-11-01

    We performed cavernosometry in 96 patients with erectile dysfunction. Two different techniques were compared: pump cavernosometry using a roller pump as the inflow source and gravity cavernosometry using an infusion set as the inflow source. We conclude that the diagnostic value of both techniques is comparable. In pump cavernosometry maintenance flow is the most accurate parameter of veno-occlusive function. Gravity cavernosometry has the advantages of simplicity, cost-effectiveness and a lower complication rate. Incomplete cavernous smooth muscle relaxation appeared to be limiting the diagnostic value of both techniques.

  2. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  3. Integrated diagnostics: proceedings from the 9th biennial symposium of the International Society for Strategic Studies in Radiology.

    PubMed

    Krestin, G P; Grenier, P A; Hricak, H; Jackson, V P; Khong, P L; Miller, J C; Muellner, A; Schwaiger, M; Thrall, J H

    2012-11-01

    The International Society for Strategic Studies in Radiology held its 9th biennial meeting in August 2011. The focus of the programme was integrated diagnostics and massive computing. Participants discussed the opportunities, challenges, and consequences for the discipline of radiology that will likely arise from the integration of diagnostic technologies. Diagnostic technologies are increasing in scope, including advanced imaging techniques, new molecular imaging agents, and sophisticated point-of-use devices. Advanced information technology (IT), which is increasingly influencing the practice of medicine, will aid clinical communication and the development of "population images" that represent the phenotype of particular diseases, which will aid the development of diagnostic algorithms. Integrated diagnostics offer increased operational efficiency and benefits to patients through quicker and more accurate diagnoses. As physicians with the most expertise in IT, radiologists are well placed to take the lead in introducing IT solutions and cloud computing to promote integrated diagnostics. To achieve this, radiologists must adapt to include quantitative data on biomarkers in their reports. Radiologists must also increase their role as participating physicians, collaborating with other medical specialties, not only to avoid being sidelined by other specialties but also to better prepare as leaders in the selection and sequence of diagnostic procedures. Key Points • New diagnostic technologies are yielding unprecedented amounts of diagnostic information.• Advanced IT/cloud computing will aid integration and analysis of diagnostic data.• Better diagnostic algorithms will lead to faster diagnosis and more rapid treatment. PMID:22699871

  4. Molecular diagnostic and surveillance tools for global malaria control.

    PubMed

    Erdman, Laura K; Kain, Kevin C

    2008-01-01

    Malaria is the most devastating parasitic infection in the world, annually causing over 1 million deaths and extensive morbidity. The global burden of malaria has increased over the last several decades, as have rates of imported malaria into non-endemic regions. Rapid and accurate diagnostics are a crucial component of malaria control strategies, and epidemiological surveillance is required to monitor trends in malaria prevalence and antimalarial drug resistance. Conventional malaria diagnostic and surveillance tools can be cumbersome and slow with limitations in both sensitivity and specificity. New molecular techniques have been developed in an attempt to overcome these restrictions. These molecular techniques are discussed with regard to their technical advantages and disadvantages, with an emphasis on the practicality of implementation in malaria-endemic and non-endemic regions.

  5. Surgical extraction of lower third molars: diagnostic tests and operative technique in the prevention of inferior alveolar nerve injury. Case study

    PubMed Central

    MELEO, D.; PACIFICI, L.

    2009-01-01

    SUMMARY Increased knowledge and technical refinement have broadened the limits of outpatient oral surgery; however, these changes have at the same time led to a greater number of complications and poor outcomes and, accordingly, to legal action for professional responsibility. Oral surgery represents 10% of all actions, and almost all of these are attributable to exodontic surgery, of which around a third are related to inferior alveolar nerve injury following the extraction of lower third molars. The aim of this case study is to suggest operative technical strategies in accordance with a correct clinical-diagnostic pathway in order to prevent neurological complications involving the inferior alveolar nerve subsequent to lower third molar extraction. Cases should be carefully selected and surgical intervention undertaken solely when genuinely necessary. The patient should be informed of the risks, the methods and the possible results of the treatment. These are the bases for correct indication, along with a sufficient diagnostic path and a good level of communication between operator and patient. PMID:23285341

  6. Implementation of a new atomic basis for the He I equilibrium line ratio technique for electron temperature and density diagnostic in the SOL for H-mode plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Muñoz Burgos, J. M.; Schmitz, O.; Unterberg, E. A.; Loch, S. D.; Ballance, C. P.

    2011-08-01

    Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D.

  7. Fungal Diagnostics

    PubMed Central

    Kozel, Thomas R.; Wickes, Brian

    2014-01-01

    Early diagnosis of fungal infection is critical to effective treatment. There are many impediments to diagnosis such as a diminishing number of clinical mycologists, cost, time to result, and requirements for sensitivity and specificity. In addition, fungal diagnostics must meet the contrasting needs presented by the increasing diversity of fungi found in association with the use of immunosuppressive agents in countries with high levels of medical care and the need for diagnostics in resource-limited countries where large numbers of opportunistic infections occur in patients with AIDS. Traditional approaches to diagnosis include direct microscopic examination of clinical samples, histopathology, culture, and serology. Emerging technologies include molecular diagnostics and antigen detection in clinical samples. Innovative new technologies that use molecular and immunoassay platforms have the potential to meet the needs of both resource-rich and resource-limited clinical environments. PMID:24692193

  8. Accurate reservoir evaluation from borehole imaging techniques and thin bed log analysis: Case studies in shaly sands and complex lithologies in Lower Eocene Sands, Block III, Lake Maracaibo, Venezuela

    SciTech Connect

    Coll, C.; Rondon, L.

    1996-08-01

    Computer-aided signal processing in combination with different types of quantitative log evaluation techniques is very useful for predicting reservoir quality in complex lithologies and will help to increase the confidence level to complete and produce a reservoir. The Lower Eocene Sands in Block III are one of the largest reservoirs in Block III and it has produced light oil since 1960. Analysis of Borehole Images shows the reservoir heterogeneity by the presence of massive sands with very few shale laminations and thinnly bedded sands with a lot of laminations. The effect of these shales is a low resistivity that has been interpreted in most of the cases as water bearing sands. A reduction of the porosity due to diagenetic processes has produced a high-resistivity behaviour. The presence of bed boundaries and shales is detected by the microconductivity curves of the Borehole Imaging Tools allowing the estimation of the percentage of shale on these sands. Interactive computer-aided analysis and various image processing techniques are used to aid in log interpretation for estimating formation properties. Integration between these results, core information and production data was used for evaluating producibility of the reservoirs and to predict reservoir quality. A new estimation of the net pay thickness using this new technique is presented with the consequent improvement on the expectation of additional recovery. This methodology was successfully applied in a case by case study showing consistency in the area.

  9. DIAGNOSTICS OF BNL ERL

    SciTech Connect

    POZDEYEV,E.; BEN-ZVI, I.; CAMERON, P.; GASSNER, D.; KAYRAN, D.; ET AL.

    2007-06-25

    The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlines requirements on the ERL diagnostics and describes its setup and modes of operation.

  10. A Rapid Diagnostic Technique to Discriminate between Two Pests of Palms, Brontispa longissima and Octodonta nipae (Coleoptera: Chrysomelidae), for Quarantine Applications.

    PubMed

    Zhang, X; Tang, B; Hou, Y

    2015-02-01

    Octodonta nipae (Maulik) is morphologically and biologically similar to Brontispa longissima (Gestro), one of the most damaging pests of coconut. The two species share several palm hosts and produce similar symptoms. They are easily confused when they invade a new area, and without professional taxonomic expertise accurate identification is arduous and time-consuming. Thus, a method of rapidly distinguishing these two invasive insects rapidly is critical for quarantine. Based on the first internal transcribed spacer and the mitochondrial cytochrome oxidase I gene, two pairs of special primers and corresponding polymerase chain reaction processes have been developed to enhance a single objective band only from the O. nipae DNA template. This will quickly discriminate between these two species. The present results provide a rapid method of distinguishing O. nipae from B. longissima to help avoid misidentification, and furthermore, to facilitate rapid and appropriate quarantine decisions and effective treatments to the pest. PMID:26470108

  11. MJO Simulation Diagnostics

    SciTech Connect

    Waliser, D; Sperber, K; Hendon, H; Kim, D; Maloney, E; Wheeler, M; Weickmann, K; Zhang, C; Donner, L; Gottschalck, J; Higgins, W; Kang, I; Legler, D; Moncrieff, M; Schubert, S; Stern, W; Vitart, F; Wang, B; Wang, W; Woolnough, S

    2008-06-02

    The Madden-Julian Oscillation (MJO) interacts with, and influences, a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, mid-latitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in our climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multi-model comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, due to the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the US CLIVAR MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation, to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life-cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.

  12. Research Priorities in the Utilization and Interpretation of Diagnostic Imaging: Education, Assessment, and Competency.

    PubMed

    Lewiss, Resa E; Chan, Wilma; Sheng, Alexander Y; Soto, Jorge; Castro, Alexandra; Meltzer, Andrew C; Cherney, Alan; Kumaravel, Manickam; Cody, Dianna; Chen, Esther H

    2015-12-01

    The appropriate selection and accurate interpretation of diagnostic imaging is a crucial skill for emergency practitioners. To date, the majority of the published literature and research on competency assessment comes from the subspecialty of point-of-care ultrasound. A group of radiologists, physicists, and emergency physicians convened at the 2015 Academic Emergency Medicine consensus conference to discuss and prioritize a research agenda related to education, assessment, and competency in ordering and interpreting diagnostic imaging. A set of questions for the continued development of an educational curriculum on diagnostic imaging for trainees and competency assessment using specific assessment methods based on current best practices was delineated. The research priorities were developed through an iterative consensus-driven process using a modified nominal group technique that culminated in an in-person breakout session. The four recommendations are: 1) develop a diagnostic imaging curriculum for emergency medicine (EM) residency training; 2) develop, study, and validate tools to assess competency in diagnostic imaging interpretation; 3) evaluate the role of simulation in education, assessment, and competency measures for diagnostic imaging; 4) study is needed regarding the American College of Radiology Appropriateness Criteria, an evidence-based peer-reviewed resource in determining the use of diagnostic imaging, to maximize its value in EM. In this article, the authors review the supporting reliability and validity evidence and make specific recommendations for future research on the education, competency, and assessment of learning diagnostic imaging.

  13. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers.

    PubMed

    Bromage, J; Bahk, S-W; Irwin, D; Kwiatkowski, J; Pruyne, A; Millecchia, M; Moore, M; Zuegel, J D

    2008-10-13

    An on-shot focal-spot diagnostic for characterizing high-energy, petawatt-class laser systems is presented. Accurate measurements at full energy are demonstrated using high-resolution wavefront sensing in combination with techniques to calibrate on-shot measurements with low-power sample beams. Results are shown for full-energy activation shots of the OMEGA EP Laser System. PMID:18852765

  14. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  15. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  16. Rapid diagnostic tests for malaria.

    PubMed

    Visser, Theodoor; Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-12-01

    Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them.

  17. Rapid diagnostic tests for malaria

    PubMed Central

    Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-01-01

    Abstract Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them. PMID:26668438

  18. Diagnostic bronchoscopy--current and future perspectives.

    PubMed

    Leong, Steven; Shaipanich, Tawimas; Lam, Stephen; Yasufuku, Kazuhiro

    2013-10-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Standard bronchoscopy has limited ability to accurately localise and biopsy pulmonary lesions that cannot be directly visualised. The field of advanced diagnostic bronchoscopy is rapidly evolving due to advances in electronics and miniaturisation. Bronchoscopes with smaller outer working diameters, coupled with miniature radial and convex ultrasound probes, allow accurate central and peripheral pulmonary lesion localisation and biopsy while at the same time avoiding vascular structures. Increases in computational processing power allow three-dimensional reconstruction of computed tomographic raw data to enable virtual bronchoscopy (VB), providing the bronchoscopist with a preview of the bronchoscopy prior to the procedure. Navigational bronchoscopy enables targeting of peripheral pulmonary lesions (PPLs) via a "roadmap", similar to in-car global positioning systems. Analysis of lesions on a cellular level is now possible with techniques such as optical coherence tomography (OCT) and confocal microscopy (CM). All these tools will hopefully allow earlier and safer lung cancer diagnosis and in turn better patient outcomes. This article describes these new bronchoscopic techniques and reviews the relevant literature.

  19. Diagnostic accuracy of semi-quantitative and quantitative culture techniques for the diagnosis of catheter-related infections in newborns and molecular typing of isolated microorganisms

    PubMed Central

    2014-01-01

    Background Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). Microbiological evidence implicating catheters as the source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs. Semi-quantitative culture is used to determine the presence of microorganisms on the external catheter surface, whereas quantitative culture also isolates microorganisms present inside the catheter. The main objective of this study was to determine the sensitivity and specificity of these two techniques for the diagnosis of CR-BSIs in newborns from a neonatal ICU. In addition, PFGE was used for similarity analysis of the microorganisms isolated from catheters and blood cultures. Methods Semi-quantitative and quantitative methods were used for the culture of catheter tips obtained from newborns. Strains isolated from catheter tips and blood cultures which exhibited the same antimicrobial susceptibility profile were included in the study as positive cases of CR-BSI. PFGE of the microorganisms isolated from catheters and blood cultures was performed for similarity analysis and detection of clones in the ICU. Results A total of 584 catheter tips from 399 patients seen between November 2005 and June 2012 were analyzed. Twenty-nine cases of CR-BSI were confirmed. Coagulase-negative staphylococci (CoNS) were the most frequently isolated microorganisms, including S. epidermidis as the most prevalent species (65.5%), followed by S. haemolyticus (10.3%), yeasts (10.3%), K. pneumoniae (6.9%), S. aureus (3.4%), and E. coli (3.4%). The sensitivity of the semi-quantitative and quantitative techniques was 72.7% and 59.3%, respectively, and specificity was 95.7% and 94.4%. The diagnosis of CR-BSIs based on PFGE analysis of similarity between strains isolated from catheter tips and blood cultures showed 82.6% sensitivity and 100% specificity. Conclusion The semi

  20. Chronic compartment syndrome of the lower leg: a new diagnostic method using near-infrared spectroscopy and a new technique of endoscopic fasciotomy.

    PubMed

    Ota, Y; Senda, M; Hashizume, H; Inoue, H

    1999-05-01

    A 19-year-old female basketball player had chronic compartment syndrome. During basketball playing, she complained of bilateral lower leg pain that disappeared after several minutes of rest. The intracompartmental pressure in the anterior compartment was 41 mm Hg on the right side and 29 mm Hg on the left side immediately after playing. Prolonged ischemia of the anterior compartment was observed in comparison with four normal controls using near-infrared spectroscopy. Magnetic resonance imaging also revealed that the anterior compartment was mainly affected. Endoscopic fasciotomy was performed using an arthroscope, a transparent outer tube, and a retrograde blade. After the operation, her symptoms disappeared. Three months postoperatively, the anterior compartment pressure decreased and prolonged tissue ischemia improved. Endoscopic fasciotomy allowed us to cut the fascia safely and less invasively. We concluded that this technique is useful in treating chronic compartment syndrome in the anterior compartment of the lower leg.

  1. Astigmatism and diagnostic procedures.

    PubMed

    Visnjić, Mirna Belovari; Zrinsćak, Ognjen; Barisić, Freja; Iveković, Renata; Laus, Katia Novak; Mandić, Zdravko

    2012-06-01

    Astigmatism represents an inability of the cornea and lens to provide a sharp image onto the retina. Correcting astigmatic errors, whether congenital, contact lens induced or surgically induced, is now an integral part of modern cataract and refractive procedures. Development of modern technology has enabled accurate diagnosis and perfect opportunities for correction; however, while cataract and keratorefractive surgery have come a long way in the last decade, the treatment and diagnosis of astigmatism continue to challenge ophthalmologists. There are several diagnostic procedures and tools available today, some standard and some contemporary that include keratometry, corneal topography, apparatus using wavefront or Scheimpflug analysis like Orbscan, Pentacam, Wavescan, etc. With the introduction of several new diagnostic tools, measurements of astigmatism have become less of an issue, but in some cases it is still difficult to obtain consistent results. What remains still unanswered is the question of the best diagnostic tool on the market. Further research is needed to evaluate both tools as well as their clinical application for optimal use. PMID:23115957

  2. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  3. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  4. Analytical techniques for direct identification of biosignatures and microorganisms

    NASA Astrophysics Data System (ADS)

    Cid, C.; Garcia-Descalzo, L.; Garcia-Lopez, E.; Postigo, M.; Alcazar, A.; Baquero, F.

    2012-09-01

    Rover missions to potentially habitable ecosystems require portable instruments that use minimal power, require no sample preparation, and provide suitably diagnostic information to an Earth-based exploration team. In exploration of terrestrial analogue environments of potentially habitable ecosystems it is important to screen rapidly for the presence of biosignatures and microorganisms and especially to identify them accurately. In this study, several analytical techniques for the direct identification of biosignatures and microorganisms in different Earth analogues of habitable ecosystems are compared.

  5. [Patent ductus arteriosus in the dog: a retrospective study of clinical presentation, diagnostics and comparison of interventional techniques in 102 dogs (2003-2011)].

    PubMed

    Meijer, M; Beijerink, N J

    2012-06-01

    A left-to-right shunting patent ductus arteriosus (PDA) is a common congenital heart defect in dogs. If it is left uncorrected, life expectancy in most cases is decreased due to the development of left-sided congestive heart failure. The aim of this study was to describe the dogs diagnosed with PDA in the Utrecht University Companion Animal Clinic from 2003 to 2011. The medical records of 102 patients were retrieved, and the clinical presentation and outcome of PDA closure by surgical ligation or transarterial catheter occlusion (TCO) were reviewed. In the TCO group, the result of coiling was compared with the placement of an Amplatz Canine Duct Occluder (ACDO). A predisposition to PDA was found in the German Brak, Stabyhoun, and Schapendoes. Dogs treated with surgical ligation were significantly older and heavier than those treated with TCO; within the TCO group, dogs treated with ACDO were significantly older and heavier The initial success rate (complete disappearance of the audible murmur in a patient that survived the procedure) was not significantly different between the different treatment modalities. Major complications were more common with surgical ligation, but the incidence of minor complications was not significantly different. There was no diference in survival between dogs treated with surgical ligation and dogs treated with TCO. This study shows a previously unreported predisposition to PDA in certain breeds. Both surgical ligation and TCO are suitable techniques for PDA closure, although major complications were more common with surgical ligation. ACDO appears to be the method with the least complications and thus can be considered the safest method.

  6. 2009 Laser Diagnostics in Combustion GRC

    SciTech Connect

    Volker Sick

    2009-08-16

    Non-intrusive laser diagnostics for the spatially and temporally resolved measurement of temperature, chemical composition, and flow parameters have emerged over the last few decades as major tools for the study of both fundamental and applied combustion science. Many of the important advances in the field can be attributed to the discussions and ideas emanating from this meeting. This conference, originating in 1981 and held biennially, focuses on laser-based methods for measurement of both macroscopic parameters and the underlying microscale physical and chemical processes. Applications are discussed primarily to elucidate new chemical and physical issues and/or interferences that need to be addressed to improve the accuracy and precision of the various diagnostic approaches or to challenge the community of diagnosticians to invent new measurement techniques. Combustion environments present special challenges to the optical diagnostics community as they address measurements relevant to turbulence, spray and mixture formation, or turbulence/chemistry interactions important in practical combustion systems as well as fundamental chemical reactions in stationary laminar flames. The diagnostics considered may be generally classed as being incoherent, where the signals are radiated isotropically, or coherent, where the signals are generated in a directed, beam-like fashion. Both of the foregoing may employ either electronic or Raman resonance enhancement or a combination of both. Prominent incoherent approaches include laser induced fluorescence (LIF), spontaneous Raman scattering, Rayleigh scattering, laser induced incandescence, molecular flow tagging, and Mie scattering and their two- and three-dimensional imaging variants. Coherent approaches include coherent anti-Stokes Raman scattering (CARS), degenerate four wave mixing (DFWM), polarization spectroscopy (PS), laser induced grating spectroscopy (LIGS) and laser-based absorption spectroscopy. Spectroscopic

  7. Estimation of the diagnostic accuracy of the invA-gene-based PCR technique and a bacteriological culture for the detection of Salmonella spp. in caecal content from slaughtered pigs using Bayesian analysis.

    PubMed

    Mainar-Jaime, R C; Atashparvar, N; Chirino-Trejo, M

    2008-01-01

    The goal of this study was to estimate the accuracy of the invA-gene-based polymerase chain reaction (PCR) and a culture technique based on pre-enrichment with buffered peptone water, three selective enrichment media (selenite, tetrathionate and Rappaport-Vassiliadis broths) and four selective, solid media (Xylose-Lysine-Tergitol-4, Salmonella/Shigella, Hekton-Enteric and MacConkey), for the detection of Salmonella organisms from caecal samples from slaughter pigs. For this purpose a latent-class (Bayesian) approach was used. Two hundred and three slaughtered pigs were used after grouping them into two groups of 96 and 107 animals. Sensitivity (Se) was estimated to be 56% (95% probability interval 40, 76) for culture and 91% (81, 97) for PCR. The specificity (Sp) of the PCR was 88% (80, 95) while the Sp of the culture had been considered 100% in the statistical analysis as all culture-positive samples were confirmed by serotyping. PCR Se was not affected by the Salmonella serotypes present in the samples analysed. Accordingly, a minimum of 25.5% of the pigs was estimated to harbour Salmonella organisms in their faeces. It was concluded that bacteriology on caecal samples alone was a poor diagnostic method, and that the PCR method could be considered a cost-effective alternative to culture in Salmonella monitoring programmes. However, given the moderate Sp of this molecular technique, PCR-positive samples should be further confirmed through bacteriology.

  8. Implementation of a new atomic basis for the He I equilibrium line ratio technique for electron temperature and density diagnostic in the SOL for H-mode plasmas in DIII-D

    SciTech Connect

    Burgos, JMM; Schmitz, O.; Unterberg, Ezekial A; Loch, S. D.; Ballance, C. P.

    2011-01-01

    Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. (C) 2010 Elsevier B.V. All rights reserved.

  9. Blast wave energy diagnostic.

    PubMed

    Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E

    2008-10-01

    The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574

  10. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  11. Advanced diagnostics for reacting flows

    NASA Astrophysics Data System (ADS)

    Hanson, R. K.; Baganoff, D.; Bowman, C. T.; Byer, R. L.; Cantwell, B. J.

    1983-11-01

    Progress is reported for the third year of an interdisciplinary program to innovate modern diagnostic techniques for application to reacting flows. Project areas are: (1) fiber optic absorption/fluorescence probes for species measurements employing tunable ultraviolet, visable and infrared laser sources; (2) wavelength modulation spectroscopy, using rapid-scanning ultraviolet, visible and infrared laser sources, for measurements of species, temperature and absorption lineshapes, (3) quantitative flow visualization, including temporally and spatially resolved species measurements in a plane, using laser-induced fluorescence; (4) multiple-point velocity visualization; (5) plasma diagnostics, utilizing planar laser-induced fluorescence and wavelength modulation techniques; (6) diagnostic techniques for thermionic converter plasmas; (7) application of advanced diagnostic techniques for studies of turbulent reacting flows; (8) development of measurement techniques and a novel facility for investigations of droplet evaporation in turbulent flows; (9) holographic display techniques for 3-D visualization of flowfield data; (10) coherent anti-Stokes Raman spectroscopy (CARS) for temperature and velocity measurements in a supersonic jet; and (11) computed absorption tomography system for species measurements in a plane.

  12. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  13. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  14. Computational Techniques for More Accurate and Diverse Recommendations

    ERIC Educational Resources Information Center

    Kwon, YoungOk

    2011-01-01

    Recommender systems are becoming an increasingly important research area due to the growing demand for personalized recommendations. The volume of information available to each user and the number of products carried in e-commerce marketplaces have grown tremendously. Thus, recommender systems are needed to help individual users find the most…

  15. Accurate contact predictions using covariation techniques and machine learning

    PubMed Central

    Kosciolek, Tomasz

    2015-01-01

    ABSTRACT Here we present the results of residue–residue contact predictions achieved in CASP11 by the CONSIP2 server, which is based around our MetaPSICOV contact prediction method. On a set of 40 target domains with a median family size of around 40 effective sequences, our server achieved an average top‐L/5 long‐range contact precision of 27%. MetaPSICOV method bases on a combination of classical contact prediction features, enhanced with three distinct covariation methods embedded in a two‐stage neural network predictor. Some unique features of our approach are (1) the tuning between the classical and covariation features depending on the depth of the input alignment and (2) a hybrid approach to generate deepest possible multiple‐sequence alignments by combining jackHMMer and HHblits. We discuss the CONSIP2 pipeline, our results and show that where the method underperformed, the major factor was relying on a fixed set of parameters for the initial sequence alignments and not attempting to perform domain splitting as a preprocessing step. Proteins 2016; 84(Suppl 1):145–151. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26205532

  16. Diagnostic imaging in bovine orthopedics.

    PubMed

    Kofler, Johann; Geissbühler, Urs; Steiner, Adrian

    2014-03-01

    Although a radiographic unit is not standard equipment for bovine practitioners in hospital or field situations, ultrasound machines with 7.5-MHz linear transducers have been used in bovine reproduction for many years, and are eminently suitable for evaluation of orthopedic disorders. The goal of this article is to encourage veterinarians to use radiology and ultrasonography for the evaluation of bovine orthopedic disorders. These diagnostic imaging techniques improve the likelihood of a definitive diagnosis in every bovine patient but especially in highly valuable cattle, whose owners demand increasingly more diagnostic and surgical interventions that require high-level specialized techniques.

  17. Aging techniques for deep vein thrombosis: a systematic review.

    PubMed

    Dharmarajah, B; Sounderajah, V; Rowland, S P; Leen, E L S; Davies, A H

    2015-03-01

    Deep vein thrombosis is common with an incidence of 1 in 1000. Acute thrombus removal for extensive proximal deep vein thrombosis using catheter-directed techniques highlights the need for accurate assessment of thrombus age. This systematic review summarises experimental and clinical evidence of imaging techniques for aging deep vein thrombosis. Ultrasound elastography and magnetic resonance imaging were highlighted as the most studied imaging modalities. Elastography was shown to distinguish between acute and chronic clots, despite demonstrating difficulty in accurate aging of clots older than 10 days in rat models. Elastography is noted as a feasible adjunct to current first-line imaging for deep vein thrombosis using duplex ultrasonography. Combinations of magnetic resonance imaging techniques can identify acute, sub-acute and chronic thrombi using endogenous contrast agents and provide objective standardisation of the diagnostic process, with reduced onus upon operator dependency. Further validation is required of these novel imaging techniques prior to clinical implementation for deep vein thrombosis aging.

  18. Heterodyne QELS instrument for diagnostics of biological fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, Andrei D.; Ivanova, Mariya A.; Lomakin, Aleksey V.; Noskin, Valentin A.

    1997-05-01

    The instrument for the quasielastic light scattering (QELS), LCS-03 utilizes heterodyne optical scheme which permits a high resolution determination of particle size distribution. The vibration related problems, which are common for the heterodyne techniques, have been overcome by using a single glass block incorporating all the optical elements. The real-time correlation analysis of the photocurrent fluctuations is performed by a PC-embedded analog-to-digit converter card with digital signal processor (DSP) using an original algorithm. Both the technical specifications of the instrument and the software for the size distribution analysis are presented. The heterodyne technique consistently outperforms the homodyne one when the accurate characterization of the particle size distributions in heterogeneous systems is required. Diagnostic analysis of size distribution of particles in blood serum/plasma, liquor and saliva is such an application. This kind of diagnostics usually requires a simultaneous analysis of huge number of QELS data. The original statistical algorithm with graphic user interface is described. We discuss the technical specifications of instrumentation as well as methodical problems of biological fluids QELS diagnostics.

  19. Planetary Transmission Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  20. Laser scattering for temporal and spatial diagnostic of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Palomares Linares, Jose Maria

    2012-10-01

    Many recent industrial and technological applications like surface etching, inorganic films deposition, polymerization of surfaces or sterilization are developed within the field of low temperature plasmas. To study, monitor and model plasma processes is of great importance to have diagnostic tools that can provide reliable information on different plasma parameters. In general, laser scattering techniques provide a direct and accurate method for plasma diagnostic with spatial and temporal resolution. Laser Thomson scattering is used for the diagnostic of electron density and temperature, two of the most important parameters in low temperature discharges. With a similar setup Rayleigh and Raman scattering techniques are used for the diagnostic of gas density and temperature. In this contribution we deal with the different technical and theoretical aspects that are required for the application of these laser scattering techniques. Of special importance are the detection limit, laser stray light rejection and laser perturbations of the plasma. The present study is performed on different low temperature microwave discharges, both at low and atmospheric pressure. The laser scattering techniques provide information on the spatial distribution of the mentioned plasma parameters over different discharge conditions, including small micro-plasmas. Similarly, the temporal evolution of pulsed plasmas is studied, unraveling the features of the switching on and off phases of the discharges.

  1. Sensitivities and specificities of diagnostic tests and infection prevalence of Schistosoma haematobium estimated from data on adults in villages northwest of Accra in Ghana

    PubMed Central

    Koukounari, Artemis; Webster, Joanne P.; Donnelly, Christl A.; Bray, Bethany C.; Naples, Jean; Bosompem, Kwabena; Shiff, Clive

    2009-01-01

    Substantial uncertainties surround the sensitivities and specificities of diagnostic techniques for urinary schistosomiasis. We used Latent Class (LC) modeling to address this problem. In this study 220 adults in three villages northwest of Accra in Ghana were examined using five Schistosoma haematobium diagnostic measures: microscopic examination of urine for detection of S. haematobium eggs, dipsticks for detection of haematuria, tests for circulating antigens, serological antibody tests and ultrasound scans of the urinary system. Testing of the LC model indicated non-invariance of the performance of the diagnostic tests across different age groups while measurement invariance held for males and females and for the three villages. We therefore recommend the use of LC models for comparison between, and the identification of, the most accurate schistosomiasis diagnostic tests. Furthermore, microscopy and haematuria dipsticks were indicated through these models as the most appropriate techniques for detection of S. haematobium infection. PMID:19270295

  2. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  3. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  4. Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization.

    PubMed

    Sager, Monica; Yeat, Nai Chien; Pajaro-Van der Stadt, Stefan; Lin, Charlotte; Ren, Qiuyin; Lin, Jimmy

    2015-01-01

    Transcriptomic technologies are evolving to diagnose cancer earlier and more accurately to provide greater predictive and prognostic utility to oncologists and patients. Digital techniques such as RNA sequencing are replacing still-imaging techniques to provide more detailed analysis of the transcriptome and aberrant expression that causes oncogenesis, while companion diagnostics are developing to determine the likely effectiveness of targeted treatments. This article examines recent advancements in molecular profiling research and technology as applied to cancer diagnosis, clinical applications and predictions for the future of personalized medicine in oncology. PMID:26565429

  5. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts.

  6. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. PMID:27619194

  7. PML diagnostic criteria

    PubMed Central

    Aksamit, Allen J.; Clifford, David B.; Davis, Larry; Koralnik, Igor J.; Sejvar, James J.; Bartt, Russell; Major, Eugene O.; Nath, Avindra

    2013-01-01

    Objective: To establish criteria for the diagnosis of progressive multifocal leukoencephalopathy (PML). Methods: We reviewed available literature to identify various diagnostic criteria employed. Several search strategies employing the terms “progressive multifocal leukoencephalopathy” with or without “JC virus” were performed with PubMed, SCOPUS, and EMBASE search engines. The articles were reviewed by a committee of individuals with expertise in the disorder in order to determine the most useful applicable criteria. Results: A consensus statement was developed employing clinical, imaging, pathologic, and virologic evidence in support of the diagnosis of PML. Two separate pathways, histopathologic and clinical, for PML diagnosis are proposed. Diagnostic classification includes certain, probable, possible, and not PML. Conclusion: Definitive diagnosis of PML requires neuropathologic demonstration of the typical histopathologic triad (demyelination, bizarre astrocytes, and enlarged oligodendroglial nuclei) coupled with the techniques to show the presence of JC virus. The presence of clinical and imaging manifestations consistent with the diagnosis and not better explained by other disorders coupled with the demonstration of JC virus by PCR in CSF is also considered diagnostic. Algorithms for establishing the diagnosis have been recommended. PMID:23568998

  8. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  9. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  10. USING INDIVIDUALIZED READING AS A DIAGNOSTIC TECHNIQUE.

    ERIC Educational Resources Information Center

    WILSON, RICHARD C.

    THE IDENTIFICATION AND RECTIFICATION OF PERSONAL READING NEEDS THROUGH INDIVIDUALIZED READING PROCEDURES ARE DISCUSSED. THE SHIFT OF CORRECTIVE READING FROM GROUP TO INDIVIDUAL NEEDS IS URGED. REMEDIATION SHOULD BEGIN WITH TOPICS AGREEABLE AND ENJOYABLE TO THE LEARNER. THROUGH PUPIL CONFERENCES AND AN INFORMAL READING INVENTORY USING THIS TYPE OF…

  11. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  12. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  13. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  14. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  15. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  16. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    SciTech Connect

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  17. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Pace, D C

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  18. Diagnostics in Japan's microgravity experiments

    NASA Technical Reports Server (NTRS)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  19. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals†

    PubMed Central

    Dixit, Manish

    2013-01-01

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  20. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  1. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  2. Pattern classification approach to rocket engine diagnostics

    SciTech Connect

    Tulpule, S.

    1989-01-01

    This paper presents a systems level approach to integrate state-of-the-art rocket engine technology with advanced computational techniques to develop an integrated diagnostic system (IDS) for future rocket propulsion systems. The key feature of this IDS is the use of advanced diagnostic algorithms for failure detection as opposed to the current practice of redline-based failure detection methods. The paper presents a top-down analysis of rocket engine diagnostic requirements, rocket engine operation, applicable diagnostic algorithms, and algorithm design techniques, which serve as a basis for the IDS. The concepts of hierarchical, model-based information processing are described, together with the use uf signal processing, pattern recognition, and artificial intelligence techniques which are an integral part of this diagnostic system. 27 refs.

  3. Behavioral diagnostics.

    PubMed

    Bailey, J S; Pyles, D A

    1989-01-01

    The contemporary behavior analyst, to operate ethically and effectively, must be aware of many more factors affecting behavior than simple consequences. Although the literature demonstrating the effectiveness of active behavior management is impressive, a compelling argument can be made that a great number of behavior problem seen in individuals with developmental disabilities may be attributable to factors other than consequences. Our experience has been more often than not that physiological, organic, medication, or situational variables are the actual culprits in maladaptive behavior. Individuals with severe or profound retardation may respond to aversive features of their environment by displaying noncompliance, tantrums, aggression, or self-injurious behavior. These antecedents can affect their behavior just as powerfully as can the consequences of their behavior. Behavior analysts must become sensitive to these potential factors and be prepared to employ behavioral diagnostic strategies in the search for the causes of maladaptive behavior. Finally, they must be prepared to design rather unconventional passive behavior management treatment programs involving the manipulation of the antecedent environment. In the case of Carrie, from the example at the beginning of this paper, the analysis yielded the hypothesis that her face scratching was a reaction to sinus blockage caused by seasonal allergies. Her treatment involved daily dosages of antihistamines administered by our nurses and subsequent elimination of the scratching. Tom was found to be suffering from "wheelchair fatigue." When he was allowed to recline on other surfaces (e.g., bean bag chair, mat, bolster) on a regular basis, he did not attempt any form of self-injury. Melissa was found to have a severe case of Pre Menstrual Syndrome as well as seizure disorder, and was treated with the appropriate medications. Her headbanging was reduced to a few minor incidents per month. Walter's tantrums on closer

  4. Nd:YAG laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Pope, L. E.; McDonald, T. G.

    1981-11-01

    A program to develop diagnostic techniques for pulsed Nd:YAG lasers for welding is described, and problems encountered when deviations from ideal optical collimation of a laser beam is defined, the diagnostic system is described, and the SNLA welding system is discussed.

  5. Timely Diagnostic Feedback for Database Concept Learning

    ERIC Educational Resources Information Center

    Lin, Jian-Wei; Lai, Yuan-Cheng; Chuang, Yuh-Shy

    2013-01-01

    To efficiently learn database concepts, this work adopts association rules to provide diagnostic feedback for drawing an Entity-Relationship Diagram (ERD). Using association rules and Asynchronous JavaScript and XML (AJAX) techniques, this work implements a novel Web-based Timely Diagnosis System (WTDS), which provides timely diagnostic feedback…

  6. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  7. Chronic Meningitis: Simplifying a Diagnostic Challenge.

    PubMed

    Baldwin, Kelly; Whiting, Chris

    2016-03-01

    Chronic meningitis can be a diagnostic dilemma for even the most experienced clinician. Many times, the differential diagnosis is broad and encompasses autoimmune, neoplastic, and infectious etiologies. This review will focus on a general approach to chronic meningitis to simplify the diagnostic challenges many clinicians face. The article will also review the most common etiologies of chronic meningitis in some detail including clinical presentation, diagnostic testing, treatment, and outcomes. By using a case-based approach, we will focus on the key elements of clinical presentation and laboratory analysis that will yield the most rapid and accurate diagnosis in these complicated cases.

  8. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review

    PubMed Central

    Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio

    2009-01-01

    Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310

  9. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    PubMed Central

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  10. Rapid infectious diseases diagnostics using Smartphones

    PubMed Central

    Bates, Matthew

    2015-01-01

    The “Smartphone” is an almost universal possession in high-income populations, and is rapidly becoming so in lower-income regions, particularly among urban populations, and serves social networking and a quest for information and knowledge. The field of infectious disease diagnostics is at a potential watershed moment, with the essential building blocks for the development of diagnostic assays being ever more available and affordable, which is leading to creative innovative approaches to developing much-needed accurate and simple point-of-care (POC) diagnostic tools for high disease burden, low-income settings. We review the importance and implications of a paper published in Science Translational Medicine on the development of a smartphone-powered and -controlled multiplex immunological assay that tests for HIV and syphilis simultaneously. This is reviewed in the context of other prototype smartphone-enabled/assisted diagnostic devices, and how such developments might shape the future of the POC diagnostics field. PMID:26488011

  11. Diagnostic imaging in internal medicine

    SciTech Connect

    Eisenberg, R.L.

    1985-01-01

    This book examines medical diagnostic techniques. Topics considered include biological considerations in the approach to clinical medicines; infectious diseases; disorders of the heart; disorders of the vascular system; disorders of the respiratory system; diseases of the kidneys and urinary tract; disorders of the alimentary tract; disorders of the hepatobiliary system and pancreas; disorders of the hematopoietic system; disorders of bone and bone mineralization; disorders of the joints, connective tissues, and striated muscles; disorders of the nervous system; miscellaneous disorders; and procedures in diagnostic imaging.

  12. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  13. Diagnostic Potential of Pulsed Arterial Spin Labeling in Alzheimer's Disease

    PubMed Central

    Trebeschi, Stefano; Riederer, Isabelle; Preibisch, Christine; Bohn, Karl P.; Förster, Stefan; Alexopoulos, Panagiotis; Zimmer, Claus; Kirschke, Jan S.; Valentinitsch, Alexander

    2016-01-01

    Alzheimers disease (AD) is the most common cause of dementia. Although the underlying pathology is still not completely understood, several diagnostic methods are available. Frequently, the most accurate methods are also the most invasive. The present work investigates the diagnostic potential of Pulsed Arterial Spin Labeling (PASL) for AD: a non-invasive, MRI-based technique for the quantification of regional cerebral blood flow (rCBF). In particular, we propose a pilot computer aided diagnostic (CAD) procedure able to discriminate between healthy and diseased subjects, and at the same time, providing visual informative results. This method encompasses the creation of a healthy model, the computation of a voxel-wise likelihood function as comparison between the healthy model and the subject under examination, and the correction of the likelihood function via prior distributions. The discriminant analysis is carried out to maximize the accuracy of the classification. The algorithm has been trained on a dataset of 81 subjects and achieved a sensitivity of 0.750 and a specificity of 0.875. Moreover, in accordance with the current pathological knowledge, the parietal lobe, and limbic system are shown to be the main discriminant factors. PMID:27147946

  14. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  15. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  16. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  17. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  18. AST Combustion Workshop: Diagnostics Working Group Report

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.

    1996-01-01

    A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.

  19. Biopsy techniques for intraocular tumors

    PubMed Central

    Rishi, Pukhraj; Dhami, Abhinav; Biswas, Jyotirmay

    2016-01-01

    Biopsy involves the surgical removal of a tissue specimen for histopathologic evaluation. Most intraocular tumors are reliably diagnosed based on the clinical evaluation or with noninvasive diagnostic techniques. However, accurately diagnosing a small percentage of tumors can be challenging. A tissue biopsy is thus needed to establish a definitive diagnosis and plan the requisite treatment. From fine-needle aspiration biopsy (FNAB) to surgical excision, all tissue collection techniques have been studied in the literature. Each technique has its indications and limitations. FNAB has been reported to provide for 88–95% reliable and safe ophthalmic tumor diagnosis and has gained popularity for prognostic purposes and providing eye conserving treatment surgeries. The technique and instrumentation for biopsy vary depending upon the tissue involved (retina, choroid, subretinal space, vitreous, and aqueous), suspected diagnosis, size, location, associated retinal detachment, and clarity of the media. The cytopathologist confers a very important role in diagnosis and their assistance plays a key role in managing and planning the treatment for malignancies. PMID:27488148

  20. Immunosensors in Clinical Laboratory Diagnostics.

    PubMed

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2016-01-01

    The application of simple, cost-effective, rapid, and accurate diagnostic technologies for detection and identification of cardiac and cancer biomarkers has been a central point in the clinical area. Biosensors have been recognized as efficient alternatives for the diagnostics of various diseases due to their specificity and potential for application on real samples. The role of nanotechnology in the construction of immunological biosensors, that is, immunosensors, has contributed to the improvement of sensitivity, since they are based in the affinity between antibody and antigen. Other analytes than biomarkers such as hormones, pathogenic bacteria, and virus have also been detected by immunosensors for clinical point-of-care applications. In this chapter, we first introduced the various types of immunosensors and discussed their applications in clinical diagnostics over the recent 6 years, mainly as point-of-care technologies for the determination of cardiac and cancer biomarkers, hormones, pathogenic bacteria, and virus. The future perspectives of these devices in the field of clinical diagnostics are also evaluated. PMID:26975970

  1. ULTRASONOGRAPHY, AN EFFECTIVE TOOL IN DIAGNOSING PLANTAR FASCIITIS: A SYSTEMATIC REVIEW OF DIAGNOSTIC TRIALS

    PubMed Central

    Wyland, Matthew; Applequist, Lee; Bolowsky, Erin; Klingensmith, Heather; Virag, Isaac

    2016-01-01

    Background Plantar fasciitis (PF) is the most common cause of heel pain that affects 10% of the general population, whether living an athletic or sedentary lifestyle. The most frequent mechanism of injury is an inflammatory response that is caused by repetitive micro trauma. Many techniques are available to diagnose PF, including the use of ultrasonography (US). Purpose The purpose of this study is to systematically review and appraise previously published articles published between the years 2000 and 2015 that evaluated the effectiveness of using US in the process of diagnosing PF, as compared to alternative diagnostic methods. Methods A total of eight databases were searched to systematically review scholarly (peer reviewed) diagnostic and intervention articles pertaining to the ability of US to diagnose PF. Results Using specific key words the preliminary search yielded 264 articles, 10 of which were deemed relevant for inclusion in the study. Two raters independently scored each article using the 15 point modified QUADAS scale. Discussion Six studies compared the diagnostic efficacy of US to another diagnostic technique to diagnose PF, and four studies focused on comparing baseline assessment of plantar fascia before subsequent intervention. The most notable US outcomes measured were plantar fascia thickness, enthesopathy, and hypoechogenicity. Conclusion US was found to be accurate and reliable compared to alternative reference standards like MRI in the diagnosis of PF. The general advantages of US (e.g. cost efficient, ease of administration, non-invasive, limited contraindications) make it a superior diagnostic modality in the diagnosis of PF. US should be considered in rehabilitation clinics to effectively diagnose PF and to accurately monitor improvement in the disease process following rehabilitation interventions. Level of Evidence 1A PMID:27757279

  2. Huntington Disease: Molecular Diagnostics Approach.

    PubMed

    Bastepe, Murat; Xin, Winnie

    2015-10-06

    Huntington disease (HD) is caused by expansion of a CAG trinucleotide repeat in the first exon of the Huntingtin (HTT) gene. Molecular testing of Huntington disease for diagnostic confirmation and disease prediction requires detection of the CAG repeat expansion. There are three main types of HD genetic testing: (1) diagnostic testing to confirm or rule out disease, (2) presymptomatic testing to determine whether an at-risk individual inherited the expanded allele, and (3) prenatal testing to determine whether the fetus has inherited the expanded allele. This unit includes protocols that describe the complementary use of polymerase chain reactions (PCR) and Southern blot hybridization to accurately measure the CAG trinucleotide repeat size and interpret the test results. In addition, an indirect linkage analysis that does not reveal the unwanted parental HD status in a prenatal testing will also be discussed.

  3. Evidence-based medicine for diagnostic questions.

    PubMed

    Evers, Johannes L H; Land, Jolande A; Mol, Ben W

    2003-02-01

    When searching the medical care literature for evidence on a diagnostic test, three questions should be addressed each time a study is found: (1) Is this evidence about a diagnostic test valid? (2) Does the test accurately discriminate between patients who do and patients who do not have a specific disorder? (3) Can the test be applied to this patient who is right now sitting in front of me? We will discuss hysterosalpingography (HSG) as an example of a valid and accurate diagnostic test to be applied in a general population of subfertile couples to assess tubal patency (specificity 0.83). HSG is an unreliable test for diagnosing tubal occlusion however (sensitivity 0.65). If HSG were normal, other investigations could be pursued and diagnostic laparoscopy (LS) only performed if conception had not occurred by a later date. If HSG were abnormal, LS would be needed to confirm or exclude tubal occlusion. Patients with risk factors for pelvic or tubal disease, including an abnormal Chlamydia antibody test (CAT) and those showing abnormalities at pelvic examination, should proceed directly to LS because they are significantly more likely to have pelvic pathology. A completely different issue would be HSG as a prognostic test for the occurrence of pregnancy. In theory, the occurrence of pregnancy may be considered a gold standard; however, in reproductive medicine, with so many causes of subfertility other than tubal pathology, a diagnostic test for one single disorder, if normal, will never be able to accurately predict the eventual occurrence of pregnancy.

  4. Diagnostic and forensic toxicology.

    PubMed

    Galey, F D

    1995-12-01

    In most competent veterinary diagnostic laboratories, analytical findings are interpreted by the veterinary toxicologist to determine the significance of the finding in view of historic, clinical, and pathologic findings. A veterinary toxicologist also will provide consultation about possible toxic rule-outs for a case, treatment of affected animals, and prevention of additional cases. Once all of the information is available, a complete summary of the findings can be provided to the client. When the procedures outlined are followed, including a systematic approach to collecting all the evidence (historic, clinical, pathologic, and analytic), proper sampling techniques, and good communication between the clinician and the client and laboratory, the usefulness of the toxicology investigation will be maximized.

  5. Clinically based diagnostic wax-up for optimal esthetics: the diagnostic mock-up.

    PubMed

    Simon, Harel; Magne, Pascal

    2008-05-01

    A diagnostic wax-up can enhance the predictability of treatment by modeling the desired result in wax prior to treatment. It is critical to correlate the wax-up to the patient to avoid a result that appears optimal on the casts but does not correspond to the patient's smile. This article reviews the applications and techniques for clinically based diagnostic wax-up, and focuses on the diagnostic mock-up philosophy as a means to obtain predictable esthetics and function.

  6. Diagnostic vitrectomy for infectious uveitis

    PubMed Central

    Jeroudi, Abdallah; Yeh, Steven

    2014-01-01

    The identification of an infectious or noninfectious uveitis syndrome is important to determine the range of therapeutic and prognostic implications of that disease entity. Diagnostic dilemmas arise with atypical history, atypical clinical presentations, inconclusive diagnostic workup, and persistent or worsened inflammation despite appropriate immunosuppression. More invasive intraocular testing is indicated in these situations particularly in infectious uveitis where a delay in treatment may result in worsening of the patient’s disease and a poor visual outcome. Laboratory analysis of vitreous fluid via diagnostic pars plana vitrectomy is an important technique in the diagnostic armamentarium, but the most important aspects of sample collection include rapid processing, close coordination with an ophthalmic pathology laboratory, and directed testing on this limited collected sample. Culture and staining has utility in bacterial, fungal, and nocardial infection. Polymerase chain reaction (PCR) analysis has shown promising results for bacterial endophthalmitis and infection with mycobacterium tuberculosis whereas PCR testing for viral retinitides and ocular toxoplasmosis has a more established role. Antibody testing is appropriate for toxoplasmosis and toxocariasis, and may be complementary to PCR for viral retinitis. Masquerade syndromes represent neoplastic conditions that clinically appear as infectious or inflammatory conditions and should be considered as part of the differential diagnosis. Diagnostic vitrectomy and chorioretinal biopsy are thus critical tools for the management of patients in whom an infectious etiology of uveitis is suspected. PMID:24613892

  7. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  8. Gonorrhoea diagnostics: An update.

    PubMed

    Verma, R; Sood, S

    2016-01-01

    Diagnosis of gonorrhoea is an ongoing challenge. The organism is fastidious requiring meticulous collection and transport for successful cultivation. Asymptomatic infections are common which go undetected by conventional methods thereby leading to continued transmission and the risk of complications. The nucleic acid amplification tests, now increasingly used in developed countries, offer improved sensitivity compared to bacterial culture. However, these continue to suffer sequence related problems leading to false positive and false negative results. Further, these cannot be used for generation of data on antibiotic susceptibility because genetic markers of antibiotic resistance to recommended therapies have not been fully characterised. They are unaffordable in a setting like ours where reliance is placed on syndromic approach for sexually transmitted infection (STI) management. The use of syndromic approach has resulted in a considerable decline in the number of Neisseria gonorrhoeae isolates that have been cultured for diagnostic purposes. Many laboratories formerly doing so are no longer performing culture for gonococci, and the basic skills have been lost. There is a need to not only revive this skill but also adopt newer technologies that can aid in accurate diagnosis in a cost-effective manner. There is room for innovation that can facilitate the development of a point-of-care test for this bacterial STI. PMID:27080763

  9. Intelligent diagnostics systems

    NASA Technical Reports Server (NTRS)

    Mcquiston, Barbara M.; Dehoff, Ronald L.

    1992-01-01

    Intelligent systems have been applied to today's problems and could also be applied to space operations integrity. One of these systems is the XMAN tool designed for 'troubleshooting' jet engines. XMAN is the eXpert MAiNtenance tool developed to be an expert information analysis tool which stores trending and diagnostic data on Air Force engines. XMAN operates with a 'network topology' which follows a flow chart containing engine management information reports required by the governments technical order procedures. With XMAN technology, the user is able to identify engine problems by presenting the assertions of the fault isolation logic and attempting to satisfy individual assertions by referring to the databases created by an engine monitoring system. The troubleshooting process requires interaction between the technician and the computer to acquire new evidence form auxiliary maintenance tests corroboration of analytical results to accurately diagnose equipment malfunctions. This same technology will be required for systems which are functioning in space either with an onboard crew, or with an unmanned system. The technology and lessons learned developing this technology while suggesting definite applications for its use with developing space systems are addressed.

  10. Diagnostic Procedures of Itch.

    PubMed

    Reich, Adam; Szepietowski, Jacek C

    2016-01-01

    A complex and multifactorial pathogenesis of itch makes the proper diagnosis of underlying disease a difficult and challenging clinical problem. The examination of every patient with itch should be started by gathering an accurate history. During the anamnesis it is important to obtain data about the beginning of the appearance of symptoms, its location, diurnal variation, and the factors influencing itch perception. After careful anamnesis the patient should undergo a detailed physical examination, with particular attention to the skin in order to look for any signs of skin lesions. Special attention should be paid to distinguish the primary lesion from the changes resulting from scratching. In patients in whom the etiology of the itch cannot be identified on the basis of the medical examination, a panel of primary screen laboratory examination may be required, and if necessary, depending on the results of basic laboratory results and data from medical history, additional diagnostic tests should be considered. In patients in whom an organic cause of itching has not been established, itch is most likely of undetermined origin; however, psychogenic causes should also be suspected and ruled out. In conclusion, it could be stated that itch is a common symptom of many skin diseases, systemic of neurological diseases. Despite the complex etiology of the disease, an exact cause of itch should be searched for in each patient, as successful therapy is largely dependent on the determination of the cause of the itching. PMID:27578067

  11. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies. PMID:27187271

  12. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies.

  13. A fast and accurate method for echocardiography strain rate imaging

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Sahba, Nima; Hajebi, Nima; Nambakhsh, Mohammad Saleh

    2009-02-01

    Recently Strain and strain rate imaging have proved their superiority with respect to classical motion estimation methods in myocardial evaluation as a novel technique for quantitative analysis of myocardial function. Here in this paper, we propose a novel strain rate imaging algorithm using a new optical flow technique which is more rapid and accurate than the previous correlation-based methods. The new method presumes a spatiotemporal constancy of intensity and Magnitude of the image. Moreover the method makes use of the spline moment in a multiresolution approach. Moreover cardiac central point is obtained using a combination of center of mass and endocardial tracking. It is proved that the proposed method helps overcome the intensity variations of ultrasound texture while preserving the ability of motion estimation technique for different motions and orientations. Evaluation is performed on simulated, phantom (a contractile rubber balloon) and real sequences and proves that this technique is more accurate and faster than the previous methods.

  14. An improved molecular diagnostic assay for canine and feline dermatophytosis.

    PubMed

    Cafarchia, Claudia; Gasser, Robin B; Figueredo, Luciana A; Weigl, Stefania; Danesi, Patrizia; Capelli, Gioia; Otranto, Domenico

    2013-02-01

    The few studies attempting to specifically characterize dermatophytes from hair samples of dogs and cats using PCR-based methodology relied on sequence-based analysis of selected genetic markers. The aim of the present investigation was to establish and evaluate a PCR-based approach employing genetic markers of nuclear DNA for the specific detection of dermatophytes on such specimens. Using 183 hair samples, we directly compared the test results of our one-step and nested-PCR assays with those based on conventional microscopy and in vitro culture techniques (using the latter as the reference method). The one step-PCR was highly accurate (AUC > 90) for the testing of samples from dogs, but only moderately accurate (AUC = 78.6) for cats. A nested-PCR was accurate (AUC = 93.6) for samples from cats, and achieved higher specificity (94.1 and 94.4%) and sensitivity (100 and 94.9%) for samples from dogs and cats, respectively. In addition, the nested-PCR allowed the differentiation of Microsporum canis from Trichophyton interdigitale (zoophilic) and geophilic dermatophytes (i.e., Microsporum gypseum or Trichophyton terrestre), which was not possible using the one step-assay. The PCRs evaluated here provide practical tools for diagnostic applications to support clinicians in initiating prompt and targeted chemotherapy of dermatophytoses. PMID:22686247

  15. R&D ERL: Diagnostics

    SciTech Connect

    Gassner, D.

    2010-01-01

    The Energy Recovery Linac (ERL) prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This report outlines requirements on the ERL diagnostics and describes its setup and modes of operation. The BNL Prototype ERL is an R&D effort aimed at reducing risks and costs associated with the proposed RHIC II electron cooler and eRHIC collider. The ERL will serve as a test bed for developing and testing instrumentation and studying physics and technological issues relevant to very high current ERL's. The prototype ERL, mated to a high current SRF gun, is expected to demonstrate production and energy recovery of high intensity, low emittance beams with a current of up to a few hundred milliamps. To successfully accomplish this task the ERL will include beam diagnostics required to characterize and tune beam parameters, as well as for machine protection. A preliminary diagnostics plan was presented in earlier publications. In this report, we describe the diagnostics presently planned to provide the data needed to meet these goals.

  16. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  17. Two terminal diagnostics for cells in series connected photovoltaic modules

    SciTech Connect

    McMahon, T.J.; Basso, T.S.

    1995-11-01

    The authors have developed a method that allows us to know if a cell`s shunt resistance is affecting the output of a two-terminal, series-connected photovoltaic module, without the need of encapsulation. This two-terminal diagnostic method directly measures the shunt resistance of the individual cells within a series-connected module non-intrusively. Being a phase sensitive, lock-in technique, individual cell shunt resistance values are measured over a wide range, from a fraction of an ohm to thousands of ohms. The authors have applied this method to amorphous Si, Si and CuInSe{sub 2}-based modules, some with as few as eight cells in series, but usually with 28 to 68 cells. ``Two-terminal values`` are more accurate for cells that have lower shunt resistance, i.e., the ``problem`` cells. Cells with visual defects may be a significant problem if they provide a substantial shunt path.

  18. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  19. Photochemical urban airshed modeling using diagnostic and dynamic meteorological fields

    NASA Astrophysics Data System (ADS)

    Godowitch, J. M.; Vukovich, J. M.

    1994-06-01

    Spatial pollutant patterns and peak concentrations are strongly influenced by meteorological parameters. Therefore, accurate hourly, gridded meteorological data sets are crucial inputs for photochemical modeling. An effort has been underway to apply both diagnostic and dynamic meteorological models in order to generate inputs needed in photochemical grid model simulations. The model being employed is a modified version of the Urban Airshed Model (UAM), which was designed to accept input files generated from both meteorological approaches. The diagnostic meteorological model (UAMMET) relies on routine or intensive measurements to generate hourly 3-D gridded fields of winds, temperatures, vertical eddy diffusivities, photolytic rates, and hourly spatially-varying fields of mixing height and deposition velocities. The diagnostic wind model (DWM) is a key module used generate 3-D wind fields. A dynamic mesoscale meteorological model (a numerical hydrostatic code equipped with a four-dimensional data assimilation technique) generates a gridded meteorological output file, which is post-processed through an interface program to create UAM-compatible wind and mixing height files. In this effort, both meteorological models were exercised in two different urban domains situated next to water bodies and with significant terrain features (i.e., greater metropolitan NYC and LA basin). Results of simulations with the modified UAM model were evaluated in order to investigate the impact on modeled ozone patterns and peak concentrations using inputs from these two meteorological approaches. A historical high ozone day in the NYC domain was simulated which exhibited a strong large scale flow pattern conducive to interurban transport along the northeastern coast. The evaluation results revealed absolute errors were comparable (about 22%) among the simulations, however, higher peak ozone was obtained using dynamically generated wind fields. Results from simulations of an ozone episode

  20. Diagnostics for ITER

    SciTech Connect

    Donne, A. J. H.; Hellermann, M. G. von; Barnsley, R.

    2008-10-22

    After an introduction into the specific challenges in the field of diagnostics for ITER (specifically high level of nuclear radiation, long pulses, high fluxes of particles to plasma facing components, need for reliability and robustness), an overview will be given of the spectroscopic diagnostics foreseen for ITER. The paper will describe both active neutral-beam based diagnostics as well as passive spectroscopic diagnostics operating in the visible, ultra-violet and x-ray spectral regions.

  1. Diagnostic Ophthalmic Ultrasound for Radiologists.

    PubMed

    Kendall, Cynthia J; Prager, Thomas C; Cheng, Han; Gombos, Dan; Tang, Rosa A; Schiffman, Jade S

    2015-08-01

    Ophthalmic ultrasound is an invaluable tool that provides quick and noninvasive evaluation of the eye and the orbit. It not only allows the clinicians to view structures that may not be visible with routine ophthalmic equipment or neuroimaging techniques but also provides unique diagnostic information in various ophthalmic conditions. In this article, the basic principles of ophthalmic ultrasound and examination techniques are discussed. Its clinical application is illustrated through a variety of ocular pathologic abnormalities (eg, narrow angles, ciliary body tumor, detached retina, choroidal melanoma, and papilledema).

  2. Establishment and Comparison of Two Different Diagnostic Platforms for Detection of DENV1 NS1 Protein.

    PubMed

    Tang, Yin-Liang; Chiu, Chien-Yu; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Destura, Raul V; Chao, Day-Yu; Wu, Han-Chung

    2015-01-01

    Dengue virus (DENV) infection is currently at pandemic levels, with populations in tropical and subtropical regions at greatest risk of infection. Early diagnosis and management remain the cornerstone for good clinical outcomes, thus efficient and accurate diagnostic technology in the early stage of the disease is urgently needed. Serotype-specific monoclonal antibodies (mAbs) against the DENV1 nonstructural protein 1 (NS1), DA12-4, DA13-2, and DA15-3, which were recently generated using the hybridoma technique, are suitable for use in diagnostic platforms. Immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA) and Western blot analysis further confirmed the serotype specificity of these three monoclonal antibodies. The ELISA-based diagnostic platform was established using the combination of two highly sensitive mAbs (DA15-3 and DB20-6). The same combination was also used for the flow cytometry-based diagnostic platform. We report here the detection limits of flow cytometry-based and ELISA-based diagnostic platforms using these mAbs to be 0.1 and 1 ng/mL, respectively. The collected clinical patient serum samples were also assayed by these two serotyping diagnostic platforms. The sensitivity and specificity for detecting NS1 protein of DENV1 are 90% and 96%, respectively. The accuracy of our platform for testing clinical samples is more advanced than that of the two commercial NS1 diagnostic platforms. In conclusion, our platforms are suitable for the early detection of NS1 protein in DENV1 infected patients. PMID:26610481

  3. Establishment and Comparison of Two Different Diagnostic Platforms for Detection of DENV1 NS1 Protein

    PubMed Central

    Tang, Yin-Liang; Chiu, Chien-Yu; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Destura, Raul V.; Chao, Day-Yu; Wu, Han-Chung

    2015-01-01

    Dengue virus (DENV) infection is currently at pandemic levels, with populations in tropical and subtropical regions at greatest risk of infection. Early diagnosis and management remain the cornerstone for good clinical outcomes, thus efficient and accurate diagnostic technology in the early stage of the disease is urgently needed. Serotype-specific monoclonal antibodies (mAbs) against the DENV1 nonstructural protein 1 (NS1), DA12-4, DA13-2, and DA15-3, which were recently generated using the hybridoma technique, are suitable for use in diagnostic platforms. Immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA) and Western blot analysis further confirmed the serotype specificity of these three monoclonal antibodies. The ELISA-based diagnostic platform was established using the combination of two highly sensitive mAbs (DA15-3 and DB20-6). The same combination was also used for the flow cytometry-based diagnostic platform. We report here the detection limits of flow cytometry-based and ELISA-based diagnostic platforms using these mAbs to be 0.1 and 1 ng/mL, respectively. The collected clinical patient serum samples were also assayed by these two serotyping diagnostic platforms. The sensitivity and specificity for detecting NS1 protein of DENV1 are 90% and 96%, respectively. The accuracy of our platform for testing clinical samples is more advanced than that of the two commercial NS1 diagnostic platforms. In conclusion, our platforms are suitable for the early detection of NS1 protein in DENV1 infected patients. PMID:26610481

  4. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  11. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at

  12. Target Diagnostics Supports NIF's Path to Ignition

    SciTech Connect

    Shelton, R

    2011-12-07

    The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by

  13. Diagnostics for Fast Ignition Science

    SciTech Connect

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  14. Millimeter-wave backscatter diagnostic for the study of short scale length plasma fluctuations (invited)

    SciTech Connect

    Rhodes, T. L.; Peebles, W. A.; Nguyen, X.; VanZeeland, M. A.; De Grassie, J. S.; Doyle, E. J.; Wang, G.; Zeng, L.

    2006-10-15

    The development, laboratory tests, and experimental results relating to a new high-k diagnostic technique for the study of short scale length turbulence are reported. The system is based on backscattering of a millimeter-wave (94 GHz) probe beam by density fluctuations within the plasma. This diagnostic has been fully integrated with an upgraded far-infrared forward scattering system on the DIII-D tokamak. The combined system monitors a broad turbulent spectral range from 0 to 40 cm{sup -1}. Short-scale (e.g., electron temperature gradient scale) modes as well as longer wavelength (e.g., ion temperature gradient and trapped electron mode scale) instabilities are simultaneously monitored to accurately characterize plasma turbulence. The backscattering geometry and innovative use of the second harmonic electron cyclotron resonance as an internal 'beam dump' allow detection of small level fluctuations at high k, while maximizing discrimination against the ubiquitous, larger level, low-k fluctuations.

  15. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  16. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA. PMID:26517245

  17. The fusion diagnostic gamma experiment: A high-bandwidth fusion diagnostic of the National Ignition Facility

    SciTech Connect

    Moran, M.J.

    1999-01-01

    Diagnostics for the National Ignition Facility/inertial confinement fusion program must include good characterization of the fusion source. Ideally, diagnostics would measure the spatially resolved history of the fusion reaction rate and temperature. Existing diagnostics can satisfy this goal only partially. One class of new techniques that could play a major role in high-yield diagnostics is measurements based on fusion {gamma} rays. The fusion diagnostic gamma experiment can perform energy-resolved measurements of (D,T) fusion reaction rates. This diagnostic is based on the 16.7 MeV {gamma} rays that are produced by (D,T) fusion. The {gamma} rays are free of spectral dispersion and can be detected (via Compton recoil electrons) with a high bandwidth Cherenkov detector. A simple magnetic monochromator selects signals from the 16.7 MeV {gamma} rays and reduces background signals from nonfusion {gamma} rays. {copyright} {ital 1998 American Institute of Physics.}

  18. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    proteins can also be extensively modified by PTMs26-31 or by their interactions with other biomolecules or small molecules.32,33 Thus, it is highly desirable that proteins, the primary functional macromolecules involved in almost all biological activities, can be studied directly and systematically to determine their diverse properties and interplay. Such proteome-wide analysis is expected to provide a wealth of biological information, such as sequence, quantity, PTMs, interactions, activities, subcellular distribution and structure of proteins, which is critical to the comprehensive understanding of the biological systems. However, the de novo analysis of proteins isolated from cells, tissues or bodily fluids poses significant challenges due to the tremendous complexity and depth of the proteome, which necessitates high-throughput and highly sensitive analytical techniques. It is therefore not surprising that mass spectrometry (MS) has become an indispensable technology for proteome analysis.

  19. Advanced diagnostic methods in avionics

    NASA Astrophysics Data System (ADS)

    Popyack, Leonard Joseph, Jr.

    Advanced diagnostic systems facilitate further enhancement of reliability and safety of modern aircraft. Unlike classical reliability analyses, addressing specific classes of systems or devices, this research is aimed at the development of methods for assessment of the individual reliability characteristics of particular system components subjected to their unique histories of operational conditions and exposure to adverse environmental factors. Individual reliability characteristics are crucial for the implementation of the most efficient maintenance practice of flight-critical system components, known as "condition-based maintenance." The dissertation presents hardware and software aspects of a computer-based system, Time-Stress Monitoring Device, developed to record, store, and analyze raw data characterizing operational and environmental conditions and performance of electro-mechanical flight control system components and aircraft electronics (avionics). Availability of this data facilitates formulation and solution of such diagnostic problems as estimation of the probability of failure and life expectancy of particular components, failure detection, identification, and prediction. Statistical aspects of system diagnostics are considered. Particular diagnostic procedures utilizing cluster analysis, Bayes' technique, and regression analysis are formulated. Laboratory and simulation experiment that verify the obtained results are provided.

  20. Accurate Thermal Conductivities from First Principles

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  1. Moving past serology: Diagnostic options without serum.

    PubMed

    Reichel, Michael P; Lanyon, Sasha R; Hill, Fraser I

    2016-09-01

    Detecting antibodies formed in serum in response to infection is the traditional function of serology. Diagnostic modalities have included complement fixation tests, agar gel immune-diffusion, radioimmunoassay, ELISA and immunofluorescence. More recent technology now allows for the direct detection of pathogens by PCR. This review details the options for diagnostic testing using specimen types other than serum, identifying the advantages and disadvantages of these options and providing evidence for more widespread use of these techniques and specimen types. PMID:27160006

  2. Turbofan engine core noise source diagnostics

    NASA Technical Reports Server (NTRS)

    Karchmer, Allen M.

    1987-01-01

    The paper describes a turbofan-engine measurement program utilizing a variety of diagnostic techniques to identify a source of core-generated noise which contributes to the overall external engine noise characteristics. Included in the turbofan engine diagnostics are data examination, time domain correlation, and frequency domain analysis. It is found that the turbulent pressure fluctuations within the combustor are a source for core noise which propagates through the nozzle and radiates to the far-field.

  3. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  4. Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity

    PubMed Central

    Mwale, Fackson; Iatridis, James C.

    2008-01-01

    Degenerative disc disease has been implicated as a major component of spine pathology. The current major clinical procedures for treating disc degeneration have been disappointing, because of altered spinal mechanics leading to subsequent degeneration at adjacent disc levels. Disc pathology treatment is shifting toward prevention and treatment of underlying etiologic processes at the level of the disc matrix composition and integrity and the biomechanics of the disc. The ability to perform such treatment relies on one’s ability to accurately and objectively assess the state of the matrix and the effectiveness of treatment by a non-invasive technique. In this review, we will summarize our advances in efforts to develop an objective, accurate, non-invasive diagnostic tool (quantitative MRI) in the detection and quantification of matrix composition and integrity and of biomechanical changes in early intervertebral disc degeneration. PMID:19005703

  5. Accurate assessment and identification of naturally occurring cellular cobalamins

    PubMed Central

    Hannibal, Luciana; Axhemi, Armend; Glushchenko, Alla V.; Moreira, Edward S.; Brasch, Nicola E.; Jacobsen, Donald W.

    2009-01-01

    Background Accurate assessment of cobalamin profiles in human serum, cells, and tissues may have clinical diagnostic value. However, non-alkyl forms of cobalamin undergo β-axial ligand exchange reactions during extraction, which leads to inaccurate profiles having little or no diagnostic value. Methods Experiments were designed to: 1) assess β-axial ligand exchange chemistry during the extraction and isolation of cobalamins from cultured bovine aortic endothelial cells, human foreskin fibroblasts, and human hepatoma HepG2 cells, and 2) to establish extraction conditions that would provide a more accurate assessment of endogenous forms containing both exchangeable and non-exchangeable β-axial ligands. Results The cobalamin profile of cells grown in the presence of [57Co]-cyanocobalamin as a source of vitamin B12 shows that the following derivatives are present: [57Co]-aquacobalamin, [57Co]-glutathionylcobalamin, [57Co]-sulfitocobalamin, [57Co]-cyanocobalamin, [57Co]-adenosylcobalamin, [57Co]-methylcobalamin, as well as other yet unidentified corrinoids. When the extraction is performed in the presence of excess cold aquacobalamin acting as a scavenger cobalamin (i.e., “cold trapping”), the recovery of both [57Co]-glutathionylcobalamin and [57Co]-sulfitocobalamin decreases to low but consistent levels. In contrast, the [57Co]-nitrocobalamin observed in extracts prepared without excess aquacobalamin is undetectable in extracts prepared with cold trapping. Conclusions This demonstrates that β-ligand exchange occurs with non-covalently bound β-ligands. The exception to this observation is cyanocobalamin with a non-covalent but non-exchangeable− CNT group. It is now possible to obtain accurate profiles of cellular cobalamins. PMID:18973458

  6. Nuclear diagnostics in support of ICF experiments

    SciTech Connect

    Moran, M.J.; Hall, J.

    1996-06-05

    As the yields of Inertial Confinement Fusion (ICF) experiments increase to NIF levels new diagnostic techniques for studying details of fusion burn behavior will become feasible. The new techniques will provide improved measurements of fusion burn temperature and history. Improved temperature measurements might be achieved with magnetic spectroscopy of fusion neutrons. High-bandwidth fusion reaction history will be measured with fusion-specific {gamma}-ray diagnostics. Additional energy-resolved {gamma}-ray might be able to study a selection of specific behaviors during fusion burn. Present ICF yields greater than 10{sup 13} neutrons are sufficient to demonstrate the basic methods that underlie the new techniques. As ICF yields increase, the diagnostics designs adjusted accordingly in order to provide clear and specific data on fusion burn performance.

  7. Effect of multi-planar CT image reformatting on surgeon diagnostic performance for localizing thoracolumbar disc extrusions in dogs

    PubMed Central

    King, Jason B.; Jones, Jeryl C.; Harper, Tisha A.; Lanz, Otto I; Werre, Stephen R.

    2009-01-01

    Accurate pre-operative localization and removal of disc material are important for minimizing morbidity in dogs with thoracolumbar disc extrusions. Computed tomography (CT) is an established technique for localizing disc extrusions in dogs, however the effect of multi-planar reformatting (MPR) on surgeon diagnostic performance has not been previously described. The purpose of this study was to test the effect of MPR CT on surgeon diagnostic accuracy, certainty and agreement for localizing thoracolumbar disc extrusions in dogs. Two veterinary surgeons and one veterinary neurologist who were unaware of surgical findings independently reviewed randomized sets of two-dimensional (2D) and MPR CT images from 111 dogs with confirmed thoracolumbar disc extrusions. For each set of images, readers recorded their localizations for extruded disc material and their diagnostic certainty. For MPR images, readers also recorded views they considered most helpful. Diagnostic accuracy estimates, mean diagnostic certainty scores and inter-observer agreement were compared using surgery as the gold standard. Frequencies were compared for MPR views rated most helpful. Diagnostic accuracy estimates were significantly greater for MPR vs. 2D CT images in one reader. Mean diagnostic certainty scores were significantly greater for MPR images in two readers. The change in agreement between 2D and MPR images differed from zero for all analyses (site, side, number affected) among all three readers. Multi-planar views rated most helpful with the highest frequency were oblique transverse and curved dorsal planar MPR views. Findings from this study indicate that multi-planar CT can improve surgeon diagnostic performance for localizing canine thoracolumbar disc extrusions. PMID:19687623

  8. [Diagnostic imaging of lying].

    PubMed

    Lass, Piotr; Sławek, Jarosław; Sitek, Emilia; Szurowska, Edyta; Zimmermann, Agnieszka

    2013-01-01

    Functional diagnostic imaging has been applied in neuropsychology for more than two decades. Nowadays, the functional magnetic resonance (fMRI) seems to be the most important technique. Brain imaging in lying has been performed and discussed since 2001. There are postulates to use fMRI for forensic purposes, as well as commercially, e.g. testing the loyalty of employees, especially because of the limitations of traditional polygraph in some cases. In USA fMRI is performed in truthfulness/lying assessment by at least two commercial companies. Those applications are a matter of heated debate of practitioners, lawyers and specialists of ethics. The opponents of fMRI use for forensic purposes indicate the lack of common agreement on it and the lack of wide recognition and insufficient standardisation. Therefore it cannot serve as a forensic proof, yet. However, considering the development of MRI and a high failure rate of traditional polygraphy, forensic applications of MRI seem to be highly probable in future. PMID:23888745

  9. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  10. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  11. Rapid and Accurate Evaluation of the Quality of Commercial Organic Fertilizers Using Near Infrared Spectroscopy

    PubMed Central

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  12. Optical diagnostics for laser wakefields in plasma channels

    NASA Astrophysics Data System (ADS)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  13. DIAGNOSTIC METHODS IN AYURVEDA

    PubMed Central

    Thakar, V. J.

    1982-01-01

    This is an analytical study of the Diagnostic methods Prescribes in Ayurveda. As in the case of disease and treatments the concept of diagnosis also is unique in Ayurveda. It goes to the Nidana of Doshicimbalance by studying the physical, physiological, psychic and behavoural aspects of the patient. The paper gives an insight into the various diagnostic methods enunciated in Sastras which turns out to be a fore-runner of any of modern diagnostic methods. PMID:22556480

  14. Plasma diagnostics for FED

    SciTech Connect

    Nelson, W.D.

    1981-01-01

    An overview of the plasma diagnostic instruments recommended for the Fusion Engineering Device (FED) is described. First the role and need for plasma diagnostics is discussed. This is followed by an identification of particles and radiation eminating from the plasma. Next some design considerations are presented for the overall set of diagnostic instruments. Finally, instruments used for control and for plasma performance measurements are included in separate lists.

  15. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  16. [Diagnostic Errors in Medicine].

    PubMed

    Buser, Claudia; Bankova, Andriyana

    2015-12-01

    The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors.

  17. [Diagnostic Errors in Medicine].

    PubMed

    Buser, Claudia; Bankova, Andriyana

    2015-12-01

    The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors. PMID:26649954

  18. Accurate, noninvasive detection of Helicobacter pylori DNA from stool samples: potential usefulness for monitoring treatment.

    PubMed

    Shuber, Anthony P; Ascaño, Jennifer J; Boynton, Kevin A; Mitchell, Anastasia; Frierson, Henry F; El-Rifai, Wa'el; Powell, Steven M

    2002-01-01

    A novel DNA assay demonstrating sensitive and accurate detection of Helicobacter pylori from stool samples is reported. Moreover, in three individuals tested for therapeutic response, the assay showed the disappearance of H. pylori DNA during treatment. Thus, this noninvasive molecular biology-based assay has the potential to be a powerful diagnostic tool given its ability to specifically identify H. pylori DNA.

  19. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques.

    PubMed

    Parkash, Om; Shueb, Rafidah Hanim

    2015-10-19

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  20. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    PubMed Central

    Parkash, Om; Hanim Shueb, Rafidah

    2015-01-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  1. Diagnostic Accuracy of MRI-guided Percutaneous Transthoracic Needle Biopsy of Solitary Pulmonary Nodules

    SciTech Connect

    Liu, Shangang; Li, Chengli; Yu, Xuejuan; Liu, Ming; Fan, Tingyong Chen, Dong Zhang, Pinliang Ren, Ruimei

    2015-04-15

    ObjectiveThe purpose of our study was to evaluate the diagnostic accuracy of MRI-guided percutaneous transthoracic needle biopsy (PTNB) of solitary pulmonary nodules (SPNs).MethodsRetrospective review of 69 patients who underwent MR-guided PTNB of SPNs was performed. Each case was reviewed for complications. The final diagnosis was established by surgical pathology of the nodule or clinical and imaging follow-up. Pneumothorax rate and diagnostic accuracy were compared between two groups according to nodule diameter (≤2 vs. >2 cm) using χ{sup 2} chest and Fisher’s exact test, respectively.ResultsThe success rate of single puncture was 95.6 %. Twelve (17.4 %) patients had pneumothorax, with 1 (1.4 %) requiring chest tube insertion. Mild hemoptysis occurred in 7 (7.2 %) patients. All of the sample material was sufficient for histological diagnostic evaluation. Pathological analysis of biopsy specimens showed 46 malignant, 22 benign, and 1 nondiagnostic nodule. The final diagnoses were 49 malignant nodules and 20 benign nodules basing on postoperative histopathology and clinical follow-up data. One nondiagnostic sample was excluded from calculating diagnostic performance. A sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in diagnosing SPNs were 95.8, 100, 97.0, 100, and 90.9 %, respectively. Pneumothorax rate, diagnostic sensitivity, and accuracy were not significantly different between the two groups (P > 0.05).ConclusionsMRI-guided PTNB is safe, feasible, and high accurate diagnostic technique for pathologic diagnosis of pulmonary nodules.

  2. Diagnostics for Dust Monitoring in Tokamak Environment

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Hong, S. H.; Worms, J.

    2008-03-12

    During ITER lifetime, dusts and flakes will be produced due to the interaction of plasmas with the in-vessel materials or due to maintenance. They will be made of carbon, beryllium and tungsten and will be activated, tritiated and chemically reactive and toxic. Safety limits have been set in order to reduce dust hazards. Thus dust diagnostics and removal methods need to be developed for ITER within the constraints linked to magnetic field, radiation, vacuum and temperature. This paper reviews potential diagnostics to monitor the dust content using techniques already used for erosion or deposition monitoring or techniques specially developed for measuring dust in suspension.

  3. Point-of-care platforms for salivary diagnostics.

    PubMed

    Wei, Fang; Wong, David T W

    2012-01-01

    Saliva reflects the physiologic state of the body, including emotional, endocrinal, nutritional and metabolic variations, and so can be used to monitor both oral and systemic health. In the past decade, salivary diagnostic approaches have been developed to monitor oral and systemic diseases. Along with these exciting scientific advancements, there is an emerging need to move salivary diagnostics out of the lab and into clinical practice. Point-of-care (POC) technologies specifically developed for salivary diagnostics can provide rapid, simple, low-cost and accurate measurements directly from saliva. To further transform salivary diagnostics into clinical reality, an integrated platform-based POC application is necessary, which includes sample processing, detection, a user-friendly interface and medical information technology. This review presents the requirements for POC platforms in salivary diagnostics and describes current applications of POC platforms for monitoring medical conditions using saliva. By advancing POC platforms for salivary diagnostics, dentists are anticipated to engage in chairside screening of medical conditions.

  4. Elastographic techniques of thyroid gland: current status.

    PubMed

    Andrioli, Massimiliano; Persani, Luca

    2014-08-01

    Thyroid nodules are very common with malignancies accounting for about 5 %. Fine-needle biopsy is the most accurate test for thyroid cancer diagnosis. Elastography, a new technology directly evaluating the elastic property of the tissue, has been recently added to the diagnostic armamentarium of the endocrinologists as noninvasive predictor of thyroid malignancy. In this paper, we critically reviewed characteristics and applications of elastographic methods in thyroid gland. Elastographic techniques can be classified on the basis of the following: source-of-tissue compression (free-hand, carotid vibration, ultrasound pulses), processing time (real-time, off-line), stiffness expression (qualitative, semi-quantitative, or quantitative). Acoustic radiation force impulse and aixplorer shear wave are the newest and most promising quantitative elastographic methods. Primary application of elastography is the detection of nodular lesions suspicious for malignancy. Published data show a high sensitivity and negative predictive value of the technique. Insufficient data are available on the possible application of elastography in the differential diagnosis of indeterminate lesions and in thyroiditis. Elastography represents a noninvasive tool able to increase the performance of ultrasound in the selection of thyroid nodules at higher risk of malignancy. Some technical improvements and definition of more robust quantitative diagnostic criteria are required for assigning a definite role in the management of thyroid nodules and thyroiditis to elastography.

  5. Retrospective dosimetry using EPR and TL techniques: a status report

    SciTech Connect

    Haskell, E.H.

    1996-12-31

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance.

  6. Radiometrically accurate thermal imaging in the Landsat program

    NASA Astrophysics Data System (ADS)

    Lansing, Jack C., Jr.

    1988-01-01

    Methods of calibrating Landsat TM thermal IR data have been developed so that the residual error is reduced to 0.9 K (1 standard deviation). Methods for verifying the radiometric performance of TM on orbit and ground calibration methods are discussed. The preliminary design of the enhanced TM for Landsat-6 is considered. A technique for accurately reducing raw data from the Landsat-5 thermal band is described in detail.

  7. A novel technique for the direct fabrication of fixed interim restorations.

    PubMed

    Konstantinidis, Ioannis; Kotsakis, Georgios; Pallis, Konstantinos; Walter, Michael Horst

    2013-03-01

    This article describes an alternative technique for the fabrication of interim restorations. A thermoplastic, vacuum-formed template and translucent vinyl polysiloxane material are combined in the waxed diagnostic cast to fabricate a matrix in which the interim material can be placed. With this matrix, a variety of materials, such as dual-polymerized or light-polymerized resins, can be used in a predictable way. The major advantage of this technique is that it allows for the fabrication of accurate restorations with excellent reproduction of surface anatomy and for alterations of the tooth shape with light-polymerized materials. PMID:23522370

  8. Development of novel fuel ion ratio diagnostic techniquesa)

    NASA Astrophysics Data System (ADS)

    Korsholm, S. B.; Stejner, M.; Conroy, S.; Ericsson, G.; Gorini, G.; Tardocchi, M.; von Hellermann, M.; Jaspers, R. J. E.; Lischtschenko, O.; Delabie, E.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.

    2010-10-01

    To overcome the challenge of measuring the fuel ion ratio in the core (ρ <0.3) of ITER, a coordinated effort aiming at developing diagnostic techniques has been initiated. The investigated techniques are novel uses or further development of existing methods such as charge exchange recombination spectrometry, neutron spectrometry, and collective Thomson scattering. An overview of the work on the three diagnostic techniques is presented.

  9. Automotive Diagnostic Technologies.

    ERIC Educational Resources Information Center

    Columbus State Community Coll., OH.

    This document contains materials developed for and about the automotive diagnostic technologies tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an automotive/diagnostic technologies program in grades 11 and 12 that leads to entry-level employment or a 2-year automotive…

  10. [Costing nuclear medicine diagnostic procedures].

    PubMed

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges. PMID:15886748

  11. Accurate hydrogen depth profiling by reflection elastic recoil detection analysis

    SciTech Connect

    Verda, R. D.; Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W.

    2001-01-01

    A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

  12. Diagnostic management of renal colic.

    PubMed

    Nicolau, C; Salvador, R; Artigas, J M

    2015-01-01

    Renal colic is a common reason for presentation to emergency departments, and imaging has become fundamental for the diagnosis and clinical management of this condition. Ultrasonography and particularly noncontrast computed tomography have good diagnostic performance in diagnosing renal colic. Radiologic management will depend on the tools available at the center and on the characteristics of the patient. It is essential to use computed tomography techniques that minimize radiation and to use alternatives like ultrasonography in pregnant patients and children. In this article, we review the epidemiology, clinical and radiologic presentations, and clinical management of ureteral lithiasis.

  13. Rayleigh Scattering Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard (Compiler)

    1996-01-01

    The Rayleigh Scattering Diagnostics Workshop was held July 25-26, 1995 at the NASA Lewis Research Center in Cleveland, Ohio. The purpose of the workshop was to foster timely exchange of information and expertise acquired by researchers and users of laser based Rayleigh scattering diagnostics for aerospace flow facilities and other applications. This Conference Publication includes the 12 technical presentations and transcriptions of the two panel discussions. The first panel was made up of 'users' of optical diagnostics, mainly in aerospace test facilities, and its purpose was to assess areas of potential applications of Rayleigh scattering diagnostics. The second panel was made up of active researchers in Rayleigh scattering diagnostics, and its purpose was to discuss the direction of future work.

  14. Use of smart materials in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Winzer, Stephen R.; Bridger, Keith; Caldwell, Paul J.; Sewell, James S.

    1996-05-01

    Medical diagnostic capabilities have seen explosive growth over the past decade, as new techniques, such as MRI, have been taken from the laboratory setting into the clinical environment, with considerable benefit to the population at large. In this paper, we address another area of medical diagnostics which, we believe, stands on the verge of explosive growth, driven more by the emerging requirements for cost-effective diagnostic tools, and by the evolving needs of the defense medical community, with spinoff of those into the strongly related emergency care area of the civilian market. One of the factors that will drive this area of medical diagnostics is the development of smart materials and the sensors and sensor systems developed from them. In this paper we discuss some of the developments in the field of smart materials as they apply to development of new, low cost acoustic sensors for patient monitoring and medical imaging.

  15. Diagnostics for PLX-alpha

    NASA Astrophysics Data System (ADS)

    Gilmore, Mark; Hsu, Scott

    2015-11-01

    The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.

  16. DNA Microarray-Based Diagnostics.

    PubMed

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

  17. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  18. Optimal target VOI size for accurate 4D coregistration of DCE-MRI

    NASA Astrophysics Data System (ADS)

    Park, Brian; Mikheev, Artem; Zaim Wadghiri, Youssef; Bertrand, Anne; Novikov, Dmitry; Chandarana, Hersh; Rusinek, Henry

    2016-03-01

    Dynamic contrast enhanced (DCE) MRI has emerged as a reliable and diagnostically useful functional imaging technique. DCE protocol typically lasts 3-15 minutes and results in a time series of N volumes. For automated analysis, it is important that volumes acquired at different times be spatially coregistered. We have recently introduced a novel 4D, or volume time series, coregistration tool based on a user-specified target volume of interest (VOI). However, the relationship between coregistration accuracy and target VOI size has not been investigated. In this study, coregistration accuracy was quantitatively measured using various sized target VOIs. Coregistration of 10 DCE-MRI mouse head image sets were performed with various sized VOIs targeting the mouse brain. Accuracy was quantified by measures based on the union and standard deviation of the coregistered volume time series. Coregistration accuracy was determined to improve rapidly as the size of the VOI increased and approached the approximate volume of the target (mouse brain). Further inflation of the VOI beyond the volume of the target (mouse brain) only marginally improved coregistration accuracy. The CPU time needed to accomplish coregistration is a linear function of N that varied gradually with VOI size. From the results of this study, we recommend the optimal size of the VOI to be slightly overinclusive, approximately by 5 voxels, of the target for computationally efficient and accurate coregistration.

  19. Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

    NASA Astrophysics Data System (ADS)

    Wee, Chong-Yaw; Yap, Pew-Thian; Brownyke, Jeffery N.; Potter, Guy G.; Steffens, David C.; Welsh-Bohmer, Kathleen; Wang, Lihong; Shen, Dinggang

    Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.

  20. Ultrasensitive microanalytical diagnostic methods for rickettsial pathogens

    SciTech Connect

    Hatch, A. V.

    2012-03-01

    A strategic CRADA was established between Sandia National Laboratories (SNL) and the University of Texas Medical Branch (UTMB) at Galveston to address pressing needs for US protection against biological weapons of mass destruction (WMD) and emerging infectious diseases. The combination of unique expertise and facilities at UTMB and SNL enabled interdisciplinary research efforts in the development of rapid and accurate diagnostic methods for early detection of trace priority pathogen levels. Outstanding postdoctoral students were also trained at both institutions to help enable the next generation of scientists to tackle the challenging interdisciplinary problems in the area of biodefense and emerging infectious diseases. Novel approaches to diagnostics were developed and the both the speed of assays as well as the detection sensitivity were improved by over an order of magnitude compared to traditional methods. This is a significant step toward more timely and specific detection of dangerous infections. We developed in situ polymerized porous polymer monoliths that can be used as (1) size exclusion elements for capture and processing of rickettsial infected cells from a sample, (2) photopatternable framework for grafting high densities of functionalized antibodies/fluorescent particles using novel monolith chemistry. Grafting affinity reagents specific to rickettsial particles enables rapid, ultra-sensitive assays by overcoming transport limitations of traditional planar assay approaches. We have selectively trapped particles and bacteria at the cell trap and have also detected picomolar mouse IL-6 captured with only 20 minutes total incubation times using the densely patterned monolith framework. As predicted, the monolith exhibits >10x improvements in both capture speed and capture density compared to traditional planar approaches. The most significant advancements as part of this CRADA is the optimization of techniques allowing the detection of <10 rickettsial

  1. Interviewing Children versus Tossing Coins: Accurately Assessing the Diagnosticity of Children's Disclosures of Abuse

    ERIC Educational Resources Information Center

    Lyon, Thomas D.; Ahern, Elizabeth C.; Scurich, Nicholas

    2012-01-01

    We describe a Bayesian approach to evaluating children's abuse disclosures and review research demonstrating that children's disclosure of genital touch can be highly probative of sexual abuse, with the probative value depending on disclosure spontaneity and children's age. We discuss how some commentators understate the probative value of…

  2. Diagnostic medicine: A comprehensive ABCDE algorithm for accurate interpretation of radiology and pathology images and data.

    PubMed

    Zioga, Christina A; Destouni, Chariklia T

    2015-01-01

    A pathway to the procedure of interpreting radiology images or pathology slides is presented. This simplified mnemonic can be used as a memory aid determining the order in which diagnosis should be approached. First, before we place the radiology image in front of the lightbox or the slide under the microscope we have to be sure that it is adequately labelled and prepared (Correct). It is also necessary to have or gather all available information concerning the patient and if possible his full medical history (A, Available Information). Once we come across the image, two fundamental questions should be answered: which part of the body does the image concern and-where applicable-if the image is adequate (B, Body). Next, we proceed to answer if we have a neoplastic tissue or not (C, Cancer). We then either form a differential diagnosis list or we reach to a final diagnosis (D, Diagnosis), which is followed by the writing of the report (E, Exhibit). These series of steps followed as an ad hoc procedure by most specialists, are important in order to achieve a complete and clear diagnosis and report, which is intended to support optimal clinical practice. This ABCDE concept is a generic standard approach which is not limited to specific specimens and can lead to faster diagnosis with less mistakes. PMID:26665217

  3. [Diagnostic temporo-mandibular arthroscopy. Principle lesions, apropos of 50 case reports].

    PubMed

    Chossegros, C; Cheynet, F; Blanc, J L; Gola, R; Lachard, J

    1991-01-01

    Diagnostic arthroscopy is reserved to patients who suffer from internal temporo-mandibular joint derangements resisting to conservative treatments. This technique allows an acute diagnostic approach to the intra-articular lesions of the superior compartment.

  4. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  5. Cable Diagnostic Focused Initiative

    SciTech Connect

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  6. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.

  7. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  8. Biosafety principles and practices for the veterinary diagnostic laboratory.

    PubMed

    Kozlovac, Joseph; Schmitt, Beverly

    2015-01-01

    Good biosafety and biocontainment programs and practices are critical components of the successful operation of any veterinary diagnostic laboratory. In this chapter we provide information and guidance on critical biosafety management program elements, facility requirements, protective equipment, and procedures necessary to ensure that the laboratory worker and the environment are adequately protected in the challenging work environment of the veterinary diagnostic laboratory in general and provide specific guidance for those laboratories employing molecular diagnostic techniques. PMID:25399086

  9. Melioidosis Diagnostic Workshop, 20131

    PubMed Central

    AuCoin, David; Baccam, Prasith; Baggett, Henry C.; Baird, Rob; Bhengsri, Saithip; Blaney, David D.; Brett, Paul J.; Brooks, Timothy J.G.; Brown, Katherine A.; Chantratita, Narisara; Cheng, Allen C.; Dance, David A.B.; Decuypere, Saskia; Defenbaugh, Dawn; Gee, Jay E.; Houghton, Raymond; Jorakate, Possawat; Lertmemongkolchai, Ganjana; Limmathurotsakul, Direk; Merlin, Toby L.; Mukhopadhyay, Chiranjay; Norton, Robert; Peacock, Sharon J.; Rolim, Dionne B.; Simpson, Andrew J.; Steinmetz, Ivo; Stoddard, Robyn A.; Stokes, Martha M.; Sue, David; Tuanyok, Apichai; Whistler, Toni; Wuthiekanun, Vanaporn; Walke, Henry T.

    2015-01-01

    Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions. PMID:25626057

  10. Plasma diagnostic reflectometry

    SciTech Connect

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-02-26

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements.

  11. Reusable, robust, and accurate laser-generated photonic nanosensor.

    PubMed

    Yetisen, Ali K; Montelongo, Yunuen; da Cruz Vasconcellos, Fernando; Martinez-Hurtado, J L; Neupane, Sankalpa; Butt, Haider; Qasim, Malik M; Blyth, Jeffrey; Burling, Keith; Carmody, J Bryan; Evans, Mark; Wilkinson, Timothy D; Kubota, Lauro T; Monteiro, Michael J; Lowe, Christopher R

    2014-06-11

    Developing noninvasive and accurate diagnostics that are easily manufactured, robust, and reusable will provide monitoring of high-risk individuals in any clinical or point-of-care environment. We have developed a clinically relevant optical glucose nanosensor that can be reused at least 400 times without a compromise in accuracy. The use of a single 6 ns laser (λ = 532 nm, 200 mJ) pulse rapidly produced off-axis Bragg diffraction gratings consisting of ordered silver nanoparticles embedded within a phenylboronic acid-functionalized hydrogel. This sensor exhibited reversible large wavelength shifts and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 510-1100 nm. The experimental sensitivity of the sensor permits diagnosis of glucosuria in the urine samples of diabetic patients with an improved performance compared to commercial high-throughput urinalysis devices. The sensor response was achieved within 5 min, reset to baseline in ∼10 s. It is anticipated that this sensing platform will have implications for the development of reusable, equipment-free colorimetric point-of-care diagnostic devices for diabetes screening. PMID:24844116

  12. Digital photography enhances diagnostics, communication, and documentation.

    PubMed

    McLaren, Edward A; Schoenbaum, Todd

    2011-01-01

    Digital dental photography is an exceptional tool for communication, diagnosis, and documentation. So much of what is possible today with dental treatment hinges strongly upon dentists' ability to fully capture the necessary diagnostic information and properly educate their patients. With the proper training, techniques, equipment, and implementation, dental photography can significantly enhance the level of treatment provided.

  13. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  14. Advanced bronchoscopic techniques in diagnosis and staging of lung cancer.

    PubMed

    Zaric, Bojan; Stojsic, Vladimir; Sarcev, Tatjana; Stojanovic, Goran; Carapic, Vladimir; Perin, Branislav; Zarogoulidis, Paul; Darwiche, Kaid; Tsakiridis, Kosmas; Karapantzos, Ilias; Kesisis, Georgios; Kougioumtzi, Ioanna; Katsikogiannis, Nikolaos; Machairiotis, Nikolaos; Stylianaki, Aikaterini; Foroulis, Christophoros N; Zarogoulidis, Konstantinos

    2013-09-01

    The role of advanced brochoscopic diagnostic techniques in detection and staging of lung cancer has steeply increased in recent years. Bronchoscopic imaging techniques became widely available and easy to use. Technical improvement led to merging in technologies making autofluorescence or narrow band imaging incorporated into one bronchoscope. New tools, such as autofluorescence imagining (AFI), narrow band imaging (NBI) or fuji intelligent chromo endoscopy (FICE), found their place in respiratory endoscopy suites. Development of endobronchial ultrasound (EBUS) improved minimally invasive mediastinal staging and diagnosis of peripheral lung lesions. Linear EBUS proven to be complementary to mediastinoscopy. This technique is now available in almost all high volume centers performing bronchoscopy. Radial EBUS with mini-probes and guiding sheaths provides accurate diagnosis of peripheral pulmonary lesions. Combining EBUS guided procedures with rapid on site cytology (ROSE) increases diagnostic yield even more. Electromagnetic navigation technology (EMN) is also widely used for diagnosis of peripheral lesions. Future development will certainly lead to new improvements in technology and creation of new sophisticated tools for research in respiratory endoscopy. Broncho-microscopy, alveoloscopy, optical coherence tomography are some of the new research techniques emerging for rapid technological development.

  15. Manual of diagnostic imaging

    SciTech Connect

    Gaylord, G.; Baker, S.; Davis, L.

    1988-01-01

    This book is on ordering and understanding the results of radiologic studies. Main sections are (I) Diagnostic Radiology serves as a basic introduction; (II) Diagnostic Modalities dedicates a chapter to each imaging modality in a clinical context, with a brief technical description and patient preparation guidelines; and (III) Organ System Imaging contains a chapter on each major organ system, covering the abilities and limitations of each modality to image a specific organ system and the significance of anatomic, physiologic, and general pathologic information.

  16. A survey of nuclear-explosive prompt diagnostics

    SciTech Connect

    Ebert, P.J.

    1986-03-25

    Nuclear-explosive prompt diagnostics techniques and equipment are surveyed. These techniques and equipment have been developed to answer nuclear-explosive performance questions. The techniques and equipment must be selective in radiation sensitivity, linear in calibration, fast, insensitive to strong signals, wide in dynamic range, and reliable. Diagnostic techniques and equipment measure neutron, gamma-ray, and x-ray emissions, as well as aid in the determination of the physical location of the production of radiation through imaging. The high cost of nuclear experiments will continue to encourage the development of sophisticated techniques to gain as much information as possible from each experiment.

  17. Pyrometry temperature studies of shocked tin including investigations exploring surface defects, anvil diameter and the integration with emissivity diagnostics

    NASA Astrophysics Data System (ADS)

    Shenton-Taylor, Caroline; de'Ath, James; Ota, Thomas

    2009-06-01

    Accurate temperature measurement of shock-loaded systems continues to present experimental challenges. With short measurable time durations diagnostic methods are almost exclusively restricted to optical techniques. By preventing full sample pressure unloading, through the use of an anvil, partial release temperature measurements can be deduced from multiple wavelength optical pyrometry. This paper presents our recent studies of tin shocked to 28GPa including investigations exploring surface defects, anvil dimensions and the integration with emissivity diagnostics. The results indicate that a ring groove, 5mm across and with a nominal machined depth of 50 microns, acts to enhance the measured temperature by approximately 150K. Additionally on reducing the LiF anvil diameter from 20mm to 15mm, comparable partial release temperatures were observed. With the anticipated development of multiple anvil target designs, the smaller anvil diameter is desirable. British Crown Copyright 2009/MOD.

  18. Hemoptysis with diagnostic dilemma.

    PubMed

    Pramanik, Bimalendu

    2013-02-01

    Hemoptysis is a common symptom. Although initial diagnostic workup, including a chest radiograph, often gives a clue to the cause, it provides no diagnostic hints in 3.0-42.2% of episodes of hemoptysis. To describe those cases with no diagnostic hints at initial investigations, experts have used different terms, including unexplained hemoptysis, idiopathic hemoptysis, cryptogenic hemoptysis and hemoptysis with normal chest radiographs. As hemoptysis is a common symptom of bronchogenic carcinoma, there is a concern of having underlying malignancy. Physicians value high-resolution computed tomography and fiberoptic bronchoscopy as the next investigations to establish diagnosis. These investigations however are expensive and nonspecific results are common in those cases of hemoptysis where initial diagnostic workup gives no clues to the cause. As a result, controversies exist with regard to their use. In this article, the author has proposed diagnostic approaches to evaluate those cases of hemoptysis with no diagnostic hints at initial investigation, after extensive review of published articles related to the case scenario. PMID:23362818

  19. Neutron Diagnostics for NIF

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.; Berggren, R.; Caldwell, S.; Chrien, R. C.; Cverna, F.; Faulkner, J.; Mack, J. M.; Morgan, G. L.; Murphy, T. J.; Oertel, J. A.; Tegtmeier, J.; Walton, R.; Wilke, M.; Wilson, D. C.; Young, C. S.

    1999-11-01

    The National Ignition Facility (NIF) will be a pre-emminent facility for research on burning plasmas. Los Alamos National Laboratory is developing a focus area of coordinating fusion reaction product diagnostics on NIF and studying fusion burn. We will be developing ``core'' diagnostics for NIF including neutron time-of-flight and single-hit systems for ion temperature and neutron spectra, measurements of ``bang-time'' (time of fusion burn relative to start of laser pulse), and support for activation measurements for high-yield and radiochemical analysis. We are also developing advanced Phase 2 diagnostics including a gas Cerenkov burn history diagnostic and work on apertures and detectors for neutron imaging. This will include tests of these diagnostic systems on the OMEGA laser in the coming years. The measurement requirements and system descriptions of these NIF diagnostics will be described. This work was performed under the auspices of the U. S. Department of Energy by the Los Alamos National Laboratory under contract No. W-7405-Eng-36.

  20. [Diagnostics in osteology].

    PubMed

    Jakob, F; Genest, F; Seefried, L; Tsourdi, E; Lapa, C; Hofbauer, L C

    2016-07-01

    Clinical diagnostics in metabolic bone diseases cover a broad spectrum of conventional and state of the art methods ranging from the medical history and clinical examination to molecular imaging. Patient treatment is carried out in an interdisciplinary team due to the multiple interactions of bone with other organ systems. Diagnosis of osteoporosis is supported by high level national guidelines. A paradigm shift concerning the clinical relevance of bone mineral density measurement renders this now to be a strong risk factor rather than a diagnostic parameter, while strengthening the value of other clinical factors for risk assessment. The impact of parameters for muscle mass, structure and function is steadily increasing in all age groups. In order to identify underlying diseases that influence bone metabolism a panel of general laboratory diagnostic parameters is recommended. Markers for bone formation and resorption and specific parameters for the regulation of calcium and phosphate metabolism should be evaluated by specialists because they require diligence in preanalytics and experience in interpretation. Genetic diagnosis is well established for rare bone diseases while diagnostic panels are not yet available for routine diagnostics in polygenetic diseases such as osteoporosis. Conventional radiology is still very important to identify, e. g. fractures, osteolytic and osteoblastic lesions and extraosseous calcifications; however tomography-based methods which combine, e. g. scintigraphy or positron emission technologies with anatomical imaging are of increasing significance. Clinical diagnostics in osteology require profound knowledge and are subject to a dynamic evolution. PMID:27307159

  1. Diagnostic and prognostic utility of non-invasive imaging in diabetes management

    PubMed Central

    Barsanti, Cristina; Lenzarini, Francesca; Kusmic, Claudia

    2015-01-01

    Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed. PMID:26131322

  2. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  3. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  4. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  5. Library preparation for highly accurate population sequencing of RNA viruses

    PubMed Central

    Acevedo, Ashley; Andino, Raul

    2015-01-01

    Circular resequencing (CirSeq) is a novel technique for efficient and highly accurate next-generation sequencing (NGS) of RNA virus populations. The foundation of this approach is the circularization of fragmented viral RNAs, which are then redundantly encoded into tandem repeats by ‘rolling-circle’ reverse transcription. When sequenced, the redundant copies within each read are aligned to derive a consensus sequence of their initial RNA template. This process yields sequencing data with error rates far below the variant frequencies observed for RNA viruses, facilitating ultra-rare variant detection and accurate measurement of low-frequency variants. Although library preparation takes ~5 d, the high-quality data generated by CirSeq simplifies downstream data analysis, making this approach substantially more tractable for experimentalists. PMID:24967624

  6. Uniformly high order accurate essentially non-oscillatory schemes 3

    NASA Technical Reports Server (NTRS)

    Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.

    1986-01-01

    In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear.

  7. Groundtruth approach to accurate quantitation of fluorescence microarrays

    SciTech Connect

    Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J

    2000-12-01

    To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.

  8. Measurements and Diagnostics of Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.

    1999-01-01

    The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.

  9. Multifunctional laser facility with photoelectric recording for plasma diagnostics

    SciTech Connect

    Pyatnitsky, L.N.; Yakushev, G.G.; Oberman, F.M. )

    1989-01-01

    A laser facility with photoelectric recording is described. It can be used in performing plasma diagnostics by four different measuring techniques. The application of photoelectric recording considerably simplifies the automation of measurements.

  10. Diagnostic Flow Metering using Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Chun, Sejong; Yoon, Byung-Ro; Lee, Kwang-Bock; Paik, Jong-Seung

    2010-06-01

    Flow meters, which are used for transferring water or crude oil through pipelines, require well-defined flow conditions for accurate flow rate monitoring. Even though all the installation conditions for the flow meters are satisfied, there could be unexpected flow disturbances, such as abrupt increase of upstream pressure, affecting on the performance of flow meters. To investigate any differences between measured and actual flow rates, flow velocity profiles inside the pipeline must be known. Ultrasound tomography is a means of reconstructing flow profiles from line-averaged velocities by Radon transformation. Diagnostic parameters are then extracted from the reconstructed flow profiles to give information whether the flow conditions are appropriate for accurate flow metering. In the present study, flow profiles downstream of a mass flow meter and a butterfly valve are reconstructed. Flow diagnostic parameters are defined using statistical moments such as mean value, standard deviation, skewness and kurtosis. The measured diagnostic parameters in the above-mentioned flow conditions are compared with those of fully-developed laminar and turbulent flow profiles to validate their usefulness.

  11. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  12. Dichroic beamsplitter for high energy laser diagnostics

    DOEpatents

    LaFortune, Kai N; Hurd, Randall; Fochs, Scott N; Rotter, Mark D; Hackel, Lloyd

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  13. Accurately Diagnosing and Treating Borderline Personality Disorder

    PubMed Central

    Gentile, Julie P.; Correll, Terry L.

    2010-01-01

    The high prevalence of comorbid bipolar and borderline personality disorders and some diagnostic criteria similar to both conditions present both diagnostic and therapeutic challenges. This article delineates certain symptoms which, by careful history taking, may be attributed more closely to one of these two disorders. Making the correct primary diagnosis along with comorbid psychiatric conditions and choosing the appropriate type of psychotherapy and pharmacotherapy are critical steps to a patient's recovery. In this article, we will use a case example to illustrate some of the challenges the psychiatrist may face in diagnosing and treating borderline personality disorder. In addition, we will explore treatment strategies, including various types of therapy modalities and medication classes, which may prove effective in stabilizing or reducing a broad range of symptomotology associated with borderline personality disorder. PMID:20508805

  14. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  15. Advances in three-dimensional diagnostic radiology.

    PubMed

    ter Haar Romeny, B M; Zuiderveld, K J; Van Waes, P F; Van Walsum, T; Van Der Weijden, R; Weickert, J; Stokking, R; Wink, O; Kalitzin, S; Maintz, T; Zonneveld, F; Viergever, M A

    1998-10-01

    The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as 'image processing' or 'computer vision' in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the 'ray casting' in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations ( < $10000) allow this to be a reality. It is now possible to manipulate 3D images of 256 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile. Examples

  16. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    SciTech Connect

    Piot, Philippe; Bracke, Adam; Demir, Veysel; Maxwell, Timothy; Rihaoui, Marwan; Jing, Chunguang; Power, John

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  17. Development of Companion Diagnostics.

    PubMed

    Mankoff, David A; Edmonds, Christine E; Farwell, Michael D; Pryma, Daniel A

    2016-01-01

    The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient's cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has "hit" the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2-targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.

  18. Development of Companion Diagnostics.

    PubMed

    Mankoff, David A; Edmonds, Christine E; Farwell, Michael D; Pryma, Daniel A

    2016-01-01

    The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient's cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has "hit" the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2-targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857

  19. Development of Companion Diagnostics

    PubMed Central

    Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; Pryma, Daniel A.

    2016-01-01

    The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857

  20. Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review).

    PubMed

    Reichl, Patrick; Mikulits, Wolfgang

    2016-08-01

    Hepatocellular carcinoma (HCC) is the most common liver malignancy and a leading cause of cancer-related mortality worldwide. Accurate detection and differential diagnosis of early HCC can significantly improve patient survival. Currently, detection of HCC in clinical practice is performed by diagnostic imaging techniques and determination of serum biomarkers, most notably α-fetoprotein (AFP), fucosylated AFP and des-γ-carboxyprothrombin. However, these methods display limitations in sensitivity and specificity, especially with respect to early stages of HCC. Recently, high-throughput technologies have elucidated many new pathways involved in hepatocarcinogenesis and have led to the discovery of a plethora of novel, non-invasive serum biomarkers. In particular, the combination of AFP with these new candidate molecules has yielded promising results. In this review, we aimed at recapitulating the most recent (2013-2015) developments in HCC biomarker research. We compared promising novel diagnostic serum protein biomarkers, such as annexin A2, the soluble form of the receptor tyrosine kinase Axl and thioredoxin, as well as their combinations with AFP. High diagnostic performance (area under the curve >0.75) as shown by threshold-independent receiver operating characteristic curve analysis was a prerequisite for inclusion in this review. In addition, we discuss the role and potential of microRNAs in HCC diagnosis and associated methodological challenges. PMID:27278244

  1. Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review)

    PubMed Central

    Reichl, Patrick; Mikulits, Wolfgang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common liver malignancy and a leading cause of cancer-related mortality worldwide. Accurate detection and differential diagnosis of early HCC can significantly improve patient survival. Currently, detection of HCC in clinical practice is performed by diagnostic imaging techniques and determination of serum biomarkers, most notably α-fetoprotein (AFP), fucosylated AFP and des-γ-carboxyprothrombin. However, these methods display limitations in sensitivity and specificity, especially with respect to early stages of HCC. Recently, high-throughput technologies have elucidated many new pathways involved in hepatocarcinogenesis and have led to the discovery of a plethora of novel, non-invasive serum biomarkers. In particular, the combination of AFP with these new candidate molecules has yielded promising results. In this review, we aimed at recapitulating the most recent (2013–2015) developments in HCC biomarker research. We compared promising novel diagnostic serum protein biomarkers, such as annexin A2, the soluble form of the receptor tyrosine kinase Axl and thioredoxin, as well as their combinations with AFP. High diagnostic performance (area under the curve >0.75) as shown by threshold-independent receiver operating characteristic curve analysis was a prerequisite for inclusion in this review. In addition, we discuss the role and potential of microRNAs in HCC diagnosis and associated methodological challenges. PMID:27278244

  2. Important hemoprotozoan diseases of livestock: Challenges in current diagnostics and therapeutics: An update

    PubMed Central

    Maharana, Biswa Ranjan; Tewari, Anup Kumar; Saravanan, Buddhi Chandrasekaran; Sudhakar, Naduvanahalli Rajanna

    2016-01-01

    Hemoprotozoan parasites pose a serious threat to the livestock population in terms of mortality, reduced milk yield and lowered draft power. Diagnosis of these diseases often poses a challenging task. Needless to say that impact of disease in health and productivity is huge though a fair economic assessment on the quantum of economic loss associated is yet to be worked out from India. The diagnosis of hemoprotozoan infections largely depends on various laboratory-based diagnostic methods as the clinical manifestations are often inconspicuous and non-specific. Traditional diagnostic methods rely on microscopical demonstration of infective stages in blood or tissue fluids. However, it is laborious, lesser sensitive, and cannot differentiate between morphologically similar organisms. Recent development in the technologies has opened new avenues for improvement in the accurate diagnosis of parasitic infections. Serological tests are simple, fast but lack specificity. With advent of molecular techniques, as DNA hybridization assays, polymerase chain reaction and its modifications ensure the detection of infection in the latent phase of the disease. Nucleic acid-based assays are highly sensitive, free from immunocompetence and can differentiate between morphologically similar parasites. With the advent of newer diagnostics complemented with traditional ones will be of huge help for targeted selective treatment with better chemotherapeutic agents. PMID:27284225

  3. Important hemoprotozoan diseases of livestock: Challenges in current diagnostics and therapeutics: An update.

    PubMed

    Maharana, Biswa Ranjan; Tewari, Anup Kumar; Saravanan, Buddhi Chandrasekaran; Sudhakar, Naduvanahalli Rajanna

    2016-05-01

    Hemoprotozoan parasites pose a serious threat to the livestock population in terms of mortality, reduced milk yield and lowered draft power. Diagnosis of these diseases often poses a challenging task. Needless to say that impact of disease in health and productivity is huge though a fair economic assessment on the quantum of economic loss associated is yet to be worked out from India. The diagnosis of hemoprotozoan infections largely depends on various laboratory-based diagnostic methods as the clinical manifestations are often inconspicuous and non-specific. Traditional diagnostic methods rely on microscopical demonstration of infective stages in blood or tissue fluids. However, it is laborious, lesser sensitive, and cannot differentiate between morphologically similar organisms. Recent development in the technologies has opened new avenues for improvement in the accurate diagnosis of parasitic infections. Serological tests are simple, fast but lack specificity. With advent of molecular techniques, as DNA hybridization assays, polymerase chain reaction and its modifications ensure the detection of infection in the latent phase of the disease. Nucleic acid-based assays are highly sensitive, free from immunocompetence and can differentiate between morphologically similar parasites. With the advent of newer diagnostics complemented with traditional ones will be of huge help for targeted selective treatment with better chemotherapeutic agents. PMID:27284225

  4. Important hemoprotozoan diseases of livestock: Challenges in current diagnostics and therapeutics: An update.

    PubMed

    Maharana, Biswa Ranjan; Tewari, Anup Kumar; Saravanan, Buddhi Chandrasekaran; Sudhakar, Naduvanahalli Rajanna

    2016-05-01

    Hemoprotozoan parasites pose a serious threat to the livestock population in terms of mortality, reduced milk yield and lowered draft power. Diagnosis of these diseases often poses a challenging task. Needless to say that impact of disease in health and productivity is huge though a fair economic assessment on the quantum of economic loss associated is yet to be worked out from India. The diagnosis of hemoprotozoan infections largely depends on various laboratory-based diagnostic methods as the clinical manifestations are often inconspicuous and non-specific. Traditional diagnostic methods rely on microscopical demonstration of infective stages in blood or tissue fluids. However, it is laborious, lesser sensitive, and cannot differentiate between morphologically similar organisms. Recent development in the technologies has opened new avenues for improvement in the accurate diagnosis of parasitic infections. Serological tests are simple, fast but lack specificity. With advent of molecular techniques, as DNA hybridization assays, polymerase chain reaction and its modifications ensure the detection of infection in the latent phase of the disease. Nucleic acid-based assays are highly sensitive, free from immunocompetence and can differentiate between morphologically similar parasites. With the advent of newer diagnostics complemented with traditional ones will be of huge help for targeted selective treatment with better chemotherapeutic agents.

  5. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies

    PubMed Central

    van der Velden, Vincent H. J.; Brüggemann, Monika; Orfao, Alberto

    2015-01-01

    Monitoring of minimal residual disease (MRD) has become routine clinical practice in frontline treatment of virtually all childhood acute lymphoblastic leukemia (ALL) and in many adult ALL patients. MRD diagnostics has proven to be the strongest prognostic factor, allowing for risk group assignment into different treatment arms, ranging from significant treatment reduction to mild or strong intensification. Also in relapsed ALL patients and patients undergoing stem cell transplantation, MRD diagnostics is guiding treatment decisions. This is also why the efficacy of innovative drugs, such as antibodies and small molecules, are currently being evaluated with MRD diagnostics within clinical trials. In fact, MRD measurements might well be used as a surrogate end point, thereby significantly shortening the follow-up. The MRD techniques need to be sensitive (≤10−4), broadly applicable, accurate, reliable, fast, and affordable. Thus far, flow cytometry and polymerase chain reaction (PCR) analysis of rearranged immunoglobulin and T-cell receptor genes (allele-specific oligonucleotide [ASO]-PCR) are claimed to meet these criteria, but classical flow cytometry does not reach a solid 10−4, whereas classical ASO-PCR is time-consuming and labor intensive. Therefore, 2 high-throughput technologies are being explored, ie, high-throughput sequencing and next-generation (multidimensional) flow cytometry, both evaluating millions of sequences or cells, respectively. Each of them has specific advantages and disadvantages. PMID:25999452

  6. Can Appraisers Rate Work Performance Accurately?

    ERIC Educational Resources Information Center

    Hedge, Jerry W.; Laue, Frances J.

    The ability of individuals to make accurate judgments about others is examined and literature on this subject is reviewed. A wide variety of situational factors affects the appraisal of performance. It is generally accepted that the purpose of the appraisal influences the accuracy of the appraiser. The instrumentation, or tools, available to the…

  7. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  8. An accurate method for two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.; Weigand, G. G.

    1979-01-01

    A second-order method for solving two-point boundary value problems on a uniform mesh is presented where the local truncation error is obtained for use with the deferred correction process. In this simple finite difference method the tridiagonal nature of the classical method is preserved but the magnitude of each term in the truncation error is reduced by a factor of two. The method is applied to a number of linear and nonlinear problems and it is shown to produce more accurate results than either the classical method or the technique proposed by Keller (1969).

  9. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  10. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics. PMID:23126904

  11. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  12. ORION laser target diagnostics

    SciTech Connect

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.; and others

    2012-10-15

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  13. Reversed field pinch diagnostics

    SciTech Connect

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP.

  14. PDX diagnostic control system

    SciTech Connect

    Mika, R.

    1981-01-01

    This paper describes a computer-base diagnostic control system operating on the PDX Tokamak. The prime function of the system is to control mechanical positioning devices associated with various diagnostics including Thomson Scattering, X-Ray Pulse Height Analyzer, Rotating Scanning Monochromator, Fast Ion Detection Experiment, Bolometers and Plasma Limiters. The diagnostic control system consists of a PDP-11/34 computer, a CAMAC system partitioned between the PDX control room and the PDX machine area, and special electronic control modules developed at PPL. The special modules include a digital closed loop motor controller and user interface control panel for control and status display. A standard control panel was developed for interfacing each system user with the PDP-11/34 computer, through specially developed CAMAC modules.

  15. Qualitative model-based diagnostics for rocket systems

    NASA Technical Reports Server (NTRS)

    Maul, William; Meyer, Claudia; Jankovsky, Amy; Fulton, Christopher

    1993-01-01

    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition.

  16. PCR-based diagnostics for anaerobic infections.

    PubMed

    Song, Yuli

    2005-01-01

    Conventional methods to identify anaerobic bacteria have often relied on unique clinical findings, isolation of organisms, and laboratory identification by morphology and biochemical tests (phenotypic tests). Although these methods are still fundamental, there is an increasing move toward molecular diagnostics of anaerobes. In this review, some of the molecular approaches to anaerobic diagnostics based on the polymerase chain reaction (PCR) are discussed. This includes several technological advances in PCR-based methods for the detection, identification, and quantitation of anaerobes including real-time PCR which has been successfully used to provide rapid, quantitative data on anaerobic species on clinical samples. Since its introduction in the mid-1980s, PCR has provided many molecular diagnostic tools, some of which are discussed within this review. With the advances in micro-array technology and real-time PCR methods, the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual anaerobic species but also on whole communities.

  17. Fungal molecular diagnostics: a mini review.

    PubMed

    Atkins, Simon D; Clark, Ian M

    2004-01-01

    Conventional methods to identify fungi have often relied on identification of disease symptoms, isolation and culturing of environmental organisms, and laboratory identification by morphology and biochemical tests. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. In this review, some of the molecular approaches to fungal diagnostics based on polymerase chain reaction (PCR) and DNA/RNA probe technology are discussed. This includes several technological advances in PCR-based methods for the detection, identification and quantification of fungi including real-time PCR which has been successfully used to provide rapid, quantitative data on fungal species from environmental samples. PCR and probe based methods have provided new tools for the enumeration of fungal species, but it is still necessary to combine the new technology with more conventional methods to gain a fuller understanding of interactions occurring in the environment. Since its introduction in the mid 1980's PCR has provided many molecular diagnostic tools, some of which are discussed within this review, and with the advances in micro-array technology and real-time PCR methods the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual fungal species but also on whole communities.

  18. Fudge: a high-bandwidth fusion diagnostic of the NIF

    SciTech Connect

    Moran, M. J., LLNL

    1998-06-02

    Diagnostics for the National Ignition Facility (NIF)/Inertial Confinement Fusion (ICF) program must include good characterization of the fusion source. Ideally, diagnostics would measure the spatially-resolved history of the fusion reaction rate and temperature. Existing diagnostics can satisfy this goal only partially. One class of new techniques that could play a major role in high-yield diagnostics is measurements based on fusion {gamma} rays. The Fusion Diagnostic Gamma Experiment (FUDGE) can be used to perform energy-resolved measurements of (D,T) fusion reaction rates This diagnostic is based on the 16 7-MeV {gamma} rays that are produced by (D,T) fusion. The {gamma} rays are free of spectral dispersion and can be detected with a high bandwidth Cherenkov detector. A simple magnetic monochromator selects signals from the 16 7-MeV {gamma} rays and reduces background signals from non-fusion {gamma} rays.

  19. Diagnostic Imaging of Dental Disease in Pet Rabbits and Rodents.

    PubMed

    Capello, Vittorio

    2016-09-01

    Diagnostic imaging techniques are of paramount importance for dentistry and oral disorders of rabbits, rodents, and other exotic companion mammals. Aside from standard radiography, stomatoscopy is a complementary tool allowing a thorough and detailed inspection of the oral cavity. Computed tomography (CT) generates multiple 2-dimensional views and 3-dimensional reconstructions providing superior diagnostic accuracy also useful for prognosis and treatment of advanced dental disease and its related complications. MRI is a diagnostic imaging technique additional to CT used primarily to enhance soft tissues, including complex odontogenic abscesses.

  20. [Diagnostic models. 2. Fabrication].

    PubMed

    Lefèvre, M; Vincent, G; L'Official-Vincent, M

    1989-09-01

    After describing in Part I the preparation of diagnostic cast, the authors describe the Wax Up preparation. Most of the definition of centric relation agree that the position of the mandible is slightly behind its position in centric occlusion. The Hinge axis position is used for mounting the cast on articulator. The final restauration must reconstruct both position and the occlusion should be established in front the centric occlusion. After equilibration anterior guidance is studied and restaured if necessary. After creating the different curve of occlusion, the final Wax Up is settled. The use of the diagnostic cast so obtained will be presented in Part III.