Science.gov

Sample records for accurate dose estimates

  1. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  2. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  3. Estimate Radiological Dose for Animals

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  4. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  5. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  6. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  7. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...

  8. Micromagnetometer calibration for accurate orientation estimation.

    PubMed

    Zhang, Zhi-Qiang; Yang, Guang-Zhong

    2015-02-01

    Micromagnetometers, together with inertial sensors, are widely used for attitude estimation for a wide variety of applications. However, appropriate sensor calibration, which is essential to the accuracy of attitude reconstruction, must be performed in advance. Thus far, many different magnetometer calibration methods have been proposed to compensate for errors such as scale, offset, and nonorthogonality. They have also been used for obviate magnetic errors due to soft and hard iron. However, in order to combine the magnetometer with inertial sensor for attitude reconstruction, alignment difference between the magnetometer and the axes of the inertial sensor must be determined as well. This paper proposes a practical means of sensor error correction by simultaneous consideration of sensor errors, magnetic errors, and alignment difference. We take the summation of the offset and hard iron error as the combined bias and then amalgamate the alignment difference and all the other errors as a transformation matrix. A two-step approach is presented to determine the combined bias and transformation matrix separately. In the first step, the combined bias is determined by finding an optimal ellipsoid that can best fit the sensor readings. In the second step, the intrinsic relationships of the raw sensor readings are explored to estimate the transformation matrix as a homogeneous linear least-squares problem. Singular value decomposition is then applied to estimate both the transformation matrix and magnetic vector. The proposed method is then applied to calibrate our sensor node. Although there is no ground truth for the combined bias and transformation matrix for our node, the consistency of calibration results among different trials and less than 3(°) root mean square error for orientation estimation have been achieved, which illustrates the effectiveness of the proposed sensor calibration method for practical applications. PMID:25265625

  9. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  10. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  11. Estimation of Radiation Dose in CT Based on Projection Data.

    PubMed

    Tian, Xiaoyu; Yin, Zhye; De Man, Bruno; Samei, Ehsan

    2016-10-01

    Managing and optimizing radiation dose has become a core problem for the CT community. As a fundamental step for dose optimization, accurate and computationally efficient dose estimates are crucial. The purpose of this study was to devise a computationally efficient projection-based dose metric. The absorbed energy and object mass were individually modeled using the projection data. The absorbed energy was estimated using the difference between intensity of the primary photon and the exit photon. The mass was estimated using the volume under the attenuation profile. The feasibility of the approach was evaluated across phantoms with a broad size range, various kVp settings, and two bowtie filters, using a simulation tool, the Computer Assisted Tomography SIMulator (CATSIM) software. The accuracy of projection-based dose estimation was validated against Monte Carlo (MC) simulations. The relationship between projection-based dose metric and MC dose estimate was evaluated using regression models. The projection-based dose metric showed a strong correlation with Monte Carlo dose estimates (R (2) > 0.94). The prediction errors for the projection-based dose metric were all below 15 %. This study demonstrated the feasibility of computationally efficient dose estimation requiring only the projection data.

  12. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  13. Accurate Parameter Estimation for Unbalanced Three-Phase System

    PubMed Central

    Chen, Yuan

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056

  14. Accurate parameter estimation for unbalanced three-phase system.

    PubMed

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS.

  15. Perchlorate exposure and dose estimates in infants

    PubMed Central

    Valentín-Blasini, Liza; Blount, Benjamin C.; Otero-Santos, Samaret; Cao, Yang; Bernbaum, Judy C.; Rogan, Walter J.

    2011-01-01

    Perchlorate is a naturally occurring inorganic anion used as a component of solid rocket fuel, explosives, and pyrotechnics. Sufficiently high perchlorate intakes can modify thyroid function by competitively inhibiting iodide uptake in adults; however little is known about perchlorate exposure and health effects in infants. Food intake models predict that infants have higher perchlorate exposure doses than adults. For this reason, we measured perchlorate and related anions (nitrate, thiocyanate, and iodide) in 206 urine samples from 92 infants ages 1–377 days and calculated perchlorate intake dose for this population of infants. The median estimated exposure dose for this population of infants was 0.160 μg/kg/day. Of the 205 individual dose estimates, 9% exceeded the reference dose of 0.7 μg/kg/day; 6% of infants providing multiple samples had multiple perchlorate dose estimates above the reference dose. Estimated exposure dose differed by feeding method: breast-fed infants had a higher perchlorate exposure dose (geometric mean 0.220 μg/kg/day) than infants consuming cow milk-based formula (geometric mean 0.103 μg/kg/day, p<0.0001) or soy-based formula (geometric mean 0.027 μg/kg/day, p<0.0001), consistent with dose estimates based on dietary intake data. The ability of perchlorate to block adequate iodide uptake by the thyroid may have been reduced by the iodine-sufficient status of the infants studied (median urinary iodide 125 μg/L). Further research is needed to see whether these perchlorate intake doses lead to any health effects. PMID:21449579

  16. Perchlorate exposure and dose estimates in infants.

    PubMed

    Valentín-Blasini, Liza; Blount, Benjamin C; Otero-Santos, Samaret; Cao, Yang; Bernbaum, Judy C; Rogan, Walter J

    2011-05-01

    Perchlorate is a naturally occurring inorganic anion used as a component of solid rocket fuel, explosives, and pyrotechnics. Sufficiently high perchlorate intakes can modify thyroid function by competitively inhibiting iodide uptake in adults; however, little is known about perchlorate exposure and health effects in infants. Food intake models predict that infants have higher perchlorate exposure doses than adults. For this reason, we measured perchlorate and related anions (nitrate, thiocyanate, and iodide) in 206 urine samples from 92 infants ages 1-377 days and calculated perchlorate intake dose for this sample of infants. The median estimated exposure dose for this sample of infants was 0.160 μg/kg/day. Of the 205 individual dose estimates, 9% exceeded the reference dose of 0.7 μg/kg/day; 6% of infants providing multiple samples had multiple perchlorate dose estimates above the reference dose. Estimated exposure dose differed by feeding method: breast-fed infants had a higher perchlorate exposure dose (geometric mean 0.220 μg/kg/day) than infants consuming cow milk-based formula (geometric mean 0.103 μg/kg/day, p < 0.0001) or soy-based formula (geometric mean 0.027 μg/kg/day, p < 0.0001), consistent with dose estimates based on dietary intake data. The ability of perchlorate to block adequate iodide uptake by the thyroid may have been reduced by the iodine-sufficient status of the infants studied (median urinary iodide 125 μg/L). Further research is needed to see whether these perchlorate intake doses lead to any health effects.

  17. Estimated radiation dose from timepieces containing tritium

    SciTech Connect

    McDowell-Boyer, L M

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 ..mu..Sv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed.

  18. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  19. An accurate link correlation estimator for improving wireless protocol performance.

    PubMed

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-02-12

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation.

  20. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  1. Accurate photometric redshift probability density estimation - method comparison and application

    NASA Astrophysics Data System (ADS)

    Rau, Markus Michael; Seitz, Stella; Brimioulle, Fabrice; Frank, Eibe; Friedrich, Oliver; Gruen, Daniel; Hoyle, Ben

    2015-10-01

    We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, which can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitude less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular neural network code (ANNZ). In our use case, this improvement reaches 50 per cent for high-redshift objects (z ≥ 0.75). We show that using these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used methods. The cosmological analyses we examine and find improvement upon are the following: gravitational lensing cluster mass estimates, modelling of angular correlation functions and modelling of cosmic shear correlation functions.

  2. A live weight-heart girth relationship for accurate dosing of east African shorthorn zebu cattle.

    PubMed

    Lesosky, Maia; Dumas, Sarah; Conradie, Ilana; Handel, Ian Graham; Jennings, Amy; Thumbi, Samuel; Toye, Phillip; Bronsvoort, Barend Mark de Clare

    2013-01-01

    The accurate estimation of livestock weights is important for many aspects of livestock management including nutrition, production and appropriate dosing of pharmaceuticals. Subtherapeutic dosing has been shown to accelerate pathogen resistance which can have subsequent widespread impacts. There are a number of published models for the prediction of live weight from morphometric measurements of cattle, but many of these models use measurements difficult to gather and include complicated age, size and gender stratification. In this paper, we use data from the Infectious Diseases of East Africa calf cohort study and additional data collected at local markets in western Kenya to develop a simple model based on heart girth circumference to predict live weight of east African shorthorn zebu (SHZ) cattle. SHZ cattle are widespread throughout eastern and southern Africa and are economically important multipurpose animals. We demonstrate model accuracy by splitting the data into training and validation subsets and comparing fitted and predicted values. The final model is weight(0.262) = 0.95 + 0.022 × girth which has an R (2) value of 0.98 and 95 % prediction intervals that fall within the ± 20 % body weight error band regarded as acceptable when dosing livestock. This model provides a highly reliable and accurate method for predicting weights of SHZ cattle using a single heart girth measurement which can be easily obtained with a tape measure in the field setting. PMID:22923040

  3. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  4. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  5. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  6. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  7. Variation in lunar neutron dose estimates.

    PubMed

    Slaba, Tony C; Blattnig, Steve R; Clowdsley, Martha S

    2011-12-01

    The radiation environment on the Moon includes albedo neutrons produced by primary particles interacting with the lunar surface. In this work, HZETRN2010 is used to calculate the albedo neutron contribution to effective dose as a function of shielding thickness for four different space radiation environments and to determine to what extent various factors affect such estimates. First, albedo neutron spectra computed with HZETRN2010 are compared to Monte Carlo results in various radiation environments. Next, the impact of lunar regolith composition on the albedo neutron spectrum is examined, and the variation on effective dose caused by neutron fluence-to-effective dose conversion coefficients is studied. A methodology for computing effective dose in detailed human phantoms using HZETRN2010 is also discussed and compared. Finally, the combined variation caused by environmental models, shielding materials, shielding thickness, regolith composition and conversion coefficients on the albedo neutron contribution to effective dose is determined. It is shown that a single percentage number for characterizing the albedo neutron contribution to effective dose can be misleading. In general, the albedo neutron contribution to effective dose is found to vary between 1-32%, with the environmental model, shielding material and shielding thickness being the driving factors that determine the exact contribution. It is also shown that polyethylene or other hydrogen-rich materials may be used to mitigate the albedo neutron exposure. PMID:21859325

  8. Accurate heart rate estimation from camera recording via MUSIC algorithm.

    PubMed

    Fouladi, Seyyed Hamed; Balasingham, Ilangko; Ramstad, Tor Audun; Kansanen, Kimmo

    2015-01-01

    In this paper, we propose an algorithm to extract heart rate frequency from video camera using the Multiple SIgnal Classification (MUSIC) algorithm. This leads to improved accuracy of the estimated heart rate frequency in cases the performance is limited by the number of samples and frame rate. Monitoring vital signs remotely can be exploited for both non-contact physiological and psychological diagnosis. The color variation recorded by ordinary cameras is used for heart rate monitoring. The orthogonality between signal space and noise space is used to find more accurate heart rate frequency in comparison with traditional methods. It is shown via experimental results that the limitation of previous methods can be overcome by using subspace methods. PMID:26738015

  9. Tumour dose estimation using automated TLD techniques.

    PubMed

    Ferguson, H M; Lambert, G D; Gustard, D; Harrison, R M

    1998-01-01

    Lithium fluoride (TLD-700) dosimeters were used to measure exit surface absorbed doses in external beam radiotherapy using an automated TLD reader. Delivered tumour absorbed doses were derived from these measurements for head and neck, pelvis and breast treatments. For the head and neck treatments (first fraction only), the mean percentage difference between prescribed and delivered tumour absorbed doses was -0.15 +/- 3.0% (+/- 1 SD), for the pelvic treatments -0.83 +/- 2.8% and for the breast treatments +0.26 +/- 2.9%. The spread of results is approximately +/- 3% (+/- 1 SD). This is comparable with the estimated uncertainty in a single TLD absorbed dose measurement in phantom (+/- 2%; +/- 1 SD). Thus, ICRU recommended tolerances for absorbed dose delivery of +/- 5% may not be unequivocally detectable using this method. An action level of +/- 10% is suggested, allowing investigation of possible gross errors in treatment delivery at an early stage, before the course of treatment has progressed to a point at which absorbed dose compensation is impossible.

  10. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  11. Modelling approaches to dose estimation in children

    PubMed Central

    Johnson, Trevor N

    2005-01-01

    Introduction Most of the drugs on the market are originally developed for adults and dosage selection is based on an optimal balance between clinical efficacy and safety. The aphorism ‘children are not small adults’ not only holds true for the selection of suitable drugs and dosages for use in children but also their susceptibility to adverse drug reactions [1]. Since children may not be subject to dose escalation studies similar to those carried out in the adult population, some initial estimation of dose in paediatrics should be obtained via extrapolation approaches. However, following such an exercise, well-conducted PK-PD or PK studies will still be needed to determine the most appropriate doses for neonates, infants, children and adolescents. PMID:15948929

  12. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue

    NASA Astrophysics Data System (ADS)

    Walters, B. R. B.; Kramer, R.; Kawrakow, I.

    2010-08-01

    The purpose of this study is to determine whether dose to medium, Dm, or dose to water, Dw, provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether Dm or Dw should be specified in Monte Carlo calculated radiotherapy treatment plans. The study uses voxelized, virtual human phantoms, FAX06/MAX06 (female/male), incorporated into an EGSnrc Monte Carlo code to perform Monte Carlo dose calculations during simulated irradiation by a 6 MV photon beam from an Elekta SL25 accelerator. Head and neck, chest and pelvis irradiations are studied. FAX06/MAX06 include precise modelling of spongiosa based on µCT images, allowing dose to RBM and BSC to be resolved from the dose to bone. Modifications to the FAX06/MAX06 user codes are required to score Dw and Dm in spongiosa. Dose uncertainties of ~1% (BSC, RBM) or ~0.5% (Dm, Dw) are obtained after up to 5 days of simulations on 88 CPUs. Clinically significant differences (>5%) between Dm and Dw are found only in cranial spongiosa, where the volume fraction of trabecular bone (TBVF) is high (55%). However, for spongiosa locations where there is any significant difference between Dm and Dw, comparisons of differential dose volume histograms (DVHs) and average doses show that Dw provides a better overall estimate of dose to RBM and BSC. For example, in cranial spongiosa the average Dm underestimates the average dose to sensitive tissue by at least 5%, while average Dw is within ~1% of the average dose to sensitive tissue. Thus, it is better to specify Dw than Dm in Monte Carlo treatment plans, since Dw provides a better estimate of dose to sensitive tissue in bone, the only location where the difference is likely to be clinically significant.

  13. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  14. Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?

    PubMed Central

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Hu, Weigang

    2016-01-01

    Purpose 4DCT delineated internal target volume (ITV) was applied to determine the tumor motion and used as planning target in treatment planning in lung cancer stereotactic body radiotherapy (SBRT). This work is to study the accuracy of using ITV to predict the real target dose in lung cancer SBRT. Materials and methods Both for phantom and patient cases, the ITV and gross tumor volumes (GTVs) were contoured on the maximum intensity projection (MIP) CT and ten CT phases, respectively. A SBRT plan was designed using ITV as the planning target on average projection (AVG) CT. This plan was copied to each CT phase and the dose distribution was recalculated. The GTV_4D dose was acquired through accumulating the GTV doses over all ten phases and regarded as the real target dose. To analyze the ITV dose error, the ITV dose was compared to the real target dose by endpoints of D99, D95, D1 (doses received by the 99%, 95% and 1% of the target volume), and dose coverage endpoint of V100(relative volume receiving at least the prescription dose). Results The phantom study shows that the ITV underestimates the real target dose by 9.47%∼19.8% in D99, 4.43%∼15.99% in D95, and underestimates the dose coverage by 5% in V100. The patient cases show that the ITV underestimates the real target dose and dose coverage by 3.8%∼10.7% in D99, 4.7%∼7.2% in D95, and 3.96%∼6.59% in V100 in motion target cases. Conclusions Cautions should be taken that ITV is not accurate enough to predict the real target dose in lung cancer SBRT with large tumor motions. Restricting the target motion or reducing the target dose heterogeneity could reduce the ITV dose underestimation effect in lung SBRT. PMID:26968812

  15. Fast and Accurate Learning When Making Discrete Numerical Estimates.

    PubMed

    Sanborn, Adam N; Beierholm, Ulrik R

    2016-04-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  16. Fast and Accurate Learning When Making Discrete Numerical Estimates.

    PubMed

    Sanborn, Adam N; Beierholm, Ulrik R

    2016-04-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates.

  17. Fast and Accurate Learning When Making Discrete Numerical Estimates

    PubMed Central

    Sanborn, Adam N.; Beierholm, Ulrik R.

    2016-01-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  18. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Dose estimate reporting standards. 218.4 Section... ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum standards for reporting dose estimates shall be uniformly applied by the Military Services when...

  19. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  20. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  1. Radiation environments and absorbed dose estimations on manned space missions

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Atwell, W.; Beever, R.; Hardy, A.

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5°, 57° and 90°) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5° orbital inclination.

  2. More accurate fitting of {sup 125}I and {sup 103}Pd radial dose functions

    SciTech Connect

    Taylor, R. E. P.; Rogers, D. W. O.

    2008-09-15

    In this study an improved functional form for fitting the radial dose functions, g(r), of {sup 125}I and {sup 103}Pd brachytherapy seeds is presented. The new function is capable of accurately fitting radial dose functions over ranges as large as 0.05 cm{<=}r{<=}10 cm for {sup 125}I seeds and 0.10 cm{<=}r{<=}10 cm for {sup 103}Pd seeds. The average discrepancies between fit and calculated data are less than 0.5% over the full range of fit and maximum discrepancies are 2% or less. The fitting function is also capable of accounting for the sharp increase in g(r) (upturn) seen for some sources for r<0.1 cm. This upturn has previously been attributed to the breakdown of the approximation of the sources as a line, however, in this study we demonstrate that another contributing factor is the 4.5 keV characteristic x-rays emitted from the Ti seed casing. Radial dose functions are calculated for 18 {sup 125}I seeds and 9 {sup 103}Pd seeds using the EGSnrc Monte Carlo user-code BrachyDose. Fitting coefficients of the new function are tabulated for all 27 seeds. Extrapolation characteristics of the function are also investigated. The new functional form is an improvement over currently used fitting functions with its main strength being the ability to accurately fit the rapidly varying radial dose function at small distances. The new function is an excellent candidate for fitting the radial dose function of all {sup 103}Pd and {sup 125}I brachytherapy seeds and will increase the accuracy of dose distributions calculated around brachytherapy seeds using the TG-43 protocol over a wider range of data. More accurate values of g(r) for r<0.5 cm may be particularly important in the treatment of ocular melanoma.

  3. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  4. Does more accurate exposure prediction necessarily improve health effect estimates?

    PubMed

    Szpiro, Adam A; Paciorek, Christopher J; Sheppard, Lianne

    2011-09-01

    A unique challenge in air pollution cohort studies and similar applications in environmental epidemiology is that exposure is not measured directly at subjects' locations. Instead, pollution data from monitoring stations at some distance from the study subjects are used to predict exposures, and these predicted exposures are used to estimate the health effect parameter of interest. It is usually assumed that minimizing the error in predicting the true exposure will improve health effect estimation. We show in a simulation study that this is not always the case. We interpret our results in light of recently developed statistical theory for measurement error, and we discuss implications for the design and analysis of epidemiologic research.

  5. A Monte Carlo estimation of effective dose in chest tomosynthesis

    SciTech Connect

    Sabol, John M.

    2009-12-15

    calculated to be 0.124 mSv (ICRP60) [0.134 mSv (ICRP103)]. This is less than 75% of that predicted by scaling of the PA mA s ratio. This lower dose was due to changes in the focal-spot-to-skin distance, effective changes in collimation with projection angle, rounding down of the mA s step, and variations in organ exposure to the primary x-ray beam for each view. Large errors in dose estimation can occur if these factors are not accurately modeled. Conclusions: The effective dose of a chest examination with this chest tomosynthesis system is about twice that of a two-view chest examination and less than 2% of the published average values for thoracic CT. It is shown that complete consideration of the tomosynthesis acquisition technique and geometry is required for accurate determination of the effective dose to the patient. Tomosynthesis provides three-dimensional imaging at a dose level comparable to a two-view chest x-ray examination and may provide a low dose alternative to thoracic CT for obtaining depth information in chest imaging.

  6. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  7. Simulation model accurately estimates total dietary iodine intake.

    PubMed

    Verkaik-Kloosterman, Janneke; van 't Veer, Pieter; Ocké, Marga C

    2009-07-01

    One problem with estimating iodine intake is the lack of detailed data about the discretionary use of iodized kitchen salt and iodization of industrially processed foods. To be able to take into account these uncertainties in estimating iodine intake, a simulation model combining deterministic and probabilistic techniques was developed. Data from the Dutch National Food Consumption Survey (1997-1998) and an update of the Food Composition database were used to simulate 3 different scenarios: Dutch iodine legislation until July 2008, Dutch iodine legislation after July 2008, and a potential future situation. Results from studies measuring iodine excretion during the former legislation are comparable with the iodine intakes estimated with our model. For both former and current legislation, iodine intake was adequate for a large part of the Dutch population, but some young children (<5%) were at risk of intakes that were too low. In the scenario of a potential future situation using lower salt iodine levels, the percentage of the Dutch population with intakes that were too low increased (almost 10% of young children). To keep iodine intakes adequate, salt iodine levels should not be decreased, unless many more foods will contain iodized salt. Our model should be useful in predicting the effects of food reformulation or fortification on habitual nutrient intakes.

  8. Convolution-based estimation of organ dose in tube current modulated CT

    PubMed Central

    Tian, Xiaoyu; Segars, W Paul; Dixon, Robert L; Samei, Ehsan

    2016-01-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460–7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18–70 years, weight range: 60–180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients (hOrgan) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate (CTDIvol)organ, convolution values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying (CTDIvol)organ, convolution with the organ dose coefficients (hOrgan). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the

  9. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460–7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18–70 years, weight range: 60–180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled

  10. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  11. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  12. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  13. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  14. Bioaccessibility tests accurately estimate bioavailability of lead to quail.

    PubMed

    Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S

    2016-09-01

    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of

  15. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  16. RADIANCE: An automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2011-01-01

    There is growing interest in the ability to monitor, track, and report exposure to radiation from medical imaging. Historically, however, dose information has been stored on an image-based dose sheet, an arrangement that precludes widespread indexing. Although scanner manufacturers are beginning to include dose-related parameters in the Digital Imaging and Communications in Medicine (DICOM) headers of imaging studies, there remains a vast repository of retrospective computed tomographic (CT) data with image-based dose sheets. Consequently, it is difficult for imaging centers to monitor their dose estimates or participate in the American College of Radiology (ACR) Dose Index Registry. An automated extraction software pipeline known as Radiation Dose Intelligent Analytics for CT Examinations (RADIANCE) has been designed that quickly and accurately parses CT dose sheets to extract and archive dose-related parameters. Optical character recognition of information in the dose sheet leads to creation of a text file, which along with the DICOM study header is parsed to extract dose-related data. The data are then stored in a relational database that can be queried for dose monitoring and report creation. RADIANCE allows efficient dose analysis of CT examinations and more effective education of technologists, radiologists, and referring physicians regarding patient exposure to radiation at CT. RADIANCE also allows compliance with the ACR's dose reporting guidelines and greater awareness of patient radiation dose, ultimately resulting in improved patient care and treatment.

  17. RADIANCE: An automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2011-01-01

    There is growing interest in the ability to monitor, track, and report exposure to radiation from medical imaging. Historically, however, dose information has been stored on an image-based dose sheet, an arrangement that precludes widespread indexing. Although scanner manufacturers are beginning to include dose-related parameters in the Digital Imaging and Communications in Medicine (DICOM) headers of imaging studies, there remains a vast repository of retrospective computed tomographic (CT) data with image-based dose sheets. Consequently, it is difficult for imaging centers to monitor their dose estimates or participate in the American College of Radiology (ACR) Dose Index Registry. An automated extraction software pipeline known as Radiation Dose Intelligent Analytics for CT Examinations (RADIANCE) has been designed that quickly and accurately parses CT dose sheets to extract and archive dose-related parameters. Optical character recognition of information in the dose sheet leads to creation of a text file, which along with the DICOM study header is parsed to extract dose-related data. The data are then stored in a relational database that can be queried for dose monitoring and report creation. RADIANCE allows efficient dose analysis of CT examinations and more effective education of technologists, radiologists, and referring physicians regarding patient exposure to radiation at CT. RADIANCE also allows compliance with the ACR's dose reporting guidelines and greater awareness of patient radiation dose, ultimately resulting in improved patient care and treatment. PMID:21969661

  18. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  19. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    SciTech Connect

    Simpkins, A.A.

    2003-07-21

    At the Savannah River Site (SRS), emergency response computer models are used to estimate dose following releases of radioactive materials to the environment. Downwind air and ground concentrations and their associated doses from inhalation and ground shine pathways are estimated. The emergency response model (PUFF-PLUME) uses real-time data to track either instantaneous (puff) or continuous (plume) releases. A site-specific ingestion dose model was developed for use with PUFF-PLUME that includes the following ingestion dose pathways pertinent to the surrounding SRS area: milk, beef, water, and fish. The model is simplistic and can be used with existing code output.

  20. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  1. Gamma-H2AX-Based Dose Estimation for Whole and Partial Body Radiation Exposure

    PubMed Central

    Horn, Simon; Barnard, Stephen; Rothkamm, Kai

    2011-01-01

    Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci – but not intensity – levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures. PMID

  2. Accurate Accumulation of Dose for Improved Understanding of Radiation Effects in Normal Tissue

    SciTech Connect

    Jaffray, David A.; Lindsay, Patricia E.; Brock, Kristy K.; Deasy, Joseph O.; Tome, W.A.

    2010-03-01

    The actual distribution of radiation dose accumulated in normal tissues over the complete course of radiation therapy is, in general, poorly quantified. Differences in the patient anatomy between planning and treatment can occur gradually (e.g., tumor regression, resolution of edema) or relatively rapidly (e.g., bladder filling, breathing motion) and these undermine the accuracy of the planned dose distribution. Current efforts to maximize the therapeutic ratio require models that relate the true accumulated dose to clinical outcome. The needed accuracy can only be achieved through the development of robust methods that track the accumulation of dose within the various tissues in the body. Specific needs include the development of segmentation methods, tissue-mapping algorithms, uncertainty estimation, optimal schedules for image-based monitoring, and the development of informatics tools to support subsequent analysis. These developments will not only improve radiation outcomes modeling but will address the technical demands of the adaptive radiotherapy paradigm. The next 5 years need to see academia and industry bring these tools into the hands of the clinician and the clinical scientist.

  3. In vivo dosimetry for estimation of effective doses in multislice CT coronary angiography

    SciTech Connect

    De Denaro, M.; Bregant, P.; Severgnini, M.; De Guarrini, F.

    2007-10-15

    In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Considering the increment in dose to the population due to new high-dose multislice CT examinations, such as coronary angiography, it is becoming important to more accurately know the dose to the patient. The desire to know patient dose extends even to radiological examinations. Thermoluminescent dosimeters are considered the gold standard for in vivo dosimetry, but their use is time consuming. A rapid, less labor-intensive method has been developed to perform in vivo dosimetry using radiochromic film positioned next to the patient's skin. Multislice CT scanners allow the estimation of the effective dose to the patient from the dose length product (DLP) parameter, the value of which is displayed on the acquisition console, simply multiplying the DLP by published conversion factors. The method represents only an approximation based on standard size circular phantoms and neglects the actual size of the patient. More accurate evaluations can be carried out using software-based Monte Carlo simulations. However, these methods do not consider possible dose reduction techniques, such as automatic tube-current modulation. For 22 patients effective doses measured by in vivo dosimetry and calculated by software were compared. The technique of using in vivo dosimetry measured with radiochromic film appears a promising procedure for improving the assessment of the effective dose to the patient.

  4. Towards a comprehensive CT image segmentation for thoracic organ radiation dose estimation and reporting

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Ruppertshofen, Heike; Vik, Torbjörn; Prinsen, Peter; Wiegert, Jens

    2014-03-01

    Administered dose of ionizing radiation during medical imaging is an issue of increasing concern for the patient, for the clinical community, and for respective regulatory bodies. CT radiation dose is currently estimated based on a set of very simplifying assumptions which do not take the actual body geometry and organ specific doses into account. This makes it very difficult to accurately report imaging related administered dose and to track it for different organs over the life of the patient. In this paper this deficit is addressed in a two-fold way. In a first step, the absorbed radiation dose in each image voxel is estimated based on a Monte-Carlo simulation of X-ray absorption and scattering. In a second step, the image is segmented into tissue types with different radio sensitivity. In combination this allows to calculate the effective dose as a weighted sum of the individual organ doses. The main purpose of this paper is to assess the feasibility of automatic organ specific dose estimation. With respect to a commercially applicable solution and respective robustness and efficiency requirements, we investigated the effect of dose sampling rather than integration over the organ volume. We focused on the thoracic anatomy as the exemplary body region, imaged frequently by CT. For image segmentation we applied a set of available approaches which allowed us to cover the main thoracic radio-sensitive tissue types. We applied the dose estimation approach to 10 thoracic CT datasets and evaluated segmentation accuracy and administered dose and could show that organ specific dose estimation can be achieved.

  5. Sample Based Unit Liter Dose Estimates

    SciTech Connect

    JENSEN, L.

    2000-04-13

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new data to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).

  6. Sinogram smoothing techniques for myocardial blood flow estimation from dose-reduced dynamic computed tomography

    PubMed Central

    Modgil, Dimple; Alessio, Adam M.; Bindschadler, Michael D.; La Rivière, Patrick J.

    2014-01-01

    Abstract. Dynamic contrast-enhanced computed tomography (CT) could provide an accurate and widely available technique for myocardial blood flow (MBF) estimation to aid in the diagnosis and treatment of coronary artery disease. However, one of its primary limitations is the radiation dose imparted to the patient. We are exploring techniques to reduce the patient dose by either reducing the tube current or by reducing the number of temporal frames in the dynamic CT sequence. Both of these dose reduction techniques result in noisy data. In order to extract the MBF information from the noisy acquisitions, we have explored several data-domain smoothing techniques. In this work, we investigate two specific smoothing techniques: the sinogram restoration technique in both the spatial and temporal domains and the use of the Karhunen–Loeve (KL) transform to provide temporal smoothing in the sinogram domain. The KL transform smoothing technique has been previously applied to dynamic image sequences in positron emission tomography. We apply a quantitative two-compartment blood flow model to estimate MBF from the time-attenuation curves and determine which smoothing method provides the most accurate MBF estimates in a series of simulations of different dose levels, dynamic contrast-enhanced cardiac CT acquisitions. As measured by root mean square percentage error (% RMSE) in MBF estimates, sinogram smoothing generally provides the best MBF estimates except for the cases of the lowest simulated dose levels (tube current=25  mAs, 2 or 3 s temporal spacing), where the KL transform method provides the best MBF estimates. The KL transform technique provides improved MBF estimates compared to conventional processing only at very low doses (<7  mSv). Results suggest that the proposed smoothing techniques could provide high fidelity MBF information and allow for substantial radiation dose savings. PMID:25642441

  7. radir package: an R implementation for cytogenetic biodosimetry dose estimation.

    PubMed

    Moriña, David; Higueras, Manuel; Puig, Pedro; Ainsbury, Elizabeth A; Rothkamm, Kai

    2015-09-01

    The Bayesian framework has been shown to be very useful in cytogenetic dose estimation. This approach allows description of the probability of an event in terms of previous knowledge, e.g. its expectation and/or its uncertainty. A new R package entitled radir (radiation inverse regression) has been implemented with the aim of reproducing a recent Bayesian-type dose estimation methodology. radir adopts the method of dose estimation under the Poisson assumption of the responses (the chromosomal aberrations counts) for the required dose-response curve (typically linear or quadratic). The individual commands are described in detail and relevant examples of the use of the methods and the corresponding radir software tools are given. The suitability of this methodology is highlighted and its application encouraged by providing a user-friendly command-type software interface within the R statistical software (version 3.1.1 or higher), which includes a complete manual.

  8. Estimation of dose to man from environmental tritium

    SciTech Connect

    Rohwer, P S; Etnier, E L

    1980-01-01

    Factors important for characterization of tritium in environmental pathways leading to exposure of man are reviewed and quantification of those factors is discussed. Parameters characterizing the behavior of tritium in man are also subjected to review. Factors to be discussed include organic binding, bioaccumulation, quality factor and transmutation. A variety of models are presently in use to estimate dose to man from environmental releases of tritium. Results from four representative models are compared and discussed. Site-specific information is always preferable when parameterizing models to estimate dose to man. There may be significant differences in dose potential among geographic regions due to variable factors. An example of one such factor examined is absolute humidity. It is concluded that adequate methodologies exist for estimation of dose to man from environmental tritium although a number of areas are identified where additional tritium research is desirable.

  9. Estimation of food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  10. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  11. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  12. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  13. Dose Estimation from Daily and Weekly Dosimetry Data

    SciTech Connect

    Ostrouchov, G.

    2001-11-16

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the amount of bias also varies

  14. Development of Classification and Story Building Data for Accurate Earthquake Damage Estimation

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Fukukawa, Noriko; Arai, Kensuke

    We investigated the method of developing classification and story building data from census population database in order to estimate earthquake damage more accurately especially in the urban area presuming that there are correlation between numbers of non-wooden or high-rise buildings and the population. We formulated equations of estimating numbers of wooden houses, low-to-mid-rise(1-9 story) and high-rise(over 10 story) non-wooden buildings in the 1km mesh from night and daytime population database based on the building data we investigated and collected in the selected 20 meshs in Kanto area. We could accurately estimate the numbers of three classified buildings by the formulated equations, but in some special cases, such as the apartment block mesh, the estimated values are quite different from actual values.

  15. Radiation dose estimates for copper-64 citrate in man

    SciTech Connect

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs.

  16. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure.

  17. Estimate of doses to the fetus during commercial flights.

    PubMed

    Chen, Jing; Mares, Vladimir

    2008-10-01

    This study assesses the radiation exposure from cosmic rays to fetuses of pregnant aircrew and air travelers. Combining the particle fluence spectra of various cosmic radiations at aircraft altitudes with the fetal fluence-to-dose conversion coefficients calculated for different cosmic ray radiations, the doses to the fetal body were estimated for three prenatal ages. From the five major particle types present during commercial flights, neutrons contribute about 54% of the total fetal dose, followed by protons 22%, photons 11%, electrons 7%, and muons 6%. The results indicate that the dose to the fetus can exceed a recommended fetal dose limit of 1 mSv after 10 round trips on commercial flights between Toronto and Frankfurt. PMID:18784513

  18. Maximum likelihood estimation for cytogenetic dose-response curves

    SciTech Connect

    Frome, E.L.; DuFrain, R.J.

    1986-03-01

    In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  19. Effects of the loss of correlation structure on Phase 1 dose estimates. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Simpson, J.C.

    1991-11-01

    In Phase I of the Hanford Environmental Dose Reconstruction Project, a step-by-step (modular) calculational structure was used. This structure was intended (1) to simplify the computational process, (2) to allow storage of intermediate calculations for later analyses, and (3) to guide the collection of data by presenting understandable structures for its use. The implementation of this modular structure resulted in the loss of correlation among inputs and outputs of the code, resulting in less accurate dose estimates than anticipated. The study documented in this report investigated two types of correlations in the Phase I model: temporal and pathway. Temporal correlations occur in the simulation when, in the calculation, data estimated for a previous time are used in a subsequent calculation. If the various portions of the calculation do not use the same realization of the earlier estimate, they are no longer correlated with respect to time. Similarly, spatial correlations occur in a simulation when, in the calculation, data estimated for a particular location are used in estimates for other locations. If the various calculations do not use the same value for the original location, they are no longer correlated with respect to location. The loss of the correlation structure in the Phase I code resulted in dose estimates that are biased. It is recommended that the air pathway dose model be restructured and the intermediate histograms eliminated. While the restructured code may still contain distinct modules, all input parameters to each module and all out put from each module should be retained in a database such that subsequent modules can access all the information necessary to retain the correlation structure.

  20. Patient-specific dose estimation for pediatric chest CT

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for

  1. Dose estimates in a loss of lead shielding truck accident.

    SciTech Connect

    Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John

    2009-08-01

    The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

  2. Do We Know Whether Researchers and Reviewers are Estimating Risk and Benefit Accurately?

    PubMed

    Hey, Spencer Phillips; Kimmelman, Jonathan

    2016-10-01

    Accurate estimation of risk and benefit is integral to good clinical research planning, ethical review, and study implementation. Some commentators have argued that various actors in clinical research systems are prone to biased or arbitrary risk/benefit estimation. In this commentary, we suggest the evidence supporting such claims is very limited. Most prior work has imputed risk/benefit beliefs based on past behavior or goals, rather than directly measuring them. We describe an approach - forecast analysis - that would enable direct and effective measure of the quality of risk/benefit estimation. We then consider some objections and limitations to the forecasting approach. PMID:27197044

  3. Do We Know Whether Researchers and Reviewers are Estimating Risk and Benefit Accurately?

    PubMed

    Hey, Spencer Phillips; Kimmelman, Jonathan

    2016-10-01

    Accurate estimation of risk and benefit is integral to good clinical research planning, ethical review, and study implementation. Some commentators have argued that various actors in clinical research systems are prone to biased or arbitrary risk/benefit estimation. In this commentary, we suggest the evidence supporting such claims is very limited. Most prior work has imputed risk/benefit beliefs based on past behavior or goals, rather than directly measuring them. We describe an approach - forecast analysis - that would enable direct and effective measure of the quality of risk/benefit estimation. We then consider some objections and limitations to the forecasting approach.

  4. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  5. Space radiation dose estimates on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.

    1990-08-01

    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.

  6. Maximum likelihood estimation for cytogenetic dose-response curves

    SciTech Connect

    Frome, E.L; DuFrain, R.J.

    1983-10-01

    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  7. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. P.; Dixon, R. L.; Samei, Ehsan

    2015-03-01

    Among the various metrics that quantify radiation dose in computed tomography (CT), organ dose is one of the most representative quantities reflecting patient-specific radiation burden.1 Accurate estimation of organ dose requires one to effectively model the patient anatomy and the irradiation field. As illustrated in previous studies, the patient anatomy factor can be modeled using a library of computational phantoms with representative body habitus.2 However, the modeling of irradiation field can be practically challenging, especially for CT exams performed with tube current modulation. The central challenge is to effectively quantify the scatter irradiation field created by the dynamic change of tube current. In this study, we present a convolution-based technique to effectively quantify the primary and scatter irradiation field for TCM examinations. The organ dose for a given clinical patient can then be rapidly determined using the convolution-based method, a patient-matching technique, and a library of computational phantoms. 58 adult patients were included in this study (age range: 18-70 y.o., weight range: 60-180 kg). One computational phantom was created based on the clinical images of each patient. Each patient was optimally matched against one of the remaining 57 computational phantoms using a leave-one-out strategy. For each computational phantom, the organ dose coefficients (CTDIvol-normalized organ dose) under fixed tube current were simulated using a validated Monte Carlo simulation program. Such organ dose coefficients were multiplied by a scaling factor, (CTDIvol )organ, convolution that quantifies the regional irradiation field. The convolution-based organ dose was compared with the organ dose simulated from Monte Carlo program with TCM profiles explicitly modeled on the original phantom created based on patient images. The estimation error was within 10% across all organs and modulation profiles for abdominopelvic examination. This strategy

  8. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy.

  9. Developing milk industry estimates for dose reconstruction projects

    SciTech Connect

    Beck, D.M.; Darwin, R.F. )

    1991-01-01

    One of the most important contributors to radiation doses from hanford during the 1944-1947 period was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to reconstruct the amount of milk consumed by people living near Hanford, the source of the milk, and the type of feed that the milk cows ate. This task is challenging because the dairy industry has undergone radical changes since the end of World War 2, and records that document the impact of these changes on the study area are scarce. Similar problems are faced by researchers on most dose reconstruction efforts. The purpose of this work is to document and evaluate the methods used on the Hanford Environmental Dose Reconstruction (HEDR) Project to reconstruct the milk industry and to present preliminary results.

  10. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  11. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  12. Estimating absorbed dose of pesticides in a field setting using biomonitoring data and pharmacokinetic models.

    PubMed

    Scher, Deanna P; Sawchuk, Ronald J; Alexander, Bruce H; Adgate, John L

    2008-01-01

    Linking biomarker data to pharmacokinetic (PK) models permits comparison of absorbed dose with a toxicological benchmark, which is an important step to understanding the health implications of pesticide exposure. The purpose of this analysis was to evaluate the feasibility of reconstructing the absorbed dose of two pesticides using PK models developed from biomarker data in a study of occupational application of these compounds. Twenty-four-hour urine samples were collected from farmers 24 h before through 96 h after a typical application of chlorpyrifos or 2,4-D. PK models were used to link the amounts found in urine samples to absorbed dose. Modeled total body dose estimates (in micrograms) were compared to measured dose from time 0-96 h. Despite the complexities surrounding the interpretation of biomonitoring data from a field setting, the models developed as part of this analysis accurately estimated the absorbed dose of 2,4-D and chlorpyrifos when collection of urine samples was largely complete. Over half of the farmers were excluded from modeling due to suspected noncompliance with urine collection or confounding exposure events, which highlights the importance of these issues for designing and interpreting biomonitoring data in future studies. Further evaluation of PK models in scenarios using single void samples is warranted for improving field-based dose assessments.

  13. Automatic versus manual lymphocyte fixation: impact on dose estimation using the cytokinesis-block micronucleus assay.

    PubMed

    Beinke, Christina; Port, Matthias; Abend, Michael

    2015-03-01

    discrimination of binary dose categories of clinical significance, we observed a good agreement of both fixation procedures. The implementation of the automatic cell harvesting system considerably reduces the workload and results in dose estimates with a tendency of being slightly more accurate as they are after a manual fixation.

  14. Influence of DTPA Treatment on Internal Dose Estimates.

    PubMed

    Davesne, Estelle; Blanchardon, Eric; Peleau, Bernadette; Correze, Philippe; Bohand, Sandra; Franck, Didier

    2016-06-01

    In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment. PMID:27115221

  15. Mental health disorders among individuals with mental retardation: challenges to accurate prevalence estimates.

    PubMed Central

    Kerker, Bonnie D.; Owens, Pamela L.; Zigler, Edward; Horwitz, Sarah M.

    2004-01-01

    OBJECTIVES: The objectives of this literature review were to assess current challenges to estimating the prevalence of mental health disorders among individuals with mental retardation (MR) and to develop recommendations to improve such estimates for this population. METHODS: The authors identified 200 peer-reviewed articles, book chapters, government documents, or reports from national and international organizations on the mental health status of people with MR. Based on the study's inclusion criteria, 52 articles were included in the review. RESULTS: Available data reveal inconsistent estimates of the prevalence of mental health disorders among those with MR, but suggest that some mental health conditions are more common among these individuals than in the general population. Two main challenges to identifying accurate prevalence estimates were found: (1) health care providers have difficulty diagnosing mental health conditions among individuals with MR; and (2) methodological limitations of previous research inhibit confidence in study results. CONCLUSIONS: Accurate prevalence estimates are necessary to ensure the availability of appropriate treatment services. To this end, health care providers should receive more training regarding the mental health treatment of individuals with MR. Further, government officials should discuss mechanisms of collecting nationally representative data, and the research community should utilize consistent methods with representative samples when studying mental health conditions in this population. PMID:15219798

  16. Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees.

    PubMed

    Omasa, Kenji; Qiu, Guo Yu; Watanuki, Kenichi; Yoshimi, Kenji; Akiyama, Yukihide

    2003-03-15

    Forests are one of the most important carbon sinks on Earth. However, owing to the complex structure, variable geography, and large area of forests, accurate estimation of forest carbon stocks is still a challenge for both site surveying and remote sensing. For these reasons, the Kyoto Protocol requires the establishment of methodologies for estimating the carbon stocks of forests (Kyoto Protocol, Article 5). A possible solution to this challenge is to remotely measure the carbon stocks of every tree in an entire forest. Here, we present a methodology for estimating carbon stocks of a Japanese cedar forest by using a high-resolution, helicopter-borne 3-dimensional (3-D) scanning lidar system that measures the 3-D canopy structure of every tree in a forest. Results show that a digital image (10-cm mesh) of woody canopy can be acquired. The treetop can be detected automatically with a reasonable accuracy. The absolute error ranges for tree height measurements are within 42 cm. Allometric relationships of height to carbon stocks then permit estimation of total carbon storage by measurement of carbon stocks of every tree. Thus, we suggest that our methodology can be used to accurately estimate the carbon stocks of Japanese cedar forests at a stand scale. Periodic measurements will reveal changes in forest carbon stocks.

  17. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    PubMed Central

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  18. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  19. Estimation of Secondary Neutron Dose during Proton Therapy

    NASA Astrophysics Data System (ADS)

    Urban, Tomas; Klusoň, Jaroslav

    2014-06-01

    During proton radiotherapy, secondary neutrons are produced by nuclear interactions in the material along the beam path, in the treatment nozzle (including the fixed scatterer, range modulator, etc.) and, of course, after entering the patient. The dose equivalent deposited by these neutrons is usually not considered in routine treatment planning. In this study, there has been estimated the neutron dose in patient (in as well as around the target volume) during proton radiotherapy using scattering and scanning techniques. The proton induced neutrons (and photons) have been simulated in the simple geometry of the single scattering and the pencil beam scanning universal nozzles and in geometry of the plastic phantom (made of tissue equivalent material - RW3 - imitate the patient). In simulations of the scattering nozzle, different types of brass collimators have been used as well. Calculated data have been used as an approximation of the radiation field in and around the chosen/potential target volume in the patient (plastic phantom). For the dose equivalent evaluation, fluence-to-dose conversion factors from ICRP report have been employed. The results of calculated dose from neutrons in various distances from the spot for different treatment technique and for different energies of incident protons have been compared and evaluated in the context of the dose deposited in the target volume. This work was supported by RVO: 68407700 and Grant Agency of the CTU in Prague, grant No. SGS12/200/OHK4/3T/14.

  20. Dose estimates for the solid waste performance assessment

    SciTech Connect

    Rittman, P.D.

    1994-08-30

    The Solid Waste Performance Assessment calculations by PNL in 1990 were redone to incorporate changes in methods and parameters since then. The ten scenarios found in their report were reduced to three, the Post-Drilling Resident, the Post-Excavation Resident, and an All Pathways Irrigator. In addition, estimates of population dose to people along the Columbia River are also included. The attached report describes the methods and parameters used in the calculations, and derives dose factors for each scenario. In addition, waste concentrations, ground water concentrations, and river water concentrations needed to reach the performance objectives of 100 mrem/yr and 500 person-rem/yr are computed. Internal dose factors from DOE-0071 were applied when computing internal dose. External dose rate factors came from the GENII Version 1.485 software package. Dose calculations were carried out on a spreadsheet. The calculations are described in detail in the report for 63 nuclides, including 5 not presently in the GENII libraries. The spreadsheet calculations were checked by comparison with GENII, as described in Appendix D.

  1. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities

    PubMed Central

    Helb, Danica A.; Tetteh, Kevin K. A.; Felgner, Philip L.; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R.; Beeson, James G.; Tappero, Jordan; Smith, David L.; Crompton, Peter D.; Rosenthal, Philip J.; Dorsey, Grant; Drakeley, Christopher J.; Greenhouse, Bryan

    2015-01-01

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual’s recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86–0.93), whereas responses to six antigens accurately estimated an individual’s malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs. PMID:26216993

  2. Validity of the size-specific dose estimate in adults undergoing coronary CT angiography: comparison with the volume CT dose index.

    PubMed

    Kidoh, Masafumi; Utsunomiya, Daisuke; Oda, Seitaro; Funama, Yoshinori; Yuki, Hideaki; Nakaura, Takeshi; Kai, Noriyuki; Nozaki, Takeshi; Yamashita, Yasuyuki

    2015-12-01

    Size-specific dose estimate (SSDE) takes into account the patient size but remains to be fully validated for adult coronary computed tomography angiography (CCTA). We investigated the appropriateness of SSDE for accurate estimation of patient dose by comparing the SSDE and the volume CT dose index (CTDIvol) in adult CCTA. This prospective study received institutional review board approval, and informed consent was obtained from each patient. We enrolled 37 adults who underwent CCTA with a 320-row CT. High-sensitivity metal oxide semiconductor field effect transistor dosimeters were placed on the anterior chest. CTDIvol reported by the scanner based on a 32-cm phantom was recorded. We measured chest diameter to convert CTDIvol to SSDE. Using linear regression, we then correlated SSDE with the mean measured skin dose. We also performed linear regression analyses between the skin dose/CTDIvol and the body mass index (BMI), and the skin dose/SSDE and BMI. There was a strong linear correlation (r = 0.93, P < 0.001) between SSDE (mean 37 ± 22 mGy) and mean skin dose (mean 17.7 ± 10 mGy). There was a moderate negative correlation between the skin dose/CTDIvol and BMI (r = 0.45, P < 0.01). The skin dose/SSDE was not affected by BMI (r = 0.06, P > 0.76). SSDE yields a more accurate estimation of the radiation dose without estimation errors attributable to the body size of adult patients undergoing CCTA. PMID:26440660

  3. Establishment of an x-ray standard calibration curve by conventional dicentric analysis as prerequisite for accurate radiation dose assessment.

    PubMed

    Beinke, Christina; Braselmann, Herbert; Meineke, Viktor

    2010-02-01

    The dicentric assay was established to carry out cytogenetic biodosimetry after suspected radiation overexposure, including a comprehensive documentation system to record the processing of the specimen, all data, results, and stored information. As an essential prerequisite for retrospective radiation dose assessment, a dose-response curve for dicentric induction by in vitro x-ray irradiation of peripheral blood samples was produced. The accelerating potential was 240 kV (maximum photon energy: 240 keV). A total of 8,377 first-division metaphases of four healthy volunteers were analyzed after exposure to doses ranging from 0.2 to 4.0 Gy at a dose rate of 1.0 Gy min. The background level of aberrations at 0-dose was determined by the analysis of 14,522 first-division metaphases obtained from unirradiated blood samples of 10 healthy volunteers. The dose-response relationship follows a linear-quadratic equation, Y = c + alphaD + betaD, with the coefficients c = 0.0005 +/- 0.0002, alpha = 0.043 +/- 0.006, and beta = 0.063 +/- 0.004. The technical competence and the quality of the calibration curve were assessed by determination of the dose prediction accuracy in an in vitro experiment simulating whole-body exposures within a range of 0.2 to 2.0 Gy. Dose estimations were derived by scoring up to 500-1,000 metaphase spreads or more (full estimation mode) and by evaluating only 50 metaphase spreads (triage mode) per subject. The triage mode was applied by performing manifold evaluations of the full estimation data in order to test the robustness of the curve for triage purposes and to assess possible variations among the estimated doses referring to a single exposure and preparation.

  4. Measurement of entrance skin dose and estimation of organ dose during pediatric chest radiography.

    PubMed

    Kumaresan, M; Kumar, Rajesh; Biju, K; Choubey, Ajay; Kantharia, S

    2011-06-01

    Entrance skin dose (ESD) was measured to calculate the organ doses from the anteroposterior (AP) and posteroanterior (PA) chest x-ray projections for pediatric patients in an Indian hospital. High sensitivity tissue-equivalent thermoluminescent dosimeters (TLD, LiF: Mg, Cu, P chips) were used for measuring entrance skin dose. The respective organ doses were calculated using the Monte Carlo method (MCNP 3.1) to simulate the examination set-up and a three-dimensional mathematical phantom for representing an average 5-y-old Indian child. Using this method, conversion coefficients were derived for translating the measured ESD to organ doses. The average measured ESDs for the chest AP and PA projections were 0.305 mGy and 0.171 mGy, respectively. The average calculated organ doses in the AP and the PA projections were 0.196 and 0.086 mSv for the thyroid, 0.167 and 0.045 mSv for the trachea, 0.078 and 0.043 mSv for the lungs, 0.110 and 0.013 mSv for the liver, 0.002 and 0.016 mSv for the bone marrow, 0.024 and 0.002 mSv for the kidneys, and 0.109 and 0.023 mSv for the heart, respectively. The ESD and organ doses can be reduced significantly with the proper radiological technique. According to these results, the chest PA projection should be preferred over the AP projection in pediatric patients. The estimated organ doses for the chest AP and PA projections can be used for the estimation of the associated risk.

  5. Evaluating Uncertainty Estimates Produced by Dose Assessment Models

    NASA Astrophysics Data System (ADS)

    Meyer, P. D.; Orr, S.

    2001-05-01

    Assessments of the dose and/or risk from contaminated sites and waste disposal facilities may rely on the use of relatively simplified models of subsurface flow and transport. Common simplifications include steady-state, one-dimensional flow; homogeneous and isotropic transport medium properties; and unit hydraulic gradient in the unsaturated zone. Because of their relative computational speed, such simplified models are particularly attractive when the impact of uncertainty in flow and transport needs to be evaluated. Simplifications in the representation of flow and transport have the potential to result in an unrepresentative estimate of uncertainty in dose/risk. `Unrepresentative' is used here to describe an estimate of uncertainty that significantly misrepresents the actual uncertainty. Such misrepresentation may have important consequences for decisions based on the dose/risk assessments. The significance of this concern is evaluated here by comparing test case results from uncertainty assessments conducted using a simplified modeling approach and a more complex/realistic modeling approach. The test case follows the U.S. Nuclear Regulatory Commission's framework for site decommissioning analyses. Subsurface properties are derived from data obtained in the Las Cruces Trench experiments with source term data reflecting an actual decommissioning case. Comparisons between the two approaches include the probability distribution of peak dose, the relative importance of parameters, and the value of site-specific data in reducing uncertainty.

  6. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.

  7. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images

    PubMed Central

    Lavoie, Benjamin R.; Okoniewski, Michal; Fear, Elise C.

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  8. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  9. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  10. Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar

    NASA Astrophysics Data System (ADS)

    Isoda, Kentaro; Sakamoto, Takuya; Sato, Toru

    Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.

  11. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  12. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    NASA Astrophysics Data System (ADS)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  13. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  14. A revised burial dose estimation procedure for optical dating of youngand modern-age sediments

    USGS Publications Warehouse

    Arnold, L.J.; Roberts, R.G.; Galbraith, R.F.; DeLong, S.B.

    2009-01-01

    The presence of genuinely zero-age or near-zero-age grains in modern-age and very young samples poses a problem for many existing burial dose estimation procedures used in optical (optically stimulated luminescence, OSL) dating. This difficulty currently necessitates consideration of relatively simplistic and statistically inferior age models. In this study, we investigate the potential for using modified versions of the statistical age models of Galbraith et??al. [Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339-364.] to provide reliable equivalent dose (De) estimates for young and modern-age samples that display negative, zero or near-zero De estimates. For this purpose, we have revised the original versions of the central and minimum age models, which are based on log-transformed De values, so that they can be applied to un-logged De estimates and their associated absolute standard errors. The suitability of these 'un-logged' age models is tested using a series of known-age fluvial samples deposited within two arroyo systems from the American Southwest. The un-logged age models provide accurate burial doses and final OSL ages for roughly three-quarters of the total number of samples considered in this study. Sensitivity tests reveal that the un-logged versions of the central and minimum age models are capable of producing accurate burial dose estimates for modern-age and very young (<350??yr) fluvial samples that contain (i) more than 20% of well-bleached grains in their De distributions, or (ii) smaller sub-populations of well-bleached grains for which the De values are known with high precision. Our results indicate that the original (log-transformed) versions of the central and minimum age models are still preferable for most routine dating applications

  15. READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation

    PubMed Central

    Rashid, Mamoon; Pain, Arnab

    2013-01-01

    Summary: READSCAN is a highly scalable parallel program to identify non-host sequences (of potential pathogen origin) and estimate their genome relative abundance in high-throughput sequence datasets. READSCAN accurately classified human and viral sequences on a 20.1 million reads simulated dataset in <27 min using a small Beowulf compute cluster with 16 nodes (Supplementary Material). Availability: http://cbrc.kaust.edu.sa/readscan Contact: arnab.pain@kaust.edu.sa or raeece.naeem@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23193222

  16. Space radiation dose estimates on the surface of Mars.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1990-01-01

    A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planet's surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere. PMID:11537609

  17. Some indicative parameters on diagnostic radiology in Spain: first dose estimations.

    PubMed

    Vañó, E; González, L; Calzado, A; Morán, P; Delgado, V

    1989-01-01

    The Medical Physics Group at the Complutense University of Madrid has been co-ordinating, for approximately 1 year, a project on optimization of radiation protection in diagnostic radiology, in co-operation with the other states of the European Community. Exhaustive data on the subject, which offer accurate results on patient dosimetry for the different types of examination, are the final aim of the project. So far, it has been possible to analyse in detail the data from the National Institute of Health (NIH), which manages the care of about 96% of the Spanish population, plus the findings from several hospitals, outpatient centres and private clinics of the community of Madrid, which allowed us to perform the first dose estimations and to extrapolate them to the rest of Spain. The following estimations are presented: annual frequency of different examinations, their variation from 1985 to 1986, number of diagnostic rooms used for a given minimum of annual examinations, organ doses for different examinations, effective dose-equivalent, genetically significant dose for some examinations, as well as the collective dose.

  18. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems. PMID:26651397

  19. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.

  20. Accurate Estimation of Carotid Luminal Surface Roughness Using Ultrasonic Radio-Frequency Echo

    NASA Astrophysics Data System (ADS)

    Kitamura, Kosuke; Hasegawa, Hideyuki; Kanai, Hiroshi

    2012-07-01

    It would be useful to measure the minute surface roughness of the carotid arterial wall to detect the early stage of atherosclerosis. In conventional ultrasonography, the axial resolution of a B-mode image depends on the ultrasonic wavelength of 150 µm at 10 MHz because a B-mode image is constructed using the amplitude of the radio-frequency (RF) echo. Therefore, the surface roughness caused by atherosclerosis in an early stage cannot be measured using a conventional B-mode image obtained by ultrasonography because the roughness is 10-20 µm. We have realized accurate transcutaneous estimation of such a minute surface profile using the lateral motion of the carotid arterial wall, which is estimated by block matching of received ultrasonic signals. However, the width of the region where the surface profile is estimated depends on the magnitude of the lateral displacement of the carotid arterial wall (i.e., if the lateral displacement of the arterial wall is 1 mm, the surface profile is estimated in a region of 1 mm in width). In this study, the width was increased by combining surface profiles estimated using several ultrasonic beams. In the present study, we first measured a fine wire, whose diameter was 13 µm, using ultrasonic equipment to obtain an ultrasonic beam profile for determination of the optimal kernel size for block matching based on the correlation between RF echoes. Second, we estimated the lateral displacement and surface profile of a phantom, which had a saw tooth profile on its surface, and compared the surface profile measured by ultrasound with that measured by a laser profilometer. Finally, we estimated the lateral displacement and surface roughness of the carotid arterial wall of three healthy subjects (24-, 23-, and 23-year-old males) using the proposed method.

  1. How do we measure dose and estimate risk?

    NASA Astrophysics Data System (ADS)

    Hoeschen, Christoph; Regulla, Dieter; Schlattl, Helmut; Petoussi-Henss, Nina; Li, Wei Bo; Zankl, Maria

    2011-03-01

    Radiation exposure due to medical imaging is a topic of emerging importance. In Europe this topic has been dealt with for a long time and in other countries it is getting more and more important and it gets an aspect of public interest in the latest years. This is mainly true due to the fact that the average dose per person in developed countries is increasing rapidly since threedimensional imaging is getting more and more available and useful for diagnosis. This paper introduces the most common dose quantities used in medical radiation exposure characterization, discusses usual ways for determination of such quantities as well as some considerations how these values are linked to radiation risk estimation. For this last aspect the paper will refer to the linear non threshold theory for an imaging application.

  2. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    SciTech Connect

    Sahbaee, Pooyan; Segars, W. Paul; Samei, Ehsan

    2014-07-15

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor) were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient

  3. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    PubMed Central

    Sahbaee, Pooyan; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDIvol (h factor) and effective dose normalized by the dose length product (DLP) (k factor) were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient

  4. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of {sup 166}Ho Microspheres in Liver Radioembolization

    SciTech Connect

    Seevinck, Peter R.; Maat, Gerrit H. van de; Wit, Tim C. de; Vente, Maarten A.D.; Nijsen, Johannes F.W.; Bakker, Chris J.G.

    2012-07-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional {sup 166}Ho activity distribution to estimate radiation-absorbed dose distributions in {sup 166}Ho-loaded poly (L-lactic acid) microsphere ({sup 166}Ho-PLLA-MS) liver radioembolization. Methods and Materials: MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of {sup 166}Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the {sup 166}Ho activity distribution, derived from quantitative MRI data, with a {sup 166}Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. Results: Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local {sup 166}Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of {sup 166}Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of {sup 166}Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose

  5. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    SciTech Connect

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  6. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    NASA Astrophysics Data System (ADS)

    Granata, Daniele; Carnevale, Vincenzo

    2016-08-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset.

  7. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    PubMed Central

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  8. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets.

    PubMed

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant "collective" variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  9. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments.

  10. Prospective estimation of organ dose in CT under tube current modulation

    SciTech Connect

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2015-04-15

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT exams under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDI{sub vol}-normalized-organ dose coefficients (h{sub organ}) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3

  11. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  12. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  13. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  14. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  15. Evaluation of Simplified Models for Estimating Public Dose from Spent Nuclear Fuel Shipments

    SciTech Connect

    Connolly, Kevin J.; Radulescu, Georgeta

    2015-01-01

    This paper investigates the dose rate as a function of distance from a representative high-capacity SNF rail-type transportation cask. It uses the SCALE suite of radiation transport modeling and simulation codes to determine neutron and gamma radiation dose rates. The SCALE calculated dose rate is compared with simplified analytical methods historically used for these calculations. The SCALE dose rate calculation presented in this paper employs a very detailed transportation cask model (e.g., pin-by-pin modeling of fuel assembly) and a new hybrid computational transport method. Because it includes pin-level heterogeneity and models ample air and soil outside the cask to simulate scattering of gamma and neutron radiation, this detailed SCALE model is expected to yield more accurate results than previously used models which made more simplistic assumptions (e.g., fuel assembly treated as a point or line source, simple 1-D model of environment outside of cask). The results in this paper are preliminary and, as progress is made on developing and validating improved models, results may be subject to change as models and estimates become more refined and better information leads to more accurate assumptions.

  16. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    SciTech Connect

    Jones, A; Pasciak, A

    2014-06-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method, use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology

  17. Accurate Relative Location Estimates for the North Korean Nuclear Tests Using Empirical Slowness Corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna', T.; Mykkeltveit, S.

    2016-10-01

    modified velocity gradients reduce the residuals, the relative location uncertainties, and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  18. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    NASA Astrophysics Data System (ADS)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  19. Perspectives on radiation dose estimates for A-bomb survivors

    SciTech Connect

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs.

  20. 324 Building life cycle dose estimates for planned work

    SciTech Connect

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.

  1. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  2. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  3. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  4. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  5. Estimating the dose from atmospheric releases of HT

    SciTech Connect

    Murphy, C.E. Jr.

    1990-11-13

    Measurements of uptake of tritium by humans and laboratory animals following exposure to tritiated hydrogen gas, HT, suggest that the radiotoxicity of HT is four orders of magnitude less than that of tritiated water, HTO. However, this analysis does not take into account the conversion of HT into HTO following release into the environment. Experimental releases of HT have demonstrated that HT release to the environment is converted to HTO by soil microorganisms. In this report two methods are used to estimate the effect of HT to HTO conversion on the inhalation dose of individuals exposed to tritium downwind of a release of HT. From this analysis it is predicted that the ratio of dose from inhalation of tritium following an atmospheric release of HT, as compared to inhalation of HTO, is closer to 0.01 than the 0.0001 attributed to simple HT inhalation. Under meteorologic conditions which keep the HT release near the surface and promote optimum soil microbial activity, the analysis suggests that the ratio of dose from an atmospheric HT release could be as high as 25% of that from an atmospheric HTO release.

  6. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method. PMID:23893759

  7. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  8. Efficient and accurate estimation of relative order tensors from λ- maps

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Rishi; Miao, Xijiang; Shealy, Paul; Valafar, Homayoun

    2009-06-01

    The rapid increase in the availability of RDC data from multiple alignment media in recent years has necessitated the development of more sophisticated analyses that extract the RDC data's full information content. This article presents an analysis of the distribution of RDCs from two media (2D-RDC data), using the information obtained from a λ-map. This article also introduces an efficient algorithm, which leverages these findings to extract the order tensors for each alignment medium using unassigned RDC data in the absence of any structural information. The results of applying this 2D-RDC analysis method to synthetic and experimental data are reported in this article. The relative order tensor estimates obtained from the 2D-RDC analysis are compared to order tensors obtained from the program REDCAT after using assignment and structural information. The final comparisons indicate that the relative order tensors estimated from the unassigned 2D-RDC method very closely match the results from methods that require assignment and structural information. The presented method is successful even in cases with small datasets. The results of analyzing experimental RDC data for the protein 1P7E are presented to demonstrate the potential of the presented work in accurately estimating the principal order parameters from RDC data that incompletely sample the RDC space. In addition to the new algorithm, a discussion of the uniqueness of the solutions is presented; no more than two clusters of distinct solutions have been shown to satisfy each λ-map.

  9. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  10. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  11. [Study on radiation dose estimation and monitor in TBI using an anthropomorphic phantom].

    PubMed

    Zhou, Y B; Yang, Y

    2001-11-01

    Absorbed doses and the dose distributions at important tissues and organs in an anthropomorphic phantom are measured using TLD under the TBI conditions. The dose for each tissue or organ is also estimated and monitored for TBI treatment. PMID:12583267

  12. Biologically Based Dose-Response Modeling. What is the potential for accurate description of the biological linkages in the applied dose - tissue dose-health effect continuum?

    EPA Science Inventory

    Given knowledge of exposure, the shape of the dose response curve is the key to predicting health risk, which in turn determines allowable levels of exposure and the associated economic costs of compliance.

  13. Delivered dose estimate to standardize airway hyperresponsiveness assessment in mice.

    PubMed

    Robichaud, Annette; Fereydoonzad, Liah; Schuessler, Thomas F

    2015-04-15

    Airway hyperresponsiveness often constitutes a primary outcome in respiratory studies in mice. The procedure commonly employs aerosolized challenges, and results are typically reported in terms of bronchoconstrictor concentrations loaded into the nebulizer. Yet, because protocols frequently differ across studies, especially in terms of aerosol generation and delivery, direct study comparisons are difficult. We hypothesized that protocol variations could lead to differences in aerosol delivery efficiency and, consequently, in the dose delivered to the subject, as well as in the response. Thirteen nebulization patterns containing common protocol variations (nebulization time, duty cycle, particle size spectrum, air humidity, and/or ventilation profile) and using increasing concentrations of methacholine and broadband forced oscillations (flexiVent, SCIREQ, Montreal, Qc, Canada) were created, characterized, and studied in anesthetized naïve A/J mice. A delivered dose estimate calculated from nebulizer-, ventilator-, and subject-specific characteristics was introduced and used to account for protocol variations. Results showed that nebulization protocol variations significantly affected the fraction of aerosol reaching the subject site and the delivered dose, as well as methacholine reactivity and sensitivity in mice. From the protocol variants studied, addition of a slow deep ventilation profile during nebulization was identified as a key factor for optimization of the technique. The study also highlighted sensitivity differences within the lung, as well as the possibility that airway responses could be selectively enhanced by adequate control of nebulizer and ventilator settings. Reporting results in terms of delivered doses represents an important standardizing element for assessment of airway hyperresponsiveness in mice. PMID:25637610

  14. Size-specific dose estimates (SSDE) for a prototype orthopedic cone-beam CT system

    NASA Astrophysics Data System (ADS)

    Richard, Samuel; Packard, Nathan; Yorkston, John

    2014-03-01

    Patient specific dose evaluation and reporting is becoming increasingly important for x-ray imaging systems. Even imaging systems with lower patient dose such as CBCT scanners for extremities can benefit from accurate and size-specific dose assessment and reporting. This paper presents CTDI dose measurements performed on a prototype CBCT extremity imaging system across a range of body part sizes (5, 10, 16, and 20 cm effective diameter) and kVp (70, 80, and 90 kVp - with 0.1 mm Cu added filtration). The ratio of the CTDI measurements for the 5, 10, and 20 cm phantoms to the CTDI measurements for the 16 cm phantom were calculated and results were compared to size-specific dose estimates conversion factors (AAPM Report 204), which were evaluated on a conventional CT scanner. Due to the short scan nature of the system (220 degree acquisition angle), the dependence of CTDI values on the initial angular orientation of the phantom with respect to the imager was also evaluated. The study demonstrated that for a 220 degree acquisition sequence, the initial angular position of the conventional CTDI phantom with respect to the scanner does not significantly affect CTDI measurements (varying by less than 2% overall across the range of possible initial angular positions). The size-specific conversion factor was found to be comparable to the Report 204 factors for the large phantom size (20 cm) but lower, by up to 12%, for the 5 cm phantom (i.e., 1.35 for CBCT vs 1.54 for CT). The factors dependence on kVp was minimal, but dependence on kVp was most significant for smaller diameters. These results indicate that specific conversion factors need to be used for CBCT systems with short scans in order to provide more accurate dose reporting across the range of body sizes found in extremity scanners.

  15. Estimating radiation dose to organs of patients undergoing conventional and novel multidetector CT exams using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Angel, Erin

    Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this

  16. Quick and accurate estimation of the elastic constants using the minimum image method

    NASA Astrophysics Data System (ADS)

    Tretiakov, Konstantin V.; Wojciechowski, Krzysztof W.

    2015-04-01

    A method for determining the elastic properties using the minimum image method (MIM) is proposed and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic constants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC) method in the NVT and NPT ensembles. The simulation results show that when determining the elastic constants, the contribution of long-range interactions cannot be ignored, because that would lead to erroneous results. In addition, the simulations have revealed that the inclusion of further interactions of each particle with all its minimum image neighbors even in case of small systems leads to results which are very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and accurate estimation of the elastic constants using very small samples.

  17. Pitfalls in accurate estimation of overdiagnosis: implications for screening policy and compliance.

    PubMed

    Feig, Stephen A

    2013-01-01

    Stories in the public media that 30 to 50% of screen-detected breast cancers are overdiagnosed dissuade women from being screened because overdiagnosed cancers would never result in death if undetected yet do result in unnecessary treatment. However, such concerns are unwarranted because the frequency of overdiagnosis, when properly calculated, is only 0 to 5%. In the previous issue of Breast Cancer Research, Duffy and Parmar report that accurate estimation of the rate of overdiagnosis recognizes the effect of lead time on detection rates and the consequent requirement for an adequate number of years of follow-up. These indispensable elements were absent from highly publicized studies that overestimated the frequency of overdiagnosis.

  18. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms.

    PubMed

    Saccà, Alessandro

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes' principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of 'unellipticity' introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  19. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  20. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.

    2016-03-01

    Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.

  1. Accurate Estimation of the Fine Layering Effect on the Wave Propagation in the Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.

    2014-12-01

    The attenuation caused to the seismic wave during its propagation can be mainly divided into two parts, the scattering and the intrinsic attenuation. The scattering is an elastic redistribution of the energy due to the medium heterogeneities. However the intrinsic attenuation is an inelastic phenomenon, mainly due to the fluid-grain friction during the wave passage. The intrinsic attenuation is directly related to the physical characteristics of the medium, so this parameter is very can be used for media characterization and fluid detection, which is beneficial for the oil and gas industry. The intrinsic attenuation is estimated by subtracting the scattering from the total attenuation, therefore the accuracy of the intrinsic attenuation is directly dependent on the accuracy of the total attenuation and the scattering. The total attenuation can be estimated from the recorded waves, by using in-situ methods as the spectral ratio and frequency shift methods. The scattering is estimated by assuming the heterogeneities as a succession of stacked layers, each layer is characterized by a single density and velocity. The accuracy of the scattering is strongly dependent on the layer thicknesses, especially in the case of the media composed of carbonate rocks, such media are known for their strong heterogeneity. Previous studies gave some assumptions for the choice of the layer thickness, but they showed some limitations especially in the case of carbonate rocks. In this study we established a relationship between the layer thicknesses and the frequency of the propagation, after certain mathematical development of the Generalized O'Doherty-Anstey formula. We validated this relationship through some synthetic tests and real data provided from a VSP carried out over an onshore oilfield in the emirate of Abu Dhabi in the United Arab Emirates, primarily composed of carbonate rocks. The results showed the utility of our relationship for an accurate estimation of the scattering

  2. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  3. Can student health professionals accurately estimate alcohol content in commonly occurring drinks?

    PubMed Central

    Sinclair, Julia; Searle, Emma

    2016-01-01

    Objectives: Correct identification of alcohol as a contributor to, or comorbidity of, many psychiatric diseases requires health professionals to be competent and confident to take an accurate alcohol history. Being able to estimate (or calculate) the alcohol content in commonly consumed drinks is a prerequisite for quantifying levels of alcohol consumption. The aim of this study was to assess this ability in medical and nursing students. Methods: A cross-sectional survey of 891 medical and nursing students across different years of training was conducted. Students were asked the alcohol content of 10 different alcoholic drinks by seeing a slide of the drink (with picture, volume and percentage of alcohol by volume) for 30 s. Results: Overall, the mean number of correctly estimated drinks (out of the 10 tested) was 2.4, increasing to just over 3 if a 10% margin of error was used. Wine and premium strength beers were underestimated by over 50% of students. Those who drank alcohol themselves, or who were further on in their clinical training, did better on the task, but overall the levels remained low. Conclusions: Knowledge of, or the ability to work out, the alcohol content of commonly consumed drinks is poor, and further research is needed to understand the reasons for this and the impact this may have on the likelihood to undertake screening or initiate treatment. PMID:27536344

  4. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  5. mBEEF: An accurate semi-local Bayesian error estimation density functional

    NASA Astrophysics Data System (ADS)

    Wellendorff, Jess; Lundgaard, Keld T.; Jacobsen, Karsten W.; Bligaard, Thomas

    2014-04-01

    We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation functional generated within the Bayesian error estimation functional framework [J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT) predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without compromising high performance on adsorption and reaction energies. We thus expect it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations.

  6. Greater contrast in Martian hydrological history from more accurate estimates of paleodischarge

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. E.; Burr, D. M.

    2016-09-01

    Correlative width-discharge relationships from the Missouri River Basin are commonly used to estimate fluvial paleodischarge on Mars. However, hydraulic geometry provides alternative, and causal, width-discharge relationships derived from broader samples of channels, including those in reduced-gravity (submarine) environments. Comparison of these relationships implies that causal relationships from hydraulic geometry should yield more accurate and more precise discharge estimates. Our remote analysis of a Martian-terrestrial analog channel, combined with in situ discharge data, substantiates this implication. Applied to Martian features, these results imply that paleodischarges of interior channels of Noachian-Hesperian (~3.7 Ga) valley networks have been underestimated by a factor of several, whereas paleodischarges for smaller fluvial deposits of the Late Hesperian-Early Amazonian (~3.0 Ga) have been overestimated. Thus, these new paleodischarges significantly magnify the contrast between early and late Martian hydrologic activity. Width-discharge relationships from hydraulic geometry represent validated tools for quantifying fluvial input near candidate landing sites of upcoming missions.

  7. Radiation signature on exposed cells: Relevance in dose estimation

    PubMed Central

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon FD

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  8. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  9. Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.

  10. CY 1995 radiation dose reconciliation report and resulting CY 1996 dose estimate for the 324 nuclear facility

    SciTech Connect

    Landsman, S.D.; Thornhill, R.E.; Peterson, C.A.

    1996-04-01

    In this report, the dose estimate for CY 1995 is reconciled by month wih actual doses received. Results of the reconciliation were used to revise estimates of worker dose for CY 1996. Resulting dose estimate for the facility is also included. Support for two major programs (B-Cell Cleanout and Surveillance and Maintenance) accounts for most of the exposure received by workers in the faility. Most of the expousre received by workers comes from work in the Radiochemical Engineering Complex airlock. In spite of schedule and work scope changes during CY 1995, dose estimates were close to actual exposures received. A number of ALARA measures were taken throughout the year; exposure reduction due to those was 20.6 Man-Rem, a 28% reduction from the CY 1995 estimate. Baseline estimates for various tasks in the facility were used to compile the CY 1996 dose estimate of 45.4 Man-Rem; facility goal for CY 1996 is to reduce worker dose by 20%, to 36.3 Man-Rem.

  11. Optimization of Correlation Kernel Size for Accurate Estimation of Myocardial Contraction and Relaxation

    NASA Astrophysics Data System (ADS)

    Honjo, Yasunori; Hasegawa, Hideyuki; Kanai, Hiroshi

    2012-07-01

    rates estimated using different kernel sizes were examined using the normalized mean-squared error of the estimated strain rate from the actual one obtained by the 1D phase-sensitive method. Compared with conventional kernel sizes, this result shows the possibility of the proposed correlation kernel to enable more accurate measurement of the strain rate. In in vivo measurement, the regional instantaneous velocities and strain rates in the radial direction of the heart wall were analyzed in detail at an extremely high temporal resolution (frame rate of 860 Hz). In this study, transition in contraction and relaxation was able to be detected by 2D tracking. These results indicate the potential of this method in the high-accuracy estimation of the strain rates and detailed analyses of the physiological function of the myocardium.

  12. Allowing for random errors in radiation dose estimates for the atomic bomb survivor data.

    PubMed

    Pierce, D A; Stram, D O; Vaeth, M

    1990-09-01

    The presence of random errors in the individual radiation dose estimates for the A-bomb survivors causes underestimation of radiation effects in dose-response analyses, and also distorts the shape of dose-response curves. Statistical methods are presented which will adjust for these biases, provided that a valid statistical model for the dose estimation errors is used. Emphasis is on clarifying some rather subtle statistical issues. For most of this development the distinction between radiation dose and exposure is not critical. The proposed methods involve downward adjustment of dose estimates, but this does not imply that the dosimetry system is faulty. Rather, this is a part of the dose-response analysis required to remove biases in the risk estimates. The primary focus of this report is on linear dose-response models, but methods for linear-quadratic models are also considered briefly. Some plausible models for the dose estimation errors are considered, which have typical errors in a range of 30-40% of the true values, and sensitivity analysis of the resulting bias corrections is provided. It is found that for these error models the resulting estimates of excess cancer risk based on linear models are about 6-17% greater than estimates that make no allowance for dose estimation errors. This increase in risk estimates is reduced to about 4-11% if, as has often been done recently, survivors with dose estimates above 4 Gy are eliminated from the analysis.

  13. How accurately can we estimate energetic costs in a marine top predator, the king penguin?

    PubMed

    Halsey, Lewis G; Fahlman, Andreas; Handrich, Yves; Schmidt, Alexander; Woakes, Anthony J; Butler, Patrick J

    2007-01-01

    King penguins (Aptenodytes patagonicus) are one of the greatest consumers of marine resources. However, while their influence on the marine ecosystem is likely to be significant, only an accurate knowledge of their energy demands will indicate their true food requirements. Energy consumption has been estimated for many marine species using the heart rate-rate of oxygen consumption (f(H) - V(O2)) technique, and the technique has been applied successfully to answer eco-physiological questions. However, previous studies on the energetics of king penguins, based on developing or applying this technique, have raised a number of issues about the degree of validity of the technique for this species. These include the predictive validity of the present f(H) - V(O2) equations across different seasons and individuals and during different modes of locomotion. In many cases, these issues also apply to other species for which the f(H) - V(O2) technique has been applied. In the present study, the accuracy of three prediction equations for king penguins was investigated based on validity studies and on estimates of V(O2) from published, field f(H) data. The major conclusions from the present study are: (1) in contrast to that for walking, the f(H) - V(O2) relationship for swimming king penguins is not affected by body mass; (2) prediction equation (1), log(V(O2) = -0.279 + 1.24log(f(H) + 0.0237t - 0.0157log(f(H)t, derived in a previous study, is the most suitable equation presently available for estimating V(O2) in king penguins for all locomotory and nutritional states. A number of possible problems associated with producing an f(H) - V(O2) relationship are discussed in the present study. Finally, a statistical method to include easy-to-measure morphometric characteristics, which may improve the accuracy of f(H) - V(O2) prediction equations, is explained. PMID:17363231

  14. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy

    NASA Astrophysics Data System (ADS)

    Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun

    2016-02-01

    GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the ‘thin plate splines-robust point matching’ (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7  ±  0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7  ±  1.8 mm and 1.6  ±  0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7  ±  2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50  ±  19%, 37  ±  11% and 28  ±  11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases

  15. Estimation of Nuclear Reaction Effects in Proton-Tissue-Dose Calculations.

    1983-01-14

    Version 00 REPC reviews calculational methods for the estimation of dose from external proton exposure of arbitrary convex bodies and presents the necessary information for the estimation of dose in soft tissue. The effects of nuclear reactions, especially in relation to the dose equivalent, are retained. REPC subroutines can be used to convert existing computer programs which neglect nuclear reaction effects to include them.

  16. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  17. Skin Temperature Over the Carotid Artery, an Accurate Non-invasive Estimation of Near Core Temperature

    PubMed Central

    Imani, Farsad; Karimi Rouzbahani, Hamid Reza; Goudarzi, Mehrdad; Tarrahi, Mohammad Javad; Ebrahim Soltani, Alireza

    2016-01-01

    Background: During anesthesia, continuous body temperature monitoring is essential, especially in children. Anesthesia can increase the risk of loss of body temperature by three to four times. Hypothermia in children results in increased morbidity and mortality. Since the measurement points of the core body temperature are not easily accessible, near core sites, like rectum, are used. Objectives: The purpose of this study was to measure skin temperature over the carotid artery and compare it with the rectum temperature, in order to propose a model for accurate estimation of near core body temperature. Patients and Methods: Totally, 124 patients within the age range of 2 - 6 years, undergoing elective surgery, were selected. Temperature of rectum and skin over the carotid artery was measured. Then, the patients were randomly divided into two groups (each including 62 subjects), namely modeling (MG) and validation groups (VG). First, in the modeling group, the average temperature of the rectum and skin over the carotid artery were measured separately. The appropriate model was determined, according to the significance of the model’s coefficients. The obtained model was used to predict the rectum temperature in the second group (VG group). Correlation of the predicted values with the real values (the measured rectum temperature) in the second group was investigated. Also, the difference in the average values of these two groups was examined in terms of significance. Results: In the modeling group, the average rectum and carotid temperatures were 36.47 ± 0.54°C and 35.45 ± 0.62°C, respectively. The final model was obtained, as follows: Carotid temperature × 0.561 + 16.583 = Rectum temperature. The predicted value was calculated based on the regression model and then compared with the measured rectum value, which showed no significant difference (P = 0.361). Conclusions: The present study was the first research, in which rectum temperature was compared with that

  18. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-01

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient’s anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  19. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  20. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  1. CT radiation dose optimization and estimation: an update for radiologists.

    PubMed

    Goo, Hyun Woo

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method. PMID:22247630

  2. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    SciTech Connect

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.

    2012-04-15

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.

  3. Alternatives to bodyweight for estimating the dose of praziquantel needed to treat schistosomiasis.

    PubMed

    Hall, A; Nokes, C; Wen, S T; Adjei, S; Kihamia, C; Mwanri, L; Bobrow, E; de Graft-Johnson, J; Bundy, D

    1999-01-01

    Data on age, height and mid upper-arm circumference (MUAC) from nearly 6000 schoolchildren in Ghana, Tanzania and Malawi (not MUAC) were used to examine their power to predict bodyweight and thus the dosage of praziquantel required to treat schistosomiasis. Height was found to provide a simple and reasonably accurate estimate of weight, and about 75% of children would have been given a dosage of praziquantel within the range normally given using bodyweight at a dosage of 40 mg/kg bodyweight. The upper and lower ranges in dosage did not exceed dosages of praziquantel which have been used before or are currently recommended to treat schistosomiasis. A pole marked with the number of tablets could thus be used as a simple way to determine the dose of praziquantel to treat children in school-based health programmes.

  4. A Three-Parameter Model for Estimating Atmospheric Tritium Dose at the Savannah River Site

    SciTech Connect

    Simpkins, A.A.; Hamby, D.M.

    1997-12-31

    The models used in the NRC approach to assess chronic atmospheric release of radioactivity generate deterministic dose estimates by using assumptions about exposure conditions and environmental transport mechanisms.

  5. Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.

    ERIC Educational Resources Information Center

    Algina, James; Olejnik, Stephen

    2000-01-01

    Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)

  6. SU-F-BRF-09: A Non-Rigid Point Matching Method for Accurate Bladder Dose Summation in Cervical Cancer HDR Brachytherapy

    SciTech Connect

    Chen, H; Zhen, X; Zhou, L; Zhong, Z; Pompos, A; Yan, H; Jiang, S; Gu, X

    2014-06-15

    Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, the algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported in part by

  7. ESTIMATING CONTAMINANT DOSE FOR INTERMITTENT DERMAL CONTACT: MODEL DEVELOPMENT, TESTING, AND APPLICATION

    EPA Science Inventory

    Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure sc...

  8. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod.

  9. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    SciTech Connect

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  10. Production of pure quasi-monochromatic 11C beams for accurate radiation therapy and dose delivery verification

    NASA Astrophysics Data System (ADS)

    Lazzeroni, Marta; Brahme, Anders

    2015-09-01

    In the present study we develop a new technique for the production of clean quasi-monochromatic 11C positron emitter beams for accurate radiation therapy and PET-CT dose delivery imaging and treatment verification. The 11C ion beam is produced by projectile fragmentation using a primary 12C ion beam. The practical elimination of the energy spread of the secondary 11C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the 11C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly 7Be and 3He fragments). A beam purity of about 99% is expected by the combined method.

  11. Estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers.

    PubMed

    Shen, Yan; Lou, Shuqin; Wang, Xin

    2014-03-20

    The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters.

  12. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    SciTech Connect

    Moore, Bria M.; Brady, Samuel L. Kaufman, Robert A.; Mirro, Amy E.

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  13. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    NASA Astrophysics Data System (ADS)

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-04-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  14. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident.

    PubMed

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-01-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  15. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  16. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  17. Laboratory measurement error in external dose estimates and its effects on dose-response analyses of Hanford worker mortality data

    SciTech Connect

    Gilbert, E.S.; Fix, J.J.

    1996-08-01

    This report addresses laboratory measurement error in estimates of external doses obtained from personnel dosimeters, and investigates the effects of these errors on linear dose-response analyses of data from epidemiologic studies of nuclear workers. These errors have the distinguishing feature that they are independent across time and across workers. Although the calculations made for this report were based on Hanford data, the overall conclusions are likely to be relevant for other epidemiologic studies of workers exposed to external radiation.

  18. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  19. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  20. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics.

    PubMed

    Gaspari, Flavio; Ruggenenti, Piero; Porrini, Esteban; Motterlini, Nicola; Cannata, Antonio; Carrara, Fabiola; Jiménez Sosa, Alejandro; Cella, Claudia; Ferrari, Silvia; Stucchi, Nadia; Parvanova, Aneliya; Iliev, Ilian; Trevisan, Roberto; Bossi, Antonio; Zaletel, Jelka; Remuzzi, Giuseppe

    2013-07-01

    There are no adequate studies that have formally tested the performance of different estimating formulas in patients with type 2 diabetes both with and without overt nephropathy. Here we evaluated the agreement between baseline GFRs, GFR changes at month 6, and long-term GFR decline measured by iohexol plasma clearance or estimated by 15 creatinine-based formulas in 600 type 2 diabetics followed for a median of 4.0 years. Ninety patients were hyperfiltering. The number of those identified by estimation formulas ranged from 0 to 24:58 were not identified by any formula. Baseline GFR was significantly underestimated and a 6-month GFR reduction was missed in hyperfiltering patients. Long-term GFR decline was also underestimated by all formulas in the whole study group and in hyper-, normo-, and hypofiltering patients considered separately. Five formulas generated positive slopes in hyperfiltering patients. Baseline concordance correlation coefficients and total deviation indexes ranged from 32.1% to 92.6% and from 0.21 to 0.53, respectively. Concordance correlation coefficients between estimated and measured long-term GFR decline ranged from -0.21 to 0.35. The agreement between estimated and measured values was also poor within each subgroup considered separately. Thus, our study questions the use of any estimation formula to identify hyperfiltering patients and monitor renal disease progression and response to treatment in type 2 diabetics without overt nephropathy.

  1. Use of dose-dependent absorption into target tissues to more accurately predict cancer risk at low oral doses of hexavalent chromium.

    PubMed

    Haney, J

    2015-02-01

    The mouse dose at the lowest water concentration used in the National Toxicology Program hexavalent chromium (CrVI) drinking water study (NTP, 2008) is about 74,500 times higher than the approximate human dose corresponding to the 35-city geometric mean reported in EWG (2010) and over 1000 times higher than that based on the highest reported tap water concentration. With experimental and environmental doses differing greatly, it is a regulatory challenge to extrapolate high-dose results to environmental doses orders of magnitude lower in a meaningful and toxicologically predictive manner. This seems particularly true for the low-dose extrapolation of results for oral CrVI-induced carcinogenesis since dose-dependent differences in the dose fraction absorbed by mouse target tissues are apparent (Kirman et al., 2012). These data can be used for a straightforward adjustment of the USEPA (2010) draft oral slope factor (SFo) to be more predictive of risk at environmentally-relevant doses. More specifically, the evaluation of observed and modeled differences in the fraction of dose absorbed by target tissues at the point-of-departure for the draft SFo calculation versus lower doses suggests that the draft SFo be divided by a dose-specific adjustment factor of at least an order of magnitude to be less over-predictive of risk at more environmentally-relevant doses.

  2. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  3. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  4. Some recommendations for an accurate estimation of Lanice conchilega density based on tube counts

    NASA Astrophysics Data System (ADS)

    van Hoey, Gert; Vincx, Magda; Degraer, Steven

    2006-12-01

    The tube building polychaete Lanice conchilega is a common and ecologically important species in intertidal and shallow subtidal sands. It builds a characteristic tube with ragged fringes and can retract rapidly into its tube to depths of more than 20 cm. Therefore, it is very difficult to sample L. conchilega individuals, especially with a Van Veen grab. Consequently, many studies have used tube counts as estimates of real densities. This study reports on some aspects to be considered when using tube counts as a density estimate of L. conchilega, based on intertidal and subtidal samples. Due to its accuracy and independence of sampling depth, the tube method is considered the prime method to estimate the density of L. conchilega. However, caution is needed when analyzing samples with fragile young individuals and samples from areas where temporary physical disturbance is likely to occur.

  5. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  6. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  7. Fast and accurate probability density estimation in large high dimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2015-01-01

    Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.

  8. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1985-01-01

    Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.

  9. Spectral estimation from laser scanner data for accurate color rendering of objects

    NASA Astrophysics Data System (ADS)

    Baribeau, Rejean

    2002-06-01

    Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.

  10. Accurate radiocarbon age estimation using "early" measurements: a new approach to reconstructing the Paleolithic absolute chronology

    NASA Astrophysics Data System (ADS)

    Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru

    2014-05-01

    This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.

  11. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture.

    PubMed

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-08-04

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.

  12. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-08-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.

  13. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture.

    PubMed

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-01-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643

  14. How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?

    PubMed Central

    Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.

    2010-01-01

    We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774

  15. A bounding estimate of neutron dose based on measured photon dose around single pass reactors at the Hanford site.

    PubMed

    Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack

    2010-07-01

    Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.

  16. The use of biochemical and molecular parameters to estimate dose-response relationships at low levels of exposure.

    PubMed Central

    Andersen, M E; Barton, H A

    1998-01-01

    Biomarkers based on alterations in molecular and biochemical parameters may be useful in chemical risk assessment for establishing the presence of an exposure, ranking relative risks among exposed individuals, and estimating risks at low levels of exposure. Because it is unlikely that the relation between toxic responses and the degree of alteration in the biomarker is equivalent at all doses, quantification of risks at low levels is not necessarily more accurate using these biomarkers for extrapolation. The application of response biomarkers for risk evaluation at low levels of exposure is discussed in relation to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a compound that causes induction of cytochromes CYP1A1 and CYP1A2 in liver and other tissues. CYP1A1 induction in liver increases monotonically with TCDD dosage; however, several of the dose-response curves for hepatic effects of TCDD are U-shaped. The U-shaped dose-response curve for hepatic tumor promotion appears to result because the integrated toxicologic response depends on multiple underlying processes--mitosuppression, toxicity, and cell proliferation--each of which has a different dose-response relationship with respect to TCDD. Although dose-response relationships for the biomarkers are not expected to duplicate the complex shapes seen with the integrated responses, measurements and pharmacodynamic modeling of the changes in these molecular and biochemical parameters can still be useful for obtaining an upperbound risk estimate at low levels of exposure. Images Figure 2 PMID:9539029

  17. Derivative Spectrophotometric Method for Estimation of Antiretroviral Drugs in Fixed Dose Combinations

    PubMed Central

    P.B., Mohite; R.B., Pandhare; S.G., Khanage

    2012-01-01

    Purpose: Lamivudine is cytosine and zidovudine is cytidine and is used as an antiretroviral agents. Both drugs are available in tablet dosage forms with a dose of 150 mg for LAM and 300 mg ZID respectively. Method: The method employed is based on first order derivative spectroscopy. Wavelengths 279 nm and 300 nm were selected for the estimation of the Lamovudine and Zidovudine respectively by taking the first order derivative spectra. The conc. of both drugs was determined by proposed method. The results of analysis have been validated statistically and by recovery studies as per ICH guidelines. Result: Both the drugs obey Beer’s law in the concentration range 10-50 μg mL-1,for LAM and ZID; with regression 0.9998 and 0.9999, intercept – 0.0677 and – 0.0043 and slope 0.0457 and 0.0391 for LAM and ZID, respectively.The accuracy and reproducibility results are close to 100% with 2% RSD. Conclusion: A simple, accurate, precise, sensitive and economical procedures for simultaneous estimation of Lamovudine and Zidovudine in tablet dosage form have been developed. PMID:24312779

  18. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  19. Accurate estimation of influenza epidemics using Google search data via ARGO.

    PubMed

    Yang, Shihao; Santillana, Mauricio; Kou, S C

    2015-11-24

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.

  20. Accurate estimation of influenza epidemics using Google search data via ARGO.

    PubMed

    Yang, Shihao; Santillana, Mauricio; Kou, S C

    2015-11-24

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  1. Accurate estimation of influenza epidemics using Google search data via ARGO

    PubMed Central

    Yang, Shihao; Santillana, Mauricio; Kou, S. C.

    2015-01-01

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  2. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    NASA Astrophysics Data System (ADS)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  3. Are satellite based rainfall estimates accurate enough for crop modelling under Sahelian climate?

    NASA Astrophysics Data System (ADS)

    Ramarohetra, J.; Sultan, B.

    2012-04-01

    Agriculture is considered as the most climate dependant human activity. In West Africa and especially in the sudano-sahelian zone, rain-fed agriculture - that represents 93% of cultivated areas and is the means of support of 70% of the active population - is highly vulnerable to precipitation variability. To better understand and anticipate climate impacts on agriculture, crop models - that estimate crop yield from climate information (e.g rainfall, temperature, insolation, humidity) - have been developed. These crop models are useful (i) in ex ante analysis to quantify the impact of different strategies implementation - crop management (e.g. choice of varieties, sowing date), crop insurance or medium-range weather forecast - on yields, (ii) for early warning systems and to (iii) assess future food security. Yet, the successful application of these models depends on the accuracy of their climatic drivers. In the sudano-sahelian zone , the quality of precipitation estimations is then a key factor to understand and anticipate climate impacts on agriculture via crop modelling and yield estimations. Different kinds of precipitation estimations can be used. Ground measurements have long-time series but an insufficient network density, a large proportion of missing values, delay in reporting time, and they have limited availability. An answer to these shortcomings may lie in the field of remote sensing that provides satellite-based precipitation estimations. However, satellite-based rainfall estimates (SRFE) are not a direct measurement but rather an estimation of precipitation. Used as an input for crop models, it determines the performance of the simulated yield, hence SRFE require validation. The SARRAH crop model is used to model three different varieties of pearl millet (HKP, MTDO, Souna3) in a square degree centred on 13.5°N and 2.5°E, in Niger. Eight satellite-based rainfall daily products (PERSIANN, CMORPH, TRMM 3b42-RT, GSMAP MKV+, GPCP, TRMM 3b42v6, RFEv2 and

  4. Techniques for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, Michael R.; Bland, Roger

    1999-01-01

    An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. The relative magnitude of equipment errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second. Typical maximum flow rates during the data-collection period averaged 750 cubic meters per second.

  5. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    PubMed Central

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Background Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Methodology/Principal Findings Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. Conclusions/Significance We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways. PMID:22096501

  6. Accurate distortion estimation and optimal bandwidth allocation for scalable H.264 video transmission over MIMO systems.

    PubMed

    Jubran, Mohammad K; Bansal, Manu; Kondi, Lisimachos P; Grover, Rohan

    2009-01-01

    In this paper, we propose an optimal strategy for the transmission of scalable video over packet-based multiple-input multiple-output (MIMO) systems. The scalable extension of H.264/AVC that provides a combined temporal, quality and spatial scalability is used. For given channel conditions, we develop a method for the estimation of the distortion of the received video and propose different error concealment schemes. We show the accuracy of our distortion estimation algorithm in comparison with simulated wireless video transmission with packet errors. In the proposed MIMO system, we employ orthogonal space-time block codes (O-STBC) that guarantee independent transmission of different symbols within the block code. In the proposed constrained bandwidth allocation framework, we use the estimated end-to-end decoder distortion to optimally select the application layer parameters, i.e., quantization parameter (QP) and group of pictures (GOP) size, and physical layer parameters, i.e., rate-compatible turbo (RCPT) code rate and symbol constellation. Results show the substantial performance gain by using different symbol constellations across the scalable layers as compared to a fixed constellation.

  7. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.

    PubMed

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise. PMID:9236985

  8. Integrated Codes for Estimating Environmental Accumulation and Individual Dose from Past Hanford Atmospheric Releases: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Ikenberry, T. A.; Burnett, R. A.; Napier, B. A.; Reitz, N. A.; Shipler, D. B.

    1992-02-01

    Preliminary radiation doses were estimated and reported during Phase I of the Hanford Environmental Dose Reconstruction (HEDR) Project. As the project has progressed, additional information regarding the magnitude and timing of past radioactive releases has been developed, and the general scope of the required calculations has been enhanced. The overall HEDR computational model for computing doses attributable to atmospheric releases from Hanford Site operations is called HEDRIC (Hanford Environmental Dose Reconstruction Integrated Codes). It consists of four interrelated models: source term, atmospheric transport, environmental accumulation, and individual dose. The source term and atmospheric transport models are documented elsewhere. This report describes the initial implementation of the design specifications for the environmental accumulation model and computer code, called DESCARTES (Dynamic EStimates of Concentrations and Accumulated Radionuclides in Terrestrial Environments), and the individual dose model and computer code, called CIDER (Calculation of Individual Doses from Environmental Radionuclides). The computations required of these models and the design specifications for their codes were documented in Napier et al. (1992). Revisions to the original specifications and the basis for modeling decisions are explained. This report is not the final code documentation but gives the status of the model and code development to date. Final code documentation is scheduled to be completed in FY 1994 following additional code upgrades and refinements. The user's guide included in this report describes the operation of the environmental accumulation and individual dose codes and associated pre- and post-processor programs. A programmer's guide describes the logical structure of the programs and their input and output files.

  9. Evaluation of the sample needed to accurately estimate outcome-based measurements of dairy welfare on farm.

    PubMed

    Endres, M I; Lobeck-Luchterhand, K M; Espejo, L A; Tucker, C B

    2014-01-01

    Dairy welfare assessment programs are becoming more common on US farms. Outcome-based measurements, such as locomotion, hock lesion, hygiene, and body condition scores (BCS), are included in these assessments. The objective of the current study was to investigate the proportion of cows in the pen or subsamples of pens on a farm needed to provide an accurate estimate of the previously mentioned measurements. In experiment 1, we evaluated cows in 52 high pens (50 farms) for lameness using a 1- to 5-scale locomotion scoring system (1 = normal and 5 = severely lame; 24.4 and 6% of animals were scored ≥ 3 or ≥ 4, respectively). Cows were also given a BCS using a 1- to 5-scale, where 1 = emaciated and 5 = obese; cows were rarely thin (BCS ≤ 2; 0.10% of cows) or fat (BCS ≥ 4; 0.11% of cows). Hygiene scores were assessed on a 1- to 5-scale with 1 = clean and 5 = severely dirty; 54.9% of cows had a hygiene score ≥ 3. Hock injuries were classified as 1 = no lesion, 2 = mild lesion, and 3 = severe lesion; 10.6% of cows had a score of 3. Subsets of data were created with 10 replicates of random sampling that represented 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 5, and 3% of the cows measured/pen. In experiment 2, we scored the same outcome measures on all cows in lactating pens from 12 farms and evaluated using pen subsamples: high; high and fresh; high, fresh, and hospital; and high, low, and hospital. For both experiments, the association between the estimates derived from all subsamples and entire pen (experiment 1) or herd (experiment 2) prevalence was evaluated using linear regression. To be considered a good estimate, 3 criteria must be met: R(2)>0.9, slope = 1, and intercept = 0. In experiment 1, on average, recording 15% of the pen represented the percentage of clinically lame cows (score ≥ 3), whereas 30% needed to be measured to estimate severe lameness (score ≥ 4). Only 15% of the pen was needed to estimate the percentage of the herd with a hygiene

  10. Reference air kerma and kerma-area product as estimators of peak skin dose for fluoroscopically guided interventions

    SciTech Connect

    Kwon, Deukwoo; Little, Mark P.; Miller, Donald L.

    2011-07-15

    Purpose: To determine more accurate regression formulas for estimating peak skin dose (PSD) from reference air kerma (RAK) or kerma-area product (KAP). Methods: After grouping of the data from 21 procedures into 13 clinically similar groups, assessments were made of optimal clustering using the Bayesian information criterion to obtain the optimal linear regressions of (log-transformed) PSD vs RAK, PSD vs KAP, and PSD vs RAK and KAP. Results: Three clusters of clinical groups were optimal in regression of PSD vs RAK, seven clusters of clinical groups were optimal in regression of PSD vs KAP, and six clusters of clinical groups were optimal in regression of PSD vs RAK and KAP. Prediction of PSD using both RAK and KAP is significantly better than prediction of PSD with either RAK or KAP alone. The regression of PSD vs RAK provided better predictions of PSD than the regression of PSD vs KAP. The partial-pooling (clustered) method yields smaller mean squared errors compared with the complete-pooling method.Conclusion: PSD distributions for interventional radiology procedures are log-normal. Estimates of PSD derived from RAK and KAP jointly are most accurate, followed closely by estimates derived from RAK alone. Estimates of PSD derived from KAP alone are the least accurate. Using a stochastic search approach, it is possible to cluster together certain dissimilar types of procedures to minimize the total error sum of squares.

  11. Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-15

    Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by -4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (-8.1%, 8.1%) and (-17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose

  12. Estimating age-based antiretroviral therapy costs for HIV-infected children in resource-limited settings based on World Health Organization weight-based dosing recommendations

    PubMed Central

    2014-01-01

    Background Pediatric antiretroviral therapy (ART) has been shown to substantially reduce morbidity and mortality in HIV-infected infants and children. To accurately project program costs, analysts need accurate estimations of antiretroviral drug (ARV) costs for children. However, the costing of pediatric antiretroviral therapy is complicated by weight-based dosing recommendations which change as children grow. Methods We developed a step-by-step methodology for estimating the cost of pediatric ARV regimens for children ages 0–13 years old. The costing approach incorporates weight-based dosing recommendations to provide estimated ARV doses throughout childhood development. Published unit drug costs are then used to calculate average monthly drug costs. We compared our derived monthly ARV costs to published estimates to assess the accuracy of our methodology. Results The estimates of monthly ARV costs are provided for six commonly used first-line pediatric ARV regimens, considering three possible care scenarios. The costs derived in our analysis for children were fairly comparable to or slightly higher than available published ARV drug or regimen estimates. Conclusions The methodology described here can be used to provide an accurate estimation of pediatric ARV regimen costs for cost-effectiveness analysts to project the optimum packages of care for HIV-infected children, as well as for program administrators and budget analysts who wish to assess the feasibility of increasing pediatric ART availability in constrained budget environments. PMID:24885453

  13. Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes

    PubMed Central

    Sarabia, Esther G.; Llata, Jose R.; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P.

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  14. Accurate estimation of airborne ultrasonic time-of-flight for overlapping echoes.

    PubMed

    Sarabia, Esther G; Llata, Jose R; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  15. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    NASA Astrophysics Data System (ADS)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  16. An Energy-Efficient Strategy for Accurate Distance Estimation in Wireless Sensor Networks

    PubMed Central

    Tarrío, Paula; Bernardos, Ana M.; Casar, José R.

    2012-01-01

    In line with recent research efforts made to conceive energy saving protocols and algorithms and power sensitive network architectures, in this paper we propose a transmission strategy to minimize the energy consumption in a sensor network when using a localization technique based on the measurement of the strength (RSS) or the time of arrival (TOA) of the received signal. In particular, we find the transmission power and the packet transmission rate that jointly minimize the total consumed energy, while ensuring at the same time a desired accuracy in the RSS or TOA measurements. We also propose some corrections to these theoretical results to take into account the effects of shadowing and packet loss in the propagation channel. The proposed strategy is shown to be effective in realistic scenarios providing energy savings with respect to other transmission strategies, and also guaranteeing a given accuracy in the distance estimations, which will serve to guarantee a desired accuracy in the localization result. PMID:23202218

  17. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance.

    PubMed

    Malone, Ian B; Leung, Kelvin K; Clegg, Shona; Barnes, Josephine; Whitwell, Jennifer L; Ashburner, John; Fox, Nick C; Ridgway, Gerard R

    2015-01-01

    Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.3.0. For T1-weighted MRI acquired from 288 participants in a multi-centre clinical trial in Alzheimer's disease we find a high correlation between SPM12 TIV and manual TIV (R(2)=0.940, 95% Confidence Interval (0.924, 0.953)), with a small mean difference (SPM12 40.4±35.4ml lower than manual, amounting to 2.8% of the overall mean TIV in the study). The correlation with manual measurements (the key aspect when using TIV as a covariate) for SPM12 was significantly higher (p<0.001) than for either SPM8 (R(2)=0.577 CI (0.500, 0.644)) or FreeSurfer (R(2)=0.801 CI (0.744, 0.843)). These results suggest that SPM12 TIV estimates are an acceptable substitute for labour-intensive manual estimates even in the challenging context of multiple centres and the presence of neurodegenerative pathology. We also briefly discuss some aspects of the statistical modelling approaches to adjust for TIV. PMID:25255942

  18. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    SciTech Connect

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas; Papadakis, Antonios E.

    2010-12-15

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulating women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made

  19. The cytokinesis-blocked micronucleus assay: dose-response calibration curve, background frequency in the population and dose estimation.

    PubMed

    Rastkhah, E; Zakeri, F; Ghoranneviss, M; Rajabpour, M R; Farshidpour, M R; Mianji, F; Bayat, M

    2016-03-01

    An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.

  20. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  1. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  2. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    NASA Astrophysics Data System (ADS)

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-08-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses.

  3. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment.

    PubMed

    Ramola, R C; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S

    2016-01-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13-52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses. PMID:27499492

  4. Estimation of dose-response models for discrete and continuous data in weed science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dose-response analysis is widely used in biological sciences and has application to a variety of risk assessment, bioassay, and calibration problems. In weed science, dose-response methodologies have typically relied on least squares estimation under an assumption of normality. Advances in computati...

  5. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    PubMed Central

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-01-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses. PMID:27499492

  6. A Computer Code to Estimate Environmental Concentration and Dose Due to Airborne Release of Radioactive Material.

    1991-03-15

    Version 00 ORION-II was developed to estimate environmental concentration and dose due to airborne release of radioactive material from multiple sources of the nuclear fuel cycle facilities. ORION-II is an updated version of ORION and is applicable to the sensitivity study of dose assessment at nuclear fuel cycle facilities.

  7. Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data

    EPA Science Inventory

    The benchmark dose (BMD) approach has gained acceptance as a valuable risk assessment tool, but risk assessors still face significant challenges associated with selecting an appropriate BMD/BMDL estimate from the results of a set of acceptable dose-response models. Current approa...

  8. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  9. Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian; Scheffler, Matthias

    In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.

  10. Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models.

    PubMed

    Suárez, Ernesto; Adelman, Joshua L; Zuckerman, Daniel M

    2016-08-01

    Because standard molecular dynamics (MD) simulations are unable to access time scales of interest in complex biomolecular systems, it is common to "stitch together" information from multiple shorter trajectories using approximate Markov state model (MSM) analysis. However, MSMs may require significant tuning and can yield biased results. Here, by analyzing some of the longest protein MD data sets available (>100 μs per protein), we show that estimators constructed based on exact non-Markovian (NM) principles can yield significantly improved mean first-passage times (MFPTs) for protein folding and unfolding. In some cases, MSM bias of more than an order of magnitude can be corrected when identical trajectory data are reanalyzed by non-Markovian approaches. The NM analysis includes "history" information, higher order time correlations compared to MSMs, that is available in every MD trajectory. The NM strategy is insensitive to fine details of the states used and works well when a fine time-discretization (i.e., small "lag time") is used. PMID:27340835

  11. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  12. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs.

    PubMed

    Humm, J L; Macklis, R M; Lu, X Q; Yang, Y; Bump, K; Beresford, B; Chin, L M

    1995-01-01

    In order to better predict and understand the effects of radiopharmaceuticals used for therapy, it is necessary to determine more accurately the radiation absorbed dose to cells in tissue. Using thin-section autoradiography, the spatial distribution of sources relative to the cells can be obtained from a single section with micrometre resolution. By collecting and analysing serial sections, the 3D microscopic distribution of radionuclide relative to the cellular histology, and therefore the dose rate distribution, can be established. In this paper, a method of 3D reconstruction of serial sections is proposed, and measurements are reported of (i) the accuracy and reproducibility of quantitative autoradiography and (ii) the spatial precision with which tissue features from one section can be related to adjacent sections. Uncertainties in the activity determination for the specimen result from activity losses during tissue processing (4-11%), and the variation of grain count per unit activity between batches of serial sections (6-25%). Correlation of the section activity to grain count densities showed deviations ranging from 6-34%. The spatial alignment uncertainties were assessed using nylon fibre fiduciary markers incorporated into the tissue block, and compared to those for alignment based on internal tissue landmarks. The standard deviation for the variation in nylon fibre fiduciary alignment was measured to be 41 microns cm-1, compared to 69 microns cm-1 when internal tissue histology landmarks were used. In addition, tissue shrinkage during histological processing of up to 10% was observed. The implications of these measured activity and spatial distribution uncertainties upon the estimate of cellular dose rate distribution depends upon the range of the radiation emissions. For long-range beta particles, uncertainties in both the activity and spatial distribution translate linearly to the uncertainty in dose rate of < 15%. For short-range emitters (< 100

  13. Multiple-estimate Monte Carlo calculation of the dose rate constant for a cesium-131 interstitial brachytherapy seed

    SciTech Connect

    Wittman, Richard S.; Fisher, Darrell R.

    2007-01-03

    The purpose of this study was to calculate a more accurate dose rate constant for the Cs-131 (model CS-1, IsoRay Medical, Inc., Richland, Washington) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15 percent greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the Cs-131 seed was 1.040 cGy h^{-1} U^{-1} for an ionization chamber model and 1.032 cGy h^{-1} U^{-1} for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multi-estimate values were from 1.032 cGy h^{-1} U^{-1} to 1.061 cGy h^{-1} U^{-1}. We also modeled three I-125 seeds with known dose rate constants to test the accuracy of this study's approach.

  14. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  15. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    SciTech Connect

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantom with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.

  16. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantommore » with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less

  17. Sensitivity and uncertainty investigations for Hiroshima dose estimates and the applicability of the Little Boy mockup measurements

    SciTech Connect

    Bartine, D.E.; Cacuci, D.G.

    1983-09-13

    This paper describes sources of uncertainty in the data used for calculating dose estimates for the Hiroshima explosion and details a methodology for systematically obtaining best estimates and reduced uncertainties for the radiation doses received. (ACR)

  18. How accurate and precise are limited sampling strategies in estimating exposure to mycophenolic acid in people with autoimmune disease?

    PubMed

    Abd Rahman, Azrin N; Tett, Susan E; Staatz, Christine E

    2014-03-01

    Mycophenolic acid (MPA) is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. Dosing to achieve a specific target MPA area under the concentration-time curve from 0 to 12 h post-dose (AUC12) is likely to lead to better treatment outcomes in patients with autoimmune disease than a standard fixed-dose strategy. This review summarizes the available published data around concentration monitoring strategies for MPA in patients with autoimmune disease and examines the accuracy and precision of methods reported to date using limited concentration-time points to estimate MPA AUC12. A total of 13 studies were identified that assessed the correlation between single time points and MPA AUC12 and/or examined the predictive performance of limited sampling strategies in estimating MPA AUC12. The majority of studies investigated mycophenolate mofetil (MMF) rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation of MPA. Correlations between MPA trough concentrations and MPA AUC12 estimated by full concentration-time profiling ranged from 0.13 to 0.94 across ten studies, with the highest associations (r (2) = 0.90-0.94) observed in lupus nephritis patients. Correlations were generally higher in autoimmune disease patients compared with renal allograft recipients and higher after MMF compared with EC-MPS intake. Four studies investigated use of a limited sampling strategy to predict MPA AUC12 determined by full concentration-time profiling. Three studies used a limited sampling strategy consisting of a maximum combination of three sampling time points with the latest sample drawn 3-6 h after MMF intake, whereas the remaining study tested all combinations of sampling times. MPA AUC12 was best predicted when three samples were taken at pre-dose and at 1 and 3 h post-dose with a mean bias and imprecision of 0.8 and 22.6 % for multiple linear regression analysis and of -5.5 and 23.0 % for

  19. Evaluation of the accuracy of fetal dose estimates using TG-36 data

    SciTech Connect

    Kry, Stephen F.; Starkschall, George; Antolak, John A.; Salehpour, Mohammad

    2007-04-15

    The American Association of Physicists in Medicine Radiation Therapy Committee Task Group 36 report (TG-36) provides guidelines for managing radiation therapy of pregnant patients. Included in the report are data that can be used to estimate the dose to the fetus. The purpose of this study is to evaluate the accuracy of these fetal dose estimates as compared to clinically measured values. TG-36 calculations were performed and compared with measurements of the fetal dose made in vivo or in appropriately-designed phantoms. Calculation and measurement data was collected for eight pregnant patients who underwent radiation therapy at the MD Anderson Cancer Center as well as for several fetal dose studies in the literature. The maximum measured unshielded fetal dose was 47 cGy, which was 1.5% of the prescription dose. For all cases, TG-36 calculations and measured fetal doses differed by up to a factor of 3--the ratio of the calculated to measured dose ranged from 0.34 to 2.93. On average, TG-36 calculations underestimated the measured dose by 31%. No significant trends in the relationship between the calculated and measured fetal doses were found based on the distance from, or the size of, the treatment field.

  20. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    temperature estimation using meteorological parameters. References: [1] Skoplaki, E. et al., 2008: A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Materials & Solar Cells 92, 1393-1402 [2] Skoplaki, E. et al., 2008: Operating temperature of photovoltaic modules: A survey of pertinent correlations, Renewable Energy 34, 23-29 [3] Koehl, M. et al., 2011: Modeling of the nominal operating cell temperature based on outdoor weathering, Solar Energy Materials & Solar Cells 95, 1638-1646 [4] Mattei, M. et al., 2005: Calculation of the polycrystalline PV module temperature using a simple method of energy balance, Renewable Energy 31, 553-567 [5] Kurtz, S. et al.: Evaluation of high-temperature exposure of rack-mounted photovoltaic modules

  1. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  2. A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.

    PubMed

    Yamagishi, Junya; Okimoto, Noriaki; Morimoto, Gentaro; Taiji, Makoto

    2014-11-01

    The Poisson-Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N- and C-terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules.

  3. Military Participants at U.S. Atmospheric Nuclear Weapons Testing— Methodology for Estimating Dose and Uncertainty

    PubMed Central

    Till, John E.; Beck, Harold L.; Aanenson, Jill W.; Grogan, Helen A.; Mohler, H. Justin; Mohler, S. Shawn; Voillequé, Paul G.

    2014-01-01

    Methods were developed to calculate individual estimates of exposure and dose with associated uncertainties for a sub-cohort (1,857) of 115,329 military veterans who participated in at least one of seven series of atmospheric nuclear weapons tests or the TRINITY shot carried out by the United States. The tests were conducted at the Pacific Proving Grounds and the Nevada Test Site. Dose estimates to specific organs will be used in an epidemiological study to investigate leukemia and male breast cancer. Previous doses had been estimated for the purpose of compensation and were generally high-sided to favor the veteran's claim for compensation in accordance with public law. Recent efforts by the U.S. Department of Defense (DOD) to digitize the historical records supporting the veterans’ compensation assessments make it possible to calculate doses and associated uncertainties. Our approach builds upon available film badge dosimetry and other measurement data recorded at the time of the tests and incorporates detailed scenarios of exposure for each veteran based on personal, unit, and other available historical records. Film badge results were available for approximately 25% of the individuals, and these results assisted greatly in reconstructing doses to unbadged persons and in developing distributions of dose among military units. This article presents the methodology developed to estimate doses for selected cancer cases and a 1% random sample of the total cohort of veterans under study. PMID:24758578

  4. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy

    SciTech Connect

    Macey, D.J.; DeNardo, S.J.; DeNardo, G.L.; DeNardo, D.A.; Sui Shen

    1995-02-01

    Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contribution from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: (1) marrow; (2) blood; and (3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose form marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin`s lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. 32 refs., 6 figs., 1 tab.

  5. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-07-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  6. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-03-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  7. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    often time consuming. This section hopes to show that in place of TLDs, MOSFETs can provide accurate, precise dose information comparable with TLDs and ionization chambers. Measurements of all three dosimeters are compared in a small animal irradiator in phantoms and in vivo. Measurements done with MOSFETs are shown to deviate by 2.5% from that of the ADCL calibrated ionization chamber while TLDs showed a 7% deviation. Dose distributions within a phantom is also measured using radiochromic film to estimate the attenuation and show that dose is not uniform throughout the mouse. A dose decrease of approximately 30% is observed in a water phantom, which was only slightly mitigated by a hardening the beam with additional filtration. A Bland-Altman plot was created to show that the MOSFETs and TLDs used to make the dose measurements are statistically equivalent. The results show that all measurements made over a range of doses fall within 1.96 standard deviations of the mean.

  8. Estimation of the Dose of Radiation Received by Patient and Physician During a Videofluoroscopic Swallowing Study.

    PubMed

    Morishima, Yoshiaki; Chida, Koichi; Watanabe, Hiroshi

    2016-08-01

    Videofluoroscopic swallowing study (VFSS) is considered the standard diagnostic imaging technique to investigate swallowing disorders and dysphagia. Few studies have been reported concerning the dose of radiation a patient receives and the scattering radiation dose received by a physician during VFSS. In this study, we investigated the dose of radiation (entrance skin dose, ESD) estimated to be received by a patient during VFSS using a human phantom (via a skin-dose monitor sensor placed on the neck of the human phantom). We also investigated the effective dose (ED) and dose equivalent (DE) received by a physician (wearing two personal dosimeters) during an actual patient procedure. One dosimeter (whole body) was worn under a lead apron at the chest, and the other (specially placed to measure doses received by the lens of the eye) outside the lead apron on the neck collar to monitor radiation doses in parts of the body not protected by the lead apron. The ESD for the patient was 7.8 mGy in 5 min. We estimated the average patient dose at 12.79 mGy per VFSS procedure. The physician ED and DE during VFSS were 0.9 mSv/year and 2.3 mSv/year, respectively. The dose of radiation received by the physician in this study was lower than regulatory dose limits. However, in accordance with the principle that radiation exposure should be as low as reasonably achievable, every effort should be made (e.g., wearing lead glasses) to reduce exposure doses. PMID:27318941

  9. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-12-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms.

  10. Estimation of radionuclide ingestion: Lessons from dose reconstruction for fallout from the Nevada Test Site

    SciTech Connect

    Breshears, D.D.; Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1994-09-01

    The United States conducted atmospheric testing of nuclear devices at the Nevada Test Site from 1951 through 1963. In 1979 the U.S. Department of Energy established the Off-Site Radiation Exposure Review Project to compile a data base related to health effects from nuclear testing and to reconstruct doses to public residing off of the Nevada Test Site. This project is the most comprehensive dose reconstruction project to date, and, since similar assessments are currently underway at several other locations within and outside the U.S., lessons from ORERP can be valuable. A major component of dose reconstruction is estimation of dose from radionuclide ingestion. The PATHWAY food-chain model was developed to estimate the amount of radionuclides ingested. For agricultural components of the human diet, PATHWAY predicts radionuclide concentrations and quantities ingested. To improve accuracy and model credibility, four components of model analysis were conducted: estimation of uncertainty in model predictions, estimation of sensitivity of model predictions to input parameters, and testing of model predictions against independent data (validation), and comparing predictions from PATHWAY with those from other models. These results identified strengths and weaknesses in the model and aided in establishing the confidence associated with model prediction, which is a critical component risk assessment and dose reconstruction. For fallout from the Nevada Test Site, by far, the largest internal doses were received by the thyroid. However, the predicted number of fatal cancers from ingestion dose was generally much smaller than the number predicted from external dose. The number of fatal cancers predicted from ingestion dose was also orders of magnitude below the normal projected cancer rate. Several lessons were learned during the study that are relevant to other dose reconstruction efforts.

  11. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  12. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  13. A method for estimating occupational radiation dose to individuals, using weekly dosimetry data

    SciTech Connect

    Mitchell, T.J.; Ostrouchov, G.; Frome, E.L.; Kerr, G.D.

    1993-12-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses. It is usually assumed that the annual dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. We propose the use of a probability distribution to describe an individual`s dose during a specific period of time. Statistical methods for estimating this dose distribution are developed. The methods take into account the ``measurement error`` that is produced by the dosimetry system, and the bias that was introduced by policies that lead to right censoring of small doses as zero. The method is applied to a sample of dose histories obtained from hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The result of this evaluation raises serious questions about the validity of the historical personnel dosimetry data that is currently being used in low-dose studies of nuclear industry workers. In particular, it appears that there was a systematic underestimation of doses for ORNL workers. This could result in biased estimates of dose-response coefficients and their standard errors.

  14. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment

    EPA Science Inventory

    We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The q...

  15. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Flampouri, Stella; Jiang, Steve B.; Sharp, Greg C.; Wolfgang, John; Patel, Abhijit A.; Choi, Noah C.

    2006-06-01

    The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the

  16. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations.

    PubMed

    Flampouri, Stella; Jiang, Steve B; Sharp, Greg C; Wolfgang, John; Patel, Abhijit A; Choi, Noah C

    2006-06-01

    The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the

  17. Three-parameter model for estimating atmospheric tritium dose at the Savannah River Site.

    PubMed

    Hamby, D M; Simpkins, A A

    1998-09-01

    The models used in the NRC approach to assess chronic atmospheric releases of radioactivity generate deterministic dose estimates by using standard assumptions about exposure conditions and environmental transport mechanisms. This approach has been used at the Savannah River Site since 1983. Total dose to off-site maximally exposed individuals at the SRS from atmospheric releases has been on the order of 1 microSv y(-1), three orders of magnitude lower than the applicable dose limit. When estimating atmospheric dose many parameters remain unchanged each time calculations are performed. These parameters, therefore, are essentially unimportant with regard to routine modeling. It is proposed, therefore, that transport and dosimetry models can be reduced to simple functions of a few parameters that essentially determine dose at all locations across the site. The three-parameter transport and dosimetry model developed in this work is useful for quick and easy estimates of chronic atmospheric tritium dose that are within a factor of 2 of estimates by more sophisticated models. The three parameters critical to estimating annual average concentration at the Savannah River Site are wind-direction frequency, downwind distance, and physical stack height. The model is bounded by physical stack heights between 10 and 61 m and downwind distances between 800 m (0.5 mi.) and 32 km (20 mi.) and should not be used outside its intended domain. It requires knowledge of wind-direction frequency, downwind distance, and physical stack height to estimate an Atmospheric Dose Factor (ADF; in units of microSv GBq(-1)) for the conversion of long-term release activity to maximum individual effective dose equivalent. This concept is being carried forward to the development of a reduced model for particulate emissions from SRS stacks.

  18. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Pinder, J E

    2016-01-01

    This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ((99)Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (99)Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from (99)Mo uptake are compared to similar models developed previously for (131)I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs.

  19. Pesticide dose estimates for children of Iowa farmers and non-farmers.

    PubMed

    Curwin, Brian D; Hein, Misty J; Sanderson, Wayne T; Striley, Cynthia; Heederik, Dick; Kromhout, Hans; Reynolds, Stephen J; Alavanja, Michael C

    2007-11-01

    Farm children have the potential to be exposed to pesticides. Biological monitoring is often employed to assess this exposure; however, the significance of the exposure is uncertain unless doses are estimated. In the spring and summer of 2001, 118 children (66 farm, 52 non-farm) of Iowa farm and non-farm households were recruited to participate in a study investigating potential take-home pesticide exposure. Each child provided an evening and morning urine sample at two visits spaced approximately 1 month apart, with the first sample collection taken within a few days after pesticide application. Estimated doses were calculated for atrazine, metolachlor, chlorpyrifos, and glyphosate from urinary metabolite concentrations derived from the spot urine samples and compared to EPA reference doses. For all pesticides except glyphosate, the doses from farm children were higher than doses from the non-farm children. The difference was statistically significant for atrazine (p<0.0001) but only marginally significant for chlorpyrifos and metolachlor (p = 0.07 and 0.1, respectively). Among farm children, geometric mean doses were higher for children on farms where a particular pesticide was applied compared to farms where that pesticide was not applied for all pesticides except glyphosate; results were significant for atrazine (p = 0.030) and metolachlor (p = 0.042), and marginally significant for chlorpyrifos (p = 0.057). The highest estimated doses for atrazine, chlorpyrifos, metolachlor, and glyphosate were 0.085, 1.96, 3.16, and 0.34 microg/kg/day, respectively. None of the doses exceeded any of the EPA reference values for atrazine, metolachlor, and glyphosate; however, all of the doses for chlorpyrifos exceeded the EPA chronic population adjusted reference value. Doses were similar for male and female children. A trend of decreasing dose with increasing age was observed for chlorpyrifos.

  20. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    SciTech Connect

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-02-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body.

  1. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    SciTech Connect

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E.

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different

  2. The effect of angular and longitudinal tube current modulations on the estimation of organ and effective doses in x-ray computed tomography

    SciTech Connect

    Straten, Marcel van; Deak, Paul; Shrimpton, Paul C.; Kalender, Willi A.

    2009-11-15

    account. In the head, neck, thorax, and upper abdominal regions, conversion coefficients changed similarly by only 5% or less. Conversion coefficients for estimating effective doses for scans of complete regions, e.g., chest or abdomen, were approximately 8% lower when taking angular and longitudinal TCMs into account. Conclusions: The authors conclude that for accurate organ and effective dose estimates in individual cross sections in the shoulder or pelvic regions, the angular tube current modulation should be taken into account. In general, using the average of the modulated tube current causes an overestimation of the effective dose.

  3. Estimation of immunization providers' activities cost, medication cost, and immunization dose errors cost in Iraq.

    PubMed

    Al-lela, Omer Qutaiba B; Bahari, Mohd Baidi; Al-abbassi, Mustafa G; Salih, Muhannad R M; Basher, Amena Y

    2012-06-01

    The immunization status of children is improved by interventions that increase community demand for compulsory and non-compulsory vaccines, one of the most important interventions related to immunization providers. The aim of this study is to evaluate the activities of immunization providers in terms of activities time and cost, to calculate the immunization doses cost, and to determine the immunization dose errors cost. Time-motion and cost analysis study design was used. Five public health clinics in Mosul-Iraq participated in the study. Fifty (50) vaccine doses were required to estimate activities time and cost. Micro-costing method was used; time and cost data were collected for each immunization-related activity performed by the clinic staff. A stopwatch was used to measure the duration of activity interactions between the parents and clinic staff. The immunization service cost was calculated by multiplying the average salary/min by activity time per minute. 528 immunization cards of Iraqi children were scanned to determine the number and the cost of immunization doses errors (extraimmunization doses and invalid doses). The average time for child registration was 6.7 min per each immunization dose, and the physician spent more than 10 min per dose. Nurses needed more than 5 min to complete child vaccination. The total cost of immunization activities was 1.67 US$ per each immunization dose. Measles vaccine (fifth dose) has a lower price (0.42 US$) than all other immunization doses. The cost of a total of 288 invalid doses was 744.55 US$ and the cost of a total of 195 extra immunization doses was 503.85 US$. The time spent on physicians' activities was longer than that spent on registrars' and nurses' activities. Physician total cost was higher than registrar cost and nurse cost. The total immunization cost will increase by about 13.3% owing to dose errors.

  4. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate

    PubMed Central

    Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul

    2015-01-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  5. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere.

  6. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  7. Estimated radiation dose to the newborn in FDG-PET studies

    SciTech Connect

    Ruotsalainen, U.; Suhonen-Polvi, H.; Eronen, E.; Kinnala, A.

    1996-02-01

    The aim of this study was to estimate the radiation dose due to intravenous injection of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) for infants studied with PET. The radioactivity concentration in the brain and bladder content was measured with PET to determine the cumulated activity in these organs in 21 infant FDG studies. The individual organ masses were estimated according to the whole-body and brain masses, and they were used to calculate the absorbed dose per unit cumulated activity (S values). For organs other than brain and bladder, the cumulated activity was defined from adult studies. For each individual patient, the absorbed dose to the brain, bladder wall and selected organs were calculated. An estimation of the effective dose was determined. Whole-body distribution of FDG in the infants differed from adults: a greater proportion of the injected activity accumulated into the brain (9% versus 7%) and less was excreted to urine (7% versus 20% respectively). The measured cumulated activity in the brain was 0.25 MBq {center_dot} h/MBq and in the bladder content 0.04 MBq {center_dot}h/MBq with a large individual variation in latter. The calculated absorbed dose was 0.24 mGy/MBq to the brain and 1.03 mGy/MBq to the bladder wall. The estimated effective dose was 0.43 mSv/MBq. The dose to the bladder wall was lower in infants as compared to adults with ordinary amounts of injected activity. The greater amount of activity remaining in the body may increase the dose to other organs. The effective dose was lower compared to adults and conventional nuclear medicine studies of infants. PET can be a valuable tool in pediatric nuclear medicine because of good resolution images, sensitive radiation measurement and a variety of tracers labeled with short-lived isotopes. 27 refs., 4 figs., 2 tabs.

  8. Estimation of organ and effective dose due to Compton backscatter security scans

    SciTech Connect

    Hoppe, Michael E.; Schmidt, Taly Gilat

    2012-06-15

    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 {mu}R at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation's boundaries. The energy deposited in the phantoms' respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms' total effective doses were below the established 0.25 {mu}Sv standard, with an estimated maximum total effective dose of 0.07 {mu}Sv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 {mu}Gy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 {mu}R at 30 cm.

  9. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    SciTech Connect

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.; Heames, T.J.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in the quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.

  10. Variability in dose estimates associated with the food-chain transport and ingestion of selected radionuclides

    SciTech Connect

    Hoffman, F.O.; Gardner, R.H.; Eckerman, K.F.

    1982-06-01

    Dose predictions for the ingestion of /sup 90/Sr and /sup 137/Cs, using aquatic and terrestrial food chain transport models similar to those in the Nuclear Regulatory Commission's Regulatory Guide 1.109, are evaluated through estimating the variability of model parameters and determining the effect of this variability on model output. The variability in the predicted dose equivalent is determined using analytical and numerical procedures. In addition, a detailed discussion is included on /sup 90/Sr dosimetry. The overall estimates of uncertainty are most relevant to conditions where site-specific data is unavailable and when model structure and parameter estimates are unbiased. Based on the comparisons performed in this report, it is concluded that the use of the generic default parameters in Regulatory Guide 1.109 will usually produce conservative dose estimates that exceed the 90th percentile of the predicted distribution of dose equivalents. An exception is the meat pathway for /sup 137/Cs, in which use of generic default values results in a dose estimate at the 24th percentile. Among the terrestrial pathways of exposure, the non-leafy vegetable pathway is the most important for /sup 90/Sr. For /sup 90/Sr, the parameters for soil retention, soil-to-plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For /sup 137/Cs, the meat transfer coefficient the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters. The freshwater finfish bioaccumulation factor is the most important parameter for the dose prediction of /sup 90/Sr and /sup 137/Cs transported over the water-fish-man pathway.

  11. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion. PMID:25539270

  12. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully

  13. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct 3D modeling

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Lopez, John J.; Pennington, Edward C.; Meeks, Sanford L.; Braddy, Kathleen C.; Fox, James M.; Brennan, Theresa M. H.; Buatti, John M.; Rossen, James D.; Sonka, Milan

    2003-05-01

    Intravascular brachytherapy has shown to reduce re-occurrence of in-stent restenosis in coronary arteries. For beta radiation, application time is determined from source activity and the angiographically estimated vessel diameter. Conventionally used dosing models assume a straight vessel with the catheter centered and a constant-diameter circular cross section. Aim of this study was to compare the actual dose delivered during in-vivo intravascular brachytherapy with the target range determined from the patient's prescribed dose. Furthermore, differences in dose distribution between a simplified tubular model (STM) and a geometrically correct 3-D model (GCM) obtained from fusion between biplane angiography and intravascular ultrasound were quantified. The tissue enclosed by the segmented lumen/plaque and media/adventitia borders was simulated using a structured finite-element mesh. The beta-radiation sources were modeled as 3-D objects in their angiographically determined locations. The accumulated dose was estimated using a fixed distance function based on the patient-specific radiation parameters. For visualization, the data was converted to VRML with the accumulated doses represented by color encoding. The statistical comparison between STM and GCM models in 8 patients showed that the STM significantly underestimates the dose delivered and its variability. The analysis revealed substantial deviations from the target dose range in curved vessels.

  14. Calibrating the High Density Magnetic Port within Tissue Expanders to Achieve more Accurate Dose Calculations for Postmastectomy Patients with Immediate Breast Reconstruction

    NASA Astrophysics Data System (ADS)

    Jones, Jasmine; Zhang, Rui; Heins, David; Castle, Katherine

    In postmastectomy radiotherapy, an increasing number of patients have tissue expanders inserted subpectorally when receiving immediate breast reconstruction. These tissue expanders are composed of silicone and are inflated with saline through an internal metallic port; this serves the purpose of stretching the muscle and skin tissue over time, in order to house a permanent implant. The issue with administering radiation therapy in the presence of a tissue expander is that the port's magnetic core can potentially perturb the dose delivered to the Planning Target Volume, causing significant artifacts in CT images. Several studies have explored this problem, and suggest that density corrections must be accounted for in treatment planning. However, very few studies accurately calibrated commercial TP systems for the high density material used in the port, and no studies employed fusion imaging to yield a more accurate contour of the port in treatment planning. We compared depth dose values in the water phantom between measurement and TPS calculations, and we were able to overcome some of the inhomogeneities presented by the image artifact by fusing the KVCT and MVCT images of the tissue expander together, resulting in a more precise comparison of dose calculations at discrete locations. We expect this method to be pivotal in the quantification of dose distribution in the PTV. Research funded by the LS-AMP Award.

  15. [Nationwide survey of nuclear medicine practice and estimation of collective effective dose in Japan.].

    PubMed

    Matsumoto, Masaki; Nishizawa, Kanae; Iwai, Kazuo; Akahane, Keiichi; Maruyama, Takashi

    2006-01-01

    For the estimation of collective effective dose from radiopharmaceuticals used in nuclear medicine diagnosis, a national survey was carried out in Japan. The survey contents covered radiopharmaceutical use, sex, age, activity, and so on of each patient in October 1997 and the monthly number of examinations in 1997. The annual number of diagnostic examinations using radiopharmaceuticals was 0.82 million for males and 0.74 million for females. The frequency of examination was about 3% for patients less than 17 years old and about 60% for those more than 60 years old. Effective dose was calculated on the basis of such literature as ICRP publications. The dose used most frequently was 5-6mSv per examination. The collective effective doses from diagnostic nuclear medicine examinations were estimated to be 13100 man .Sv for males and 20200 man .Sv for females. PMID:17164536

  16. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  17. MAXINE: An improved methodology for estimating maximum individual dose from chronic atmospheric radioactive releases

    SciTech Connect

    Hamby, D.M.

    1994-02-01

    An EXCEL{reg_sign} spreadsheet has been developed that, when combined with the PC version of XOQDOQ, will generate estimates of maximum individual dose from routine atmospheric releases of radionuclides. The spreadsheet, MAXINE, utilizes a variety of atmospheric dispersion factors to calculate radiation dose as recommended by the US Nuclear Regulatory Commission in Regulatory Guide 1.109 [USNRC 1977a]. The methodology suggested herein includes use of both the MAXINE spreadsheet and the PC version of XOQDOQ.

  18. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    SciTech Connect

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.; Bolch, Wesley E.

    2012-04-15

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI{sub vol} (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependent reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI{sub vol}- and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI{sub vol} for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose

  19. Estimation of Radiobiologic Parameters and Equivalent Radiation Dose of Cytotoxic Chemotherapy in Malignant Glioma

    SciTech Connect

    Jones, Bleddyn . E-mail: b.jones.1@bham.ac.uk; Sanghera, Paul

    2007-06-01

    Purpose: To determine the radiobiologic parameters for high-grade gliomas. Methods and Materials: The biologic effective dose concept is used to estimate the {alpha}/{beta} ratio and K (dose equivalent for tumor repopulation/d) for high-grade glioma patients treated in a randomized fractionation trial. The equivalent radiation dose of temozolomide (Temodar) chemotherapy was estimated from another randomized study. The method assumes that the radiotherapy biologic effective dose is proportional to the adjusted radiotherapy survival duration of high-grade glioma patients. Results: The median tumor {alpha}/{beta} and K estimate is 9.32 Gy and 0.23 Gy/d, respectively. Using the published surviving fraction after 2-Gy exposure (SF{sub 2}) data, and the above {alpha}/{beta} ratio, the estimated median {alpha} value was 0.077 Gy{sup -1}, {beta} was 0.009 Gy{sup -2}, and the cellular doubling time was 39.5 days. The median equivalent biologic effective dose of temozolomide was 11.03 Gy{sub 9.3} (equivalent to a radiation dose of 9.1 Gy given in 2-Gy fractions). Random sampling trial simulations based on a cure threshold of 70 Gy in high-grade gliomas have shown the potential increase in tumor cure with dose escalation. Partial elimination of hypoxic cells (by chemical hypoxic cell sensitizers or carbon ion therapy) has suggested that considerable gains in tumor control, which are further supplemented by temozolomide, are achievable. Conclusion: The radiobiologic parameters for human high-grade gliomas can be estimated from clinical trials and could be used to inform future clinical trials, particularly combined modality treatments with newer forms of radiotherapy. Other incurable cancers should be studied using similar radiobiologic analysis.

  20. Effects of fragmentation parameter variations on estimates of galactic cosmic ray exposure: Dose sensitivity studies for aluminum shields

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Shinn, Judy L.; Wilson, John W.

    1992-01-01

    Initial studies of the sensitivities of estimates of particle fluence, absorbed dose, and dose equivalent to fragmentation parameter variations are undertaken by using the LaRC galactic cosmic ray transport code (HZETRN). The new results, presented as a function of aluminum shield thickness, include upper and lower bounds on dose/dose equivalent corresponding to the physically realistic extremes of the fragmentation process and the percentage of variation of the dose/dose equivalent as a function of fragmentation parameter variation.

  1. Fetal radiation dose estimates for I-131 sodium iodide in cases where conception occurs after administration

    SciTech Connect

    Sparks, R.B.; Stabin, M.G.

    1999-01-01

    After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossover could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.

  2. Estimated Risk Level of Unified Stereotactic Body Radiation Therapy Dose Tolerance Limits for Spinal Cord.

    PubMed

    Grimm, Jimm; Sahgal, Arjun; Soltys, Scott G; Luxton, Gary; Patel, Ashish; Herbert, Scott; Xue, Jinyu; Ma, Lijun; Yorke, Ellen; Adler, John R; Gibbs, Iris C

    2016-04-01

    A literature review of more than 200 stereotactic body radiation therapy spine articles from the past 20 years found only a single article that provided dose-volume data and outcomes for each spinal cord of a clinical dataset: the Gibbs 2007 article (Gibbs et al, 2007(1)), which essentially contains the first 100 stereotactic body radiation therapy (SBRT) spine treatments from Stanford University Medical Center. The dataset is modeled and compared in detail to the rest of the literature review, which found 59 dose tolerance limits for the spinal cord in 1-5 fractions. We partitioned these limits into a unified format of high-risk and low-risk dose tolerance limits. To estimate the corresponding risk level of each limit we used the Gibbs 2007 clinical spinal cord dose-volume data for 102 spinal metastases in 74 patients treated by spinal radiosurgery. In all, 50 of the patients were previously irradiated to a median dose of 40Gy in 2-3Gy fractions and 3 patients developed treatment-related myelopathy. These dose-volume data were digitized into the dose-volume histogram (DVH) Evaluator software tool where parameters of the probit dose-response model were fitted using the maximum likelihood approach (Jackson et al, 1995(3)). Based on this limited dataset, for de novo cases the unified low-risk dose tolerance limits yielded an estimated risk of spinal cord injury of ≤1% in 1-5 fractions, and the high-risk limits yielded an estimated risk of ≤3%. The QUANTEC Dmax limits of 13Gy in a single fraction and 20Gy in 3 fractions had less than 1% risk estimated from this dataset, so we consider these among the low-risk limits. In the previously irradiated cohort, the estimated risk levels for 10 and 14Gy maximum cord dose limits in 5 fractions are 0.4% and 0.6%, respectively. Longer follow-up and more patients are required to improve the risk estimates and provide more complete validation. PMID:27000514

  3. Estimated Risk Level of Unified Stereotactic Body Radiation Therapy Dose Tolerance Limits for Spinal Cord.

    PubMed

    Grimm, Jimm; Sahgal, Arjun; Soltys, Scott G; Luxton, Gary; Patel, Ashish; Herbert, Scott; Xue, Jinyu; Ma, Lijun; Yorke, Ellen; Adler, John R; Gibbs, Iris C

    2016-04-01

    A literature review of more than 200 stereotactic body radiation therapy spine articles from the past 20 years found only a single article that provided dose-volume data and outcomes for each spinal cord of a clinical dataset: the Gibbs 2007 article (Gibbs et al, 2007(1)), which essentially contains the first 100 stereotactic body radiation therapy (SBRT) spine treatments from Stanford University Medical Center. The dataset is modeled and compared in detail to the rest of the literature review, which found 59 dose tolerance limits for the spinal cord in 1-5 fractions. We partitioned these limits into a unified format of high-risk and low-risk dose tolerance limits. To estimate the corresponding risk level of each limit we used the Gibbs 2007 clinical spinal cord dose-volume data for 102 spinal metastases in 74 patients treated by spinal radiosurgery. In all, 50 of the patients were previously irradiated to a median dose of 40Gy in 2-3Gy fractions and 3 patients developed treatment-related myelopathy. These dose-volume data were digitized into the dose-volume histogram (DVH) Evaluator software tool where parameters of the probit dose-response model were fitted using the maximum likelihood approach (Jackson et al, 1995(3)). Based on this limited dataset, for de novo cases the unified low-risk dose tolerance limits yielded an estimated risk of spinal cord injury of ≤1% in 1-5 fractions, and the high-risk limits yielded an estimated risk of ≤3%. The QUANTEC Dmax limits of 13Gy in a single fraction and 20Gy in 3 fractions had less than 1% risk estimated from this dataset, so we consider these among the low-risk limits. In the previously irradiated cohort, the estimated risk levels for 10 and 14Gy maximum cord dose limits in 5 fractions are 0.4% and 0.6%, respectively. Longer follow-up and more patients are required to improve the risk estimates and provide more complete validation.

  4. Reservoir evaluation of thin-bedded turbidites and hydrocarbon pore thickness estimation for an accurate quantification of resource

    NASA Astrophysics Data System (ADS)

    Omoniyi, Bayonle; Stow, Dorrik

    2016-04-01

    One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (<10cm and <30cm respectively). Although such thinner, low-pay sands may comprise a significant proportion of the reservoir succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.

  5. Performance evaluation of ocean color satellite models for deriving accurate chlorophyll estimates in the Gulf of Saint Lawrence

    NASA Astrophysics Data System (ADS)

    Montes-Hugo, M.; Bouakba, H.; Arnone, R.

    2014-06-01

    The understanding of phytoplankton dynamics in the Gulf of the Saint Lawrence (GSL) is critical for managing major fisheries off the Canadian East coast. In this study, the accuracy of two atmospheric correction techniques (NASA standard algorithm, SA, and Kuchinke's spectral optimization, KU) and three ocean color inversion models (Carder's empirical for SeaWiFS (Sea-viewing Wide Field-of-View Sensor), EC, Lee's quasi-analytical, QAA, and Garver- Siegel-Maritorena semi-empirical, GSM) for estimating the phytoplankton absorption coefficient at 443 nm (aph(443)) and the chlorophyll concentration (chl) in the GSL is examined. Each model was validated based on SeaWiFS images and shipboard measurements obtained during May of 2000 and April 2001. In general, aph(443) estimates derived from coupling KU and QAA models presented the smallest differences with respect to in situ determinations as measured by High Pressure liquid Chromatography measurements (median absolute bias per cruise up to 0.005, RMSE up to 0.013). A change on the inversion approach used for estimating aph(443) values produced up to 43.4% increase on prediction error as inferred from the median relative bias per cruise. Likewise, the impact of applying different atmospheric correction schemes was secondary and represented an additive error of up to 24.3%. By using SeaDAS (SeaWiFS Data Analysis System) default values for the optical cross section of phytoplankton (i.e., aph(443) = aph(443)/chl = 0.056 m2mg-1), the median relative bias of our chl estimates as derived from the most accurate spaceborne aph(443) retrievals and with respect to in situ determinations increased up to 29%.

  6. Estimates of Columbia River radionuclide concentrations: Data for Phase 1 dose calculations

    SciTech Connect

    Richmond, M.C.; Walters, W.H.

    1991-05-01

    Pacific Northwest Laboratory is conducting the Hanford Environmental Dose Reconstruction Project to estimate the radiation doses people may have received from historical Hanford Site operations. Under the direction of an independent Technical Steering Panel, the project is being conducted in phases. The objective of the first phase is to assess the feasibility of the project-wide technical approach for acquiring data and developing models needed to calculate potential radiation doses. This report summarizes data that were generated for the Phase 1 dose calculations. These included monthly average concentrations of specific radionuclides in Columbia River water and sediments between Priest Rapids Dam and McNary Dam for the years 1964 to 1966. Nine key radionuclides were selected for analysis based on estimation of their contribution to dose. Concentrations of these radionuclides in the river were estimated using existing measurements and hydraulic calculations based on the simplifying assumption that dilution and decay were the primary processes controlling the fate of radionuclides released to the river. Five sub-reaches between Priest Rapids Dam and McNary Dam, corresponding to population centers and tributary confluences, were identified and monthly average radionuclide concentrations were calculated for each sub-reach. The hydraulic calculations were performed to provide radionuclide concentration estimates for time periods and geographic locations where measured data were not available. The validity of the calculation method will be evaluated in Phase 2. 12 refs., 13 figs., 49 tabs.

  7. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  8. Internal thyroid doses to Fukushima residents-estimation and issues remaining.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-08-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, (131)I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data ((131)I) for 1080 children examined in the screening campaign, whole-body counter measurement data ((134)Cs, (137)Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  9. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.

    PubMed

    Barquero, R; Méndez, R; Martí-Climent, J M; Quincoces, G

    2007-01-01

    Neutron organ equivalent doses, effective doses and dose equivalents received inside a positron emission tomography vault room in a maximum credible accident have been estimated with the Monte Carlo code MCNPX. While an operator was inside the vault room of a Cyclone 18/9 IBA cyclotron, this was producing (18)F with 30 muA proton current in the target and the operator had to activate a stopped emergency device placed on the wall. MC simulation of the cyclotron vault were carried out to estimate the organ and tissue equivalent doses in a mathematical male mannequin simulating the operator facing the wall on which the emergency device is placed. Doses were calculated at two emergency devices for each one of the two targets of the cyclotron, which were able to produce (18)F. The maximum effective dose in the mannequin was 6.70 Sv/h and the maximum organ equivalent dose was 18.47 Sv/h in spleen.

  10. Accidental embryo irradiation during barium enema examinations: An estimation of absorbed dose

    SciTech Connect

    Damilakis, J.; Perisinakis, K.; Grammatikakis, J.

    1996-04-01

    The purpose of this report is to investigate the possibility of an embryo to receive a dose of more than 10 cGy, the threshold of malformation induction in embryos reported by the International Commission on Radiological Protection, during barium enema examinations. Thermoluminescent dosimeters were place in a phantom to calculate the depth-to-skin conversion coefficient needed for dose estimation at the average embryo depth in patients. Barium enema examinations were performed in 20 women of childbearing age with diagnostic problems demanding longer fluoroscopy times. Doses at 6 cm, the average embryo depth, were determined by measurements at the patients` skin followed by dose calculation at the site of interest. The range of doses estimated at embryo depth for patients was 1.9 to 8.2 cGy. The dose always exceeded 5 cGy when fluoroscopy time was longer than 7 minutes. The dose at the embryo depth never exceeded 10 cGy. This study indicates that fluoroscopy time should not exceed 7 minutes in childbearing-age female patients undergoing barium enema examinations. 6 refs., 1 fig., 2 tabs.

  11. Patient-specific dose estimation for pediatric abdomen-pelvis CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2009-02-01

    The purpose of this study is to develop a method for estimating patient-specific dose from abdomen-pelvis CT examinations and to investigate dose variation across patients in the same weight group. Our study consisted of seven pediatric patients in the same weight/protocol group, for whom full-body computer models were previously created based on the patients' CT data obtained for clinical indications. Organ and effective dose of these patients from an abdomen-pelvis scan protocol (LightSpeed VCT scanner, 120-kVp, 85-90 mA, 0.4-s gantry rotation period, 1.375-pitch, 40-mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated for the same CT system. The seven patients had effective dose of 2.4-2.8 mSv, corresponding to normalized effective dose of 6.6-8.3 mSv/100mAs (coefficient of variation: 7.6%). Dose variations across the patients were small for large organs in the scan coverage (mean: 6.6%; range: 4.9%-9.2%), larger for small organs in the scan coverage (mean: 10.3%; range: 1.4%-15.6%), and the largest for organs partially or completely outside the scan coverage (mean: 14.8%; range: 5.7%-27.7%). Normalized effective dose correlated strongly with body weight (correlation coefficient: r = -0.94). Normalized dose to the kidney and the adrenal gland correlated strongly with mid-liver equivalent diameter (kidney: r = -0.97; adrenal glands: r = -0.98). Normalized dose to the small intestine correlated strongly with mid-intestine equivalent diameter (r = -0.97). These strong correlations suggest that patient-specific dose may be estimated for any other child in the same size group who undergoes the abdomen-pelvis scan.

  12. Radiation dose estimates for typical piloted NTR lunar and Mars mission engine operations

    SciTech Connect

    Schnitzler, B.G. ); Borowski, S.K. . Lewis Research Center)

    1991-01-01

    The natural and manmade radiation environments to be encountered during lunar and Mars missions are qualitatively summarized. The computational methods available to characterize the radiation environment produced by an operating nuclear propulsion system are discussed. Mission profiles and vehicle configurations are presented for a typical all-propulsive, fully reusable lunar mission and for a typical all-propulsive Mars mission. Estimates of crew location biological doses are developed for all propulsive maneuvers. Post-shutdown dose rates near the nuclear engine are estimated at selected mission times. 15 refs., 4 figs.

  13. Combined methodology for estimating dose rates and health effects from exposure to radioactive pollutants

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.

    1980-12-01

    The work described in the report is basically a synthesis of two previously existing computer codes: INREM II, developed at the Oak Ridge National Laboratory (ORNL); and CAIRD, developed by the Environmental Protection Agency (EPA). The INREM II code uses contemporary dosimetric methods to estimate doses to specified reference organs due to inhalation or ingestion of a radionuclide. The CAIRD code employs actuarial life tables to account for competing risks in estimating numbers of health effects resulting from exposure of a cohort to some incremental risk. The combined computer code, referred to as RADRISK, estimates numbers of health effects in a hypothetical cohort of 100,000 persons due to continuous lifetime inhalation or ingestion of a radionuclide. Also briefly discussed in this report is a method of estimating numbers of health effects in a hypothetical cohort due to continuous lifetime exposure to external radiation. This method employs the CAIRD methodology together with dose conversion factors generated by the computer code DOSFACTER, developed at ORNL; these dose conversion factors are used to estimate dose rates to persons due to radionuclides in the air or on the ground surface. The combination of the life table and dosimetric guidelines for the release of radioactive pollutants to the atmosphere, as required by the Clean Air Act Amendments of 1977.

  14. SU-C-12A-05: Radiation Dose in High-Pitch Pediatric Cardiac CTA: Correlation Between Lung Dose and CTDIvol, DLP, and Size Specific Dose Estimates (SSDE)

    SciTech Connect

    Wang, J; Kino, A; Newman, B; Chan, F

    2014-06-01

    Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CT Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.

  15. Accurate recovery of 4D left ventricular deformations using volumetric B-splines incorporating phase based displacement estimates

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Tustison, Nicholas J.; Amini, Amir A.

    2006-03-01

    In this paper, an improved framework for estimation of 3-D left-ventricular deformations from tagged MRI is presented. Contiguous short- and long-axis tagged MR images are collected and are used within a 4-D B-Spline based deformable model to determine 4-D displacements and strains. An initial 4-D B-spline model fitted to sparse tag line data is first constructed by minimizing a 4-D Chamfer distance potential-based energy function for aligning isoparametric planes of the model with tag line locations; subsequently, dense virtual tag lines based on 2-D phase-based displacement estimates and the initial model are created. A final 4-D B-spline model with increased knots is fitted to the virtual tag lines. From the final model, we can extract accurate 3-D myocardial deformation fields and corresponding strain maps which are local measures of non-rigid deformation. Lagrangian strains in simulated data are derived which show improvement over our previous work. The method is also applied to 3-D tagged MRI data collected in a canine.

  16. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus)?

    PubMed Central

    Palmstrom, Christin R.

    2015-01-01

    There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size), as measured by computerized tomography (CT) scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex. PMID:26082858

  17. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    SciTech Connect

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-07-15

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  18. Estimated Fluoride Doses from Toothpastes Should be Based on Total Soluble Fluoride

    PubMed Central

    Oliveira, Maria José L.; Martins, Carolina C.; Paiva, Saul M.; Tenuta, Livia M. A.; Cury, Jaime A.

    2013-01-01

    The fluoride dose ingested by young children may be overestimated if based on levels of total fluoride (TF) rather than levels of bioavailable fluoride (total soluble fluoride—TSF) in toothpaste. The aim of the present study was to compare doses of fluoride intake based on TF and TSF. Fluoride intake in 158 Brazilian children aged three and four years was determined after tooth brushing with their usual toothpaste (either family toothpaste (n = 80) or children’s toothpaste (n = 78)). The estimated dose (mg F/day/Kg of body weight) of TF or TSF ingested was calculated from the chemical analysis of the toothpastes. Although the ingested dose of TF from the family toothpastes was higher than that from the children’s toothpastes (0.074 ± 0.007 and 0.039 ± 0.003 mg F/day/Kg, respectively; p < 0.05), no difference between types of toothpaste was found regarding the ingested dose based on TSF (0.039 ± 0.005 and 0.039 ± 0.005 mg F/day/Kg, respectively; p > 0.05). The fluoride dose ingested by children from toothpastes may be overestimated if based on the TF of the product. This finding suggests that the ingested dose should be calculated based on TSF. Dose of TSF ingested by children is similar whether family or children’s toothpaste is used. PMID:24189183

  19. Estimation of maximum tolerated dose for long-term bioassays from acute lethal dose and structure by QSAR

    SciTech Connect

    Gombar, V.K.; Enslein, K.; Hart, J.B.; Blake, B.W.; Borgstedt, H.H.

    1991-09-01

    A quantitative structure-activity relationship (QSAR) model has been developed to estimate maximum tolerated doses (MTD) from structural features of chemicals and the corresponding oral acute lethal doses (LD50) as determined in male rats. The model is based on a set of 269 diverse chemicals which have been tested under the National Cancer Institute/National Toxicology Program (NCI/NTP) protocols. The rat oral LD50 value was the strongest predictor. Additionally, 22 structural descriptors comprising nine substructural MOLSTAC(c) keys, three molecular connectivity indices, and sigma charges on 10 molecular fragments were identified as endpoint predictors. The model explains 76% of the variance and is significant (F = 35.7) at p less than 0.0001 with a standard error of the estimate of 0.40 in the log (1/mol) units used in Hansch-type equations. Cross-validation showed that the difference between the average deleted residual square (0.179) and the model residual square (0.160) was not significant (t = 0.98).

  20. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms

    PubMed Central

    Theodorakou, C; Walker, A; Horner, K; Pauwels, R; Bogaerts, R; Jacobs Dds, R

    2012-01-01

    Objectives Cone beam CT (CBCT) is an emerging X-ray technology applied in dentomaxillofacial imaging. Previous published studies have estimated the effective dose and radiation risks using adult anthropomorphic phantoms for a wide range of CBCT units and imaging protocols. Methods Measurements were made five dental CBCT units for a range of imaging protocols, using 10-year-old and adolescent phantoms and thermoluminescent dosimeters. The purpose of the study was to estimate paediatric organ and effective doses from dental CBCT. Results The average effective doses to the 10-year-old and adolescent phantoms were 116 μSv and 79 μSv, respectively, which are similar to adult doses. The salivary glands received the highest organ dose and there was a fourfold increase in the thyroid dose of the 10-year-old relative to that of the adolescent because of its smaller size. The remainder tissues and salivary and thyroid glands contributed most significantly to the effective dose for a 10-year-old, whereas for an adolescent the remainder tissues and the salivary glands contributed the most significantly. It was found that the percentage attributable lifetime mortality risks were 0.002% and 0.001% for a 10-year-old and an adolescent patient, respectively, which are considerably higher than the risk to an adult having received the same doses. Conclusion It is therefore imperative that dental CBCT examinations on children should be fully justified over conventional X-ray imaging and that dose optimisation by field of view collimation is particularly important in young children. PMID:22308220

  1. [Estimation of the Average Glandular Dose Using the Mammary Gland Image Analysis in Mammography].

    PubMed

    Otsuka, Tomoko; Teramoto, Atsushi; Asada, Yasuki; Suzuki, Shoichi; Fujita, Hiroshi; Kamiya, Satoru; Anno, Hirofumi

    2016-05-01

    Currently, the glandular dose is evaluated quantitatively on the basis of the measured data using phantom, and not in a dose based on the mammary gland structure of an individual patient. However, mammary gland structures of the patients are different from each other and mammary gland dose of an individual patient cannot be obtained by the existing methods. In this study, we present an automated estimation method of mammary gland dose by means of mammary structure which is measured automatically using mammogram. In this method, mammary gland structure is extracted by Gabor filter; mammary region is segmented by the automated thresholding. For the evaluation, mammograms of 100 patients diagnosed with category 1 were collected. Using these mammograms we compared the mammary gland ratio measured by proposed method and visual evaluation. As a result, 78% of the total cases were matched. Furthermore, the mammary gland ratio and average glandular dose among the patients with same breast thickness was matched well. These results show that the proposed method may be useful for the estimation of average glandular dose for the individual patients.

  2. [Estimation of the Average Glandular Dose Using the Mammary Gland Image Analysis in Mammography].

    PubMed

    Otsuka, Tomoko; Teramoto, Atsushi; Asada, Yasuki; Suzuki, Shoichi; Fujita, Hiroshi; Kamiya, Satoru; Anno, Hirofumi

    2016-05-01

    Currently, the glandular dose is evaluated quantitatively on the basis of the measured data using phantom, and not in a dose based on the mammary gland structure of an individual patient. However, mammary gland structures of the patients are different from each other and mammary gland dose of an individual patient cannot be obtained by the existing methods. In this study, we present an automated estimation method of mammary gland dose by means of mammary structure which is measured automatically using mammogram. In this method, mammary gland structure is extracted by Gabor filter; mammary region is segmented by the automated thresholding. For the evaluation, mammograms of 100 patients diagnosed with category 1 were collected. Using these mammograms we compared the mammary gland ratio measured by proposed method and visual evaluation. As a result, 78% of the total cases were matched. Furthermore, the mammary gland ratio and average glandular dose among the patients with same breast thickness was matched well. These results show that the proposed method may be useful for the estimation of average glandular dose for the individual patients. PMID:27211083

  3. Estimates of radiation doses in space on the basis of current data.

    PubMed

    Foelsche, T

    1963-01-01

    A gross survey of data on Van Allen belt radiations, galactic cosmic radiation, and solar cosmic radiation is presented. On the basis of these data that are, in part, fragmentary and uncertain, upper and lower limits of rad doses under different amounts of mass shielding are estimated. The estimates are preliminary especially in the cases of chance encounter with solar flare protons. Generally, the relative biological effectiveness of the high energetic space radiations and their secondaries appear insufficiently known to give detailed biological or rem doses. The overall ionization dosage of the low level galactic cosmic radiation in free space is estimated to be even in solar minimum years equivalent to less than 50 rem/year or 1 rem/week. Mass shielding up to 80 g/cm2 would not reduce the ionization dosage but would shield against heavy primaries and heavy ionizing secondaries, thus reducing the biological dose. The flux of energetic protons in the maximum intensity zone of the inner Van Allen belt is by about four orders of magnitude higher, their energy and penetration power, of course, lower. A shield of 25 g/cm2 would reduce the dose rate from 20 rad/hour under 2 g/cm2 to 5 rad/hour. These proton dose rates and also the electron and X-radiation dose rates under some g/cm2 shielding of low z-number material will not constitute a radiation hazard for flights straight through the inner and outer belt in about two hours. Staying within the maximum of the inner belt for two days would, however, lead even within 25 g/cm2 depth of outer shield and body itself to a dose of 200 rad which is on the permissible limit. Extreme solar cosmic ray events or proton showers of high intensity and a duration of days occurred with a frequency of 1-4 per year during the last highly active cycle. For the penetrating, most intense high energy event of February 23, 1956, the dose within 25 g/cm2 is estimated to have been in the order of 50 rad. In most cases the dose decreased more

  4. ESTIMATING CHILDREN'S DERMAL AND NON-DIETARY INGESTION EXPOSURE AND DOSE WITH EPA'S SHEDS MODEL

    EPA Science Inventory

    A physically-based stochastic model (SHEDS) has been developed to estimate pesticide exposure and dose to children via dermal residue contact and non-dietary ingestion. Time-location-activity data are sampled from national survey results to generate a population of simulated ch...

  5. The feasibility of a regional CTDI{sub vol} to estimate organ dose from tube current modulated CT exams

    SciTech Connect

    Khatonabadi, Maryam; Kim, Hyun J.; Lu, Peiyun; McMillan, Kyle L.; Cagnon, Chris H.; McNitt-Gray, Michael F.; DeMarco, John J.

    2013-05-15

    dose to correlate with patient size was investigated. Results: For all five organs, the correlations with patient size increased when organ doses were normalized by regional and organ-specific CTDI{sub vol} values. For example, when estimating dose to the liver, CTDI{sub vol,global} yielded a R{sup 2} value of 0.26, which improved to 0.77 and 0.86, when using the regional and organ-specific CTDI{sub vol} for abdomen and liver, respectively. For breast dose, the global CTDI{sub vol} yielded a R{sup 2} value of 0.08, which improved to 0.58 and 0.83, when using the regional and organ-specific CTDI{sub vol} for chest and breasts, respectively. The R{sup 2} values also increased once the thoracic models were separated for the analysis into females and males, indicating differences between genders in this region not explained by a simple measure of effective diameter. Conclusions: This work demonstrated the utility of regional and organ-specific CTDI{sub vol} as normalization factors when using TCM. It was demonstrated that CTDI{sub vol,global} is not an effective normalization factor in TCM exams where attenuation (and therefore tube current) varies considerably throughout the scan, such as abdomen/pelvis and even thorax. These exams can be more accurately assessed for dose using regional CTDI{sub vol} descriptors that account for local variations in scanner output present when TCM is employed.

  6. Preliminary liver dose estimation in the new facility for biomedical applications at the RA-3 reactor.

    PubMed

    Gadan, M; Crawley, V; Thorp, S; Miller, M

    2009-07-01

    As a part of the project concerning the irradiation of a section of the human liver left lobe, a preliminary estimation of the expected dose was performed. To obtain proper input values for the calculation, neutron flux and gamma dose rate characterization were carried out using adequate portions of cow or pig liver covered with demineralized water simulating the preservation solution. Irradiations were done inside a container specially designed to fulfill temperature preservation of the organ and a reproducible irradiation position (which will be of importance for future planification purposes). Implantable rhodium based self-powered neutron detectors were developed to obtain neutron flux profiles both external and internal. Implantation of SPND was done along the central longitudinal axis of the samples, where lowest flux is expected. Gamma dose rate was obtained using a neutron shielded graphite ionization chamber moved along external surfaces of the samples. The internal neutron profile resulted uniform enough to allow for a single and static irradiation of the liver. For dose estimation, irradiation condition was set in order to obtain a maximum of 15 Gy-eq in healthy tissue. Additionally, literature reported boron concentrations of 47 ppm in tumor and 8 ppm in healthy tissue and a more conservative relationship (30/10 ppm) were used. To make a conservative estimation of the dose the following considerations were done: i). Minimum measured neutron flux inside the sample (approximately 5 x 10(9) n cm-2 s-1) was considered to calculate dose in tumor. (ii). Maximum measured neutron flux (considering both internal as external profiles) was used to calculate dose in healthy tissue (approximately 8.7 x 10(9) n cm-2 s-1). (iii). Maximum measured gamma dose rate (approximately 13.5 Gy h-1) was considered for both tumor and healthy tissue. Tumor tissue dose was approximately 69 Gy-eq for 47 ppm of (10)B and approximately 42 Gy-eq for 30 ppm, for a maximum dose of 15 Gy

  7. Radiation dose measurement and risk estimation for paediatric patients undergoing micturating cystourethrography.

    PubMed

    Sulieman, A; Theodorou, K; Vlychou, M; Topaltzikis, T; Kanavou, D; Fezoulidis, I; Kappas, C

    2007-09-01

    Micturating cystourethrography (MCU) is considered to be the gold-standard method used to detect and grade vesicoureteric reflux (VUR) and show urethral and bladder abnormalities. It accounts for 30-50% of all fluoroscopic examinations in children. Therefore, it is crucial to define and optimize the radiation dose received by a child during MCU examination, taking into account that children have a higher risk of developing radiation-induced cancer than adults. This study aims to quantify and evaluate, by means of thermoluminescence dosimetry (TLD), the radiation dose to the newborn and paediatric populations undergoing MCU using fluoroscopic imaging. Evaluation of entrance surface dose (ESD), organ and surface dose to specific radiosensitive organs was carried out. Furthermore, the surface dose to the co-patient, i.e. individuals helping in the support, care and comfort of the children during the examination, was evaluated in order to estimate the level of risk. 52 patients with mean age of 0.36 years who had undergone MCU using digital fluoroscopy were studied. ESD, surface doses to thyroid, testes/ovaries and co-patients were measured with TLDs. MCU with digital equipment and fluoroscopy-captured image technique can reduce the radiation dose by approximately 50% while still obtaining the necessary diagnostic information. Radiographic exposures were made in cases of the presence of reflux or of the difficulty in evaluating a finding. The radiation surface doses to the thyroid and testes are relatively low, whereas the radiation dose to the co-patient is negligible. The risks associated with MCU for patients and co-patients are negligible. The results of this study provide baseline data to establish reference dose levels for MCU examination in very young patients.

  8. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    SciTech Connect

    Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  9. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    NASA Astrophysics Data System (ADS)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  10. Estimation of radiation doses for atomic-bomb survivors in the Hiroshima University Registry

    SciTech Connect

    Hoshi, M.; Matsuura, M.; Hayakawa, N.; Kamada, N.; Ito, C.

    1996-05-01

    The present study presents the Hiroshima University Registry of atomic bomb survivors, of which the total number is about 270,000, and application of absorbed doses. From this registry, we picked up 49,102 survivors and applied organ doses based on the dosimetry system 1986 (DS86), which is named the Atomic Bomb Survivor 1993 Dose (ABS93D). The applied dose data are based on the tables listed in the DS86 final report such as the free-in-air kermas, the house shielding factors, and organ dose factors for the active bone marrow and the breast. Calculations for the 13 other organs provided in DS86 are possible. To obtained the organ doses for each survivor, it is necessary to obtain information concerning (1) place exposed, (2) whether they were shielded or not, and (3) age. ABS93D body transmission factors for active bone marrow for neutrons and gamma rays agreed with DS 86 to within a few percent. Of the survivors studied, 35, 123 of them were used for the relative risk estimation of leukemia mortality, adopting the same method as the Radiation Effects Research Foundation (RERF) for comparison. For the observation period from 1968 to 1989, the analyzed relative risks for leukemia mortality at 1 Gy by shielded kerm and by active bone marrow dose are 2.01 and 2.37, respectively, which are consistent with the RERF results. 11 refs., 1 fig., 3 tabs.

  11. Review of methods of dose estimation for epidemiological studies of the radiological impact of nevada test site and global fallout.

    PubMed

    Beck, Harold L; Anspaugh, Lynn R; Bouville, André; Simon, Steven L

    2006-07-01

    Methods to assess radiation doses from nuclear weapons test fallout have been used to estimate doses to populations and individuals in a number of studies. However, only a few epidemiology studies have relied on fallout dose estimates. Though the methods for assessing doses from local and regional compared to global fallout are similar, there are significant differences in predicted doses and contributing radionuclides depending on the source of the fallout, e.g. whether the nuclear debris originated in Nevada at the U.S. nuclear test site or whether it originated at other locations worldwide. The sparse historical measurement data available are generally sufficient to estimate external exposure doses reasonably well. However, reconstruction of doses to body organs from ingestion and inhalation of radionuclides is significantly more complex and is almost always more uncertain than are external dose estimates. Internal dose estimates are generally based on estimates of the ground deposition per unit area of specific radionuclides and subsequent transport of radionuclides through the food chain. A number of technical challenges to correctly modeling deposition of fallout under wet and dry atmospheric conditions still remain, particularly at close-in locations where sizes of deposited particles vary significantly over modest changes in distance. This paper summarizes the various methods of dose estimation from weapons test fallout and the most important dose assessment and epidemiology studies that have relied on those methods.

  12. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary

  13. SU-D-16A-02: A Novel Methodology for Accurate, Semi-Automated Delineation of Oral Mucosa for Radiation Therapy Dose-Response Studies

    SciTech Connect

    Dean, J; Welsh, L; Gulliford, S; Harrington, K; Nutting, C

    2014-06-01

    Purpose: The significant morbidity caused by radiation-induced acute oral mucositis means that studies aiming to elucidate dose-response relationships in this tissue are a high priority. However, there is currently no standardized method for delineating the mucosal structures within the oral cavity. This report describes the development of a methodology to delineate the oral mucosa accurately on CT scans in a semi-automated manner. Methods: An oral mucosa atlas for automated segmentation was constructed using the RayStation Atlas-Based Segmentation (ABS) module. A radiation oncologist manually delineated the full surface of the oral mucosa on a planning CT scan of a patient receiving radiotherapy (RT) to the head and neck region. A 3mm fixed annulus was added to incorporate the mucosal wall thickness. This structure was saved as an atlas template. ABS followed by model-based segmentation was performed on four further patients sequentially, adding each patient to the atlas. Manual editing of the automatically segmented structure was performed. A dose comparison between these contours and previously used oral cavity volume contours was performed. Results: The new approach was successful in delineating the mucosa, as assessed by an experienced radiation oncologist, when applied to a new series of patients receiving head and neck RT. Reductions in the mean doses obtained when using the new delineation approach, compared with the previously used technique, were demonstrated for all patients (median: 36.0%, range: 25.6% – 39.6%) and were of a magnitude that might be expected to be clinically significant. Differences in the maximum dose that might reasonably be expected to be clinically significant were observed for two patients. Conclusion: The method developed provides a means of obtaining the dose distribution delivered to the oral mucosa more accurately than has previously been achieved. This will enable the acquisition of high quality dosimetric data for use in

  14. X-ray dose estimation from cathode ray tube monitors by Monte Carlo calculation.

    PubMed

    Khaledi, Navid; Arbabi, Azim; Dabaghi, Moloud

    2015-04-01

    Cathode Ray Tube (CRT) monitors are associated with the possible emission of bremsstrahlung radiation produced by electrons striking the monitor screen. Because of the low dose rate, accurate dosimetry is difficult. In this study, the dose equivalent (DE) and effective dose (ED) to an operator working in front of the monitor have been calculated using the Monte Carlo (MC) method by employing the MCNP code. The mean energy of photons reaching the operator was above 17 keV. The phantom ED was 454 μSv y (348 nSv h), which was reduced to 16 μSv y (12 nSv h) after adding a conventional leaded glass sheet. The ambient dose equivalent (ADE) and personal dose equivalent (PDE) for the head, neck, and thorax of the phantom were also calculated. The uncertainty of calculated ED, ADE, and PDE ranged from 3.3% to 10.7% and 4.2% to 14.6% without and with the leaded glass, respectively.

  15. Development of a new, robust and accurate, spectroscopic metric for scatterer size estimation in optical coherence tomography (OCT) images

    NASA Astrophysics Data System (ADS)

    Kassinopoulos, Michalis; Pitris, Costas

    2016-03-01

    The modulations appearing on the backscattering spectrum originating from a scatterer are related to its diameter as described by Mie theory for spherical particles. Many metrics for Spectroscopic Optical Coherence Tomography (SOCT) take advantage of this observation in order to enhance the contrast of Optical Coherence Tomography (OCT) images. However, none of these metrics has achieved high accuracy when calculating the scatterer size. In this work, Mie theory was used to further investigate the relationship between the degree of modulation in the spectrum and the scatterer size. From this study, a new spectroscopic metric, the bandwidth of the Correlation of the Derivative (COD) was developed which is more robust and accurate, compared to previously reported techniques, in the estimation of scatterer size. The self-normalizing nature of the derivative and the robustness of the first minimum of the correlation as a measure of its width, offer significant advantages over other spectral analysis approaches especially for scatterer sizes above 3 μm. The feasibility of this technique was demonstrated using phantom samples containing 6, 10 and 16 μm diameter microspheres as well as images of normal and cancerous human colon. The results are very promising, suggesting that the proposed metric could be implemented in OCT spectral analysis for measuring nuclear size distribution in biological tissues. A technique providing such information would be of great clinical significance since it would allow the detection of nuclear enlargement at the earliest stages of precancerous development.

  16. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Subramanian, Swetha; Mast, T. Douglas

    2015-09-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  17. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Mast, T Douglas

    2015-10-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. PMID:26352462

  18. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    SciTech Connect

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  19. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  20. GLODEP2: a computer model for estimating gamma dose due to worldwide fallout of radioactive debris

    SciTech Connect

    Edwards, L.L.; Harvey, T.F.; Peterson, K.R.

    1984-03-01

    The GLODEP2 computer code provides estimates of the surface deposition of worldwide radioactivity and the gamma-ray dose to man from intermediate and long-term fallout. The code is based on empirical models derived primarily from injection-deposition experience gained from the US and USSR nuclear tests in 1958. Under the assumption that a nuclear power facility is destroyed and that its debris behaves in the same manner as the radioactive cloud produced by the nuclear weapon that attached the facility, predictions are made for the gamma does from this source of radioactivity. As a comparison study the gamma dose due to the atmospheric nuclear tests from the period of 1951 to 1962 has been computed. The computed and measured values from Grove, UK and Chiba, Japan agree to within a few percent. The global deposition of radioactivity and resultant gamma dose from a hypothetical strategic nuclear exchange between the US and the USSR is reported. Of the assumed 5300 Mton in the exchange, 2031 Mton of radioactive debris is injected in the atmosphere. The highest estimated average whole body total integrated dose over 50 years (assuming no reduction by sheltering or weathering) is 23 rem in the 30 to 50 degree latitude band. If the attack included a 100 GW(e) nuclear power industry as targets in the US, this dose is increased to 84.6 rem. Hotspots due to rainfall could increase these values by factors of 10 to 50.

  1. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.

    PubMed

    Hou, X; Tanguay, J; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-01-21

    In response to the recognized fragility of reactor-produced (99)Mo supply, direct production of (99m)Tc via (100)Mo(p,2n)(99m)Tc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with (99m)Tc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical (99m)Tc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  2. Dose estimation for atomic bomb survivor studies: its evolution and present status.

    PubMed

    Cullings, Harry M; Fujita, Shoichiro; Funamoto, Sachiyo; Grant, Eric J; Kerr, George D; Preston, Dale L

    2006-07-01

    In the decade after the bombings of Hiroshima and Nagasaki, several large cohorts of survivors were organized for studies of radiation health effects. The U.S. Atomic Bomb Casualty Commission (ABCC) and its U.S./Japan successor, the Radiation Effects Research Foundation (RERF), have performed continuous studies since then, with extensive efforts to collect data on survivor locations and shielding and to create systems to estimate individual doses from the bombs' neutrons and gamma rays. Several successive systems have been developed by extramural working groups and collaboratively implemented by ABCC and RERF investigators. We describe the cohorts and the history and evolution of dose estimation from early efforts through the newest system, DS02, emphasizing the technical development and use of DS02. We describe procedures and data developed at RERF to implement successive systems, including revised rosters of survivors, development of methods to calculate doses for some classes of persons not fitting criteria of the basic systems, and methods to correct for bias arising from errors in calculated doses. We summarize calculated doses and illustrate their change and elaboration through the various systems for a hypothetical example case in each city. We conclude with a description of current efforts and plans for further improvements.

  3. Amorphous and crystalline optical materials used as instruments for high gamma radiation doses estimations

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2016-06-01

    Nuclear radiation induce some changes to the structure of exposed materials. The main effect of ionizing radiation when interacting with optical materials is the occurrence of color centers, which are quantitatively proportional to the up-taken doses. In this paper, a relation between browning effect magnitude and dose values was found. Using this relation, the estimation of a gamma radiation dose can be done. By using two types of laser wavelengths (532 nm and 633 nm), the optical powers transmitted thru glass samples irradiated to different doses between 0 and 59.1 kGy, were measured and the associated optical browning densities were determined. The use of laser light gives the opportunity of using its particularities: monochromaticity, directionality and coherence. Polarized light was also used for enhancing measurements quality. These preliminary results bring the opportunity of using glasses as detectors for the estimation of the dose in a certain point in space and for certain energy, especially in particles accelerators experiments, where the occurred nuclear reactions are involving the presence of high gamma rays fields.

  4. Estimation of External Dose by Car-Borne Survey in Kerala, India

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

    2015-01-01

    A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7–2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680

  5. Estimation of external dose by car-borne survey in Kerala, India.

    PubMed

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

    2015-01-01

    A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.

  6. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    SciTech Connect

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

  7. Estimation of β-ray dose in air and soil from Fukushima Daiichi Power Plant accident

    PubMed Central

    Endo, Satoru; Tanaka, Kenichi; Kajimoto, Tsuyoshi; Thanh, Nguyen Tat; Otaki, Joji M.; Imanaka, Tetsuji

    2014-01-01

    Following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident of 2011, which deposited radionuclides across Tohoku and northern Kanto, β-ray dose evaluation has been performed to estimate radiation exposure for small creatures like insects as well as human skin. Using the Monte Carlo radiation transport code MCNP-4C, we calculated the β-ray dose for 129mTe, 129Te, 131I, 132Te, 132I, 134Cs and 137Cs in air as a function of altitude and in soil. These calculations of β-dose rate for each radionuclide were conducted for the conditions following the FDNPP accident, with 137Cs deposition assumed to be 1000 kBq/m2. Beta-ray dose rate was found to be ∼10-fold (resp. 5-fold) higher than the γ-ray dose rate in the soil (resp. on the ground surface) at ∼20 days after deposition, and ∼4-fold (resp. 1.7-fold) higher after 6 months or more. For convenience, the height dependence of the ratio for 0, 10, 30, 90, 180 and 365 days after deposition was obtained by a fitting function. The cumulative 70 µm β-ray dose at 30, 60 and 90 days after deposition was estimated to be 35, 45 and 53 mGy for the ground surface, and 61, 79 and 92 mGy in the soil, respectively. These results can be used to estimate the external β-ray exposure for small creatures as well as for human skin. PMID:24504671

  8. Estimating internal dose due to ingestion of radionuclides from Nevada Test Site fallout

    SciTech Connect

    Kirchner, T.B.; Whicker, F.W.; Anspaugh, L.R.

    1996-10-01

    The U.S. Department of Energy initiated the Radiation Exposure Review Project to provide a critical reexamination of radiation doses to people resulting from testing nuclear devices at the Nevada Test Site. One part of this effort focused on the dose resulting from the ingestion of contaminated food. The PATHWAY radionuclide transport model was developed to provide estimates of food concentrations for 20 radionuclides for each of 86 test events and 15 agricultural scenarios. These results were then used as input to the Human Ingestion model to provide dose estimates for individuals and populations in 9 western states. The model considered the life-style and age of the people, and accounted for the transport of milk between locations. Estimates of uncertainty were provided for all doses using Monte Carlo simulation techniques. Propagation of uncertainty between the PATHWAY model and the Human Ingestion model required the development of special strategies to ensure that the inherent correlations between concentrations of the radionuclides in foods were handled properly. In addition, the size of the input data base (60 megabytes), the number of cases to consider (over 30,000), and the number of Monte Carlo simulations (over 6 million) required the development of efficient and reliable methods of data access and storage while running simulations concurrently on up to 14 UNIX workstations. The problems encountered in this effort are likely to be typical of any dose reconstruction involving geographically heterogeneous environmental conditions. This paper documents the methods used to disaggregate the system to achieve computation efficiency, the methods used to propagate uncertainty through the model system, and the techniques used to manage data in a distributed computing environment. The radionuclide and age specific dose factors used in the analysis are also provided.

  9. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    PubMed

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  10. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  11. A new online detector for estimation of peripheral neutron equivalent dose in organ

    SciTech Connect

    Irazola, L. Sanchez-Doblado, F.; Lorenzoli, M.; Pola, A.; Bedogni, R.; Terrón, J. A.; Sanchez-Nieto, B.; Expósito, M. R.; Lagares, J. I.; Sansaloni, F.

    2014-11-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  12. Modeling estimates of the effect of acid rain on background radiation dose.

    PubMed

    Sheppard, S C; Sheppard, M I

    1988-06-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially 226Ra and 137Cs, are among these materials. Okamoto is apparently the only researcher to date who has attempted to quantify the effect of acid rain on the "background" radiation dose to man. He estimated an increase in dose by a factor of 1.3 following a decrease in soil pH of 1 unit. We reviewed literature that described the effects of changes in pH on mobility and plant uptake of Ra and Cs. Generally, a decrease in soil pH by 1 unit will increase mobility and plant uptake by factors of 2 to 7. Thus, Okamoto's dose estimate may be too low. We applied several simulation models to confirm Okamoto's ideas, with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modeled a typical, acid-rain sensitive soil using meteorological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed essentially direct proportionality between the mobility of the nuclides and dose. This supports some of the assumptions invoked by Okamoto. We conclude that a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor of 2 or more. Our models predict that this will lead to similar increases in plant uptake and radiological dose to man. Although health effects following such a small increase in dose have not been statistically demonstrated, any increase in dose is probably undesirable. PMID:3203639

  13. Modeling estimates of the effect of acid rain on background radiation dose.

    PubMed

    Sheppard, S C; Sheppard, M I

    1988-06-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially 226Ra and 137Cs, are among these materials. Okamoto is apparently the only researcher to date who has attempted to quantify the effect of acid rain on the "background" radiation dose to man. He estimated an increase in dose by a factor of 1.3 following a decrease in soil pH of 1 unit. We reviewed literature that described the effects of changes in pH on mobility and plant uptake of Ra and Cs. Generally, a decrease in soil pH by 1 unit will increase mobility and plant uptake by factors of 2 to 7. Thus, Okamoto's dose estimate may be too low. We applied several simulation models to confirm Okamoto's ideas, with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modeled a typical, acid-rain sensitive soil using meteorological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed essentially direct proportionality between the mobility of the nuclides and dose. This supports some of the assumptions invoked by Okamoto. We conclude that a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor of 2 or more. Our models predict that this will lead to similar increases in plant uptake and radiological dose to man. Although health effects following such a small increase in dose have not been statistically demonstrated, any increase in dose is probably undesirable.

  14. Modeling estimates of the effect of acid rain on background radiation dose.

    PubMed Central

    Sheppard, S C; Sheppard, M I

    1988-01-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially 226Ra and 137Cs, are among these materials. Okamoto is apparently the only researcher to date who has attempted to quantify the effect of acid rain on the "background" radiation dose to man. He estimated an increase in dose by a factor of 1.3 following a decrease in soil pH of 1 unit. We reviewed literature that described the effects of changes in pH on mobility and plant uptake of Ra and Cs. Generally, a decrease in soil pH by 1 unit will increase mobility and plant uptake by factors of 2 to 7. Thus, Okamoto's dose estimate may be too low. We applied several simulation models to confirm Okamoto's ideas, with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modeled a typical, acid-rain sensitive soil using meteorological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed essentially direct proportionality between the mobility of the nuclides and dose. This supports some of the assumptions invoked by Okamoto. We conclude that a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor of 2 or more. Our models predict that this will lead to similar increases in plant uptake and radiological dose to man. Although health effects following such a small increase in dose have not been statistically demonstrated, any increase in dose is probably undesirable. PMID:3203639

  15. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    SciTech Connect

    Chadha, M.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  16. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    SciTech Connect

    Powers, W.J. |

    1996-10-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1-{sup 11}C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1-{sup 11}C]-glucose is comparable to that reported for 2-deoxy-[2-{sup 18}F]-glucose. 43 refs., 1 fig., 4 tabs.

  17. A Monte Carlo Study for Photoneutron Dose Estimations around the High-Energy Linacs

    PubMed Central

    Mohammadi, N; Miri-Hakimabad, S H; Rafat-Motavalli, L

    2014-01-01

    Background: High-energy linear accelerator (linac) is a valuable tool and the most commonly used device for external beam radiation treatments in cancer patients. In the linac head, high-energy photons with energies above the threshold of (γ,n) interaction produce photoneutrons. These photoneutrons deliver the extra dose to the patients undergoing radiation treatment and increase the risk of secondary cancer. Objective: In this study, a simplified model of the linac head was simulated and photoneutron dose equivalent was calculated at the isocenter and maze in the sphere detector. In addition, the absorbed and equivalent dose of photoneutron were estimated in the some organs of the phantom. Methods: The simulations were made using the Monte Carlo code. The ICRP reference adult male voxel phantom was used as the human body model for dosimetry calculations. Results: The results of dose calculations at the isocenter and maze showed that photoneutron dose decreases as the function of distance from the isocenter and increases with increasing the distance from the entrance maze. Conclusion: It is concluded that the simplified model of linac head is a useful and reliable method in dosimetry calculations. Calculations illustrated that the photoneutron dose is not negligible and duo to its harmful biological effects on body, it should be considered in the treatment plans. PMID:25599059

  18. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  19. Estimation of Rectal Dose Using Daily Megavoltage Cone-Beam Computed Tomography and Deformable Image Registration

    SciTech Connect

    Akino, Yuichi; Yoshioka, Yasuo; Fukuda, Shoichi; Maruoka, Shintaroh; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Isohashi, Fumiaki; Ogawa, Kazuhiko

    2013-11-01

    Purpose: The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Methods and Materials: Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CT value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. Results: The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R{sup 2}=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R{sup 2}=0.61±0.16). Conclusion: We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume.

  20. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  1. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    SciTech Connect

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historic fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a hypothetical maximally

  2. Experimental study on the application of a compressed-sensing (CS) algorithm to dental cone-beam CT (CBCT) for accurate, low-dose image reconstruction

    NASA Astrophysics Data System (ADS)

    Oh, Jieun; Cho, Hyosung; Je, Uikyu; Lee, Minsik; Kim, Hyojeong; Hong, Daeki; Park, Yeonok; Lee, Seonhwa; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2013-03-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient data. In computed tomography (CT); for example, image reconstruction from few views would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction method based on a compressed-sensing (CS) algorithm, which exploits the sparseness of the gradient image with substantially high accuracy, for accurate, low-dose dental cone-beam CT (CBCT) reconstruction. We applied the algorithm to a commercially-available dental CBCT system (Expert7™, Vatech Co., Korea) and performed experimental works to demonstrate the algorithm for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images from several undersampled data and evaluated the reconstruction quality in terms of the universal-quality index (UQI). Experimental demonstrations of the CS-based reconstruction algorithm appear to show that it can be applied to current dental CBCT systems for reducing imaging doses and improving the image quality.

  3. Dose estimations of fast neutrons from a nuclear reactor by micronuclear yields in onion seedlings.

    PubMed

    Fujikawa, K; Endo, S; Itoh, T; Yonezawa, Y; Hoshi, M

    1999-12-01

    Irradiations of onion seedlings with fission neutrons from bare, Pb-moderated, and Fe-moderated 252Cf sources induced micronuclei in the root-tip cells at similar rates. The rate per cGy averaged for the three sources, , was 19 times higher than rate induced by 60Co gamma-rays. When neutron doses, Dn, were estimated from frequencies of micronuclei induced in onion seedlings after exposure to neutron-gamma mixed radiation from a 1 W nuclear reactor, using the reciprocal of as conversion factor, resulting Dn values agreed within 10% with doses measured with paired ionizing chambers. This excellent agreement was achieved by the high sensitivity of the onion system to fast neutrons relative to gamma-rays and the high contribution of fast neutrons to the total dose of mixed radiation in the reactor's field.

  4. Estimation of organ doses from kilovoltage cone-beam CT imaging used during radiotherapy patient position verification

    SciTech Connect

    Hyer, Daniel E.; Hintenlang, David E.

    2010-09-15

    Purpose: The purpose of this study was to develop a practical method for estimating organ doses from kilovoltage cone-beam CT (CBCT) that can be performed with readily available phantoms and dosimeters. The accuracy of organ dose estimates made using the ImPACT patient dose calculator was also evaluated. Methods: A 100 mm pencil chamber and standard CT dose index (CTDI) phantoms were used to measure the cone-beam dose index (CBDI). A weighted CBDI (CBDI{sup w}) was then calculated from these measurements to represent the average volumetric dose in the CTDI phantom. By comparing CBDI{sup w} to the previously published organ doses, organ dose conversion coefficients were developed. The measured CBDI values were also used as inputs for the ImPACT calculator to estimate organ doses. All CBDI dose measurements were performed on both the Elekta XVI and Varian OBI at three clinically relevant locations: Head, chest, and pelvis. Results: The head, chest, and pelvis protocols yielded CBDI{sup w} values of 0.98, 16.62, and 24.13 mGy for the XVI system and 5.17, 6.14, and 21.57 mGy for the OBI system, respectively. Organ doses estimated with the ImPACT CT dose calculator showed a large range of variation from the previously measured organ doses, demonstrating its limitations for use with CBCT. Conclusions: The organ dose conversion coefficients developed in this work relate CBDI{sup w} values to organ doses previously measured using the same clinical protocols. Ultimately, these coefficients will allow for the quick estimation of organ doses from routine measurements performed using standard CTDI phantoms and pencil chambers.

  5. A kinematic model to estimate effective dose of radioactive substances in a human body

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  6. Estimated dose to man from uranium milling via the terrestrial food-chain pathway

    SciTech Connect

    Rayno, D.R.

    1982-01-01

    One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

  7. Estimates of Radiation Doses and Cancer Risk from Food Intake in Korea.

    PubMed

    Moon, Eun-Kyeong; Ha, Wi-Ho; Seo, Songwon; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae-Jung; Kim, Hyoung-Soo; Hwang, Myung-Sil; Choi, Hoon; Lee, Won Jin

    2016-01-01

    The aim of this study was to estimate internal radiation doses and lifetime cancer risk from food ingestion. Radiation doses from food intake were calculated using the Korea National Health and Nutrition Examination Survey and the measured radioactivity of (134)Cs, (137)Cs, and (131)I from the Ministry of Food and Drug Safety in Korea. Total number of measured data was 8,496 (3,643 for agricultural products, 644 for livestock products, 43 for milk products, 3,193 for marine products, and 973 for processed food). Cancer risk was calculated by multiplying the estimated committed effective dose and the detriment adjusted nominal risk coefficients recommended by the International Commission on Radiation Protection. The lifetime committed effective doses from the daily diet are ranged 2.957-3.710 mSv. Excess lifetime cancer risks are 14.4-18.1, 0.4-0.5, and 1.8-2.3 per 100,000 for all solid cancers combined, thyroid cancer, and leukemia, respectively.

  8. Estimated UV doses to psoriasis patients during climate therapy at Gran Canaria in March 2006

    NASA Astrophysics Data System (ADS)

    Nilsen, L. T. N.; Søyland, E.; Krogstad, A. L.

    2008-01-01

    Psoriasis is a chronic inflammatory disease involving about 2-3% of the Norwegian population. Sun exposure has a positive effect on most psoriasis lesions, but ultraviolet (UV) radiation also causes a direct DNA damage in the skin cells and comprises a carcinogenic potential. UV exposure on the skin causes a local as well as a systemic immune suppressive effect, but the relation between sun exposure and these biological effects is not well known. In March 2006 a study was carried out to investigate possible therapeutic outcome mechanisms in 20 psoriasis patients receiving climate therapy at Gran Canaria. This paper presents estimates of their individual skin UV-doses based on UV measurements and the patients' diaries with information on time spent in the sun. On the first day of exposure the patients received on average 5.1 Standard Erythema Doses (SED: median=4.0 SED, range 2.6-10.3 SED) estimated to the skin. During the 15 days study they received 165.8 SED (range 104.3-210.1 SED). The reduction in PASI score was 72.8% on average, but there was no obvious relation between the improvement and the UV dose. The UV doses were higher than those found from climate therapy studies at other locations. It seems beneficial to use more strict exposure schedules that consider the available UV irradiance, depending on time of the day, time of the year and weather conditions.

  9. Estimates of Radiation Doses and Cancer Risk from Food Intake in Korea

    PubMed Central

    2016-01-01

    The aim of this study was to estimate internal radiation doses and lifetime cancer risk from food ingestion. Radiation doses from food intake were calculated using the Korea National Health and Nutrition Examination Survey and the measured radioactivity of 134Cs, 137Cs, and 131I from the Ministry of Food and Drug Safety in Korea. Total number of measured data was 8,496 (3,643 for agricultural products, 644 for livestock products, 43 for milk products, 3,193 for marine products, and 973 for processed food). Cancer risk was calculated by multiplying the estimated committed effective dose and the detriment adjusted nominal risk coefficients recommended by the International Commission on Radiation Protection. The lifetime committed effective doses from the daily diet are ranged 2.957-3.710 mSv. Excess lifetime cancer risks are 14.4-18.1, 0.4-0.5, and 1.8-2.3 per 100,000 for all solid cancers combined, thyroid cancer, and leukemia, respectively. PMID:26770031

  10. Estimates of Radiation Doses and Cancer Risk from Food Intake in Korea.

    PubMed

    Moon, Eun-Kyeong; Ha, Wi-Ho; Seo, Songwon; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae-Jung; Kim, Hyoung-Soo; Hwang, Myung-Sil; Choi, Hoon; Lee, Won Jin

    2016-01-01

    The aim of this study was to estimate internal radiation doses and lifetime cancer risk from food ingestion. Radiation doses from food intake were calculated using the Korea National Health and Nutrition Examination Survey and the measured radioactivity of (134)Cs, (137)Cs, and (131)I from the Ministry of Food and Drug Safety in Korea. Total number of measured data was 8,496 (3,643 for agricultural products, 644 for livestock products, 43 for milk products, 3,193 for marine products, and 973 for processed food). Cancer risk was calculated by multiplying the estimated committed effective dose and the detriment adjusted nominal risk coefficients recommended by the International Commission on Radiation Protection. The lifetime committed effective doses from the daily diet are ranged 2.957-3.710 mSv. Excess lifetime cancer risks are 14.4-18.1, 0.4-0.5, and 1.8-2.3 per 100,000 for all solid cancers combined, thyroid cancer, and leukemia, respectively. PMID:26770031

  11. Biodistribution in rats and estimates of doses to humans from (64)CuCl2, a potential theranostic tracer.

    PubMed

    Manrique-Arias, Juan C; Carrasco-Hernández, Jhonatan; Reyes, Pedro G; Ávila-Rodríguez, Miguel A

    2016-09-01

    The aim of this study was to obtain data on the biodistribution of (64)CuCl2 in rats and to obtain estimates of the radiation doses to humans by extrapolating the animal data. MicroPET imaging and biodistribution studies were carried out with Wistar rats, and the doses were estimated with OLINDA/EXM. The lower large intestine wall was found to be the critical organ with an absorbed dose of 139±34 and 125±32µGy/MBq for females and males, respectively. The corresponding effective doses were estimated as 47±4 and 39±4µSv/MBq. PMID:27295514

  12. SU-E-J-92: Validating Dose Uncertainty Estimates Produced by AUTODIRECT, An Automated Program to Evaluate Deformable Image Registration Accuracy

    SciTech Connect

    Kim, H; Chen, J; Pouliot, J; Pukala, J; Kirby, N

    2015-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then, AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.

  13. Estimates of radiation doses in tissue and organs and risk of excess cancer in the single-course radiotherapy patients treated for ankylosing spondylitis in England and Wales

    SciTech Connect

    Fabrikant, J.I.; Lyman, J.T.

    1982-02-01

    The estimates of absorbed doses of x rays and excess risk of cancer in bone marrow and heavily irradiated sites are extremely crude and are based on very limited data and on a number of assumptions. Some of these assumptions may later prove to be incorrect, but it is probable that they are correct to within a factor of 2. The excess cancer risk estimates calculated compare well with the most reliable epidemiological surveys thus far studied. This is particularly important for cancers of heavily irradiated sites with long latent periods. The mean followup period for the patients was 16.2 y, and an increase in cancers of heavily irradiated sites may appear in these patients in the 1970s in tissues and organs with long latent periods for the induction of cancer. The accuracy of these estimates is severely limited by the inadequacy of information on doses absorbed by the tissues at risk in the irradiated patients. The information on absorbed dose is essential for an accurate assessment of dose-cancer incidence analysis. Furthermore, in this valuable series of irradiated patients, the information on radiation dosimetry on the radiotherapy charts is central to any reliable determination of somatic risks of radiation with regard to carcinogenesis in man. The work necessary to obtain these data is under way; only when they are available can more precise estimates of risk of cancer induction by radiation in man be obtained.

  14. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    PubMed

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  15. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  16. Estimation of benchmark dose for micronucleus occurrence in Chinese vinyl chloride-exposed workers.

    PubMed

    Wang, Qi; Tan, Hong-Shan; Ma, Xiao-Ming; Sun, Yuan; Feng, Nan-Nan; Zhou, Li-Fang; Ye, Yun-Jie; Zhu, Yi-Liang; Li, Yong-Liang; Brandt-Rauf, Paul W; Tang, Nai-Jun; Xia, Zhao-Lin

    2013-01-01

    In this study, we estimated the possibility of using benchmark dose (BMD) to assess the dose-response relationship between vinyl chloride monomer (VCM) exposure and chromosome damage. A group of 317 workers occupationally exposed to vinyl chloride monomer and 166 normal, unexposed control in Shandong Province northern China were examined for chromosomal damage in peripheral blood lymphocytes (PBL) using the cytokinesis-blocked micronucleus (CB-MN) assay of DNA damage. The exposed group (3.47 ± 2.65)‰ showed higher micronucleus frequency than the control (1.60 ± 1.30)‰ (P < 0.01). Occupational exposure level based on micronucleus occurrence in all individuals was analyzed with benchmark dose (BMD) methods. The benchmark dose lower limit of a one-sided 95% confidence interval (BMDL) for 10% excess risk was also determined. Results showed a dose-response relationship between cumulative exposure and MN frequency, and a BMDL of 0.54 mg/m3 and 0.23 mg/m3 for males and females, respectively. Female workers were more susceptible to MN damage than male workers.

  17. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  18. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine.

    PubMed

    Thomas, P; Liber, K

    2001-10-01

    A new method is described for calculating radiation doses to benthic invertebrates from radionuclide concentrations in freshwater sediment. Both internal and external radiation doses were estimated for all 14 principal radionuclides of the uranium-238 decay series. Sediments were collected from three sites downstream of a uranium mining operation in northern Saskatchewan, Canada. Sediments from two sites, located approximately 1.6 and 4.4 km downstream from mining operations, yielded absorbed doses to both larval midges, Chironomus tentans, and adult amphipods, Hyalella azteca, of 59-60 and 19 mGy/year, respectively, compared to 3.2 mGy/year for a nearby control site. External beta radiation from protactinium-234 (234Pa) and alpha radiation from uranium (U) contributed most of the dose at the impacted sites, whereas polonium-210 (210Po) was most important at the control site. If a weighting factor of 20 was employed for the greater biological effect of alpha vs. beta and gamma radiation, then total equivalent doses rose to 540-560 mGy/year at the site closest to uranium operations. Such equivalent doses are above the 360-mGy/year no-observed-effect level for reproductive effects in vertebrates from gamma radiation exposure. Data are not available to determine the effect of such doses on benthic organisms, but they are high enough to warrant concern. Detrimental effects have been observed in H. azteca at similar uranium concentration in laboratory toxicity tests, but it remains unclear whether the radiotoxicity or the chemotoxicity of uranium is responsible for these effects.

  19. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine.

    PubMed

    Thomas, P; Liber, K

    2001-10-01

    A new method is described for calculating radiation doses to benthic invertebrates from radionuclide concentrations in freshwater sediment. Both internal and external radiation doses were estimated for all 14 principal radionuclides of the uranium-238 decay series. Sediments were collected from three sites downstream of a uranium mining operation in northern Saskatchewan, Canada. Sediments from two sites, located approximately 1.6 and 4.4 km downstream from mining operations, yielded absorbed doses to both larval midges, Chironomus tentans, and adult amphipods, Hyalella azteca, of 59-60 and 19 mGy/year, respectively, compared to 3.2 mGy/year for a nearby control site. External beta radiation from protactinium-234 (234Pa) and alpha radiation from uranium (U) contributed most of the dose at the impacted sites, whereas polonium-210 (210Po) was most important at the control site. If a weighting factor of 20 was employed for the greater biological effect of alpha vs. beta and gamma radiation, then total equivalent doses rose to 540-560 mGy/year at the site closest to uranium operations. Such equivalent doses are above the 360-mGy/year no-observed-effect level for reproductive effects in vertebrates from gamma radiation exposure. Data are not available to determine the effect of such doses on benthic organisms, but they are high enough to warrant concern. Detrimental effects have been observed in H. azteca at similar uranium concentration in laboratory toxicity tests, but it remains unclear whether the radiotoxicity or the chemotoxicity of uranium is responsible for these effects. PMID:11686646

  20. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  1. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  2. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  3. Observing Volcanic Thermal Anomalies from Space: How Accurate is the Estimation of the Hotspot's Size and Temperature?

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Pick, L.; Lombardo, V.; Hort, M. K.

    2015-12-01

    Measuring the heat emission from active volcanic features on the basis of infrared satellite images contributes to the volcano's hazard assessment. Because these thermal anomalies only occupy a small fraction (< 1 %) of a typically resolved target pixel (e.g. from Landsat 7, MODIS) the accurate determination of the hotspot's size and temperature is however problematic. Conventionally this is overcome by comparing observations in at least two separate infrared spectral wavebands (Dual-Band method). We investigate the resolution limits of this thermal un-mixing technique by means of a uniquely designed indoor analog experiment. Therein the volcanic feature is simulated by an electrical heating alloy of 0.5 mm diameter installed on a plywood panel of high emissivity. Two thermographic cameras (VarioCam high resolution and ImageIR 8300 by Infratec) record images of the artificial heat source in wavebands comparable to those available from satellite data. These range from the short-wave infrared (1.4-3 µm) over the mid-wave infrared (3-8 µm) to the thermal infrared (8-15 µm). In the conducted experiment the pixel fraction of the hotspot was successively reduced by increasing the camera-to-target distance from 3 m to 35 m. On the basis of an individual target pixel the expected decrease of the hotspot pixel area with distance at a relatively constant wire temperature of around 600 °C was confirmed. The deviation of the hotspot's pixel fraction yielded by the Dual-Band method from the theoretically calculated one was found to be within 20 % up until a target distance of 25 m. This means that a reliable estimation of the hotspot size is only possible if the hotspot is larger than about 3 % of the pixel area, a resolution boundary most remotely sensed volcanic hotspots fall below. Future efforts will focus on the investigation of a resolution limit for the hotspot's temperature by varying the alloy's amperage. Moreover, the un-mixing results for more realistic multi

  4. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-01

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  5. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  6. Development of a method to estimate thyroid dose from fallout radioiodine in a cohort study.

    PubMed

    Simon, S L; Lloyd, R D; Till, J E; Hawthorne, H A; Gren, D C; Rallison, M L; Stevens, W

    1990-11-01

    A cohort of 4831 persons aged 11-18 y in 1965 was identified among students in the schools of Washington County, UT; Lincoln County, NV; and Graham County, AZ. These children who had potentially been exposed to radioiodine from atomic weapons test fallout from the Nevada Test Site during 1951-1962 were selected for participation in a study of thyroid disease. The entire cohort was first examined during 1965-1968 for thyroid abnormalities. A total of 3,085 of these people were again reexamined during 1985-1986 to determine any subsequent occurrence of thyroid disease. In order to determine the relationship of the radiation dose to the thyroid with incidence of thyroid disease, we have developed a suite of models to calculate estimates of the internal dose received by the thyroid from fallout radioiodines. For completeness, the exposure to the thyroid from external radiation is also estimated. Dose estimates are made specific to each individual in the study using individual residential histories, the locality-specific exposure rate and radionuclide deposition, descriptions of dairy management for identified milk producers, and the subjects' sources of foods and intake rates of milk and leafy vegetables determined by interview. Other data such as the relationship of radioiodine deposition to measured exposure rate, environmental transfer parameters, and age-dependent factors for the conversion of radioiodine intake to thyroid dose were taken from work of other investigators. Dairy management information, milk distribution practices, the milk source for each study subject, as well as age-specific intake rates of milk and leafy vegetables, were determined by interview.

  7. Development of a method to estimate thyroid dose from fallout radioiodine in a cohort study

    SciTech Connect

    Simon, S.L.; Lloyd, R.D.; Till, J.E.; Hawthorne, H.A.; Gren, D.C.; Rallison, M.L.; Stevens, W. )

    1990-11-01

    A cohort of 4831 persons aged 11-18 y in 1965 was identified among students in the schools of Washington County, UT; Lincoln County, NV; and Graham County, AZ. These children who had potentially been exposed to radioiodine from atomic weapons test fallout from the Nevada Test Site during 1951-1962 were selected for participation in a study of thyroid disease. The entire cohort was first examined during 1965-1968 for thyroid abnormalities. A total of 3,085 of these people were again reexamined during 1985-1986 to determine any subsequent occurrence of thyroid disease. In order to determine the relationship of the radiation dose to the thyroid with incidence of thyroid disease, we have developed a suite of models to calculate estimates of the internal dose received by the thyroid from fallout radioiodines. For completeness, the exposure to the thyroid from external radiation is also estimated. Dose estimates are made specific to each individual in the study using individual residential histories, the locality-specific exposure rate and radionuclide deposition, descriptions of dairy management for identified milk producers, and the subjects' sources of foods and intake rates of milk and leafy vegetables determined by interview. Other data such as the relationship of radioiodine deposition to measured exposure rate, environmental transfer parameters, and age-dependent factors for the conversion of radioiodine intake to thyroid dose were taken from work of other investigators. Dairy management information, milk distribution practices, the milk source for each study subject, as well as age-specific intake rates of milk and leafy vegetables, were determined by interview.

  8. Feasibility study for application of the compressed-sensing framework to interior computed tomography (ICT) for low-dose, high-accurate dental x-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Cho, H. M.; Cho, H. S.; Park, Y. O.; Park, C. K.; Lim, H. W.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Woo, T. H.; Choi, S. I.

    2016-02-01

    In this paper, we propose a new/next-generation type of CT examinations, the so-called Interior Computed Tomography (ICT), which may presumably lead to dose reduction to the patient outside the target region-of-interest (ROI), in dental x-ray imaging. Here an x-ray beam from each projection position covers only a relatively small ROI containing a target of diagnosis from the examined structure, leading to imaging benefits such as decreasing scatters and system cost as well as reducing imaging dose. We considered the compressed-sensing (CS) framework, rather than common filtered-backprojection (FBP)-based algorithms, for more accurate ICT reconstruction. We implemented a CS-based ICT algorithm and performed a systematic simulation to investigate the imaging characteristics. Simulation conditions of two ROI ratios of 0.28 and 0.14 between the target and the whole phantom sizes and four projection numbers of 360, 180, 90, and 45 were tested. We successfully reconstructed ICT images of substantially high image quality by using the CS framework even with few-view projection data, still preserving sharp edges in the images.

  9. Monte Carlo estimation of radiation doses during paediatric barium meal and cystourethrography examinations

    NASA Astrophysics Data System (ADS)

    Dimitriadis, A.; Gialousis, G.; Makri, T.; Karlatira, M.; Karaiskos, P.; Georgiou, E.; Papaodysseas, S.; Yakoumakis, E.

    2011-01-01

    Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.

  10. Feasibility of using the computed tomography dose indices to estimate radiation dose to partially and fully irradiated brains in pediatric neuroradiology examinations

    NASA Astrophysics Data System (ADS)

    Januzis, Natalie; Nguyen, Giao; Frush, Donald P.; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.

    2015-07-01

    The purpose of this study was two-fold: (a) to measure the dose to the brain using clinical protocols at our institution, and (b) to develop a scanner-independent dosimetry method to estimate brain dose. Radiation dose was measured with a pediatric anthropomorphic phantom and MOSFET detectors. Six current neuroradiology protocols were used: brain, sinuses, facial bones, orbits, temporal bones, and craniofacial areas. Two different CT vendor scanners (scanner A and B) were used. Partial volume correction factors (PVCFs) were determined for the brain to account for differences between point doses measured by the MOSFETs and average organ dose. The CTDIvol and DLP for each protocol were recorded. The dose to the brain (mGy) for scanners A and B was 10.7 and 10.0 for the brain protocol, 7.8 and 3.2 for the sinus, 10.2 and 8.6 for the facial bones, 7.4 and 4.7 for the orbits and 1.6 and 1.9 for the temporal bones, respectively. On scanner A, the craniofacial protocol included a standard and high dose option; the dose measured for these exams was 3.9 and 16.9 mGy, respectively. There was only one craniofacial protocol on scanner B; the brain dose measured on this exam was 4.8 mGy. A linear correlation was found between DLP and brain dose with the conversion factors: 0.049 (R2 = 0.87), 0.046 (R2 = 0.89) for scanner A and B, and 0.048 (R2 = 0.89) for both scanners. The range of dose observed was between 1.8 and 16.9 mGy per scan. This suggests that brain dose estimates may be made from DLP.

  11. Patient-specific organ dose estimation during transcatheter arterial embolization using Monte Carlo method and adaptive organ segmentation

    NASA Astrophysics Data System (ADS)

    Tsai, Hui-Yu; Lin, Yung-Chieh; Tyan, Yeu-Sheng

    2014-11-01

    The purpose of this study was to evaluate organ doses for individual patients undergoing interventional transcatheter arterial embolization (TAE) for hepatocellular carcinoma (HCC) using measurement-based Monte Carlo simulation and adaptive organ segmentation. Five patients were enrolled in this study after institutional ethical approval and informed consent. Gafchromic XR-RV3 films were used to measure entrance surface dose to reconstruct the nonuniform fluence distribution field as the input data in the Monte Carlo simulation. XR-RV3 films were used to measure entrance surface doses due to their lower energy dependence compared with that of XR-RV2 films. To calculate organ doses, each patient's three-dimensional dose distribution was incorporated into CT DICOM images with image segmentation using thresholding and k-means clustering. Organ doses for all patients were estimated. Our dose evaluation system not only evaluated entrance surface doses based on measurements, but also evaluated the 3D dose distribution within patients using simulations. When film measurements were unavailable, the peak skin dose (between 0.68 and 0.82 of a fraction of the cumulative dose) can be calculated from the cumulative dose obtained from TAE dose reports. Successful implementation of this dose evaluation system will aid radiologists and technologists in determining the actual dose distributions within patients undergoing TAE.

  12. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    SciTech Connect

    Lau, A; Ahmad, S; Chen, Y; Ren, L; Liu, H; Yang, K

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams with no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.

  13. Assessment of retrospective dose estimation, with fluorescence in situ hybridization (FISH), of six victims previously exposed to accidental ionizing radiation.

    PubMed

    Liu, Qing-Jie; Lu, Xue; Zhao, Xiao-Tao; Feng, Jiang-Bin; Lü, Yu-Min; Jiang, En-Hai; Zhang, Shu-Lan; Chen, De-Qing; Jia, Ting-Zhen; Liang, Li

    2014-01-01

    The present study aims to evaluate the use of the fluorescence in situ hybridization (FISH) translocation assay for retrospective dose estimation of acute accidental exposure to radiation in the past. Reciprocal translocation analysis by FISH with three whole-chromosome probes was performed on normal peripheral blood samples. Samples were irradiated with 0-5Gy (60)Co γ-rays in vitro, and dose-effect curves were established. FISH-based translocation analyses for six accident victims were then performed, and biological doses were estimated retrospectively by comparison with the dose-effect curves. Reconstructed doses by FISH were compared with estimated doses obtained by analysis of di-centrics performed soon after exposure, or with dose estimates from tooth-enamel electron paramagnetic resonance (EPR) data obtained at the same time as the FISH analysis. Follow-up FISH analyses for an adolescent victim were performed. Results showed that dose-effect curves established in the present study follow a linear-quadratic model, regardless of the background translocation frequency. Estimated doses according to two dose-effect curves for all six victims were similar. FISH dose estimations of three adult victims exposed to accidental radiation less than a decade prior to analysis (3, 6, or 7 years ago) were consistent with those estimated with tooth-enamel EPR measurements or analyses of di-centrics. Estimated doses of two other adult victims exposed to radiation over a decade prior to analysis (16 or 33 years ago) were underestimated and two to three times lower than the values obtained from analysis of di-centrics or tooth-enamel EPR. Follow-up analyses of the adolescent victim showed that doses estimated by FISH analysis decrease rapidly over time. Therefore, the accuracy of dose estimates by FISH is acceptable only when analysis is performed less than 7 years after exposure. Measurements carried out more than a decade after exposure through FISH analysis resulted in

  14. Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy.

    PubMed

    Al Anid, H; Lewis, B J; Bennett, L G I; Takada, M; Duldig, M

    2014-01-01

    A model was developed using a Monte-Carlo radiation transport code, MCNPX, to estimate the additional radiation exposure to aircrew members during solar particle events. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere to aircraft altitudes. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during ground level enhancements (GLEs) 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. PMID:24084521

  15. Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy.

    PubMed

    Al Anid, H; Lewis, B J; Bennett, L G I; Takada, M; Duldig, M

    2014-01-01

    A model was developed using a Monte-Carlo radiation transport code, MCNPX, to estimate the additional radiation exposure to aircrew members during solar particle events. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere to aircraft altitudes. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during ground level enhancements (GLEs) 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis.

  16. The gas chromatography/mass spectrometry can be used for dose estimation in irradiated pork

    NASA Astrophysics Data System (ADS)

    D'Oca, M. C.; Bartolotta, A.; Cammilleri, M. C.; Giuffrida, S. A.; Parlato, A.; Di Noto, A. M.; Caracappa, S.

    2009-07-01

    Food safety can be improved using ionizing radiation to reduce food spoilage and to extend its shelf life. The gas chromatography/mass spectrometry (GC/MS) has been validated by the European Community as a powerful method to identify irradiated food containing fat. The preliminary goals of our research were: (i) to set up this method, based on the detection of radiation induced 2-dodecylcyclobutanones (2-DCB) in pork muscle samples and (ii) to check the microbiological efficacy of the treatment. The main objective was to render the GC/MS a quantitative technique for dose estimation, through the measurement of the 2-DCB concentration in the irradiated sample. Our results show that the reduction of the microbial population is substantially reduced even at 2 kGy, and that a clear identification of irradiated samples can be achieved also one month after irradiation at 2 kGy in frozen-stored samples. The 2-DCB concentration showed a linear dependence on dose in the range 1-10 kGy, no matter the origin of the sample; a unique calibration function was obtained, that allowed dose estimation in irradiated pork samples. A retrospective evaluation on the quality of the treatment could be carried out this way.

  17. PARMA: PHITS-based Analytical Radiation Model in the Atmosphere--Verification of Its Accuracy in Estimating Cosmic Radiation Doses

    SciTech Connect

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yasuda, Hiroshi; Takada, Masashi; Nakamura, Takashi; Niita, Koji; Sihver, Lembit

    2008-08-07

    Estimation of cosmic-ray spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses. We therefore developed an analytical model that can predict the terrestrial neutron, proton, He nucleus, muon, electron, positron and photon spectra at altitudes below 20 km, based on the Monte Carlo simulation results of cosmic-ray propagation in the atmosphere performed by the PHITS code. The model was designated PARMA. In order to examine the accuracy of PARMA in terms of the neutron dose estimation, we measured the neutron dose rates at the altitudes between 20 to 10400 m, using our developed dose monitor DARWIN mounted on an aircraft. Excellent agreement was observed between the measured dose rates and the corresponding data calculated by PARMA coupled with the fluence-to-dose conversion coefficients, indicating the applicability of the model to be utilized in the route-dose calculation.

  18. Methods for estimating doses to organisms from radioactive materials released into the aquatic environment

    SciTech Connect

    Baker, D.A.; Soldat, J.K.

    1992-06-01

    The US Department of Energy recently published an interim dose limit of 1 rad d{sup {minus}1} for controlling the radiation exposure of nature aquatic organisms. A computer program named CRITR, developed previously for calculating radiation doses to aquatic organisms and their predators, has been updated as an activity of the Hanford Site Surface Environmental Surveillance Project to facilitate demonstration of compliance with this limit. This report presents the revised models and the updated computer program, CRITR2, for the assessment of radiological doses to aquatic organisms and their predators; tables of the required input parameters are also provided. Both internal and external doses to fish, crustacea, mollusks, and algae, as well as organisms that subsist on them, such as muskrats, raccoons, and ducks, may be estimated using CRITR2. Concentrations of radionuclides in the water to which the organisms are exposed may be entered directly into the user-input file or may be calculated from a source term and standard dilution models developed for the National Council on Radiation Protection and Measurements.

  19. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    SciTech Connect

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C.

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  20. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    PubMed

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. PMID:21113609

  1. Biologically effective dose of solar ultraviolet radiation estimated by spore dosimetry in Tokyo since 1980.

    PubMed

    Munakata, N

    1993-09-01

    The biologically effective dose of solar UV radiation has been measured in Tokyo since 1980 using Bacillus subtilis spores. To determine the cumulative dose in a half day, several samples of UV-sensitive spores were exposed in successive intervals from the solar-noon time. Because fluence-survival curves were exponential, the number of lethal hits received by the spores was calculated for each interval and termed inactivation dose (ID). The total number of hits obtained in a half day (half-day ID) was correlated with the amount of global insolation by a power-function regression. The regression analyses were performed for the data collected on 35 days from 1980 to 1986 and for the data collected on 53 days from 1989 to 1991. The latter data set yielded significantly larger estimates of half-day ID relative to the insolation than the former. These analyses suggested that the biologically effective dose relative to the insolation increased about 30% at some time in the later part of 1980s at this location. Changes of solar activity, air pollution and stratospheric ozone layer were considered as potentially responsible for this increase, but identification of the causative factors requires further efforts.

  2. Vancomycin dosing in haemodialysis patients and Bayesian estimate of individual pharmacokinetic parameters.

    PubMed

    Keller, F; Hörstensmeyer, C; Looby, M; Borner, K; Pommer, W; Erdmann, K; Giehl, M

    1994-01-01

    A dose reduction of vancomycin to 1000 mg once a week usually is recommended for haemodialysis patients. Our modified dosing schedule consists of a loading dose of 1000 mg and a maintenance dose of 500 mg administered 3 times a week after haemodialysis. Different vancomycin regimens were retrospectively evaluated by therapeutic drug monitoring and bayesian parameter estimates in 39 dialysis patients. The mean (+/- SD) trough level in 7 patients receiving only the conventional dosage regimen was significantly lower than in 17 patients strictly treated by the modified schedule (7 +/- 4 versus 17 +/- 8 mg/L; p = 0.001). The corresponding peaks were low in both groups and no different (23 +/- 10 versus 27 +/- 12 mg/L). The one week average vancomycin clearance was significantly lower in the conventional dosage group compared to the modified dosage group (6 +/- 3 versus 10 +/- 3 ml/min; p = 0.001). High-flux dialysers were not used in the conventional dosage group but for 30 percent of the procedures in the modified dosage group, where the vancomycin one week average elimination half-life was 66 hours (+/- 18) and the volume of distribution 50 litres (+/- 5). As compared to the bayesian programme, NONMEM calculated comparable pharmacokinetic parameters but could be applied only in 5 cases with a sufficient number of concentration measurements. Ototoxicity occurred in 1 patient, whereas vancomycin treatment was judged as ineffective against infection in 5 of the 39 patients. Their troughs were below 15 mg/L.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Influence of difference in cross-sectional dose profile in a CTDI phantom on X-ray CT dose estimation: a Monte Carlo study.

    PubMed

    Haba, Tomonobu; Koyama, Shuji; Ida, Yoshihiro

    2014-01-01

    The longitudinal dose profile in a computed tomography dose index (CTDI) phantom had been studied by many researchers. The cross-sectional dose profile in the CTDI phantom, however, has not been studied. It is also important to understand the cross-sectional dose profile in the CTDI phantom for dose estimation in X-ray CT. In this study, the cross-sectional dose profile in the CTDI phantom was calculated by use of a Monte Carlo (MC) simulation method. A helical or a 320-detector-row cone-beam X-ray CT scanner was simulated. The cross-sectional dose profile in the CTDI phantom from surface to surface through the center point was calculated by MC simulation. The shape of the calculation region was a cylinder of 1-mm-diameter. The length of the cylinder was 23, 100, or 300 mm to represent various CT ionization chamber lengths. Detailed analyses of the energy depositions demonstrated that the cross-sectional dose profile was different in measurement methods and phantom sizes. In this study, we also focused on the validation of the weighting factor used in weighted CTDI (CTDI w ). As it stands now, the weighting factor used in CTDI w is (1/3, 2/3) for the (central, peripheral) axes. Our results showed that an equal weighting factor, which is (1/2, 1/2) for the (central, peripheral) axes, is more suitable to estimate the average cross-sectional dose when X-ray CT dose estimation is performed.

  4. Method for estimating ingestion doses to the public near the Savannah River site following an accidental atmospheric release.

    PubMed

    Simpkins, A A

    2005-02-01

    At the Savannah River Site, emergency response computer models are used to estimate dose following releases of radioactive materials to the environment. Downwind air and ground concentrations and their associated doses from inhalation and ground shine pathways are estimated. The emergency response model (PUFF-PLUME) uses real-time data to track either instantaneous (puff) or continuous (plume) releases. A site-specific ingestion dose model was developed for use with PUFF-PLUME that includes the following ingestion dose pathways pertinent to the surrounding Savannah River Site area: milk, beef, water, and fish. The model is simplistic and can be used with existing code output.

  5. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    SciTech Connect

    Baly, L.; Otazo, M. R.; Molina, D.; Pernas, R.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  6. Dose estimate of inhaled hafnium tritide using the ICRP 66 lung model.

    PubMed

    Cheng, Yung-Sung; Zhou, Yue; Wang, Yang-Sheng; Inkret, William C; Wermer, Joseph R

    2002-06-01

    Metal tritide is widely used for research, purification, compression, and storage of tritium. The current understanding of metal tritide and its radiation dosimetry for internal exposure is limited, and ICRP publications do not provide the tritium dosimetry for hafnium tritide. The current radiation protection guidelines for metal tritide particles (including hafnium tritide) are based on the assumption that their biological behavior is similar to tritiated water, which is completely absorbed by the body. However, the solubility of metal tritide particles depends on the chemical form of the material. The biological half-live of hafnium tritide particles and the dosimetry of an inhalation exposure to those particles could be quite different from tritiated water. This paper describes experiments on the dissolution rate of hafnium tritide particles in a simulated lung fluid. The results showed that less than 1% of the tritium was dissolved in the simulated lung fluid for hafnium tritide particles after 215 d. The short-term and long-term dissolution half times were 46 and 4.28 x 10(5) d, respectively. This indicates that hafnium tritide is an extremely insoluble material. Self-absorption of beta rays in the hafnium tritide particles was estimated by a numerical method. The dose coefficients were calculated as a function of particle size using in vitro solubility data and a calculated self-absorption factor. The dose coefficient decreased with aerodynamic diameters in the range of 0.25 to 10 microm, mainly because the self-absorption factor decreased with increasing particle size. For a particle 1 microm in aerodynamic diameter, the dose coefficient of a hafnium tritide particle was about 10 times higher than that of tritiated water but was about 1.4 times lower than that calculated by ICRP Publication 71 for Type S tritiated particles. The ICRP estimate did not include a self-absorption factor and thus might have overestimated the dose. This finding has significant

  7. Analgesia dose prescribing and estimated glomerular filtration rate decline: a general practice database linkage cohort study

    PubMed Central

    Nderitu, Paul; Doos, Lucy; Strauss, Vicky Y; Lambie, Mark; Davies, Simon J; Kadam, Umesh T

    2014-01-01

    Objective We aimed to quantify the short-term effect of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and paracetamol analgesia dose prescribing on estimated glomerular filtration rate (eGFR) decline in the general practice population. Design A population-based longitudinal clinical data linkage cohort study. Setting Two large general practices in North Staffordshire, UK. Participants Patients aged 40 years and over with ≥2 eGFR measurements spaced ≥90 days apart between 1 January 2009 and 31 December 2010 were selected. Exposure Using WHO Defined Daily Dose standardised cumulative analgesia prescribing, patients were categorised into non-user, normal and high-dose groups. Outcome measure The primary outcome was defined as a >5 mL/min/1.73 m2/year eGFR decrease between the first and last eGFR. Logistic regression analyses were used to estimate risk, adjusting for sociodemographics, comorbidity, baseline chronic kidney disease (CKD) status, renin-angiotensin-system inhibitors and other analgesia prescribing. Results There were 4145 patients (mean age 66 years, 55% female) with an analgesia prescribing prevalence of 17.2% for NSAIDs, 39% for aspirin and 22% for paracetamol and stage 3–5 CKD prevalence was 16.1% (n=667). Normal or high-dose NSAID and paracetamol prescribing was not significantly associated with eGFR decline. High-dose aspirin prescribing was associated with a reduced risk of eGFR decline in patients with a baseline (first) eGFR ≥60 mL/min/1.73 m2; OR=0.52 (95% CI 0.35 to 0.77). Conclusions NSAID, aspirin and paracetamol prescribing over 2 years did not significantly affect eGFR decline with a reduced risk of eGFR decline in high-dose aspirin users with well-preserved renal function. However, the long-term effects of analgesia use on eGFR decline remain to be determined. PMID:25138808

  8. Radiation dose estimation for marine mussels following exposure to tritium: Best practice for use of the ERICA tool in ecotoxicological studies.

    PubMed

    Dallas, Lorna J; Devos, Alexandre; Fievet, Bruno; Turner, Andrew; Lyons, Brett P; Jha, Awadhesh N

    2016-05-01

    Accurate dosimetry is critically important for ecotoxicological and radioecological studies on the potential effects of environmentally relevant radionuclides, such as tritium ((3)H). Previous studies have used basic dosimetric equations to estimate dose from (3)H exposure in ecologically important organisms, such as marine mussels. This study compares four different methods of estimating dose to adult mussels exposed to 1 or 15 MBq L(-1) tritiated water (HTO) under laboratory conditions. These methods were (1) an equation converting seawater activity concentrations to dose rate with fixed parameters; (2) input into the ERICA tool of seawater activity concentrations only; (3) input into the ERICA tool of estimated whole organism concentrations (woTACs), comprising dry activity plus estimated tissue free water tritium (TFWT) activity (TFWT volume × seawater activity concentration); and (4) input into the ERICA tool of measured whole organism activity concentrations, comprising dry activity plus measured TFWT activity (TFWT volume × TFWT activity concentration). Methods 3 and 4 are recommended for future ecotoxicological experiments as they produce values for individual animals and are not reliant on transfer predictions (estimation of concentration ratio). Method 1 may be suitable if measured whole organism concentrations are not available, as it produced results between 3 and 4. As there are technical complications to accurately measuring TFWT, we recommend that future radiotoxicological studies on mussels or other aquatic invertebrates measure whole organism activity in non-dried tissues (i.e. incorporating TFWT and dry activity as one, rather than as separate fractions) and input this data into the ERICA tool. PMID:26874225

  9. Radiation dose estimation for marine mussels following exposure to tritium: Best practice for use of the ERICA tool in ecotoxicological studies.

    PubMed

    Dallas, Lorna J; Devos, Alexandre; Fievet, Bruno; Turner, Andrew; Lyons, Brett P; Jha, Awadhesh N

    2016-05-01

    Accurate dosimetry is critically important for ecotoxicological and radioecological studies on the potential effects of environmentally relevant radionuclides, such as tritium ((3)H). Previous studies have used basic dosimetric equations to estimate dose from (3)H exposure in ecologically important organisms, such as marine mussels. This study compares four different methods of estimating dose to adult mussels exposed to 1 or 15 MBq L(-1) tritiated water (HTO) under laboratory conditions. These methods were (1) an equation converting seawater activity concentrations to dose rate with fixed parameters; (2) input into the ERICA tool of seawater activity concentrations only; (3) input into the ERICA tool of estimated whole organism concentrations (woTACs), comprising dry activity plus estimated tissue free water tritium (TFWT) activity (TFWT volume × seawater activity concentration); and (4) input into the ERICA tool of measured whole organism activity concentrations, comprising dry activity plus measured TFWT activity (TFWT volume × TFWT activity concentration). Methods 3 and 4 are recommended for future ecotoxicological experiments as they produce values for individual animals and are not reliant on transfer predictions (estimation of concentration ratio). Method 1 may be suitable if measured whole organism concentrations are not available, as it produced results between 3 and 4. As there are technical complications to accurately measuring TFWT, we recommend that future radiotoxicological studies on mussels or other aquatic invertebrates measure whole organism activity in non-dried tissues (i.e. incorporating TFWT and dry activity as one, rather than as separate fractions) and input this data into the ERICA tool.

  10. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    SciTech Connect

    Fields, D.E.; Boegley, W.J. Jr.; Huff, D.D.

    1984-01-01

    A simple methodology has been applied to estimate possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative, assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions. 5 refs., 6 tabs.

  11. A simplified model to estimate radiological doses from incineration of radioactive waste

    SciTech Connect

    Stevens, L.E.; Ma, C.W.; Wheeler, T.; Nimmagadda, M.; LePoire, D.; Chen, S.Y.; Owens, K.W.

    1995-06-01

    A simplified calculational model permits a rapid yet realistic estimate of small, but potential radiological doses to onsite workers and the offsite public as a result of transportation, handling, storage, incineration, and maintenance of waste containing trace amount of radioactive materials which is to be processed at a treatment, storage, and disposal (TSD) facility. The model was developed on the basis of previous detailed studies of eight TSD facilities and builds in the essential features of a TSD facility. The model would provide an understanding of the potential human exposure associated with the radioactive contents in the chemical wastes.

  12. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. PMID:20835833

  13. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry.

  14. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  15. SU-F-18C-08: A Validation Study of a Commercially Available Software Package's Absorbed Dose Estimates in a Physical Phantom

    SciTech Connect

    Supanich, M; Siegelman, J

    2014-06-15

    Purpose: This study assesses the accuracy of the absorbed dose estimates from CT scans generated by Monte Carlo (MC) simulation using a commercially available radiation dose monitoring software program. Methods: Axial CT studies of an anthropomorphic abdomen phantom with dose bores at a central location and 4 peripheral locations were conducted using a fixed tube current at 120 kV. A 100 mm ion chamber and a 0.6 cc ion chamber calibrated at diagnostic energy levels were used to measure dose in the phantom at each of the 5 dose bore locations. Simulations using the software program's Monte Carlo engine were run using a mathematical model of the anthropomorphic phantom to determine conversion coefficients between the CTDIvol used for the study and the dose at the location of the dose bores. Simulations were conducted using both the software's generic CT beam model and a refined model generated using HVL and bow tie filter profile measurements made on the scanner used for the study. Results: Monte Carlo simulations completed using the generalized beam model differed from the measured conversion factors by an absolute value average of 13.0% and 13.8% for the 100 mm and 0.6 cc ion chamber studies, respectively. The MC simulations using the scanner specific beam model generated conversion coefficients that differed from the CTDIvol to measured dose conversion coefficients by an absolute value average of 7.3% and 7.8% for the 100 mm and 0.6 cc ion chamber cases, respectively. Conclusion: A scanner specific beam model used in MC simulations generates more accurate dose conversion coefficients in an anthropomorphic phantom than those generated with a generalized beam model. Agreement between measured conversion coefficients and simulated values were less than 20% for all positions using the universal beam model.

  16. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    PubMed

    Rodas, Nicolas Loy; Padoy, Nicolas

    2014-01-01

    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups. PMID:25333145

  17. Ambient dose estimation H*(10) from LaBr3(Ce) spectra.

    PubMed

    Camp, A; Vargas, A

    2014-08-01

    The stripping method for ambient dose estimation has been used for detectors such as high-purity Ge (HPGe). This method strips the spectrum from the partial absorptions produced in the detector leaving only the events corresponding to the full absorption of a gamma ray. In the present study, this method is applied to a 1″ × 1″ LaBr3(Ce) detector using the PENELOPE/penEasy Monte Carlo code to obtain both the partial absorptions and detector full peak efficiency. The stripping method has been validated from a set of gamma fluxes carried out at the accredited laboratory of the Institute of Energy Technologies of the Technical University of Catalonia and results were obtained with differences <5 %. After validation, the LaBr3(Ce) monitor was installed on the roof of the institute premises working in parallel with a photon equivalent dose monitor, model FHZ 601A from the FAG Company. The derived H*(10) values from the LaBr3(Ce) detector show good agreement with those derived from the dose monitor. PMID:24366248

  18. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  19. Chernobyl accident: retrospective and prospective estimates of external dose of the population of Ukraine.

    PubMed

    Likhtarev, Ilya A; Kovgan, Leonila N; Jacob, Peter; Anspaugh, Lynn R

    2002-03-01

    Following the Chernobyl accident many activities were conducted in Ukraine in order to define the radiological impact. Considered here are gamma spectrometric analyses of soil-depth-profile samples taken in the years 1988-1999, gamma spectrometric measurements of radionuclide concentration in soil samples taken in 1986, and measurements of external gamma-exposure rate in air. These data are analyzed in this paper to derive a "reference" radionuclide composition and an attenuation function for the time-dependent rate of external gamma exposure that changes due to the migration of radiocesium into the soil column. An attenuation function for cesium is derived that consists of two exponential functions with half lives of 1.5 and 50 y. The dependencies of attenuation on direction and distance from the Chernobyl Nuclear Power Plant are also demonstrated. On the basis of these analyses the average individual and collective external gamma doses for the population of Ukraine are derived for 1986, 1986-2000, and 1986-2055. For the 1.4 million persons living in rural areas with 137Cs contamination of >37 kBq m(-2), the collective effective dose from external exposure is estimated to be 7,500 person-Sv by the end of 2000. A critical group of 22,500 persons who received individual doses of >20 mSv is identified for consideration of increased social and medical attention. PMID:11845832

  20. [Estimate of the dose of chlorinated pesticides consumed daily by the Italian population (1978-1984)].

    PubMed

    Leoni, V; Camoni, I; Puccetti, G; Di Muccio, A; Fabiani, L

    1989-01-01

    This work reports an estimate of the doses of chlorinated pesticides taken with a total diet by the Italian population in the period 1978-84. Previous researches, carried out in 1971-72, had regarded both uncooked and cooked diets, ready for the consumption. It was found that the amount of the considered pesticides taken in total (HCB, gamma-BHC and total-BHC, Aldrin/Dieldrin, Heptachlor/Heptachlor-epoxide and DDT total-equivalent) calculated as a sum of the percentage of each acceptable daily intake (A.D.I.), at that time recommended was near the limit of acceptability (98.5% for cooked diets and 107.0% for uncooked diets). In addition it was found that nearly the 40% of the dose assumed in all came from milk and its derivates (butter, cheese). Then considering the contribution of milk and derivates to the amount of pollutants assumed with a total diet, a new evaluation has been done, with regard to the period 1978-84, i.e. after the prohibition of the use of these pesticides in Italy and in other industrialized countries. Then the data have been processed, with regard to 211 samples of foods (90 of milk, 45 of cheese, 76 butter) coming from determinations carried out by the Multizonal Laboratory of Hygiene and Prevention of Ferrara, Milano, Udine, Bolzano, Trento, Pescara and from the Institute of Hygiene of Rome University "La Sapienza" in the period mentioned. Furthermore, alimentary consumptions of milk, butter and cheese in 1978-84 have been evaluated, and amounts of chlorinated pesticides taken with these foods have been calculated. Finally the dose taken with these foods has been extrapolated to a total diet. It has come out that the doses (estimated) taken with the total diet have notably decreased between 1971-72 and 1978-84. An anomaly is yet represented by HCB: while the quantity taken with food has decreased from 1971-72 to 1978-84 (from 3.7 to 1.3 micrograms/man/day), the concentrations in human adipose tissues have increased (from 1.02 to 1.99 mg

  1. Application of RADTRAN to estimation of doses to persons in enclosed spaces

    SciTech Connect

    Neuhauser, K. S.

    1992-01-01

    The RADTRAN computer code for transportation risk analysis can be used to estimate doses to persons in enclosed volumes. This application was developed in response to a need to examine consequences of a hypothetical container leak during accident-free transportation by cargo air. The original problem addressed tritium containers, but the method can be applied to any gaseous or suspended particulate material potentially released in an airplane or other enclosed area (e.g., warehouse) under accident-free conditions. Such leakage can occur during shipment of any radioactive gas or material with a gaseous phase. Atmospheric dispersion is normally modeled in RADTRAN as a series of downwind isopleths each of which is assigned a dilution factor (also known as time-integrated concentration or X/Q value). These values are located in look-up tables in RADTRAN and are normally taken from externally performed Gaussian dispersion calculations. The dilution factors are used to estimate inhalation dose to persons in the specified downwind areas.

  2. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  3. Primate polonium metabolic models and their use in estimation of systemic radiation doses from bioassay data

    SciTech Connect

    Fellman, A.

    1989-01-01

    A Polonium metabolic model was derived and incorporated into a Fortran algorithm which estimates the systemic radiation dose from {sup 210}Po when applied to occupational urine bioassay data. The significance of the doses estimated are examined by defining the degree of uncertainty attached to them through comprehensive statistical testing procedures. Many parameters necessary for dosimetry calculations, were evaluated from metabolic studies of {sup 210}Po in non-human primates. Two tamarins and six baboons were injected intravenously with {sup 210}Po citrate. Excreta and blood samples were collected. Five of the baboons were sacrifice at times ranging from 1 day to 3 months post exposure. Complete necropsies were performed and all excreta and the majority of all skeletal and tissue samples were analyzed radiochemically for their {sup 210}Po content. The {sup 210}Po excretion rate in the baboon was more rapid than in the tamarin. The biological half-time of {sup 210}Po excretion in the baboon was approximately 15 days while in the tamarin, the {sup 210}Po excretion rate was in close agreement with the 50 day biological half-time predicted by ICRP 30. Excretion fractions of {sup 210}Po in the non-human primates were found to be markedly different from data reported elsewhere in other species, including man.

  4. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  5. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    PubMed Central

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  6. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-05-07

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path.

  7. Flexible dose-response models for Japanese atomic bomb survivor data: Bayesian estimation and prediction of cancer risk.

    PubMed

    Bennett, James; Little, Mark P; Richardson, Sylvia

    2004-12-01

    Generalised absolute risk models were fitted to the latest Japanese atomic bomb survivor cancer incidence data using Bayesian Markov Chain Monte Carlo methods, taking account of random errors in the DS86 dose estimates. The resulting uncertainty distributions in the relative risk model parameters were used to derive uncertainties in population cancer risks for a current UK population. Because of evidence for irregularities in the low-dose dose response, flexible dose-response models were used, consisting of a linear-quadratic-exponential model, used to model the high-dose part of the dose response, together with piecewise-linear adjustments for the two lowest dose groups. Following an assumed administered dose of 0.001 Sv, lifetime leukaemia radiation-induced incidence risks were estimated to be 1.11 x 10(-2) Sv(-1) (95% Bayesian CI -0.61, 2.38) using this model. Following an assumed administered dose of 0.001 Sv, lifetime solid cancer radiation-induced incidence risks were calculated to be 7.28 x 10(-2) Sv(-1) (95% Bayesian CI -10.63, 22.10) using this model. Overall, cancer incidence risks predicted by Bayesian Markov Chain Monte Carlo methods are similar to those derived by classical likelihood-based methods and which form the basis of established estimates of radiation-induced cancer risk.

  8. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    NASA Astrophysics Data System (ADS)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-01

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236±0.677 kBq/L and 1.704±0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO4 addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 μSv/year and 0.532 μSv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 μSv/year.

  9. A review of source term and dose estimation for the TMI-2 reactor accident

    SciTech Connect

    Gudiksen, P.H.; Dickerson, M.H.

    1990-09-01

    The TMI-2 nuclear reactor accident, which occurred on March 28, 1979 in Harrisburg, Pennsylvania, produced environmental releases of noble gases and small quantities of radioiodine. The releases occurred over a roughly two week period with almost 90% of the noble gases being released during the first three days after the initiation of the accident. Meteorological conditions during the prolonged release period varied from strong synoptic driven flows that rapidly transported the radioactive gases out of the Harrisburg area to calm situations that allowed the radioactivity to accumulate within the low lying river area and to subsequently slowly disperse within the immediate vicinity of the reactor. The results reported by various analysts, revealed that approximately 2.4--10 million curies of noble gases (mainly Xe-133), and about 14 curies of I-131 were released. During the first two days, when most of the noble gas release occurred, the plume was transported in a northerly direction causing the most exposed area to lie within a northwesterly to northeasterly direction from TMI. Changing surface winds caused the plume to be subsequently transported in a southerly direction, followed by an easterly direction. The calculated maximum whole body dose due to plume passage exceeded 100 mrem over an area extending several kilometers north of the plant, although the highest measured dose was 75 mrem. The collective dose equivalent (within a radius of 80 km) due to the noble gas exposure ranged over several orders of magnitude with a central estimate of 3300 person-rem. The small I-131 release produced barely detectable levels of activity in air and milk samples. This may have produced thyroid doses of a few milirem to a small segment of the population. 7 refs., 4 figs., 2 tabs.

  10. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  11. Evaluation of Size Correction Factor for Size-specific Dose Estimates (SSDE) Calculation.

    PubMed

    Mizonobe, Kazufusa; Shiraishi, Yuta; Nakano, Satoshi; Fukuda, Chiaki; Asanuma, Osamu; Harada, Kohei; Date, Hiroyuki

    2016-09-01

    American Association of Physicists in Medicine (AAPM) Report No.204 recommends the size-specific dose estimates (SSDE), wherein SSDE=computed tomography dose index-volume (CTDIvol )×size correction factor (SCF), as an index of the CT dose to consider patient thickness. However, the study on SSDE has not been made yet for area detector CT (ADCT) device such as a 320-row CT scanner. The purpose of this study was to evaluate the SCF values for ADCT by means of a simulation technique to look into the differences in SCF values due to beam width. In the simulation, to construct the geometry of the Aquilion ONE X-ray CT system (120 kV), the dose ratio and the effective energies were measured in the cone angle and fan angle directions, and these were incorporated into the simulation code, Electron Gamma Shower Ver.5 (EGS5). By changing the thickness of a PMMA phantom from 8 cm to 40 cm, CTDIvol and SCF were determined. The SCF values for the beam widths in conventional and volume scans were calculated. The differences among the SCF values of conventional, volume scans, and AAPM were up to 23.0%. However, when SCF values were normalized in a phantom of 16 cm diameter, the error tended to decrease for the cases of thin body thickness, such as those of children. It was concluded that even if beam width and device are different, the SCF values recommended by AAPM are useful in clinical situations. PMID:27647595

  12. A Novel Method of Estimating Dose Responses for Polymer Gels Using Texture Analysis of Scanning Electron Microscopy Images

    PubMed Central

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection. PMID:23843998

  13. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    PubMed

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2) value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection. PMID:23843998

  14. Developing accurate survey methods for estimating population sizes and trends of the critically endangered Nihoa Millerbird and Nihoa Finch.

    USGS Publications Warehouse

    Gorresen, P. Marcos; Camp, Richard J.; Brinck, Kevin W.; Farmer, Chris

    2012-01-01

    Point-transect surveys indicated that millerbirds were more abundant than shown by the striptransect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the pointtransect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, pointtransect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa

  15. Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data

    PubMed Central

    McAughey, John; Shepperd, Christopher J.

    2013-01-01

    Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10−5 Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10−7 Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker. PMID:23742081

  16. An automated technique for estimating patient-specific regional imparted energy and dose in TCM CT exams

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremiah W.; Tian, Xiaoyu; Segars, W. Paul; Boone, John; Samei, Ehsan

    2016-03-01

    Currently computed tomography (CT) dosimetry relies on CT dose index (CTDI) and size specific dose estimates (SSDE). Organ dose is a better metric of radiation burden. However, organ dose estimation requires precise knowledge of organ locations. Regional imparted energy and dose can also be used to quantify radiation burden. Estimating the imparted energy from CT exams is beneficial in that it does not require precise estimates of the organ size or location. This work investigated an automated technique for retrospectively estimating the imparted energy from chest and abdominopelvic tube current modulated (TCM) CT exams. Monte Carlo simulations of chest and abdominopelvic TCM CT examinations across various tube potentials and TCM strengths were performed on 58 adult computational extended cardiac-torso (XCAT) phantoms to develop relationships between scanned mass and imparted energy normalized by dose length product (DLP). An automated algorithm for calculating the scanned patient volume was further developed using an open source mesh generation toolbox. The scanned patient volume was then used to estimate the scanned mass accounting for diverse density within the scan region. The scanned mass and DLP from the exam were used to estimate the imparted energy to the patient using the knowledgebase developed from the Monte Carlo simulations. Patientspecific imparted energy estimates were made from 20 chest and 20 abdominopelvic clinical CT exams. The average imparted energy was 274 +/- 141 mJ and 681 +/- 376 mJ for the chest and abdominopelvic exams, respectively. This method can be used to estimate the regional imparted energy and/or regional dose in chest and abdominopelvic TCM CT exams across clinical operations.

  17. Assignment of Calibration Information to Deeper Phylogenetic Nodes is More Effective in Obtaining Precise and Accurate Divergence Time Estimates.

    PubMed

    Mello, Beatriz; Schrago, Carlos G

    2014-01-01

    Divergence time estimation has become an essential tool for understanding macroevolutionary events. Molecular dating aims to obtain reliable inferences, which, within a statistical framework, means jointly increasing the accuracy and precision of estimates. Bayesian dating methods exhibit the propriety of a linear relationship between uncertainty and estimated divergence dates. This relationship occurs even if the number of sites approaches infinity and places a limit on the maximum precision of node ages. However, how the placement of calibration information may affect the precision of divergence time estimates remains an open question. In this study, relying on simulated and empirical data, we investigated how the location of calibration within a phylogeny affects the accuracy and precision of time estimates. We found that calibration priors set at median and deep phylogenetic nodes were associated with higher precision values compared to analyses involving calibration at the shallowest node. The results were independent of the tree symmetry. An empirical mammalian dataset produced results that were consistent with those generated by the simulated sequences. Assigning time information to the deeper nodes of a tree is crucial to guarantee the accuracy and precision of divergence times. This finding highlights the importance of the appropriate choice of outgroups in molecular dating. PMID:24855333

  18. The Impact of Acquisition Dose on Quantitative Breast Density Estimation with Digital Mammography: Results from ACRIN PA 4006.

    PubMed

    Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina

    2016-09-01

    Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation

  19. The Impact of Acquisition Dose on Quantitative Breast Density Estimation with Digital Mammography: Results from ACRIN PA 4006.

    PubMed

    Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina

    2016-09-01

    Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation

  20. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  1. How Accurate Are German Work-Time Data? A Comparison of Time-Diary Reports and Stylized Estimates

    ERIC Educational Resources Information Center

    Otterbach, Steffen; Sousa-Poza, Alfonso

    2010-01-01

    This study compares work time data collected by the German Time Use Survey (GTUS) using the diary method with stylized work time estimates from the GTUS, the German Socio-Economic Panel, and the German Microcensus. Although on average the differences between the time-diary data and the interview data is not large, our results show that significant…

  2. Threshold estimation based on a p-value framework in dose-response and regression settings.

    PubMed

    Mallik, A; Sen, B; Banerjee, M; Michailidis, G

    2011-12-01

    We use p-values to identify the threshold level at which a regression function leaves its baseline value, a problem motivated by applications in toxicological and pharmacological dose-response studies and environmental statistics. We study the problem in two sampling settings: one where multiple responses can be obtained at a number of different covariate levels, and the other the standard regression setting involving limited number of response values at each covariate. Our procedure involves testing the hypothesis that the regression function is at its baseline at each covariate value and then computing the potentially approximate p-value of the test. An estimate of the threshold is obtained by fitting a piecewise constant function with a single jump discontinuity, known as a stump, to these observed p-values, as they behave in markedly different ways on the two sides of the threshold. The estimate is shown to be consistent and its finite sample properties are studied through simulations. Our approach is computationally simple and extends to the estimation of the baseline value of the regression function, heteroscedastic errors and to time series. It is illustrated on some real data applications. PMID:23049132

  3. Threshold estimation based on a p-value framework in dose-response and regression settings

    PubMed Central

    Mallik, A.; Sen, B.; Banerjee, M.; Michailidis, G.

    2011-01-01

    Summary We use p-values to identify the threshold level at which a regression function leaves its baseline value, a problem motivated by applications in toxicological and pharmacological dose-response studies and environmental statistics. We study the problem in two sampling settings: one where multiple responses can be obtained at a number of different covariate levels, and the other the standard regression setting involving limited number of response values at each covariate. Our procedure involves testing the hypothesis that the regression function is at its baseline at each covariate value and then computing the potentially approximate p-value of the test. An estimate of the threshold is obtained by fitting a piecewise constant function with a single jump discontinuity, known as a stump, to these observed p-values, as they behave in markedly different ways on the two sides of the threshold. The estimate is shown to be consistent and its finite sample properties are studied through simulations. Our approach is computationally simple and extends to the estimation of the baseline value of the regression function, heteroscedastic errors and to time series. It is illustrated on some real data applications. PMID:23049132

  4. The number of alleles at a microsatellite defines the allele frequency spectrum and facilitates fast accurate estimation of theta.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2010-12-01

    Theoretical work focused on microsatellite variation has produced a number of important results, including the expected distribution of repeat sizes and the expected squared difference in repeat size between two randomly selected samples. However, closed-form expressions for the sampling distribution and frequency spectrum of microsatellite variation have not been identified. Here, we use coalescent simulations of the stepwise mutation model to develop gamma and exponential approximations of the microsatellite allele frequency spectrum, a distribution central to the description of microsatellite variation across the genome. For both approximations, the parameter of biological relevance is the number of alleles at a locus, which we express as a function of θ, the population-scaled mutation rate, based on simulated data. Discovered relationships between θ, the number of alleles, and the frequency spectrum support the development of three new estimators of microsatellite θ. The three estimators exhibit roughly similar mean squared errors (MSEs) and all are biased. However, across a broad range of sample sizes and θ values, the MSEs of these estimators are frequently lower than all other estimators tested. The new estimators are also reasonably robust to mutation that includes step sizes greater than one. Finally, our approximation to the microsatellite allele frequency spectrum provides a null distribution of microsatellite variation. In this context, a preliminary analysis of the effects of demographic change on the frequency spectrum is performed. We suggest that simulations of the microsatellite frequency spectrum under evolutionary scenarios of interest may guide investigators to the use of relevant and sometimes novel summary statistics.

  5. Estimation of minimum electron dose necessary to resolve molecular structure of deoxyribonucleic acid by phase transmission electron microscopy

    SciTech Connect

    Nomaguchi, Tsunenori; Kimura, Yoshihide; Takai, Yoshizo

    2006-12-04

    The minimum electron dose that is necessary to resolve the molecular structure of deoxyribonucleic acid (DNA) was estimated based on experimental measurements of information limits and simulated DNA images, considering conditions of a low electron dose. From these results, a dose of {approx}400 e/A{sup 2} was found to be necessary to achieve observation of DNA on a molecular scale under the present experimental setup. A DNA molecule was observed by a phase reconstruction method using through-focus images under the limited electron dose. In the reconstructed images, the helical structure and the intervals of the base pairs of DNA were partially resolved.

  6. Military participants at U.S. Atmospheric nuclear weapons testing--methodology for estimating dose and uncertainty.

    PubMed

    Till, John E; Beck, Harold L; Aanenson, Jill W; Grogan, Helen A; Mohler, H Justin; Mohler, S Shawn; Voillequé, Paul G

    2014-05-01

    Methods were developed to calculate individual estimates of exposure and dose with associated uncertainties for a sub-cohort (1,857) of 115,329 military veterans who participated in at least one of seven series of atmospheric nuclear weapons tests or the TRINITY shot carried out by the United States. The tests were conducted at the Pacific Proving Grounds and the Nevada Test Site. Dose estimates to specific organs will be used in an epidemiological study to investigate leukemia and male breast cancer. Previous doses had been estimated for the purpose of compensation and were generally high-sided to favor the veteran's claim for compensation in accordance with public law. Recent efforts by the U.S. Department of Defense (DOD) to digitize the historical records supporting the veterans' compensation assessments make it possible to calculate doses and associated uncertainties. Our approach builds upon available film badge dosimetry and other measurement data recorded at the time of the tests and incorporates detailed scenarios of exposure for each veteran based on personal, unit, and other available historical records. Film badge results were available for approximately 25% of the individuals, and these results assisted greatly in reconstructing doses to unbadged persons and in developing distributions of dose among military units. This article presents the methodology developed to estimate doses for selected cancer cases and a 1% random sample of the total cohort of veterans under study.

  7. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool

    SciTech Connect

    Brady, S. L. Kaufman, R. A.

    2015-05-15

    Purpose: To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Methods: Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination technique factors taken from DICOM header metadata (i.e., kVp and mA s) to derive an air KERMA (k{sub air}) value based on an x-ray characteristic radiation output curve; (2) scaling k{sub air} with a BSF value; and (3) correcting k{sub air} for patient thickness. Finally, patient entrance skin dose (ESD) was calculated by multiplying a mass–energy attenuation coefficient ratio by ESAK. Patient ESD calculations were computed for common DR examinations at our institution: dual view chest, anteroposterior (AP) abdomen, lateral (LAT) skull, dual view knee, and bone age (left hand only) examinations. Results: ESD was calculated for a total of 3794 patients; mean age was 11 ± 8 yr (range: 2 months to 55 yr). The mean ESD range was 0.19–0.42 mGy for dual view chest, 0.28–1.2 mGy for AP abdomen, 0.18–0.65 mGy for LAT view skull, 0.15–0.63 mGy for dual view knee, and 0.10–0.12 mGy for bone age (left hand) examinations. Conclusions: A methodology combining DICOM header metadata and basic x-ray tube characterization curves was demonstrated. In a regulatory era where patient dose reporting has become increasingly in demand, this methodology will allow a knowledgeable user the means to establish an automatable dose reporting program for DR and perform patient dose related QA testing for

  8. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor. PMID:26292419

  9. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  10. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to (131)I from the Chernobyl Accident: Assessment of Uncertainties.

    PubMed

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L; Bouville, André

    2015-08-01

    Deterministic thyroid radiation doses due to iodine-131 ((131)I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian-American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to (131)I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the (131)I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and noncancer thyroid diseases, taking into account the structure of the errors in the dose estimates.

  11. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to 131I from the Chernobyl Accident: Assessment of Uncertainties

    PubMed Central

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L.; Bouville, André

    2015-01-01

    Deterministic thyroid radiation doses due to iodine-131 (131I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian–American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to 131I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the 131I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and non-cancer thyroid diseases, taking into account the structure of the errors in the dose estimates. PMID:26207684

  12. Cancer risk estimates for gamma-rays with regard to organ-specific doses. Part I: All solid cancers combined.

    PubMed

    Walsh, Linda; Rühm, Werner; Kellerer, Albrecht M

    2004-09-01

    A previous analysis of the solid cancer mortality data for 1950-1990 from the Japanese life-span study of the A-bomb survivors has assessed the solid cancer risk coefficients for gamma-rays in terms of the low dose risk coefficient ERR/Gy, i.e. the initial slope of the ERR vs. dose relation, and also in terms of the more precisely estimated intermediate dose risk coefficient, ERR(D1)/D1, for a reference dose, D1, which was chosen to be 1 Gy. The computations were performed for tentatively assumed values 20-50 of the neutron RBE against the reference dose and in terms of organ-averaged doses, rather than the traditionally applied colon doses. The resulting risk estimate for a dose of 1 Gy was about half as large as the most recent UNSCEAR estimate. The present assessment repeats the earlier analysis with two major extensions. It parallels computations based on organ-average doses with computations based on organ-specific doses and it updates the previous results by using the cancer mortality data for 1950-1997 which have recently been made available. With an assumed neutron RBE of 35, the resulting intermediate dose estimate of the lifetime attributable risk (LAR) for solid cancer mortality for a working population (ages 25-65 years) is 0.059/Gy with the attained-age model, and 0.044/Gy with the age-at-exposure model. For a population of all ages, 0.055/Gy is obtained with the attained-age model and 0.073/Gy with the age-at-exposure model. These values are up to about 20% higher than those obtained in the previous analysis with the 1950-1990 data. However, considerably more curvature in the dose-effect relation is now supported by the computations. A dose and dose-rate reduction factor DDREF=2 is now much more in line with the data than before. With this factor the LAR for a working population is--averaged over the age-at-exposure and the age-attained model--equal to 0.026/Gy. This is only half as large as the current ICRP estimate which is also based on the

  13. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy

    PubMed Central

    Quarto, Maria; Pugliese, Mariagabriella; La Verde, Giuseppe; Loffredo, Filomena; Roca, Vincenzo

    2015-01-01

    Indoor radon concentrations were measured in dwellings of the Puglia region in Southern Italy using LR-115 passive detectors. The results show that the radon concentrations varied from 15 ± 2 to 2166 ± 133 Bq/m3 with a geometric mean of 114 Bq/m3 and a geometric standard deviation of 2.3. An analysis on the factors affecting radon concentration such as age of the dwellings, floors, and stories, was performed. The mean effective dose to inhabitants has been calculated and found to be 8.2 mSv/y. Finally, for estimation of cancer risks, the lifetime risk and lung cancer cases per years per million have been calculated. PMID:26610543

  14. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; La Verde, Giuseppe; Loffredo, Filomena; Roca, Vincenzo

    2015-11-23

    Indoor radon concentrations were measured in dwellings of the Puglia region in Southern Italy using LR-115 passive detectors. The results show that the radon concentrations varied from 15 ± 2 to 2166 ± 133 Bq/m³ with a geometric mean of 114 Bq/m³ and a geometric standard deviation of 2.3. An analysis on the factors affecting radon concentration such as age of the dwellings, floors, and stories, was performed. The mean effective dose to inhabitants has been calculated and found to be 8.2 mSv/y. Finally, for estimation of cancer risks, the lifetime risk and lung cancer cases per years per million have been calculated.

  15. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; La Verde, Giuseppe; Loffredo, Filomena; Roca, Vincenzo

    2015-11-01

    Indoor radon concentrations were measured in dwellings of the Puglia region in Southern Italy using LR-115 passive detectors. The results show that the radon concentrations varied from 15 ± 2 to 2166 ± 133 Bq/m³ with a geometric mean of 114 Bq/m³ and a geometric standard deviation of 2.3. An analysis on the factors affecting radon concentration such as age of the dwellings, floors, and stories, was performed. The mean effective dose to inhabitants has been calculated and found to be 8.2 mSv/y. Finally, for estimation of cancer risks, the lifetime risk and lung cancer cases per years per million have been calculated. PMID:26610543

  16. Estimated Cost Savings from Reducing Errors in the Preparation of Sterile Doses of Medications

    PubMed Central

    Schneider, Philip J.

    2014-01-01

    Abstract Background: Preventing intravenous (IV) preparation errors will improve patient safety and reduce costs by an unknown amount. Objective: To estimate the financial benefit of robotic preparation of sterile medication doses compared to traditional manual preparation techniques. Methods: A probability pathway model based on published rates of errors in the preparation of sterile doses of medications was developed. Literature reports of adverse events were used to project the array of medical outcomes that might result from these errors. These parameters were used as inputs to a customized simulation model that generated a distribution of possible outcomes, their probability, and associated costs. Results: By varying the important parameters across ranges found in published studies, the simulation model produced a range of outcomes for all likely possibilities. Thus it provided a reliable projection of the errors avoided and the cost savings of an automated sterile preparation technology. The average of 1,000 simulations resulted in the prevention of 5,420 medication errors and associated savings of $288,350 per year. The simulation results can be narrowed to specific scenarios by fixing model parameters that are known and allowing the unknown parameters to range across values found in previously published studies. Conclusions: The use of a robotic device can reduce health care costs by preventing errors that can cause adverse drug events. PMID:25477598

  17. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  18. A framework of whole heart extracellular volume fraction estimation for low dose cardiac CT images

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Nacif, Marcelo Souto; Liu, Songtao; Bluemke, David A.; Yao, Jianhua

    2012-02-01

    Cardiac magnetic resonance imaging (CMRI) has been well validated and allows quantification of myocardial fibrosis in comparison to overall mass of the myocardium. Unfortunately, CMRI is relatively expensive and is contraindicated in patients with intracardiac devices. Cardiac CT (CCT) is widely available and has been validated for detection of scar and myocardial stress/rest perfusion. In this paper, we sought to evaluate the potential of low dose C