Science.gov

Sample records for accurate dose estimation

  1. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  2. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  3. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  4. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    and IKONOS imagery and the 3-D volume estimates. The combination of these then allow for a rapid and hopefully very accurate estimation of biomass.

  5. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  6. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  7. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  8. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  9. Dose Estimation in Pediatric Nuclear Medicine.

    PubMed

    Fahey, Frederic H; Goodkind, Alison B; Plyku, Donika; Khamwan, Kitiwat; O'Reilly, Shannon E; Cao, Xinhua; Frey, Eric C; Li, Ye; Bolch, Wesley E; Sgouros, George; Treves, S Ted

    2017-03-01

    The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this

  10. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  11. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  12. Preparing Rapid, Accurate Construction Cost Estimates with a Personal Computer.

    ERIC Educational Resources Information Center

    Gerstel, Sanford M.

    1986-01-01

    An inexpensive and rapid method for preparing accurate cost estimates of construction projects in a university setting, using a personal computer, purchased software, and one estimator, is described. The case against defined estimates, the rapid estimating system, and adjusting standard unit costs are discussed. (MLW)

  13. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  14. Developing population estimates for dose reconstruction projects

    SciTech Connect

    Beck, D.M. )

    1991-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established in 1987 to estimate radiation doses that people received from nuclear operations at the Hanford site since 1944. To achieve this objective, demographic information was developed that describes the study population in enough detail to allow researchers to identify potentially exposed groups and the number of people in each of those groups. This type of information is central to most dose reconstruction projects. The purpose of this paper is to detail how historical population estimates can be reconstructed in a reliable manner by comparing results using three different estimation methods.

  15. Collective dose-practical ways to estimate a dose matrix.

    PubMed

    Simmonds, Jane; Sihra, Kamaljit; Bexon, Antony

    2006-06-01

    It has been suggested that collective doses should be presented in the form of a 'dose matrix' giving information on the breakdown of collective dose in space and time and by population group. This paper is an initial attempt to provide such a breakdown by geographic region and time, and to give an idea of associated individual doses for routine discharges to atmosphere. This is done through the use of representative per-caput individual doses but these need to be supplemented by information on the individual doses received by the critical group for a full radiological impact assessment. The results show that it is important to distinguish between the different population groups for up to a few hundred years following the discharge. However, beyond this time the main contribution is from global circulation and this distinction is less important. The majority of the collective dose was found to be delivered at low levels of individual doses; the estimated per-caput dose rates were significantly less than 10(-5) Sv y(-1), a level of dose felt to give rise to a trivial risk to the exposed individual.

  16. Accurate genome relative abundance estimation based on shotgun metagenomic reads.

    PubMed

    Xia, Li C; Cram, Jacob A; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.

  17. Fetal dose estimates for CT pelvimetry

    SciTech Connect

    Moore, M.M.; Shearer, D.R.

    1989-04-01

    Fetal and maternal dose estimates for computed tomographic pelvimetry have been obtained from phantom measurements. Use of routine abdomen imaging techniques may result in localized fetal doses in excess of 13 mGy (1.3 rad). With the use of a low-exposure (40-mAs) technique, it is possible to obtain images of acceptable quality for the necessary measurements. The resulting dose to the fetus is approximately 2.3 mGy (0.23 rad).

  18. Estimated radiation dose from timepieces containing tritium

    SciTech Connect

    McDowell-Boyer, L M

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 ..mu..Sv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed.

  19. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  20. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  1. Fast and accurate estimation for astrophysical problems in large databases

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.

    2010-10-01

    A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems

  2. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  3. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  4. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  5. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  6. Towards accurate and precise estimates of lion density.

    PubMed

    Elliot, Nicholas B; Gopalaswamy, Arjun M

    2016-12-13

    Reliable estimates of animal density are fundamental to our understanding of ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation biology since wildlife authorities rely on these figures to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging species such as carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores. African lions (Panthera leo) provide an excellent example as although abundance indices have been shown to produce poor inferences, they continue to be used to estimate lion density and inform management and policy. In this study we adapt a Bayesian spatially explicit capture-recapture model to estimate lion density in the Maasai Mara National Reserve (MMNR) and surrounding conservancies in Kenya. We utilize sightings data from a three-month survey period to produce statistically rigorous spatial density estimates. Overall posterior mean lion density was estimated to be 16.85 (posterior standard deviation = 1.30) lions over one year of age per 100km(2) with a sex ratio of 2.2♀:1♂. We argue that such methods should be developed, improved and favored over less reliable methods such as track and call-up surveys. We caution against trend analyses based on surveys of differing reliability and call for a unified framework to assess lion numbers across their range in order for better informed management and policy decisions to be made. This article is protected by copyright. All rights reserved.

  7. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  8. Dose estimates from the Chernobyl accident

    SciTech Connect

    Lange, R.; Dickerson, M.H.; Gudiksen, P.H.

    1987-11-01

    The Lawrence Livermore National Laboratory Atmospheric Release Advisory Capability (ARAC) responded to the Chernobyl nuclear reactor accident in the Soviet Union by utilizing long-range atmospheric dispersion modeling to estimate the amount of radioactivity released (source term) and the radiation dose distribution due to exposure to the radioactive cloud over Europe and the Northern Hemisphere. In later assessments, after the release of data on the accident by the Soviet Union, the ARAC team used their mesoscale to regional scale model to focus in on the radiation dose distribution within the Soviet Union and the vicinity of the Chernobyl plant. 22 refs., 5 figs., 5 tabs.

  9. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  10. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue

    NASA Astrophysics Data System (ADS)

    Walters, B. R. B.; Kramer, R.; Kawrakow, I.

    2010-08-01

    The purpose of this study is to determine whether dose to medium, Dm, or dose to water, Dw, provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether Dm or Dw should be specified in Monte Carlo calculated radiotherapy treatment plans. The study uses voxelized, virtual human phantoms, FAX06/MAX06 (female/male), incorporated into an EGSnrc Monte Carlo code to perform Monte Carlo dose calculations during simulated irradiation by a 6 MV photon beam from an Elekta SL25 accelerator. Head and neck, chest and pelvis irradiations are studied. FAX06/MAX06 include precise modelling of spongiosa based on µCT images, allowing dose to RBM and BSC to be resolved from the dose to bone. Modifications to the FAX06/MAX06 user codes are required to score Dw and Dm in spongiosa. Dose uncertainties of ~1% (BSC, RBM) or ~0.5% (Dm, Dw) are obtained after up to 5 days of simulations on 88 CPUs. Clinically significant differences (>5%) between Dm and Dw are found only in cranial spongiosa, where the volume fraction of trabecular bone (TBVF) is high (55%). However, for spongiosa locations where there is any significant difference between Dm and Dw, comparisons of differential dose volume histograms (DVHs) and average doses show that Dw provides a better overall estimate of dose to RBM and BSC. For example, in cranial spongiosa the average Dm underestimates the average dose to sensitive tissue by at least 5%, while average Dw is within ~1% of the average dose to sensitive tissue. Thus, it is better to specify Dw than Dm in Monte Carlo treatment plans, since Dw provides a better estimate of dose to sensitive tissue in bone, the only location where the difference is likely to be clinically significant.

  11. Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data

    PubMed Central

    2009-01-01

    BACKGROUND Genetic variability among patients plays an important role in determining the dose of warfarin that should be used when oral anticoagulation is initiated, but practical methods of using genetic information have not been evaluated in a diverse and large population. We developed and used an algorithm for estimating the appropriate warfarin dose that is based on both clinical and genetic data from a broad population base. METHODS Clinical and genetic data from 4043 patients were used to create a dose algorithm that was based on clinical variables only and an algorithm in which genetic information was added to the clinical variables. In a validation cohort of 1009 subjects, we evaluated the potential clinical value of each algorithm by calculating the percentage of patients whose predicted dose of warfarin was within 20% of the actual stable therapeutic dose; we also evaluated other clinically relevant indicators. RESULTS In the validation cohort, the pharmacogenetic algorithm accurately identified larger proportions of patients who required 21 mg of warfarin or less per week and of those who required 49 mg or more per week to achieve the target international normalized ratio than did the clinical algorithm (49.4% vs. 33.3%, P<0.001, among patients requiring ≤21 mg per week; and 24.8% vs. 7.2%, P<0.001, among those requiring ≥49 mg per week). CONCLUSIONS The use of a pharmacogenetic algorithm for estimating the appropriate initial dose of warfarin produces recommendations that are significantly closer to the required stable therapeutic dose than those derived from a clinical algorithm or a fixed-dose approach. The greatest benefits were observed in the 46.2% of the population that required 21 mg or less of warfarin per week or 49 mg or more per week for therapeutic anticoagulation. PMID:19228618

  12. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  13. Estimating γ-rays dose using computer

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Anis M.; Muslih, Raad M.; Al-Harithy, Rafila S.

    When gum arabic is exposed to γ-rays, a change in its reflection and absorption ability for the different wave lengths is obtained. This change is used for estimating the absorbed γ-rays directly. In the present work we are not concerned with the type of components that are chemically formed as emphasis will only be put on the physical changes. The physical state is taken as a potential chemical change since a molecular damage is accumulated as a result of the dose absorbed. The fortran IV data General (Nova 3) designed for estimating colour measurements was connected to a spectrophotometer that enables measuring the changes in both absorbing and reflecting or even diffusing of light through irradiated materials.

  14. Estimation of bone permeability using accurate microstructural measurements.

    PubMed

    Beno, Thoma; Yoon, Young-June; Cowin, Stephen C; Fritton, Susannah P

    2006-01-01

    While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone. First, we estimate the total number of canaliculi emanating from each osteocyte lacuna based on published measurements from parallel-fibered shaft bones of several species (chick, rabbit, bovine, horse, dog, and human). Next, we determine the local three-dimensional permeability of the lacunar-canalicular porosity for these species using recent microstructural measurements and adapting a previously developed model. Results demonstrated that the number of canaliculi per osteocyte lacuna ranged from 41 for human to 115 for horse. Permeability coefficients were found to be different in three local principal directions, indicating local orthotropic symmetry of bone permeability in parallel-fibered cortical bone for all species examined. For the range of parameters investigated, the local lacunar-canalicular permeability varied more than three orders of magnitude, with the osteocyte lacunar shape and size along with the 3-D canalicular distribution determining the degree of anisotropy of the local permeability. This two-step theoretical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity will be useful for accurate quantification of interstitial fluid movement in bone.

  15. Fast and Accurate Learning When Making Discrete Numerical Estimates

    PubMed Central

    Sanborn, Adam N.; Beierholm, Ulrik R.

    2016-01-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  16. Radiation environments and absorbed dose estimations on manned space missions.

    PubMed

    Curtis, S B; Atwell, W; Beever, R; Hardy, A

    1986-01-01

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.

  17. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  18. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  19. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  20. Accurate dose assessment system for an exposed person utilising radiation transport calculation codes in emergency response to a radiological accident.

    PubMed

    Takahashi, F; Shigemori, Y; Seki, A

    2009-01-01

    A system has been developed to assess radiation dose distribution inside the body of exposed persons in a radiological accident by utilising radiation transport calculation codes-MCNP and MCNPX. The system consists mainly of two parts, pre-processor and post-processor of the radiation transport calculation. Programs for the pre-processor are used to set up a 'problem-dependent' input file, which defines the accident condition and dosimetric quantities to be estimated. The program developed for the post-processor part can effectively indicate dose information based upon the output file of the code. All of the programs in the dosimetry system can be executed with a generally used personal computer and accurately give the dose profile to an exposed person in a radiological accident without complicated procedures. An experiment using a physical phantom was carried out to verify the availability of the dosimetry system with the developed programs in a gamma ray irradiation field.

  1. More accurate fitting of {sup 125}I and {sup 103}Pd radial dose functions

    SciTech Connect

    Taylor, R. E. P.; Rogers, D. W. O.

    2008-09-15

    In this study an improved functional form for fitting the radial dose functions, g(r), of {sup 125}I and {sup 103}Pd brachytherapy seeds is presented. The new function is capable of accurately fitting radial dose functions over ranges as large as 0.05 cm{<=}r{<=}10 cm for {sup 125}I seeds and 0.10 cm{<=}r{<=}10 cm for {sup 103}Pd seeds. The average discrepancies between fit and calculated data are less than 0.5% over the full range of fit and maximum discrepancies are 2% or less. The fitting function is also capable of accounting for the sharp increase in g(r) (upturn) seen for some sources for r<0.1 cm. This upturn has previously been attributed to the breakdown of the approximation of the sources as a line, however, in this study we demonstrate that another contributing factor is the 4.5 keV characteristic x-rays emitted from the Ti seed casing. Radial dose functions are calculated for 18 {sup 125}I seeds and 9 {sup 103}Pd seeds using the EGSnrc Monte Carlo user-code BrachyDose. Fitting coefficients of the new function are tabulated for all 27 seeds. Extrapolation characteristics of the function are also investigated. The new functional form is an improvement over currently used fitting functions with its main strength being the ability to accurately fit the rapidly varying radial dose function at small distances. The new function is an excellent candidate for fitting the radial dose function of all {sup 103}Pd and {sup 125}I brachytherapy seeds and will increase the accuracy of dose distributions calculated around brachytherapy seeds using the TG-43 protocol over a wider range of data. More accurate values of g(r) for r<0.5 cm may be particularly important in the treatment of ocular melanoma.

  2. How accurate are physical property estimation programs for organosilicon compounds?

    PubMed

    Boethling, Robert; Meylan, William

    2013-11-01

    Organosilicon compounds are important in chemistry and commerce, and nearly 10% of new chemical substances for which premanufacture notifications are processed by the US Environmental Protection Agency (USEPA) contain silicon (Si). Yet, remarkably few measured values are submitted for key physical properties, and the accuracy of estimation programs such as the Estimation Programs Interface (EPI) Suite and the SPARC Performs Automated Reasoning in Chemistry (SPARC) system is largely unknown. To address this issue, the authors developed an extensive database of measured property values for organic compounds containing Si and evaluated the performance of no-cost estimation programs for several properties of importance in environmental assessment. These included melting point (mp), boiling point (bp), vapor pressure (vp), water solubility, n-octanol/water partition coefficient (log KOW ), and Henry's law constant. For bp and the larger of 2 vp datasets, SPARC, MPBPWIN, and the USEPA's Toxicity Estimation Software Tool (TEST) had similar accuracy. For log KOW and water solubility, the authors tested 11 and 6 no-cost estimators, respectively. The best performers were Molinspiration and WSKOWWIN, respectively. The TEST's consensus mp method outperformed that of MPBPWIN by a considerable margin. Generally, the best programs estimated the listed properties of diverse organosilicon compounds with accuracy sufficient for chemical screening. The results also highlight areas where improvement is most needed.

  3. Convolution-based estimation of organ dose in tube current modulated CT

    PubMed Central

    Tian, Xiaoyu; Segars, W Paul; Dixon, Robert L; Samei, Ehsan

    2016-01-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460–7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18–70 years, weight range: 60–180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients (hOrgan) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate (CTDIvol)organ, convolution values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying (CTDIvol)organ, convolution with the organ dose coefficients (hOrgan). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the

  4. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  5. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  6. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    SciTech Connect

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  7. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  8. Accurate tempo estimation based on harmonic + noise decomposition

    NASA Astrophysics Data System (ADS)

    Alonso, Miguel; Richard, Gael; David, Bertrand

    2006-12-01

    We present an innovative tempo estimation system that processes acoustic audio signals and does not use any high-level musical knowledge. Our proposal relies on a harmonic + noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to measure the degree of musical accentuation as a function of time is developed and separately applied to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation block that calculates the salience of musical accents for a large number of potential periods. Next, a multipath dynamic programming searches among all the potential periodicities for the most consistent prospects through time, and finally the most energetic candidate is selected as tempo. Our proposal is validated using a manually annotated test-base containing 961 music signals from various musical genres. In addition, the performance of the algorithm under different configurations is compared. The robustness of the algorithm when processing signals of degraded quality is also measured.

  9. Fast and Accurate Estimates of Divergence Times from Big Data.

    PubMed

    Mello, Beatriz; Tao, Qiqing; Tamura, Koichiro; Kumar, Sudhir

    2017-01-01

    Ongoing advances in sequencing technology have led to an explosive expansion in the molecular data available for building increasingly larger and more comprehensive timetrees. However, Bayesian relaxed-clock approaches frequently used to infer these timetrees impose a large computational burden and discourage critical assessment of the robustness of inferred times to model assumptions, influence of calibrations, and selection of optimal data subsets. We analyzed eight large, recently published, empirical datasets to compare time estimates produced by RelTime (a non-Bayesian method) with those reported by using Bayesian approaches. We find that RelTime estimates are very similar to Bayesian approaches, yet RelTime requires orders of magnitude less computational time. This means that the use of RelTime will enable greater rigor in molecular dating, because faster computational speeds encourage more extensive testing of the robustness of inferred timetrees to prior assumptions (models and calibrations) and data subsets. Thus, RelTime provides a reliable and computationally thrifty approach for dating the tree of life using large-scale molecular datasets.

  10. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  11. Bioaccessibility tests accurately estimate bioavailability of lead to quail.

    PubMed

    Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S

    2016-09-01

    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of

  12. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  13. A novel sulfur mustard (HD) vapor inhalation exposure system for accurate inhaled dose delivery

    PubMed Central

    Perry, Mark R.; Benson, Eric M.; Kohne, Jonathon W.; Plahovinsak, Jennifer L.; Babin, Michael C.; Platoff, Gennady E.; Yeung, David T.

    2014-01-01

    Introduction A custom designed HD exposure system was used to deliver controlled inhaled doses to an animal model through an endotracheal tube. Methods Target HD vapor challenges were generated by a temperature controlled bubbler/aerosol trap, while concentration was monitored near real-time by gas chromatography. Animal breathing parameters were monitored real-time by an in-line pneumotach, pressure transducer, and Buxco pulmonary analysis computer/software. For each exposure, the challenge atmosphere was allowed to stabilize at the desired concentration while the anesthetized animal was provided humidity controlled clean air. Once the target concentration was achieved and stable, a portion of the challenge atmosphere was drawn past the endotracheal tube, where the animal inhaled the exposure ad libitum. During the exposure, HD vapor concentration and animal weight were used to calculate the needed inhaled volume to achieve the target inhaled dose (μg/kg). The exposures were halted when the inhaled volume was achieved. Results The exposure system successfully controlled HD concentrations from 22.2 to 278 mg/m3 and accurately delivered inhaled doses between 49.3 and 1120 μg/kg with actual administered doses being within 4% of the target level. Discussion This exposure system administers specific HD inhaled doses to evaluate physiological effects and for evaluation of potential medical countermeasure treatments. PMID:25291290

  14. RADIANCE: An automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2011-01-01

    There is growing interest in the ability to monitor, track, and report exposure to radiation from medical imaging. Historically, however, dose information has been stored on an image-based dose sheet, an arrangement that precludes widespread indexing. Although scanner manufacturers are beginning to include dose-related parameters in the Digital Imaging and Communications in Medicine (DICOM) headers of imaging studies, there remains a vast repository of retrospective computed tomographic (CT) data with image-based dose sheets. Consequently, it is difficult for imaging centers to monitor their dose estimates or participate in the American College of Radiology (ACR) Dose Index Registry. An automated extraction software pipeline known as Radiation Dose Intelligent Analytics for CT Examinations (RADIANCE) has been designed that quickly and accurately parses CT dose sheets to extract and archive dose-related parameters. Optical character recognition of information in the dose sheet leads to creation of a text file, which along with the DICOM study header is parsed to extract dose-related data. The data are then stored in a relational database that can be queried for dose monitoring and report creation. RADIANCE allows efficient dose analysis of CT examinations and more effective education of technologists, radiologists, and referring physicians regarding patient exposure to radiation at CT. RADIANCE also allows compliance with the ACR's dose reporting guidelines and greater awareness of patient radiation dose, ultimately resulting in improved patient care and treatment.

  15. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  16. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures.

  17. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    SciTech Connect

    Simpkins, A.A.

    2003-07-21

    At the Savannah River Site (SRS), emergency response computer models are used to estimate dose following releases of radioactive materials to the environment. Downwind air and ground concentrations and their associated doses from inhalation and ground shine pathways are estimated. The emergency response model (PUFF-PLUME) uses real-time data to track either instantaneous (puff) or continuous (plume) releases. A site-specific ingestion dose model was developed for use with PUFF-PLUME that includes the following ingestion dose pathways pertinent to the surrounding SRS area: milk, beef, water, and fish. The model is simplistic and can be used with existing code output.

  18. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  19. In vivo dosimetry for estimation of effective doses in multislice CT coronary angiography

    SciTech Connect

    De Denaro, M.; Bregant, P.; Severgnini, M.; De Guarrini, F.

    2007-10-15

    In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Considering the increment in dose to the population due to new high-dose multislice CT examinations, such as coronary angiography, it is becoming important to more accurately know the dose to the patient. The desire to know patient dose extends even to radiological examinations. Thermoluminescent dosimeters are considered the gold standard for in vivo dosimetry, but their use is time consuming. A rapid, less labor-intensive method has been developed to perform in vivo dosimetry using radiochromic film positioned next to the patient's skin. Multislice CT scanners allow the estimation of the effective dose to the patient from the dose length product (DLP) parameter, the value of which is displayed on the acquisition console, simply multiplying the DLP by published conversion factors. The method represents only an approximation based on standard size circular phantoms and neglects the actual size of the patient. More accurate evaluations can be carried out using software-based Monte Carlo simulations. However, these methods do not consider possible dose reduction techniques, such as automatic tube-current modulation. For 22 patients effective doses measured by in vivo dosimetry and calculated by software were compared. The technique of using in vivo dosimetry measured with radiochromic film appears a promising procedure for improving the assessment of the effective dose to the patient.

  20. Accurate Accumulation of Dose for Improved Understanding of Radiation Effects in Normal Tissue

    SciTech Connect

    Jaffray, David A.; Lindsay, Patricia E.; Brock, Kristy K.; Deasy, Joseph O.; Tome, W.A.

    2010-03-01

    The actual distribution of radiation dose accumulated in normal tissues over the complete course of radiation therapy is, in general, poorly quantified. Differences in the patient anatomy between planning and treatment can occur gradually (e.g., tumor regression, resolution of edema) or relatively rapidly (e.g., bladder filling, breathing motion) and these undermine the accuracy of the planned dose distribution. Current efforts to maximize the therapeutic ratio require models that relate the true accumulated dose to clinical outcome. The needed accuracy can only be achieved through the development of robust methods that track the accumulation of dose within the various tissues in the body. Specific needs include the development of segmentation methods, tissue-mapping algorithms, uncertainty estimation, optimal schedules for image-based monitoring, and the development of informatics tools to support subsequent analysis. These developments will not only improve radiation outcomes modeling but will address the technical demands of the adaptive radiotherapy paradigm. The next 5 years need to see academia and industry bring these tools into the hands of the clinician and the clinical scientist.

  1. Towards a comprehensive CT image segmentation for thoracic organ radiation dose estimation and reporting

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Ruppertshofen, Heike; Vik, Torbjörn; Prinsen, Peter; Wiegert, Jens

    2014-03-01

    Administered dose of ionizing radiation during medical imaging is an issue of increasing concern for the patient, for the clinical community, and for respective regulatory bodies. CT radiation dose is currently estimated based on a set of very simplifying assumptions which do not take the actual body geometry and organ specific doses into account. This makes it very difficult to accurately report imaging related administered dose and to track it for different organs over the life of the patient. In this paper this deficit is addressed in a two-fold way. In a first step, the absorbed radiation dose in each image voxel is estimated based on a Monte-Carlo simulation of X-ray absorption and scattering. In a second step, the image is segmented into tissue types with different radio sensitivity. In combination this allows to calculate the effective dose as a weighted sum of the individual organ doses. The main purpose of this paper is to assess the feasibility of automatic organ specific dose estimation. With respect to a commercially applicable solution and respective robustness and efficiency requirements, we investigated the effect of dose sampling rather than integration over the organ volume. We focused on the thoracic anatomy as the exemplary body region, imaged frequently by CT. For image segmentation we applied a set of available approaches which allowed us to cover the main thoracic radio-sensitive tissue types. We applied the dose estimation approach to 10 thoracic CT datasets and evaluated segmentation accuracy and administered dose and could show that organ specific dose estimation can be achieved.

  2. beta- and gamma-Comparative dose estimates on Enewetak Atoll.

    PubMed

    Crase, K W; Gudiksen, P H; Robison, W L

    1982-05-01

    Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  3. Sample Based Unit Liter Dose Estimates

    SciTech Connect

    JENSEN, L.

    2000-04-13

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new data to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).

  4. A new reference point for patient dose estimation in neurovascular interventional radiology.

    PubMed

    Kawasaki, Kohei; Imazeki, Masaharu; Hasegawa, Ryota; Shiba, Shinichi; Takahashi, Hiroyuki; Sato, Kazuhiko; Ota, Jyoji; Suzuki, Hiroaki; Awai, Kazuo; Sakamoto, Hajime; Tajima, Osamu; Tsukamoto, Atsuko; Kikuchi, Tatsuya; Kageyama, Takahiro; Kato, Kyoichi

    2013-07-01

    In interventional radiology, dose estimation using the interventional reference point (IRP) is a practical method for obtaining the real-time skin dose of a patient. However, the IRP is defined in terms of adult cardiovascular radiology and is not suitable for dosimetry of the head. In the present study, we defined a new reference point (neuro-IRP) for neuro-interventional procedures. The neuro-IRP was located on the central ray of the X-ray beam, 9 cm from the isocenter, toward the focal spot. To verify whether the neuro-IRP was accurate in dose estimation, we compared calculated doses at the neuro-IRP and actual measured doses at the surface of the head phantom for various directions of the X-ray projection. The resulting calculated doses were fairly consistent with actual measured doses, with the error in this estimation within approximately 15%. These data suggest that dose estimation using the neuro-IRP for the head is valid.

  5. Effective dose estimation during conventional and CT urography

    NASA Astrophysics Data System (ADS)

    Alzimami, K.; Sulieman, A.; Omer, E.; Suliman, I. I.; Alsafi, K.

    2014-11-01

    Intravenous urography (IVU) and CT urography (CTU) are efficient radiological examinations for the evaluation of the urinary system disorders. However patients are exposed to a significant radiation dose. The objectives of this study are to: (i) measure and compare patient radiation dose by computed tomography urography (CTU) and conventional intravenous urography (IVU) and (ii) evaluate organ equivalent dose and cancer risks from CTU and IVU imaging procedures. A total of 141 patients were investigated. A calibrated CT machine (Siemens-Somatom Emotion duo) was used for CTU, while a Shimadzu X ray machine was used for IVU. Thermoluminescence dosimeters (TLD-GR200A) were used to measure patients' entrance surface doses (ESD). TLDs were calibrated under reproducible reference conditions. Patients radiation dose values (DLP) for CTU were 172±61 mGy cm, CTDIvol 4.75±2 mGy and effective dose 2.58±1 mSv. Patient cancer probabilities were estimated to be 1.4 per million per CTU examination. Patients ESDs values for IVU were 21.62±5 mGy, effective dose 1.79±1 mSv. CT involves a higher effective dose than IVU. In this study the radiation dose is considered low compared to previous studies. The effective dose from CTU procedures was 30% higher compared to IVU procedures. Wide dose variation between patient doses suggests that optimization is not fulfilled yet.

  6. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  7. Sinogram smoothing techniques for myocardial blood flow estimation from dose-reduced dynamic computed tomography

    PubMed Central

    Modgil, Dimple; Alessio, Adam M.; Bindschadler, Michael D.; La Rivière, Patrick J.

    2014-01-01

    Abstract. Dynamic contrast-enhanced computed tomography (CT) could provide an accurate and widely available technique for myocardial blood flow (MBF) estimation to aid in the diagnosis and treatment of coronary artery disease. However, one of its primary limitations is the radiation dose imparted to the patient. We are exploring techniques to reduce the patient dose by either reducing the tube current or by reducing the number of temporal frames in the dynamic CT sequence. Both of these dose reduction techniques result in noisy data. In order to extract the MBF information from the noisy acquisitions, we have explored several data-domain smoothing techniques. In this work, we investigate two specific smoothing techniques: the sinogram restoration technique in both the spatial and temporal domains and the use of the Karhunen–Loeve (KL) transform to provide temporal smoothing in the sinogram domain. The KL transform smoothing technique has been previously applied to dynamic image sequences in positron emission tomography. We apply a quantitative two-compartment blood flow model to estimate MBF from the time-attenuation curves and determine which smoothing method provides the most accurate MBF estimates in a series of simulations of different dose levels, dynamic contrast-enhanced cardiac CT acquisitions. As measured by root mean square percentage error (% RMSE) in MBF estimates, sinogram smoothing generally provides the best MBF estimates except for the cases of the lowest simulated dose levels (tube current=25  mAs, 2 or 3 s temporal spacing), where the KL transform method provides the best MBF estimates. The KL transform technique provides improved MBF estimates compared to conventional processing only at very low doses (<7  mSv). Results suggest that the proposed smoothing techniques could provide high fidelity MBF information and allow for substantial radiation dose savings. PMID:25642441

  8. Adaptive sampling of CT data for myocardial blood flow estimation from dose-reduced dynamic CT

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; Bindschadler, Michael D.; Alessio, Adam M.; La Rivière, Patrick J.

    2015-03-01

    Quantification of myocardial blood flow (MBF) can aid in the diagnosis and treatment of coronary artery disease (CAD). However, there are no widely accepted clinical methods for estimating MBF. Dynamic CT holds the promise of providing a quick and easy method to measure MBF quantitatively, however the need for repeated scans has raised concerns about the potential for high radiation dose. In our previous work, we explored techniques to reduce the patient dose by either uniformly reducing the tube current or by uniformly reducing the number of temporal frames in the dynamic CT sequence. These dose reduction techniques result in very noisy data, which can give rise to large errors in MBF estimation. In this work, we seek to investigate whether nonuniformly varying the tube current or sampling intervals can yield more accurate MBF estimates. Specifically, we try to minimize the dose and obtain the most accurate MBF estimate through addressing the following questions: when in the time attenuation curve (TAC) should the CT data be collected and at what tube current(s). We hypothesize that increasing the sampling rate and/or tube current during the time frames when the myocardial CT number is most sensitive to the flow rate, while reducing them elsewhere, can achieve better estimation accuracy for the same dose. We perform simulations of contrast agent kinetics and CT acquisitions to evaluate the relative MBF estimation performance of several clinically viable adaptive acquisition methods. We found that adaptive temporal and tube current sequences can be performed that impart an effective dose of about 5 mSv and allow for reductions in MBF estimation RMSE on the order of 11% compared to uniform acquisition sequences with comparable or higher radiation doses.

  9. Estimation of dose to man from environmental tritium

    SciTech Connect

    Rohwer, P S; Etnier, E L

    1980-01-01

    Factors important for characterization of tritium in environmental pathways leading to exposure of man are reviewed and quantification of those factors is discussed. Parameters characterizing the behavior of tritium in man are also subjected to review. Factors to be discussed include organic binding, bioaccumulation, quality factor and transmutation. A variety of models are presently in use to estimate dose to man from environmental releases of tritium. Results from four representative models are compared and discussed. Site-specific information is always preferable when parameterizing models to estimate dose to man. There may be significant differences in dose potential among geographic regions due to variable factors. An example of one such factor examined is absolute humidity. It is concluded that adequate methodologies exist for estimation of dose to man from environmental tritium although a number of areas are identified where additional tritium research is desirable.

  10. Simple methods for the estimation of dose distributions, organ doses and energy imparted in paediatric radiology.

    PubMed

    Almén, A; Nilsson, M

    1996-07-01

    The energy imparted and the effective dose can both be used to describe the risk to the patient in diagnostic radiology. Simple methods must be employed to determine these quantities in clinical situations. Methods using measured relative depth-dose distributions are presented and evaluated here. Measurements of depth-dose distributions for x-ray beams were performed with an ionization chamber, a diode and a number of TL dosimeters. The energy imparted was calculated from measurements with both phantoms and patients. The method of calculating the mean absorbed dose to organs was applied to pelvis and lumbar spine examinations. TL dosimeters were found to be an appropriate detector for measuring depth-dose distributions. When calculating the energy imparted the entrance beam area must be accurately known. The mean absorbed dose to organs can be derived from measured relative depth-dose curves if accurate information on entrance beam position and area is available for the particular examination technique used. The advantage of these methods is that the dose distribution is measured for the photon beam used for the examination of the patients.

  11. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  12. Estimation of food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  13. Dose-response curve estimation: a semiparametric mixture approach.

    PubMed

    Yuan, Ying; Yin, Guosheng

    2011-12-01

    In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the performance of the proposed methods and illustrate them with two real examples.

  14. Estimating the predictive quality of dose-response after model selection.

    PubMed

    Hu, Chuanpu; Dong, Yingwen

    2007-07-20

    Prediction of dose-response is important in dose selection in drug development. As the true dose-response shape is generally unknown, model selection is frequently used, and predictions based on the final selected model. Correctly assessing the quality of the predictions requires accounting for the uncertainties caused by the model selection process, which has been difficult. Recently, a new approach called data perturbation has emerged. It allows important predictive characteristics be computed while taking model selection into consideration. We study, through simulation, the performance of data perturbation in estimating standard error of parameter estimates and prediction errors. Data perturbation was found to give excellent prediction error estimates, although at times large Monte Carlo sizes were needed to obtain good standard error estimates. Overall, it is a useful tool to characterize uncertainties in dose-response predictions, with the potential of allowing more accurate dose selection in drug development. We also look at the influence of model selection on estimation bias. This leads to insights into candidate model choices that enable good dose-response prediction.

  15. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  16. Radiation dose estimates for copper-64 citrate in man

    SciTech Connect

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs.

  17. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure.

  18. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent.

    PubMed

    Browning, Sharon R; Browning, Brian L

    2015-09-03

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package.

  19. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  20. Estimate of doses to the fetus during commercial flights.

    PubMed

    Chen, Jing; Mares, Vladimir

    2008-10-01

    This study assesses the radiation exposure from cosmic rays to fetuses of pregnant aircrew and air travelers. Combining the particle fluence spectra of various cosmic radiations at aircraft altitudes with the fetal fluence-to-dose conversion coefficients calculated for different cosmic ray radiations, the doses to the fetal body were estimated for three prenatal ages. From the five major particle types present during commercial flights, neutrons contribute about 54% of the total fetal dose, followed by protons 22%, photons 11%, electrons 7%, and muons 6%. The results indicate that the dose to the fetus can exceed a recommended fetal dose limit of 1 mSv after 10 round trips on commercial flights between Toronto and Frankfurt.

  1. Maximum likelihood estimation for cytogenetic dose-response curves

    SciTech Connect

    Frome, E.L.; DuFrain, R.J.

    1986-03-01

    In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  2. LSimpute: accurate estimation of missing values in microarray data with least squares methods.

    PubMed

    Bø, Trond Hellem; Dysvik, Bjarte; Jonassen, Inge

    2004-02-20

    Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as

  3. Effects of the loss of correlation structure on Phase 1 dose estimates. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Simpson, J.C.

    1991-11-01

    In Phase I of the Hanford Environmental Dose Reconstruction Project, a step-by-step (modular) calculational structure was used. This structure was intended (1) to simplify the computational process, (2) to allow storage of intermediate calculations for later analyses, and (3) to guide the collection of data by presenting understandable structures for its use. The implementation of this modular structure resulted in the loss of correlation among inputs and outputs of the code, resulting in less accurate dose estimates than anticipated. The study documented in this report investigated two types of correlations in the Phase I model: temporal and pathway. Temporal correlations occur in the simulation when, in the calculation, data estimated for a previous time are used in a subsequent calculation. If the various portions of the calculation do not use the same realization of the earlier estimate, they are no longer correlated with respect to time. Similarly, spatial correlations occur in a simulation when, in the calculation, data estimated for a particular location are used in estimates for other locations. If the various calculations do not use the same value for the original location, they are no longer correlated with respect to location. The loss of the correlation structure in the Phase I code resulted in dose estimates that are biased. It is recommended that the air pathway dose model be restructured and the intermediate histograms eliminated. While the restructured code may still contain distinct modules, all input parameters to each module and all out put from each module should be retained in a database such that subsequent modules can access all the information necessary to retain the correlation structure.

  4. Analytic estimates of secondary neutron dose in proton therapy.

    PubMed

    Anferov, V

    2010-12-21

    Proton beam losses in various components of a treatment nozzle generate secondary neutrons, which bring unwanted out of field dose during treatments. The purpose of this study was to develop an analytic method for estimating neutron dose to a distant organ at risk during proton therapy. Based on radiation shielding calculation methods proposed by Sullivan, we developed an analytical model for converting the proton beam losses in the nozzle components and in the treatment volume into the secondary neutron dose at a point of interest. Using the MCNPx Monte Carlo code, we benchmarked the neutron dose rates generated by the proton beam stopped at various media. The Monte Carlo calculations confirmed the validity of the analytical model for simple beam stop geometry. The analytical model was then applied to neutron dose equivalent measurements performed on double scattering and uniform scanning nozzles at the Midwest Proton Radiotherapy Institute (MPRI). Good agreement was obtained between the model predictions and the data measured at MPRI. This work provides a method for estimating analytically the neutron dose equivalent to a distant organ at risk. This method can be used as a tool for optimizing dose delivery techniques in proton therapy.

  5. Patient-specific dose estimation for pediatric chest CT

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for

  6. Dose estimates in a loss of lead shielding truck accident.

    SciTech Connect

    Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John

    2009-08-01

    The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

  7. Thyroid Remnant Estimation by Diagnostic Dose (131)I Scintigraphy or (99m)TcO4(-) Scintigraphy after Thyroidectomy: A Comparison with Therapeutic Dose (131)I Imaging.

    PubMed

    Liu, Guanghui; Li, Na; Li, Xuena; Chen, Song; Du, Bulin; Li, Yaming

    2016-01-01

    In this clinical study, we have compared routine diagnostic dose (131)I scan and (99m)TcO4(-) thyroid scintigraphy with therapeutic dose (131)I imaging for accurate thyroid remnant estimation after total thyroidectomy. We conducted a retrospective review of the patients undergoing total thyroidectomy for differentiated thyroid carcinoma (DTC) and subsequently receiving radioactive iodine (RAI) treatment to ablate remnant thyroid tissue. All patients had therapeutic dose RAI whole body scan, which was compared with that of diagnostic dose RAI, (99m)TcO4(-) thyroid scan, and ultrasound examination. We concluded that therapeutic dose RAI scan reveals some extent thyroid remnant in all DTC patients following total thyroidectomy. Diagnostic RAI scan is much superior to ultrasound and (99m)TcO4(-) thyroid scan for the postoperative estimation of thyroid remnant. Ultrasound and (99m)TcO4(-) thyroid scan provide little information for thyroid remnant estimation and, therefore, would not replace diagnostic RAI scan.

  8. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  9. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. P.; Dixon, R. L.; Samei, Ehsan

    2015-03-01

    Among the various metrics that quantify radiation dose in computed tomography (CT), organ dose is one of the most representative quantities reflecting patient-specific radiation burden.1 Accurate estimation of organ dose requires one to effectively model the patient anatomy and the irradiation field. As illustrated in previous studies, the patient anatomy factor can be modeled using a library of computational phantoms with representative body habitus.2 However, the modeling of irradiation field can be practically challenging, especially for CT exams performed with tube current modulation. The central challenge is to effectively quantify the scatter irradiation field created by the dynamic change of tube current. In this study, we present a convolution-based technique to effectively quantify the primary and scatter irradiation field for TCM examinations. The organ dose for a given clinical patient can then be rapidly determined using the convolution-based method, a patient-matching technique, and a library of computational phantoms. 58 adult patients were included in this study (age range: 18-70 y.o., weight range: 60-180 kg). One computational phantom was created based on the clinical images of each patient. Each patient was optimally matched against one of the remaining 57 computational phantoms using a leave-one-out strategy. For each computational phantom, the organ dose coefficients (CTDIvol-normalized organ dose) under fixed tube current were simulated using a validated Monte Carlo simulation program. Such organ dose coefficients were multiplied by a scaling factor, (CTDIvol )organ, convolution that quantifies the regional irradiation field. The convolution-based organ dose was compared with the organ dose simulated from Monte Carlo program with TCM profiles explicitly modeled on the original phantom created based on patient images. The estimation error was within 10% across all organs and modulation profiles for abdominopelvic examination. This strategy

  10. Developing milk industry estimates for dose reconstruction projects

    SciTech Connect

    Beck, D.M.; Darwin, R.F. )

    1991-01-01

    One of the most important contributors to radiation doses from hanford during the 1944-1947 period was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to reconstruct the amount of milk consumed by people living near Hanford, the source of the milk, and the type of feed that the milk cows ate. This task is challenging because the dairy industry has undergone radical changes since the end of World War 2, and records that document the impact of these changes on the study area are scarce. Similar problems are faced by researchers on most dose reconstruction efforts. The purpose of this work is to document and evaluate the methods used on the Hanford Environmental Dose Reconstruction (HEDR) Project to reconstruct the milk industry and to present preliminary results.

  11. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Algina, James; Moulder, Bradley C.; Moser, Barry K.

    2002-01-01

    Studied the sample size requirements for accurate estimation of squared semi-partial correlation coefficients through simulation studies. Results show that the sample size necessary for adequate accuracy depends on: (1) the population squared multiple correlation coefficient (p squared); (2) the population increase in p squared; and (3) the…

  12. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  13. Do We Know Whether Researchers and Reviewers are Estimating Risk and Benefit Accurately?

    PubMed

    Hey, Spencer Phillips; Kimmelman, Jonathan

    2016-10-01

    Accurate estimation of risk and benefit is integral to good clinical research planning, ethical review, and study implementation. Some commentators have argued that various actors in clinical research systems are prone to biased or arbitrary risk/benefit estimation. In this commentary, we suggest the evidence supporting such claims is very limited. Most prior work has imputed risk/benefit beliefs based on past behavior or goals, rather than directly measuring them. We describe an approach - forecast analysis - that would enable direct and effective measure of the quality of risk/benefit estimation. We then consider some objections and limitations to the forecasting approach.

  14. Towards an accurate estimation of the isosteric heat of adsorption - A correlation with the potential theory.

    PubMed

    Askalany, Ahmed A; Saha, Bidyut B

    2017-03-15

    Accurate estimation of the isosteric heat of adsorption is mandatory for a good modeling of adsorption processes. In this paper a thermodynamic formalism on adsorbed phase volume which is a function of adsorption pressure and temperature has been proposed for the precise estimation of the isosteric heat of adsorption. The estimated isosteric heat of adsorption using the new correlation has been compared with measured values of prudently selected several adsorbent-refrigerant pairs from open literature. Results showed that the proposed isosteric heat of adsorption correlation fits the experimentally measured values better than the Clausius-Clapeyron equation.

  15. Influence of DTPA Treatment on Internal Dose Estimates.

    PubMed

    Davesne, Estelle; Blanchardon, Eric; Peleau, Bernadette; Correze, Philippe; Bohand, Sandra; Franck, Didier

    2016-06-01

    In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment.

  16. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  17. Dose estimates for the heavy concrete ratchet wall configuration

    SciTech Connect

    Knott, M.J.; Moe, H.J.

    1988-09-01

    The recalculation of the estimated doses due to a beam loss at a single point in the storage-ring system indicates that the redesigned shielding geometry, using heavy concrete for the ratchet walls, is generally adequate for the parameters of no local lead shielding and an operating current of 0.1 A. For operation at 0.3 A, additional local lead shielding of 8 cm of lead will assure that all doses outside the ratchet wall shield from a beam loss at a given point will be {lt} 1 mSv.

  18. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy.

  19. [Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER Statement].

    PubMed

    Stevens, Gretchen A; Alkema, Leontine; Black, Robert E; Boerma, J Ties; Collins, Gary S; Ezzati, Majid; Grove, John T; Hogan, Daniel R; Hogan, Margaret C; Horton, Richard; Lawn, Joy E; Marušic, Ana; Mathers, Colin D; Murray, Christopher J L; Rudan, Igor; Salomon, Joshua A; Simpson, Paul J; Vos, Theo; Welch, Vivian

    2017-01-01

    Measurements of health indicators are rarely available for every population and period of interest, and available data may not be comparable. The Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) define best reporting practices for studies that calculate health estimates for multiple populations (in time or space) using multiple information sources. Health estimates that fall within the scope of GATHER include all quantitative population-level estimates (including global, regional, national, or subnational estimates) of health indicators, including indicators of health status, incidence and prevalence of diseases, injuries, and disability and functioning; and indicators of health determinants, including health behaviours and health exposures. GATHER comprises a checklist of 18 items that are essential for best reporting practice. A more detailed explanation and elaboration document, describing the interpretation and rationale of each reporting item along with examples of good reporting, is available on the GATHER website (http://gather-statement.org).

  20. Dose estimates for the solid waste performance assessment

    SciTech Connect

    Rittman, P.D.

    1994-08-30

    The Solid Waste Performance Assessment calculations by PNL in 1990 were redone to incorporate changes in methods and parameters since then. The ten scenarios found in their report were reduced to three, the Post-Drilling Resident, the Post-Excavation Resident, and an All Pathways Irrigator. In addition, estimates of population dose to people along the Columbia River are also included. The attached report describes the methods and parameters used in the calculations, and derives dose factors for each scenario. In addition, waste concentrations, ground water concentrations, and river water concentrations needed to reach the performance objectives of 100 mrem/yr and 500 person-rem/yr are computed. Internal dose factors from DOE-0071 were applied when computing internal dose. External dose rate factors came from the GENII Version 1.485 software package. Dose calculations were carried out on a spreadsheet. The calculations are described in detail in the report for 63 nuclides, including 5 not presently in the GENII libraries. The spreadsheet calculations were checked by comparison with GENII, as described in Appendix D.

  1. Estimation of Secondary Neutron Dose during Proton Therapy

    NASA Astrophysics Data System (ADS)

    Urban, Tomas; Klusoň, Jaroslav

    2014-06-01

    During proton radiotherapy, secondary neutrons are produced by nuclear interactions in the material along the beam path, in the treatment nozzle (including the fixed scatterer, range modulator, etc.) and, of course, after entering the patient. The dose equivalent deposited by these neutrons is usually not considered in routine treatment planning. In this study, there has been estimated the neutron dose in patient (in as well as around the target volume) during proton radiotherapy using scattering and scanning techniques. The proton induced neutrons (and photons) have been simulated in the simple geometry of the single scattering and the pencil beam scanning universal nozzles and in geometry of the plastic phantom (made of tissue equivalent material - RW3 - imitate the patient). In simulations of the scattering nozzle, different types of brass collimators have been used as well. Calculated data have been used as an approximation of the radiation field in and around the chosen/potential target volume in the patient (plastic phantom). For the dose equivalent evaluation, fluence-to-dose conversion factors from ICRP report have been employed. The results of calculated dose from neutrons in various distances from the spot for different treatment technique and for different energies of incident protons have been compared and evaluated in the context of the dose deposited in the target volume. This work was supported by RVO: 68407700 and Grant Agency of the CTU in Prague, grant No. SGS12/200/OHK4/3T/14.

  2. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  3. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  4. Robust and accurate fundamental frequency estimation based on dominant harmonic components.

    PubMed

    Nakatani, Tomohiro; Irino, Toshio

    2004-12-01

    This paper presents a new method for robust and accurate fundamental frequency (F0) estimation in the presence of background noise and spectral distortion. Degree of dominance and dominance spectrum are defined based on instantaneous frequencies. The degree of dominance allows one to evaluate the magnitude of individual harmonic components of the speech signals relative to background noise while reducing the influence of spectral distortion. The fundamental frequency is more accurately estimated from reliable harmonic components which are easy to select given the dominance spectra. Experiments are performed using white and babble background noise with and without spectral distortion as produced by a SRAEN filter. The results show that the present method is better than previously reported methods in terms of both gross and fine F0 errors.

  5. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    DTIC Science & Technology

    2009-12-01

    TRACKER SYSTEM FOR ACCURATE ESTIMATION OF SPACECRAFT ATTITUDE by Jack A. Tappe December 2009 Thesis Co-Advisors: Jae Jun Kim Brij N... Brij N. Agrawal Co-Advisor Dr. Knox T. Millsaps Chairman, Department of Mechanical and Astronautical Engineering iv THIS PAGE...much with my studies here. I would like to especially thank Professors Barry Leonard, Brij Agrawal, Grand Master Shin, and Comrade Oleg Yakimenko

  6. Equivalent normalized total dose estimates in cyberknife radiotherapy dose delivery in prostate cancer hypofractionation regimens.

    PubMed

    Sudahar, H; Kurup, P G G; Murali, V; Mahadev, P; Velmurugan, J

    2012-04-01

    As the α/β value of prostate is very small and lower than the surrounding critical organs, hypofractionated radiotherapy became a vital mode of treatment of prostate cancer. Cyberknife (Accuray Inc., Sunnyvale, CA, USA) treatment for localized prostate cancer is performed in hypofractionated dose regimen alone. Effective dose escalation in the hypofractionated regimen can be estimated if the corresponding conventional 2 Gy per fraction equivalent normalized total dose (NTD) distribution is known. The present study aims to analyze the hypofractionated dose distribution of localized prostate cancer in terms of equivalent NTD. Randomly selected 12 localized prostate cases treated in cyberknife with a dose regimen of 36.25 Gy in 5 fractions were considered. The 2 Gy per fraction equivalent NTDs were calculated using the formula derived from the linear quadratic (LQ) model. Dose distributions were analyzed with the corresponding NTDs. The conformity index for the prescribed target dose of 36.25 Gy equivalent to the NTD dose of 90.63 Gy (α/β = 1.5) or 74.31 Gy (α/β = 3) was ranging between 1.15 and 1.73 with a mean value of 1.32 ± 0.15. The D5% of the target was 111.41 ± 8.66 Gy for α/β = 1.5 and 90.15 ± 6.57 Gy for α/β = 3. Similarly, the D95% was 91.98 ± 3.77 Gy for α/β = 1.5 and 75.35 ± 2.88 Gy for α/β = 3. The mean values of bladder and rectal volume receiving the prescribed dose of 36.25 Gy were 0.83 cm3 and 0.086 cm3, respectively. NTD dose analysis shows an escalated dose distribution within the target for low α/β (1.5 Gy) with reasonable sparing of organs at risk. However, the higher α/β of prostate (3 Gy) is not encouraging the fact of dose escalation in cyberknife hypofractionated dose regimen of localized prostate cancer.

  7. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  8. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  9. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities.

    PubMed

    Helb, Danica A; Tetteh, Kevin K A; Felgner, Philip L; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R; Beeson, James G; Tappero, Jordan; Smith, David L; Crompton, Peter D; Rosenthal, Philip J; Dorsey, Grant; Drakeley, Christopher J; Greenhouse, Bryan

    2015-08-11

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.

  10. Implementing an Accurate and Rapid Sparse Sampling Approach for Low-Dose Atomic Resolution STEM Imaging

    SciTech Connect

    Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; Browning, Nigel D.

    2016-10-17

    Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce the electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.

  11. A revised burial dose estimation procedure for optical dating of youngand modern-age sediments

    USGS Publications Warehouse

    Arnold, L.J.; Roberts, R.G.; Galbraith, R.F.; DeLong, S.B.

    2009-01-01

    The presence of genuinely zero-age or near-zero-age grains in modern-age and very young samples poses a problem for many existing burial dose estimation procedures used in optical (optically stimulated luminescence, OSL) dating. This difficulty currently necessitates consideration of relatively simplistic and statistically inferior age models. In this study, we investigate the potential for using modified versions of the statistical age models of Galbraith et??al. [Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339-364.] to provide reliable equivalent dose (De) estimates for young and modern-age samples that display negative, zero or near-zero De estimates. For this purpose, we have revised the original versions of the central and minimum age models, which are based on log-transformed De values, so that they can be applied to un-logged De estimates and their associated absolute standard errors. The suitability of these 'un-logged' age models is tested using a series of known-age fluvial samples deposited within two arroyo systems from the American Southwest. The un-logged age models provide accurate burial doses and final OSL ages for roughly three-quarters of the total number of samples considered in this study. Sensitivity tests reveal that the un-logged versions of the central and minimum age models are capable of producing accurate burial dose estimates for modern-age and very young (<350??yr) fluvial samples that contain (i) more than 20% of well-bleached grains in their De distributions, or (ii) smaller sub-populations of well-bleached grains for which the De values are known with high precision. Our results indicate that the original (log-transformed) versions of the central and minimum age models are still preferable for most routine dating applications

  12. Space radiation dose estimates on the surface of Mars.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1990-01-01

    A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planet's surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere.

  13. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.

    2015-02-01

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  14. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W

    2015-02-21

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient's 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  15. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  16. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images

    PubMed Central

    Lavoie, Benjamin R.; Okoniewski, Michal; Fear, Elise C.

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  17. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    SciTech Connect

    Juang, T; Adamovics, J; Oldham, M

    2014-06-15

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, high resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately

  18. Accurate estimates of age at maturity from the growth trajectories of fishes and other ectotherms.

    PubMed

    Honsey, Andrew E; Staples, David F; Venturelli, Paul A

    2017-01-01

    Age at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity. If so, then it should be possible to use a biphasic growth model to estimate AAM from growth data. To test this prediction, we used the Lester biphasic growth model in a likelihood profiling framework to estimate AAM from length at age data. We fit our model to simulated growth trajectories to determine minimum data requirements (in terms of sample size, precision in length at age, and the cost to somatic growth of maturity) for accurate AAM estimates. We then applied our method to a large walleye Sander vitreus data set and show that our AAM estimates are in close agreement with conventional estimates when our model fits well. Finally, we highlight the potential of our method by applying it to length at age data for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and other life history traits from contemporary and historical samples.

  19. Radiation dose estimate in small animal SPECT and PET.

    PubMed

    Funk, Tobias; Sun, Mingshan; Hasegawa, Bruce H

    2004-09-01

    Calculations of radiation dose are important in assessing the medical and biological implications of ionizing radiation in medical imaging techniques such as SPECT and PET. In contrast, radiation dose estimates of SPECT and PET imaging of small animals are not very well established. For that reason we have estimated the whole-body radiation dose to mice and rats for isotopes such as 18F, 99mTc, 201Tl, (111)In, 123I, and 125I that are used commonly for small animal imaging. We have approximated mouse and rat bodies with uniform soft tissue equivalent ellipsoids. The mouse and rat sized ellipsoids had a mass of 30 g and 300 g, respectively, and a ratio of the principal axes of 1:1:4 and 0.7:1:4. The absorbed fractions for various photon energies have been calculated using the Monte Carlo software package MCNP. Using these values, we then calculated MIRD S-values for two geometries that model the distribution of activity in the animal body: (a) a central point source and (b) a homogeneously distributed source, and compared these values against S-value calculations for small ellipsoids tabulated in MIRD Pamphlet 8 to validate our results. Finally we calculated the radiation dose taking into account the biological half-life of the radiopharmaceuticals and the amount of activity administered. Our calculations produced S-values between 1.06 x 10(-13) Gy/Bq s and 2.77 x 10(-13) Gy/Bq s for SPECT agents, and 15.0 x 10(-13) Gy/Bq s for the PET agent 18F, assuming mouse sized ellipsoids with uniform source distribution. The S-values for a central point source in an ellipsoid are about 10% higher than the values obtained for the uniform source distribution. Furthermore, the S-values for mouse sized ellipsoids are approximately 10 times higher than for the rat sized ellipsoids reflecting the difference in mass. We reviewed published data to obtain administered radioactivity and residence times for small animal imaging. From these values and our computed S-values we estimated

  20. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    SciTech Connect

    Sahbaee, Pooyan; Segars, W. Paul; Samei, Ehsan

    2014-07-15

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor) were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient

  1. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    NASA Astrophysics Data System (ADS)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  2. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  3. Measuring radon concentrations and estimating dose in tourist caves.

    PubMed

    Martín Sánchez, A; de la Torre Pérez, J; Ruano Sánchez, A B; Naranjo Correa, F L

    2015-11-01

    Caves and mines are considered to be places of especial risk of exposure to (222)Rn. This is particularly important for guides and workers, but also for visitors. In the Extremadura region (Spain), there are two cave systems in which there are workers carrying out their normal everyday tasks. In one, visits have been reduced to maintain the conditions of temperature and humidity. The other comprises several caves frequently visited by school groups. The caves were radiologically characterised in order to estimate the dose received by workers or possible hazards for visitors.

  4. Prospective estimation of organ dose in CT under tube current modulation

    PubMed Central

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.

    2015-01-01

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT exams under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDIvol-normalized-organ dose coefficients (horgan) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3) to account

  5. Prospective estimation of organ dose in CT under tube current modulation

    SciTech Connect

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2015-04-15

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT exams under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDI{sub vol}-normalized-organ dose coefficients (h{sub organ}) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3

  6. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2008-11-30

    Prediction of the microbial growth rate as a response to changing temperatures is an important aspect in the control of food safety and food spoilage. Accurate model predictions of the microbial evolution ask for correct model structures and reliable parameter values with good statistical quality. Given the widely accepted validity of the Cardinal Temperature Model with Inflection (CTMI) [Rosso, L., Lobry, J. R., Bajard, S. and Flandrois, J. P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61: 610-616], this paper focuses on the accurate estimation of its four parameters (T(min), T(opt), T(max) and micro(opt)) by applying the technique of optimal experiment design for parameter estimation (OED/PE). This secondary model describes the influence of temperature on the microbial specific growth rate from the minimum to the maximum temperature for growth. Dynamic temperature profiles are optimized within two temperature regions ([15 degrees C, 43 degrees C] and [15 degrees C, 45 degrees C]), focusing on the minimization of the parameter estimation (co)variance (D-optimal design). The optimal temperature profiles are implemented in a computer controlled bioreactor, and the CTMI parameters are identified from the resulting experimental data. Approximately equal CTMI parameter values were derived irrespective of the temperature region, except for T(max). The latter could only be estimated accurately from the optimal experiments within [15 degrees C, 45 degrees C]. This observation underlines the importance of selecting the upper temperature constraint for OED/PE as close as possible to the true T(max). Cardinal temperature estimates resulting from designs within [15 degrees C, 45 degrees C] correspond with values found in literature, are characterized by a small uncertainty error and yield a good result during validation. As compared to estimates from non-optimized dynamic

  7. Evaluation of Simplified Models for Estimating Public Dose from Spent Nuclear Fuel Shipments

    SciTech Connect

    Connolly, Kevin J.; Radulescu, Georgeta

    2015-01-01

    This paper investigates the dose rate as a function of distance from a representative high-capacity SNF rail-type transportation cask. It uses the SCALE suite of radiation transport modeling and simulation codes to determine neutron and gamma radiation dose rates. The SCALE calculated dose rate is compared with simplified analytical methods historically used for these calculations. The SCALE dose rate calculation presented in this paper employs a very detailed transportation cask model (e.g., pin-by-pin modeling of fuel assembly) and a new hybrid computational transport method. Because it includes pin-level heterogeneity and models ample air and soil outside the cask to simulate scattering of gamma and neutron radiation, this detailed SCALE model is expected to yield more accurate results than previously used models which made more simplistic assumptions (e.g., fuel assembly treated as a point or line source, simple 1-D model of environment outside of cask). The results in this paper are preliminary and, as progress is made on developing and validating improved models, results may be subject to change as models and estimates become more refined and better information leads to more accurate assumptions.

  8. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    NASA Astrophysics Data System (ADS)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  9. READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation

    PubMed Central

    Rashid, Mamoon; Pain, Arnab

    2013-01-01

    Summary: READSCAN is a highly scalable parallel program to identify non-host sequences (of potential pathogen origin) and estimate their genome relative abundance in high-throughput sequence datasets. READSCAN accurately classified human and viral sequences on a 20.1 million reads simulated dataset in <27 min using a small Beowulf compute cluster with 16 nodes (Supplementary Material). Availability: http://cbrc.kaust.edu.sa/readscan Contact: arnab.pain@kaust.edu.sa or raeece.naeem@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23193222

  10. Perspectives on radiation dose estimates for A-bomb survivors

    SciTech Connect

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs.

  11. 324 Building life cycle dose estimates for planned work

    SciTech Connect

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.

  12. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  13. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  14. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  15. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  16. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  17. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate.

    PubMed

    Smits, Alexander J J; Kummer, J Alain; de Bruin, Peter C; Bol, Mijke; van den Tweel, Jan G; Seldenrijk, Kees A; Willems, Stefan M; Offerhaus, G Johan A; de Weger, Roel A; van Diest, Paul J; Vink, Aryan

    2014-02-01

    Molecular pathology is becoming more and more important in present day pathology. A major challenge for any molecular test is its ability to reliably detect mutations in samples consisting of mixtures of tumor cells and normal cells, especially when the tumor content is low. The minimum percentage of tumor cells required to detect genetic abnormalities is a major variable. Information on tumor cell percentage is essential for a correct interpretation of the result. In daily practice, the percentage of tumor cells is estimated by pathologists on hematoxylin and eosin (H&E)-stained slides, the reliability of which has been questioned. This study aimed to determine the reliability of estimated tumor cell percentages in tissue samples by pathologists. On 47 H&E-stained slides of lung tumors a tumor area was marked. The percentage of tumor cells within this area was estimated independently by nine pathologists, using categories of 0-5%, 6-10%, 11-20%, 21-30%, and so on, until 91-100%. As gold standard, the percentage of tumor cells was counted manually. On average, the range between the lowest and the highest estimate per sample was 6.3 categories. In 33% of estimates, the deviation from the gold standard was at least three categories. The mean absolute deviation was 2.0 categories (range between observers 1.5-3.1 categories). There was a significant difference between the observers (P<0.001). If 20% of tumor cells were considered the lower limit to detect a mutation, samples with an insufficient tumor cell percentage (<20%) would have been estimated to contain enough tumor cells in 27/72 (38%) observations, possibly causing false negative results. In conclusion, estimates of tumor cell percentages on H&E-stained slides are not accurate, which could result in misinterpretation of test results. Reliability could possibly be improved by using a training set with feedback.

  18. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-07

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.

  19. Recent Updates to Radiation Organ Dose Estimation Tool PIMAL

    SciTech Connect

    Akkurt, Hatice; Wiarda, Dorothea; Eckerman, Keith F

    2011-01-01

    A computational phantom with moving arms and legs and an accompanying graphical user interface, PIMAL, was previously developed to enable radiation dose estimation for different postures in a user-friendly manner. This initial version of the software was useful in adjusting the posture, generating the corresponding MCNP input file, and performing the radiation transport simulations for dose calculations using MCNP5 or MCNPX. However, it only included one mathematical phantom model (hermaphrodite) and allowed only isotropic point sources. Recently, the software was enhanced by adding two more mathematical phantom models, a male and female, and the source features were enhanced significantly by adding internal and external source options in a pull-down menu. Although the initial version of the software included only a mathematical hermaphrodite phantom, the features and models in the software are constantly being enhanced by adding more phantoms as well as other options to enable dose assessment for different configurations/cases in a user-friendly manner. In this latest version of the software, ICRP's recently released reference male and female voxel phantoms are included in a pull-down menu. The male and female models are described using 7 and 14 million voxels, respectively. Currently, the software is being modified further to include the International Commission on Radiation Protection's (ICRP) reference male and female voxel phantoms. Additionally, some case studies are being implemented and included in a library of input files. This paper describes recent updates to the software.

  20. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    SciTech Connect

    Jones, A; Pasciak, A

    2014-06-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method, use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology

  1. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    SciTech Connect

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  2. Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo

    2017-03-01

    The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.

  3. Do modelled or satellite-based estimates of surface solar irradiance accurately describe its temporal variability?

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Boilley, Alexandre; Wald, Lucien

    2017-02-01

    This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of estimates of surface solar irradiance (SSI). The study is performed at various levels to better understand the causes of variability in the SSI. First, the variability of the solar irradiance at the top of the atmosphere is scrutinized. Then, estimates of the SSI in cloud-free conditions as provided by the McClear model are dealt with, in order to reveal the influence of the clear atmosphere (aerosols, water vapour, etc.). Lastly, the role of clouds on variability is inferred by the analysis of in-situ measurements. A description of how the atmosphere affects SSI variability is thus obtained on a time-scale basis. The analysis is also performed with estimates of the SSI provided by the satellite-derived HelioClim-3 database and by two numerical weather re-analyses: ERA-Interim and MERRA2. It is found that HelioClim-3 estimates render an accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales. On the contrary, the variability found in re-analyses correlates poorly with all scales of ground measurements variability.

  4. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments.

  5. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    PubMed Central

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  6. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    NASA Astrophysics Data System (ADS)

    Granata, Daniele; Carnevale, Vincenzo

    2016-08-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset.

  7. Using the Microsoft Kinect for patient size estimation and radiation dose normalization: proof of concept and initial validation.

    PubMed

    Cook, Tessa S; Couch, Gregory; Couch, Timothy J; Kim, Woojin; Boonn, William W

    2013-08-01

    Monitoring patients' imaging-related radiation is currently a hot topic, but there are many obstacles to accurate, patient-specific dose estimation. While some, such as easier access to dose data and parameters, have been overcome, the challenge remains as to how accurately these dose estimates reflect the actual dose received by the patient. The main parameter that is often not considered is patient size. There are many surrogates-weight, body mass index, effective diameter-but none of these truly reflect the three-dimensional "size" of an individual. In this work, we present and evaluate a novel approach to estimating patient volume using the Microsoft Kinect™, a combination RGB camera-infrared depth sensor device. The goal of using this device is to generate a three-dimensional estimate of patient size, in order to more effectively model the dimensions of the anatomy of interest and not only enable better normalization of dose estimates but also promote more patient-specific protocoling of future CT examinations. Preliminary testing and validation of this system reveals good correlation when individuals are standing upright with their arms by their sides, but demonstrates some variation with arm position. Further evaluation and testing is necessary with multiple patient positions and in both adult and pediatric patients. Correlation with other patient size metrics will also be helpful, as the ideal measure of patient "size" may in fact be a combination of existing metrics and newly developed techniques.

  8. MIDAS robust trend estimator for accurate GPS station velocities without step detection.

    PubMed

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij  = (xj-xi )/(tj-ti ) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  9. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  10. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  11. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  12. Estimating radiation dose to organs of patients undergoing conventional and novel multidetector CT exams using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Angel, Erin

    Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this

  13. Biologically Based Dose-Response Modeling. What is the potential for accurate description of the biological linkages in the applied dose - tissue dose-health effect continuum?

    EPA Science Inventory

    Given knowledge of exposure, the shape of the dose response curve is the key to predicting health risk, which in turn determines allowable levels of exposure and the associated economic costs of compliance.

  14. Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna, T.; Mykkeltveit, S.

    2017-01-01

    velocity gradients reduce the residuals, the relative location uncertainties and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  15. Accurate Relative Location Estimates for the North Korean Nuclear Tests Using Empirical Slowness Corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna', T.; Mykkeltveit, S.

    2016-10-01

    modified velocity gradients reduce the residuals, the relative location uncertainties, and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  16. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  17. A novel method of estimating effective dose from the point dose method: a case study—parathyroid CT scans

    NASA Astrophysics Data System (ADS)

    Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.

    2015-02-01

    The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6  ±  0.2, 1.3  ±  0.1, and 1.1 for the non-contrast scan, 21.9  ±  0.4, 13.9  ±  0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5  ±  0.3, 9.8  ±  0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50-70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors.

  18. Misoprostol vaginal insert for induction of labor: a delivery system with accurate dosing and rapid discontinuation.

    PubMed

    Stephenson, Megan L; Hawkins, J Seth; Powers, Barbara L; Wing, Deborah A

    2014-01-01

    Labor induction and cervical ripening are widely utilized and new methods are constantly being investigated. Prostaglandins have been shown to be effective labor induction agents and, in particular, were compared with other prostaglandin preparations; vaginal misoprostol used off-label was associated with reduced failure to achieve vaginal delivery. The challenge is to provide this medication with the correct dosing for this indication and with the ability to discontinue the medication if needed, all while ensuring essential maternal and neonatal safety. The misoprostol vaginal insert initiates cervical ripening using a delivery system that controls misoprostol release and can be rapidly removed. This article reviews the development, safety and efficacy of the misoprostol vaginal insert for induction of labor and cervical ripening, and will focus on vaginally administered prostaglandins.

  19. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data.

    PubMed

    Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A

    2016-05-01

    The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available.

  20. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  1. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  2. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  3. Radiation signature on exposed cells: Relevance in dose estimation.

    PubMed

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.

  4. Radiation signature on exposed cells: Relevance in dose estimation

    PubMed Central

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon FD

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  5. Accurate and Robust Attitude Estimation Using MEMS Gyroscopes and a Monocular Camera

    NASA Astrophysics Data System (ADS)

    Kobori, Norimasa; Deguchi, Daisuke; Takahashi, Tomokazu; Ide, Ichiro; Murase, Hiroshi

    In order to estimate accurate rotations of mobile robots and vehicle, we propose a hybrid system which combines a low-cost monocular camera with gyro sensors. Gyro sensors have drift errors that accumulate over time. On the other hand, a camera cannot obtain the rotation continuously in the case where feature points cannot be extracted from images, although the accuracy is better than gyro sensors. To solve these problems we propose a method for combining these sensors based on Extended Kalman Filter. The errors of the gyro sensors are corrected by referring to the rotations obtained from the camera. In addition, by using the reliability judgment of camera rotations and devising the state value of the Extended Kalman Filter, even when the rotation is not continuously observable from the camera, the proposed method shows a good performance. Experimental results showed the effectiveness of the proposed method.

  6. Two-wavelength interferometry: extended range and accurate optical path difference analytical estimator.

    PubMed

    Houairi, Kamel; Cassaing, Frédéric

    2009-12-01

    Two-wavelength interferometry combines measurement at two wavelengths lambda(1) and lambda(2) in order to increase the unambiguous range (UR) for the measurement of an optical path difference. With the usual algorithm, the UR is equal to the synthetic wavelength Lambda=lambda(1)lambda(2)/|lambda(1)-lambda(2)|, and the accuracy is a fraction of Lambda. We propose here a new analytical algorithm based on arithmetic properties, allowing estimation of the absolute fringe order of interference in a noniterative way. This algorithm has nice properties compared with the usual algorithm: it is at least as accurate as the most accurate measurement at one wavelength, whereas the UR is extended to several times the synthetic wavelength. The analysis presented shows how the actual UR depends on the wavelengths and different sources of error. The simulations presented are confirmed by experimental results, showing that the new algorithm has enabled us to reach an UR of 17.3 microm, much larger than the synthetic wavelength, which is only Lambda=2.2 microm. Applications to metrology and fringe tracking are discussed.

  7. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  8. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.

    2016-03-01

    Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.

  9. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  10. The potential of more accurate InSAR covariance matrix estimation for land cover mapping

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Yong, Bin; Tian, Xin; Malhotra, Rakesh; Hu, Rui; Li, Zhiwei; Yu, Zhongbo; Zhang, Xinxin

    2017-04-01

    Synthetic aperture radar (SAR) and Interferometric SAR (InSAR) provide both structural and electromagnetic information for the ground surface and therefore have been widely used for land cover classification. However, relatively few studies have developed analyses that investigate SAR datasets over richly textured areas where heterogeneous land covers exist and intermingle over short distances. One of main difficulties is that the shapes of the structures in a SAR image cannot be represented in detail as mixed pixels are likely to occur when conventional InSAR parameter estimation methods are used. To solve this problem and further extend previous research into remote monitoring of urban environments, we address the use of accurate InSAR covariance matrix estimation to improve the accuracy of land cover mapping. The standard and updated methods were tested using the HH-polarization TerraSAR-X dataset and compared with each other using the random forest classifier. A detailed accuracy assessment complied for six types of surfaces shows that the updated method outperforms the standard approach by around 9%, with an overall accuracy of 82.46% over areas with rich texture in Zhuhai, China. This paper demonstrates that the accuracy of land cover mapping can benefit from the 3 enhancement of the quality of the observations in addition to classifiers selection and multi-source data ingratiation reported in previous studies.

  11. Can student health professionals accurately estimate alcohol content in commonly occurring drinks?

    PubMed Central

    Sinclair, Julia; Searle, Emma

    2016-01-01

    Objectives: Correct identification of alcohol as a contributor to, or comorbidity of, many psychiatric diseases requires health professionals to be competent and confident to take an accurate alcohol history. Being able to estimate (or calculate) the alcohol content in commonly consumed drinks is a prerequisite for quantifying levels of alcohol consumption. The aim of this study was to assess this ability in medical and nursing students. Methods: A cross-sectional survey of 891 medical and nursing students across different years of training was conducted. Students were asked the alcohol content of 10 different alcoholic drinks by seeing a slide of the drink (with picture, volume and percentage of alcohol by volume) for 30 s. Results: Overall, the mean number of correctly estimated drinks (out of the 10 tested) was 2.4, increasing to just over 3 if a 10% margin of error was used. Wine and premium strength beers were underestimated by over 50% of students. Those who drank alcohol themselves, or who were further on in their clinical training, did better on the task, but overall the levels remained low. Conclusions: Knowledge of, or the ability to work out, the alcohol content of commonly consumed drinks is poor, and further research is needed to understand the reasons for this and the impact this may have on the likelihood to undertake screening or initiate treatment. PMID:27536344

  12. Greater contrast in Martian hydrological history from more accurate estimates of paleodischarge

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. E.; Burr, D. M.

    2016-09-01

    Correlative width-discharge relationships from the Missouri River Basin are commonly used to estimate fluvial paleodischarge on Mars. However, hydraulic geometry provides alternative, and causal, width-discharge relationships derived from broader samples of channels, including those in reduced-gravity (submarine) environments. Comparison of these relationships implies that causal relationships from hydraulic geometry should yield more accurate and more precise discharge estimates. Our remote analysis of a Martian-terrestrial analog channel, combined with in situ discharge data, substantiates this implication. Applied to Martian features, these results imply that paleodischarges of interior channels of Noachian-Hesperian (~3.7 Ga) valley networks have been underestimated by a factor of several, whereas paleodischarges for smaller fluvial deposits of the Late Hesperian-Early Amazonian (~3.0 Ga) have been overestimated. Thus, these new paleodischarges significantly magnify the contrast between early and late Martian hydrologic activity. Width-discharge relationships from hydraulic geometry represent validated tools for quantifying fluvial input near candidate landing sites of upcoming missions.

  13. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  14. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.

  15. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation.

    PubMed

    García-Vázquez, Verónica; Marinetto, Eugenio; Guerra, Pedro; Valdivieso-Casique, Manlio Fabio; Calvo, Felipe Ángel; Alvarado-Vásquez, Eduardo; Sole, Claudio Vicente; Vosburgh, Kirby Gannett; Desco, Manuel; Pascau, Javier

    2016-08-23

    Intraoperative electron radiation therapy (IOERT) involves irradiation of an unresected tumour or a post-resection tumour bed. The dose distribution is calculated from a preoperative computed tomography (CT) study acquired using a CT simulator. However, differences between the actual IOERT field and that calculated from the preoperative study arise as a result of patient position, surgical access, tumour resection and the IOERT set-up. Intraoperative CT imaging may then enable a more accurate estimation of dose distribution. In this study, we evaluated three kilovoltage (kV) CT scanners with the ability to acquire intraoperative images. Our findings indicate that current IOERT plans may be improved using data based on actual anatomical conditions during radiation. The systems studied were two portable systems ("O-arm", a cone-beam CT [CBCT] system, and "BodyTom", a multislice CT [MSCT] system) and one CBCT integrated in a conventional linear accelerator (LINAC) ("TrueBeam"). TrueBeam and BodyTom showed good results, as the gamma pass rates of their dose distributions compared to the gold standard (dose distributions calculated from images acquired with a CT simulator) were above 97% in most cases. The O-arm yielded a lower percentage of voxels fulfilling gamma criteria owing to its reduced field of view (which left it prone to truncation artefacts). Our results show that the images acquired using a portable CT or even a LINAC with on-board kV CBCT could be used to estimate the dose of IOERT and improve the possibility to evaluate and register the treatment administered to the patient.

  16. Thyroid Remnant Estimation by Diagnostic Dose 131I Scintigraphy or 99mTcO4− Scintigraphy after Thyroidectomy: A Comparison with Therapeutic Dose 131I Imaging

    PubMed Central

    2016-01-01

    In this clinical study, we have compared routine diagnostic dose 131I scan and 99mTcO4− thyroid scintigraphy with therapeutic dose 131I imaging for accurate thyroid remnant estimation after total thyroidectomy. We conducted a retrospective review of the patients undergoing total thyroidectomy for differentiated thyroid carcinoma (DTC) and subsequently receiving radioactive iodine (RAI) treatment to ablate remnant thyroid tissue. All patients had therapeutic dose RAI whole body scan, which was compared with that of diagnostic dose RAI, 99mTcO4− thyroid scan, and ultrasound examination. We concluded that therapeutic dose RAI scan reveals some extent thyroid remnant in all DTC patients following total thyroidectomy. Diagnostic RAI scan is much superior to ultrasound and 99mTcO4− thyroid scan for the postoperative estimation of thyroid remnant. Ultrasound and 99mTcO4− thyroid scan provide little information for thyroid remnant estimation and, therefore, would not replace diagnostic RAI scan. PMID:27034938

  17. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  18. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy.

    PubMed

    Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun

    2016-02-07

    GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the 'thin plate splines-robust point matching' (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7  ±  0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7  ±  1.8 mm and 1.6  ±  0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7  ±  2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50  ±  19%, 37  ±  11% and 28  ±  11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases

  19. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy

    NASA Astrophysics Data System (ADS)

    Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun

    2016-02-01

    GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the ‘thin plate splines-robust point matching’ (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7  ±  0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7  ±  1.8 mm and 1.6  ±  0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7  ±  2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50  ±  19%, 37  ±  11% and 28  ±  11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases

  20. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-12-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility™) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution

  1. Accurate optical flow field estimation using mechanical properties of soft tissues

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hatef; Karimi, Hirad; Samani, Abbas

    2009-02-01

    A novel optical flow based technique is presented in this paper to measure the nodal displacements of soft tissue undergoing large deformations. In hyperelasticity imaging, soft tissues maybe compressed extensively [1] and the deformation may exceed the number of pixels ordinary optical flow approaches can detect. Furthermore in most biomedical applications there is a large amount of image information that represent the geometry of the tissue and the number of tissue types present in the organ of interest. Such information is often ignored in applications such as image registration. In this work we incorporate the information pertaining to soft tissue mechanical behavior (Neo-Hookean hyperelastic model is used here) in addition to the tissue geometry before compression into a hierarchical Horn-Schunck optical flow method to overcome this large deformation detection weakness. Applying the proposed method to a phantom using several compression levels proved that it yields reasonably accurate displacement fields. Estimated displacement results of this phantom study obtained for displacement fields of 85 pixels/frame and 127 pixels/frame are reported and discussed in this paper.

  2. How accurately can we estimate energetic costs in a marine top predator, the king penguin?

    PubMed

    Halsey, Lewis G; Fahlman, Andreas; Handrich, Yves; Schmidt, Alexander; Woakes, Anthony J; Butler, Patrick J

    2007-01-01

    King penguins (Aptenodytes patagonicus) are one of the greatest consumers of marine resources. However, while their influence on the marine ecosystem is likely to be significant, only an accurate knowledge of their energy demands will indicate their true food requirements. Energy consumption has been estimated for many marine species using the heart rate-rate of oxygen consumption (f(H) - V(O2)) technique, and the technique has been applied successfully to answer eco-physiological questions. However, previous studies on the energetics of king penguins, based on developing or applying this technique, have raised a number of issues about the degree of validity of the technique for this species. These include the predictive validity of the present f(H) - V(O2) equations across different seasons and individuals and during different modes of locomotion. In many cases, these issues also apply to other species for which the f(H) - V(O2) technique has been applied. In the present study, the accuracy of three prediction equations for king penguins was investigated based on validity studies and on estimates of V(O2) from published, field f(H) data. The major conclusions from the present study are: (1) in contrast to that for walking, the f(H) - V(O2) relationship for swimming king penguins is not affected by body mass; (2) prediction equation (1), log(V(O2) = -0.279 + 1.24log(f(H) + 0.0237t - 0.0157log(f(H)t, derived in a previous study, is the most suitable equation presently available for estimating V(O2) in king penguins for all locomotory and nutritional states. A number of possible problems associated with producing an f(H) - V(O2) relationship are discussed in the present study. Finally, a statistical method to include easy-to-measure morphometric characteristics, which may improve the accuracy of f(H) - V(O2) prediction equations, is explained.

  3. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-01

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient’s anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  4. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports.

    PubMed

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-21

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient's anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  5. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  6. TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations

    SciTech Connect

    McMillan, K; Bostani, M; McNitt-Gray, M; McCollough, C

    2015-06-15

    Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate the complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not

  7. THE SIZE-SPECIFIC DOSE ESTIMATE (SSDE) FOR TRUNCATED COMPUTED TOMOGRAPHY IMAGES.

    PubMed

    Anam, Choirul; Haryanto, Freddy; Widita, Rena; Arif, Idam; Dougherty, Geoff

    2016-11-24

    The purpose of this study is to investigate truncated axial computed tomography (CT) images in the clinical environment and to produce correction factors for abdomen, thoracic and head regions based on clinical data, in order to accurately predict the water-equivalent diameter (DW) and size-specific dose estimate (SSDE). We investigated axial images of 75 patients who underwent CT examinations. Truncated axial images were characterized by the truncation percentage (TP). Correction factors were calculated by using the value of DW for a certain TP (truncated image) divided by the value of DW for TP = 0% (the non-truncated image). Most of the thorax images acquired for this study were truncated images (86.2%), in the abdomen region about half of the images were truncated (48.1%), and in the head region only a small portion were truncated (9.1%). In the thorax region the value of TP for the truncated images varied up to 50%, in the abdomen region it varied up to 35%, and in the head region it was smaller than 10%. We have shown how to accurately estimate DW and SSDE by applying a correction factor to the truncated images. The correction factors increase exponentially with increasing TP. The corrected DW and SSDE for the truncated images were significant in the thoracic region, but were not significant in the abdomen and head regions.

  8. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    SciTech Connect

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.

    2012-04-15

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.

  9. Estimation of Weapon Yield From Inversion of Dose Rate Contours

    DTIC Science & Technology

    2009-03-01

    Zucchini .................................................................................... 76 Operation PLUMBBOB—Priscilla...Appendix E: ESS FOM ....................................................................................................112 Appendix F: Zucchini FOM...Relationship of Dose Rate Contour Area, Weather Grid, and AOI ............... 57 23. Zucchini FDC, DNA-EX, and HPAC Dose Rate Contours at 28KT

  10. ESTIMATING CONTAMINANT DOSE FOR INTERMITTENT DERMAL CONTACT: MODEL DEVELOPMENT, TESTING, AND APPLICATION

    EPA Science Inventory

    Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure sc...

  11. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  12. A proposed dynamic dosing scheme to secure the target plasma drug concentrations based on the precision of the AUC estimate.

    PubMed

    Tsuruta, Harukazu; Wada, Toyofumi

    2013-01-01

    To reduce the number of blood samples necessary to estimate the patient's AUC (the area under the plasma drug concentration time-curve), various limited sampling strategies (LSSs) have been developed. We proposed a new LSS for busulfan, in which a curve that best approximates the measured data was searched for from a set of pre-generated theoretical plasma drug concentration time-curves. We evaluated this LSS and proved that it had virtually no bias and better precision compared with conventional LSSs. However, further study revealed that the precision of our new accurate LSS was still insufficient to secure the target concentration. To solve this problem, we proposed a new dosing scheme, in which the amount of dose was adjusted dynamically according to the estimated precision of the AUC estimator.

  13. SU-F-BRF-09: A Non-Rigid Point Matching Method for Accurate Bladder Dose Summation in Cervical Cancer HDR Brachytherapy

    SciTech Connect

    Chen, H; Zhen, X; Zhou, L; Zhong, Z; Pompos, A; Yan, H; Jiang, S; Gu, X

    2014-06-15

    Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, the algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported in part by

  14. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    SciTech Connect

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  15. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    SciTech Connect

    Moore, Bria M.; Brady, Samuel L. Kaufman, Robert A.; Mirro, Amy E.

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  16. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    PubMed Central

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-01-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv. PMID:23591638

  17. Computer subroutines for the estimation of nuclear reaction effects in proton-tissue-dose calculations

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Khandelwal, G. S.

    1976-01-01

    Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

  18. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  19. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  20. Radiation absorbed dose estimates for 18F-BPA PET.

    PubMed

    Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun

    2017-01-01

    Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the (10)B (n, α) (7)Li nuclear reaction in cancer cells. In BNCT, delivery of (10)B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).

  1. Production of pure quasi-monochromatic 11C beams for accurate radiation therapy and dose delivery verification

    NASA Astrophysics Data System (ADS)

    Lazzeroni, Marta; Brahme, Anders

    2015-09-01

    In the present study we develop a new technique for the production of clean quasi-monochromatic 11C positron emitter beams for accurate radiation therapy and PET-CT dose delivery imaging and treatment verification. The 11C ion beam is produced by projectile fragmentation using a primary 12C ion beam. The practical elimination of the energy spread of the secondary 11C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the 11C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly 7Be and 3He fragments). A beam purity of about 99% is expected by the combined method.

  2. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  3. Connecting the Dots: Linking Environmental Justice Indicators to Daily Dose Model Estimates

    PubMed Central

    Huang, Hongtai; Barzyk, Timothy M.

    2016-01-01

    Many different quantitative techniques have been developed to either assess Environmental Justice (EJ) issues or estimate exposure and dose for risk assessment. However, very few approaches have been applied to link EJ factors to exposure dose estimate and identify potential impacts of EJ factors on dose-related variables. The purpose of this study is to identify quantitative approaches that incorporate conventional risk assessment (RA) dose modeling and cumulative risk assessment (CRA) considerations of disproportionate environmental exposure. We apply the Average Daily Dose (ADD) model, which has been commonly used in RA, to better understand impacts of EJ indicators upon exposure dose estimates and dose-related variables, termed the Environmental-Justice-Average-Daily-Dose (EJ-ADD) approach. On the U.S. nationwide census tract-level, we defined and quantified two EJ indicators (poverty and race/ethnicity) using an EJ scoring method to examine their relation to census tract-level multi-chemical exposure dose estimates. Pollutant doses for each tract were calculated using the ADD model, and EJ scores were assigned to each tract based on poverty- or race-related population percentages. Single- and multiple-chemical ADD values were matched to the tract-level EJ scores to analyze disproportionate dose relationships and contributing EJ factors. We found that when both EJ indicators were examined simultaneously, ADD for all pollutants generally increased with larger EJ scores. To demonstrate the utility of using EJ-ADD on the local scale, we approximated ADD levels of lead via soil/dust ingestion for simulated communities with different EJ-related scenarios. The local-level simulation indicates a substantial difference in exposure-dose levels between wealthy and EJ communities. The application of the EJ-ADD approach can link EJ factors to exposure dose estimate and identify potential EJ impacts on dose-related variables. PMID:28036053

  4. Children Can Accurately Monitor and Control Their Number-Line Estimation Performance

    ERIC Educational Resources Information Center

    Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.

    2016-01-01

    Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…

  5. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus is more costly and time-consuming, or using only one fluorescent dye, and thus less accurate. Methods and Results: A red primary ...

  6. Use of dose-dependent absorption into target tissues to more accurately predict cancer risk at low oral doses of hexavalent chromium.

    PubMed

    Haney, J

    2015-02-01

    The mouse dose at the lowest water concentration used in the National Toxicology Program hexavalent chromium (CrVI) drinking water study (NTP, 2008) is about 74,500 times higher than the approximate human dose corresponding to the 35-city geometric mean reported in EWG (2010) and over 1000 times higher than that based on the highest reported tap water concentration. With experimental and environmental doses differing greatly, it is a regulatory challenge to extrapolate high-dose results to environmental doses orders of magnitude lower in a meaningful and toxicologically predictive manner. This seems particularly true for the low-dose extrapolation of results for oral CrVI-induced carcinogenesis since dose-dependent differences in the dose fraction absorbed by mouse target tissues are apparent (Kirman et al., 2012). These data can be used for a straightforward adjustment of the USEPA (2010) draft oral slope factor (SFo) to be more predictive of risk at environmentally-relevant doses. More specifically, the evaluation of observed and modeled differences in the fraction of dose absorbed by target tissues at the point-of-departure for the draft SFo calculation versus lower doses suggests that the draft SFo be divided by a dose-specific adjustment factor of at least an order of magnitude to be less over-predictive of risk at more environmentally-relevant doses.

  7. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    PubMed Central

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-01-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643

  8. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-08-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.

  9. A bounding estimate of neutron dose based on measured photon dose around single pass reactors at the Hanford site.

    PubMed

    Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack

    2010-07-01

    Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.

  10. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  11. Simulation for clinical repeated-dose pharmacokinetic trials applying a peak-and-trough sampling design to estimate oral clearance.

    PubMed

    Ishida, Kazuya; Kayano, Yuichiro; Taguchi, Masato; Hashimoto, Yukiya

    2007-11-01

    We performed a simulation for the clinical pharmacokinetic study, in which blood was sampled at two time points corresponding to the peak concentration (C(peak)) and trough concentration (C(trough)) following repetitive oral drug administration to subjects. We estimated the approximate oral clearance (CL/F(approx)) as 2.D/(C(peak).tau+C(trough).tau), where D is the dose, and tau is the dosing interval. The CL/F(approx) value was accurate for drugs with a long-elimination half-life, and the estimation error of the CL/F value was slightly increased for drugs with a shorter elimination half-life. The accuracy of CL/F(approx) in each subject was not affected by the magnitude of the interindividual pharmacokinetic variability, but was significantly decreased by the larger measurement error of drug concentrations (or intraindividual pharmacokinetic variability). We further performed several computer simulations to mimic statistical hypothesis testing following the clinical repeated-dose pharmacokinetic trials. The statistical power to detect the difference of oral clearance between two groups was marginally dependent on the measurement error of drug concentration, but was highly dependent on the interindividual pharmacokinetic variability. These findings suggested that the peak-and-trough sampling design to estimate the CL/F(approx) value is useful for clinical repeated-dose pharmacokinetic trials, and that the study design and protocol should be evaluated carefully by computer simulation prior to a real clinical trial.

  12. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  13. Accurate liability estimation improves power in ascertained case-control studies.

    PubMed

    Weissbrod, Omer; Lippert, Christoph; Geiger, Dan; Heckerman, David

    2015-04-01

    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in nonrandomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (liability estimator as a phenotype; https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and we demonstrate that this can lead to a substantial power increase.

  14. Estimation of organ and effective dose to the patient during spinal surgery with a cone-beam O-arm system

    NASA Astrophysics Data System (ADS)

    Söderberg, Marcus; Abul-Kasim, Kasim; Ohlin, Acke; Gunnarsson, Mikael

    2011-03-01

    The purpose of this study was to estimate organ and effective dose to the patient during spinal surgery with a cone-beam O-arm system. The absorbed dose to radiosensitive organs and effective dose were calculated on mathematically simulated phantom corresponding to a 15-year-old patient using PCXMC 2.0. Radiation doses were calculated at every 15° of the x-ray tube projection angle at two regions: thoracic spine and lumbar spine. Two different scan settings were investigated: 120 kV/128 mAs (standard) and 80 kV/80 mAs (low-dose). The effect on effective dose by changing the number of simulated projection angles (24, 12 and 4) was investigated. Estimated effective dose with PCXMC was compared with calculated effective dose using conversion factors between dose length product (DLP) and effective dose. The highest absorbed doses were received by the breast, lungs (thoracic spine) and stomach (lumbar spine). The effective doses using standard settings were 5 times higher than those delivered with low-dose settings (2-3 scans: 7.9-12 mSv versus 1.5-2.4 mSv). There was no difference in estimated effective dose using 24 or 12 projection angles. Using 4 projection angles at every 90° was not enough to accurate simulate the x-ray tube rotating around the patient. Conversion factors between DLP and effective dose were determined. Our conclusion is that the O-arm has the potential to deliver high radiation doses and consequently there is a strong need to optimize the clinical scan protocols.

  15. Robust and Accurate Vision-Based Pose Estimation Algorithm Based on Four Coplanar Feature Points

    PubMed Central

    Zhang, Zimiao; Zhang, Shihai; Li, Qiu

    2016-01-01

    Vision-based pose estimation is an important application of machine vision. Currently, analytical and iterative methods are used to solve the object pose. The analytical solutions generally take less computation time. However, the analytical solutions are extremely susceptible to noise. The iterative solutions minimize the distance error between feature points based on 2D image pixel coordinates. However, the non-linear optimization needs a good initial estimate of the true solution, otherwise they are more time consuming than analytical solutions. Moreover, the image processing error grows rapidly with measurement range increase. This leads to pose estimation errors. All the reasons mentioned above will cause accuracy to decrease. To solve this problem, a novel pose estimation method based on four coplanar points is proposed. Firstly, the coordinates of feature points are determined according to the linear constraints formed by the four points. The initial coordinates of feature points acquired through the linear method are then optimized through an iterative method. Finally, the coordinate system of object motion is established and a method is introduced to solve the object pose. The growing image processing error causes pose estimation errors the measurement range increases. Through the coordinate system, the pose estimation errors could be decreased. The proposed method is compared with two other existing methods through experiments. Experimental results demonstrate that the proposed method works efficiently and stably. PMID:27999338

  16. Accurate and efficient velocity estimation using Transmission matrix formalism based on the domain decomposition method

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Jakobsen, Morten; Wu, Ru-Shan; Lu, Wenkai; Chen, Xiaohong

    2017-03-01

    Full waveform inversion (FWI) has been regarded as an effective tool to build the velocity model for the following pre-stack depth migration. Traditional inversion methods are built on Born approximation and are initial model dependent, while this problem can be avoided by introducing Transmission matrix (T-matrix), because the T-matrix includes all orders of scattering effects. The T-matrix can be estimated from the spatial aperture and frequency bandwidth limited seismic data using linear optimization methods. However the full T-matrix inversion method (FTIM) is always required in order to estimate velocity perturbations, which is very time consuming. The efficiency can be improved using the previously proposed inverse thin-slab propagator (ITSP) method, especially for large scale models. However, the ITSP method is currently designed for smooth media, therefore the estimation results are unsatisfactory when the velocity perturbation is relatively large. In this paper, we propose a domain decomposition method (DDM) to improve the efficiency of the velocity estimation for models with large perturbations, as well as guarantee the estimation accuracy. Numerical examples for smooth Gaussian ball models and a reservoir model with sharp boundaries are performed using the ITSP method, the proposed DDM and the FTIM. The estimated velocity distributions, the relative errors and the elapsed time all demonstrate the validity of the proposed DDM.

  17. Integrated Codes for Estimating Environmental Accumulation and Individual Dose from Past Hanford Atmospheric Releases: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Ikenberry, T. A.; Burnett, R. A.; Napier, B. A.; Reitz, N. A.; Shipler, D. B.

    1992-02-01

    Preliminary radiation doses were estimated and reported during Phase I of the Hanford Environmental Dose Reconstruction (HEDR) Project. As the project has progressed, additional information regarding the magnitude and timing of past radioactive releases has been developed, and the general scope of the required calculations has been enhanced. The overall HEDR computational model for computing doses attributable to atmospheric releases from Hanford Site operations is called HEDRIC (Hanford Environmental Dose Reconstruction Integrated Codes). It consists of four interrelated models: source term, atmospheric transport, environmental accumulation, and individual dose. The source term and atmospheric transport models are documented elsewhere. This report describes the initial implementation of the design specifications for the environmental accumulation model and computer code, called DESCARTES (Dynamic EStimates of Concentrations and Accumulated Radionuclides in Terrestrial Environments), and the individual dose model and computer code, called CIDER (Calculation of Individual Doses from Environmental Radionuclides). The computations required of these models and the design specifications for their codes were documented in Napier et al. (1992). Revisions to the original specifications and the basis for modeling decisions are explained. This report is not the final code documentation but gives the status of the model and code development to date. Final code documentation is scheduled to be completed in FY 1994 following additional code upgrades and refinements. The user's guide included in this report describes the operation of the environmental accumulation and individual dose codes and associated pre- and post-processor programs. A programmer's guide describes the logical structure of the programs and their input and output files.

  18. Comparing the standards of one metabolic equivalent of task in accurately estimating physical activity energy expenditure based on acceleration.

    PubMed

    Kim, Dohyun; Lee, Jongshill; Park, Hoon Ki; Jang, Dong Pyo; Song, Soohwa; Cho, Baek Hwan; Jung, Yoo-Suk; Park, Rae-Woong; Joo, Nam-Seok; Kim, In Young

    2016-08-24

    The purpose of the study is to analyse how the standard of resting metabolic rate (RMR) affects estimation of the metabolic equivalent of task (MET) using an accelerometer. In order to investigate the effect on estimation according to intensity of activity, comparisons were conducted between the 3.5 ml O2 · kg(-1) · min(-1) and individually measured resting VO2 as the standard of 1 MET. MET was estimated by linear regression equations that were derived through five-fold cross-validation using 2 types of MET values and accelerations; the accuracy of estimation was analysed through cross-validation, Bland and Altman plot, and one-way ANOVA test. There were no significant differences in the RMS error after cross-validation. However, the individual RMR-based estimations had as many as 0.5 METs of mean difference in modified Bland and Altman plots than RMR of 3.5 ml O2 · kg(-1) · min(-1). Finally, the results of an ANOVA test indicated that the individual RMR-based estimations had less significant differences between the reference and estimated values at each intensity of activity. In conclusion, the RMR standard is a factor that affects accurate estimation of METs by acceleration; therefore, RMR requires individual specification when it is used for estimation of METs using an accelerometer.

  19. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.

    PubMed

    Goudar, Chetan T

    2011-10-01

    We have identified an error in the published integral form of the modified Michaelis-Menten equation that accounts for endogenous substrate production. The correct solution is presented and the error in both the substrate concentration, S, and the kinetic parameters Vm , Km , and R resulting from the incorrect solution was characterized. The incorrect integral form resulted in substrate concentration errors as high as 50% resulting in 7-50% error in kinetic parameter estimates. To better reflect experimental scenarios, noise containing substrate depletion data were analyzed by both the incorrect and correct integral equations. While both equations resulted in identical fits to substrate depletion data, the final estimates of Vm , Km , and R were different and Km and R estimates from the incorrect integral equation deviated substantially from the actual values. Another observation was that at R = 0, the incorrect integral equation reduced to the correct form of the Michaelis-Menten equation. We believe this combination of excellent fits to experimental data, albeit with incorrect kinetic parameter estimates, and the reduction to the Michaelis-Menten equation at R = 0 is primarily responsible for the incorrectness to go unnoticed. However, the resulting error in kinetic parameter estimates will lead to incorrect biological interpretation and we urge the use of the correct integral form presented in this study.

  20. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  1. Estimation of the collective dose in the Portuguese population due to medical procedures in 2010.

    PubMed

    Teles, Pedro; Carmen de Sousa, M; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Cardoso, Gabriela; Lança, Isabel; Matela, Nuno; Janeiro, Luís; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Santos, Ana Isabel; Simãozinho, Paula; Vaz, Pedro

    2013-05-01

    In a wide range of medical fields, technological advancements have led to an increase in the average collective dose in national populations worldwide. Periodic estimations of the average collective population dose due to medical exposure is, therefore of utmost importance, and is now mandatory in countries within the European Union (article 12 of EURATOM directive 97/43). Presented in this work is a report on the estimation of the collective dose in the Portuguese population due to nuclear medicine diagnostic procedures and the Top 20 diagnostic radiology examinations, which represent the 20 exams that contribute the most to the total collective dose in diagnostic radiology and interventional procedures in Europe. This work involved the collaboration of a multidisciplinary taskforce comprising representatives of all major Portuguese stakeholders (universities, research institutions, public and private healthcare providers, administrative services of the National Healthcare System, scientific and professional associations and private service providers). This allowed us to gather a comprehensive amount of data necessary for a robust estimation of the collective effective dose to the Portuguese population. The methodology used for data collection and dose estimation was based on European Commission recommendations, as this work was performed in the framework of the European wide Dose Datamed II project. This is the first study estimating the collective dose for the population in Portugal, considering such a wide national coverage and range of procedures and consisting of important baseline reference data. The taskforce intends to continue developing periodic collective dose estimations in the future. The estimated annual average effective dose for the Portuguese population was of 0.080±0.017 mSv caput(-1) for nuclear medicine exams and of 0.96±0.68 mSv caput(-1) for the Top 20 diagnostic radiology exams.

  2. Alpha's standard error (ASE): an accurate and precise confidence interval estimate.

    PubMed

    Duhachek, Adam; Lacobucci, Dawn

    2004-10-01

    This research presents the inferential statistics for Cronbach's coefficient alpha on the basis of the standard statistical assumption of multivariate normality. The estimation of alpha's standard error (ASE) and confidence intervals are described, and the authors analytically and empirically investigate the effects of the components of these equations. The authors then demonstrate the superiority of this estimate compared with previous derivations of ASE in a separate Monte Carlo simulation. The authors also present a sampling error and test statistic for a test of independent sample alphas. They conclude with a recommendation that all alpha coefficients be reported in conjunction with standard error or confidence interval estimates and offer SAS and SPSS programming codes for easy implementation.

  3. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  4. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  5. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  6. Fast and accurate probability density estimation in large high dimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2015-01-01

    Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.

  7. Spectral estimation from laser scanner data for accurate color rendering of objects

    NASA Astrophysics Data System (ADS)

    Baribeau, Rejean

    2002-06-01

    Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.

  8. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1985-01-01

    Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.

  9. Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach

    PubMed Central

    Xiang, G.; Ferson, S.; Ginzburg, L.; Longpré, L.; Mayorga, E.; Kosheleva, O.

    2013-01-01

    To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated weighted estimates, and we explain how to optimally select the corresponding weights. PMID:25187183

  10. Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-15

    Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by -4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (-8.1%, 8.1%) and (-17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose

  11. Radiation dose from MDCT using Monte Carlo simulations: estimating fetal dose due to pulmonary embolism scans accounting for overscan

    NASA Astrophysics Data System (ADS)

    Angel, E.; Wellnitz, C.; Goodsitt, M.; DeMarco, J.; Cagnon, C.; Ghatali, M.; Cody, D.; Stevens, D.; McCollough, C.; Primak, A.; McNitt-Gray, M.

    2007-03-01

    Pregnant women with shortness of breath are increasingly referred for CT Angiography to rule out Pulmonary Embolism (PE). While this exam is typically focused on the lungs, extending scan boundaries and overscan can add to the irradiated volume and have implications on fetal dose. The purpose of this work was to estimate radiation dose to the fetus when various levels of overscan were encountered. Two voxelized models of pregnant patients derived from actual patient anatomy were created based on image data. The models represent an early (< 7 weeks) and late term pregnancy (36 weeks). A previously validated Monte Carlo model of an MDCT scanner was used that takes into account physical details of the scanner. Simulated helical scans used 120 kVp, 4x5 mm beam collimation, pitch 1, and varying beam-off locations (edge of the irradiated volume) were used to represent different protocols plus overscan. Normalized dose (mGy/100mAs) was calculated for each fetus. For the early term and the late term pregnancy models, fetal dose estimates for a standard thoracic PE exam were estimated to be 0.05 and 0.3 mGy/100mAs, respectively, increasing to 9 mGy/100mAs when the beam-off location was extended to encompass the fetus. When performing PE exams to rule out PE in pregnant patients, the beam-off location may have a large effect on fetal dose, especially for late term pregnancies. Careful consideration of ending location of the x-ray beam - and not the end of image data - could result in significant reduction in radiation dose to the fetus.

  12. Accurate and unbiased estimation of power-law exponents from single-emitter blinking data.

    PubMed

    Hoogenboom, Jacob P; den Otter, Wouter K; Offerhaus, Herman L

    2006-11-28

    Single emitter blinking with a power-law distribution for the on and off times has been observed on a variety of systems including semiconductor nanocrystals, conjugated polymers, fluorescent proteins, and organic fluorophores. The origin of this behavior is still under debate. Reliable estimation of power exponents from experimental data is crucial in validating the various models under consideration. We derive a maximum likelihood estimator for power-law distributed data and analyze its accuracy as a function of data set size and power exponent both analytically and numerically. Results are compared to least-squares fitting of the double logarithmically transformed probability density. We demonstrate that least-squares fitting introduces a severe bias in the estimation result and that the maximum likelihood procedure is superior in retrieving the correct exponent and reducing the statistical error. For a data set as small as 50 data points, the error margins of the maximum likelihood estimator are already below 7%, giving the possibility to quantify blinking behavior when data set size is limited, e.g., due to photobleaching.

  13. How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?

    PubMed Central

    Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.

    2010-01-01

    We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774

  14. Dose estimation of animal experiments at the THOR BNCT beam by NCTPlan and Xplan.

    PubMed

    Liu, Yuan-Hao; Lee, Pei-Yi; Lin, Yu-Chuan; Chou, Fong-In; Chen, Wei-Lin; Huang, Yu-Shiang; Jiang, Shiang-Huei

    2014-06-01

    Dose estimation of animal experiments affects many subsequent derived quantities, such as RBE and CBE values. It is important to ensure the trustiness of calculated dose of the irradiated animals. However, the dose estimation was normally calculated using simplified geometries and tissue compositions, which led to rough results. This paper introduces the use of treatment planning systems NCTplan and Xplan for the dose estimation. A mouse was taken as an example and it was brought to hospital for micro-PET/CT scan. It was found that the critical organ doses of an irradiated mouse calculated by simplified model were unreliable in comparison to Xplan voxel model. The difference could reach the extent of several tenths percent. It is recommended that a treatment planning system should be introduced to future animal experiments to upgrade the data quality.

  15. The cytokinesis-blocked micronucleus assay: dose-response calibration curve, background frequency in the population and dose estimation.

    PubMed

    Rastkhah, E; Zakeri, F; Ghoranneviss, M; Rajabpour, M R; Farshidpour, M R; Mianji, F; Bayat, M

    2016-03-01

    An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.

  16. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    SciTech Connect

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas; Papadakis, Antonios E.

    2010-12-15

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulating women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made

  17. Accurate estimation of influenza epidemics using Google search data via ARGO

    PubMed Central

    Yang, Shihao; Santillana, Mauricio; Kou, S. C.

    2015-01-01

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  18. Do hand-held calorimeters provide reliable and accurate estimates of resting metabolic rate?

    PubMed

    Van Loan, Marta D

    2007-12-01

    This paper provides an overview of a new technique for indirect calorimetry and the assessment of resting metabolic rate. Information from the research literature includes findings on the reliability and validity of a new hand-held indirect calorimeter as well as use in clinical and field settings. Research findings to date are of mixed results. The MedGem instrument has provided more consistent results when compared to the Douglas bag method of measuring metabolic rate. The BodyGem instrument has been shown to be less accurate when compared to standard metabolic carts. Furthermore, when the Body Gem has been used with clinical patients or with under nourished individuals the results have not been acceptable. Overall, there is not a large enough body of evidence to definitively support the use of these hand-held devices for assessment of metabolic rate in a wide variety of clinical or research environments.

  19. Accurate estimation of influenza epidemics using Google search data via ARGO.

    PubMed

    Yang, Shihao; Santillana, Mauricio; Kou, S C

    2015-11-24

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.

  20. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  1. Anticipated Dose Estimate and Historical Documentation and Excel Files for Project W-460

    SciTech Connect

    LILLY, J.T.

    1999-12-07

    Document provides Excel Spreadsheets which form the basis for estimates of the expected whole body and extremity radiological dose to workers conducting planned plutonium stabilization and packaging operations at Hanford Plutonium Finishing Plant.

  2. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    NASA Astrophysics Data System (ADS)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  3. Multiple candidates and multiple constraints based accurate depth estimation for multi-view stereo

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhou, Fugen; Xue, Bindang

    2017-02-01

    In this paper, we propose a depth estimation method for multi-view image sequence. To enhance the accuracy of dense matching and reduce the inaccurate matching which is produced by inaccurate feature description, we select multiple matching points to build candidate matching sets. Then we compute an optimal depth from a candidate matching set which satisfies multiple constraints (epipolar constraint, similarity constraint and depth consistency constraint). To further increase the accuracy of depth estimation, depth consistency constraint of neighbor pixels is used to filter the inaccurate matching. On this basis, in order to get more complete depth map, depth diffusion is performed by neighbor pixels' depth consistency constraint. Through experiments on the benchmark datasets for multiple view stereo, we demonstrate the superiority of proposed method over the state-of-the-art method in terms of accuracy.

  4. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1990-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  5. Accurate dynamic power estimation for CMOS combinational logic circuits with real gate delay model.

    PubMed

    Fadl, Omnia S; Abu-Elyazeed, Mohamed F; Abdelhalim, Mohamed B; Amer, Hassanein H; Madian, Ahmed H

    2016-01-01

    Dynamic power estimation is essential in designing VLSI circuits where many parameters are involved but the only circuit parameter that is related to the circuit operation is the nodes' toggle rate. This paper discusses a deterministic and fast method to estimate the dynamic power consumption for CMOS combinational logic circuits using gate-level descriptions based on the Logic Pictures concept to obtain the circuit nodes' toggle rate. The delay model for the logic gates is the real-delay model. To validate the results, the method is applied to several circuits and compared against exhaustive, as well as Monte Carlo, simulations. The proposed technique was shown to save up to 96% processing time compared to exhaustive simulation.

  6. Accurate group velocity estimation for unmanned aerial vehicle-based acoustic atmospheric tomography.

    PubMed

    Rogers, Kevin J; Finn, Anthony

    2017-02-01

    Acoustic atmospheric tomography calculates temperature and wind velocity fields in a slice or volume of atmosphere based on travel time estimates between strategically located sources and receivers. The technique discussed in this paper uses the natural acoustic signature of an unmanned aerial vehicle as it overflies an array of microphones on the ground. The sound emitted by the aircraft is recorded on-board and by the ground microphones. The group velocities of the intersecting sound rays are then derived by comparing these measurements. Tomographic inversion is used to estimate the temperature and wind fields from the group velocity measurements. This paper describes a technique for deriving travel time (and hence group velocity) with an accuracy of 0.1% using these assets. This is shown to be sufficient to obtain highly plausible tomographic inversion results that correlate well with independent SODAR measurements.

  7. Techniques for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, Michael R.; Bland, Roger

    1999-01-01

    An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. The relative magnitude of equipment errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second. Typical maximum flow rates during the data-collection period averaged 750 cubic meters per second.

  8. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1991-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  9. Estimation of organ dose equivalents from residents of radiation-contaminated buildings with Rando phantom measurements.

    PubMed

    Lee, J S; Dong, S L; Wu, T H

    1999-05-01

    Since August 1996, a dose reconstruction model has been conducted with thermoluminescent dosimeter (TLD)-embedded chains, belts and badges for external dose measurements on the residents in radiation-contaminated buildings. The TLD dosimeters, worn on the front of the torso, would not be adequate for dose measurement in cases when the radiation is anisotropic or the incident angles of radiation sources are not directed in the front-to-back direction. The shielding and attenuation by the body would result in the dose equivalent estimation being somewhat skewed. An organ dose estimation method with a Rando phantom under various exposure geometries is proposed. The conversion factors, obtained from the phantom study, may be applicable to organ dose estimations for residents in the contaminated buildings if the incident angles correspond to the phantom simulation results. There is a great demand for developing a mathematical model or Monte Carlo calculation to deal with complicated indoor layout geometry problems involving ionizing radiation. Further research should be directed toward conducting laboratory simulation by investigating the relationship between doses delivered from multiple radiation sources. It is also necessary to collaborate with experimental biological dosimetry, such as chromosome aberration analysis, fluorescence in situ hybridization (FISH) and retrospective ESR-dosimetry with teeth, applied to the residents, so that the organ dose equivalent estimations may be more reliable for radio-epidemiological studies.

  10. Simplified estimation method for dose distributions around field junctions in proton craniospinal irradiation.

    PubMed

    Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki

    2017-03-01

    In radiotherapy involving craniospinal irradiation (CSI), field junctions of therapeutic beams are necessary, because a CSI target is generally several times larger than the maximum field size of the beams. The purpose of this study was to develop a simplified method for estimating dose uniformity around the field junctions in proton CSI. We estimated the dose profiles around the field junctions of proton beams using a simplified field-junction model, in which partial lateral dose distributions around the field edge were assumed to be approximated using the error function. We measured the lateral dose distributions of the proton beams planned for the CSI treatment using a two-dimensional (2D) ionization chamber array. Although dose hot spots and cold spots tend to be underestimated by a chamber array because of the partial volume effect of the sensitive volume and discrete chamber positions, the model estimation results were fairly consistent with the measurements obtained using a 2D chamber array subjected to CSI-simulated serial irradiation. The simplified junction model enabled us to estimate the dose distributions and dependence of the setup position gap on the dose uniformity around the field junctions on the basis of the field-by-field dose profiles measured using the 2D chamber array.

  11. Estimation of dose-response models for discrete and continuous data in weed science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dose-response analysis is widely used in biological sciences and has application to a variety of risk assessment, bioassay, and calibration problems. In weed science, dose-response methodologies have typically relied on least squares estimation under an assumption of normality. Advances in computati...

  12. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    PubMed Central

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-01-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses. PMID:27499492

  13. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    NASA Astrophysics Data System (ADS)

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-08-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses.

  14. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  15. Sensitivity and uncertainty investigations for Hiroshima dose estimates and the applicability of the Little Boy mockup measurements

    SciTech Connect

    Bartine, D.E.; Cacuci, D.G.

    1983-09-13

    This paper describes sources of uncertainty in the data used for calculating dose estimates for the Hiroshima explosion and details a methodology for systematically obtaining best estimates and reduced uncertainties for the radiation doses received. (ACR)

  16. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  17. Multiple-estimate Monte Carlo calculation of the dose rate constant for a cesium-131 interstitial brachytherapy seed

    SciTech Connect

    Wittman, Richard S.; Fisher, Darrell R.

    2007-01-03

    The purpose of this study was to calculate a more accurate dose rate constant for the Cs-131 (model CS-1, IsoRay Medical, Inc., Richland, Washington) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15 percent greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the Cs-131 seed was 1.040 cGy h^{-1} U^{-1} for an ionization chamber model and 1.032 cGy h^{-1} U^{-1} for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multi-estimate values were from 1.032 cGy h^{-1} U^{-1} to 1.061 cGy h^{-1} U^{-1}. We also modeled three I-125 seeds with known dose rate constants to test the accuracy of this study's approach.

  18. Estimation of staff lens doses during interventional procedures. Comparing cardiology, neuroradiology and interventional radiology.

    PubMed

    Vano, E; Sanchez, R M; Fernandez, J M

    2015-07-01

    The purpose of this article is to estimate lens doses using over apron active personal dosemeters in interventional catheterisation laboratories (cardiology IC, neuroradiology IN and radiology IR) and to investigate correlations between occupational lens doses and patient doses. Active electronic personal dosemeters placed over the lead apron were used on a sample of 204 IC procedures, 274 IN and 220 IR (all performed at the same university hospital). Patient dose values (kerma area product) were also recorded to evaluate correlations with occupational doses. Operators used the ceiling-suspended screen in most cases. The median and third quartile values of equivalent dose Hp(10) per procedure measured over the apron for IC, IN and IR resulted, respectively, in 21/67, 19/44 and 24/54 µSv. Patient dose values (median/third quartile) were 75/128, 83/176 and 61/159 Gy cm(2), respectively. The median ratios for dosemeters worn over the apron by operators (protected by the ceiling-suspended screen) and patient doses were 0.36; 0.21 and 0.46 µSv Gy(-1) cm(-2), respectively. With the conservative approach used (lens doses estimated from the over apron chest dosemeter) we came to the conclusion that more than 800 procedures y(-1) and per operator were necessary to reach the new lens dose limit for the three interventional specialties.

  19. Evaluation of the accuracy of fetal dose estimates using TG-36 data

    SciTech Connect

    Kry, Stephen F.; Starkschall, George; Antolak, John A.; Salehpour, Mohammad

    2007-04-15

    The American Association of Physicists in Medicine Radiation Therapy Committee Task Group 36 report (TG-36) provides guidelines for managing radiation therapy of pregnant patients. Included in the report are data that can be used to estimate the dose to the fetus. The purpose of this study is to evaluate the accuracy of these fetal dose estimates as compared to clinically measured values. TG-36 calculations were performed and compared with measurements of the fetal dose made in vivo or in appropriately-designed phantoms. Calculation and measurement data was collected for eight pregnant patients who underwent radiation therapy at the MD Anderson Cancer Center as well as for several fetal dose studies in the literature. The maximum measured unshielded fetal dose was 47 cGy, which was 1.5% of the prescription dose. For all cases, TG-36 calculations and measured fetal doses differed by up to a factor of 3--the ratio of the calculated to measured dose ranged from 0.34 to 2.93. On average, TG-36 calculations underestimated the measured dose by 31%. No significant trends in the relationship between the calculated and measured fetal doses were found based on the distance from, or the size of, the treatment field.

  20. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    SciTech Connect

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantom with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.

  1. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; ...

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantommore » with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less

  2. A Simple and Accurate Equation for Peak Capacity Estimation in Two Dimensional Liquid Chromatography

    PubMed Central

    Li, Xiaoping; Stoll, Dwight R.; Carr, Peter W.

    2009-01-01

    Two dimensional liquid chromatography (2DLC) is a very powerful way to greatly increase the resolving power and overall peak capacity of liquid chromatography. The traditional “product rule” for peak capacity usually overestimates the true resolving power due to neglect of the often quite severe under-sampling effect and thus provides poor guidance for optimizing the separation and biases comparisons to optimized one dimensional gradient liquid chromatography. Here we derive a simple yet accurate equation for the effective two dimensional peak capacity that incorporates a correction for under-sampling of the first dimension. The results show that not only is the speed of the second dimension separation important for reducing the overall analysis time, but it plays a vital role in determining the overall peak capacity when the first dimension is under-sampled. A surprising subsidiary finding is that for relatively short 2DLC separations (much less than a couple of hours), the first dimension peak capacity is far less important than is commonly believed and need not be highly optimized, for example through use of long columns or very small particles. PMID:19053226

  3. Slide Rule for Rapid Response Estimation of Radiological Dose from Criticality Accidents

    SciTech Connect

    Broadhead, B L; Childs, R L; Hopper, C M; Parks, C V

    1999-09-20

    This paper describes a functional slide rule that provides a readily usable "in-hand" method for estimating nuclear criticality accident information from sliding graphs, thereby permitting (1) the rapid estimation of pertinent criticality accident information without laborious or sophisticated calculations in a nuclear criticality emergency situation, (2) the appraisal of potential fission yields and external personnel radiation exposures for facility safety analyses, and (3) a technical basis for emergency preparedness and training programs at nonreactor nuclear facilities. The slide rule permits the estimation of neutron and gamma dose rates and integrated doses based upon estimated fission yields, distance from the fission source, and time-after criticality accidents for five different critical systems. Another sliding graph permits the estimation of critical solution fission yields based upon fissile material concentration, critical vessel geometry, and solution addition rate. Another graph provides neutron and gamma dose-reduction factors for water, steel, and concrete shields.

  4. Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments

    NASA Astrophysics Data System (ADS)

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    Next generation high throughput sequencing (NGS) is poised to replace array based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naïve algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  5. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.

    PubMed

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    2011-03-01

    Abstract Next generation high-throughput sequencing (NGS) is poised to replace array-based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naive algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood-based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  6. Non-parametric estimators of a monotonic dose-response curve and bootstrap confidence intervals.

    PubMed

    Dilleen, Maria; Heimann, Günter; Hirsch, Ian

    2003-03-30

    In this paper we consider study designs which include a placebo and an active control group as well as several dose groups of a new drug. A monotonically increasing dose-response function is assumed, and the objective is to estimate a dose with equivalent response to the active control group, including a confidence interval for this dose. We present different non-parametric methods to estimate the monotonic dose-response curve. These are derived from the isotonic regression estimator, a non-negative least squares estimator, and a bias adjusted non-negative least squares estimator using linear interpolation. The different confidence intervals are based upon an approach described by Korn, and upon two different bootstrap approaches. One of these bootstrap approaches is standard, and the second ensures that resampling is done from empiric distributions which comply with the order restrictions imposed. In our simulations we did not find any differences between the two bootstrap methods, and both clearly outperform Korn's confidence intervals. The non-negative least squares estimator yields biased results for moderate sample sizes. The bias adjustment for this estimator works well, even for small and moderate sample sizes, and surprisingly outperforms the isotonic regression method in certain situations.

  7. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    NASA Astrophysics Data System (ADS)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  8. SU-E-T-273: Do Task Group External Beam QA Recommendations Guarantee Accurate Treatment Plan Dose Delivery?

    SciTech Connect

    Templeton, A; Liao, Y; Redler, G; Zhen, H

    2015-06-15

    Purpose: AAPM task groups 40/142 have provided an invaluable set of goals for physicists designing QA programs, attempting to standardize what would otherwise likely be a highly variable phenomenon across institutions. However, with the complexity of modalities such as VMAT, we hypothesize that following these guidelines to the letter might still allow unacceptable dose discrepancies. To explore this hypothesis we simulated machines bordering on QA acceptability, and calculated the effect on patient plans. Methods: Two errant machines were simulated in Aria/Eclipse, each just within task group criteria for output, percent depth dose, beam profile, gantry and collimator rotations, and jaw and MLC positions. One machine minimized dose to the PTV (machine A) and the other maximized dose to the OARs (machine B). Clinical treatment plans (3-phase prostate, n=3; hypofractionated lung, n=1) were calculated on these machines and the dose distributions compared. A prostate case was examined for contribution of error sources and evaluated using delivery QA data. Results: The prostate plans showed mean decreases in target D95 of 9.9% of prescription dose on machine A. On machine B, The rectal and bladder V70Gy each increased by 7.1 percentage points, while their V45Gy increased by 16.2% and 15.0% respectively. In the lung plan, the target D95 decreased by 12.8% and the bronchial tree Dmax increased by 21% of prescription dose, on machines A and B. One prostate plan showed target dose errors of 3.8% from MLC changes, 2% from output, ∼3% from energy and ∼0.5% from other factors. This plan achieved an 88.4% gamma passing rate using 3%/3mm using ArcCHECK. Conclusion: In the unlikely event that a machine exhibits all maximum errors allowed by TG 40/142, unacceptably large changes in dose delivered are possible especially in highly modulated VMAT plans, despite the machine passing routine QA.

  9. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  10. Military Participants at U.S. Atmospheric Nuclear Weapons Testing— Methodology for Estimating Dose and Uncertainty

    PubMed Central

    Till, John E.; Beck, Harold L.; Aanenson, Jill W.; Grogan, Helen A.; Mohler, H. Justin; Mohler, S. Shawn; Voillequé, Paul G.

    2014-01-01

    Methods were developed to calculate individual estimates of exposure and dose with associated uncertainties for a sub-cohort (1,857) of 115,329 military veterans who participated in at least one of seven series of atmospheric nuclear weapons tests or the TRINITY shot carried out by the United States. The tests were conducted at the Pacific Proving Grounds and the Nevada Test Site. Dose estimates to specific organs will be used in an epidemiological study to investigate leukemia and male breast cancer. Previous doses had been estimated for the purpose of compensation and were generally high-sided to favor the veteran's claim for compensation in accordance with public law. Recent efforts by the U.S. Department of Defense (DOD) to digitize the historical records supporting the veterans’ compensation assessments make it possible to calculate doses and associated uncertainties. Our approach builds upon available film badge dosimetry and other measurement data recorded at the time of the tests and incorporates detailed scenarios of exposure for each veteran based on personal, unit, and other available historical records. Film badge results were available for approximately 25% of the individuals, and these results assisted greatly in reconstructing doses to unbadged persons and in developing distributions of dose among military units. This article presents the methodology developed to estimate doses for selected cancer cases and a 1% random sample of the total cohort of veterans under study. PMID:24758578

  11. A strategy to model nonmonotonic dose-response curve and estimate IC50.

    PubMed

    Zhang, Hui; Holden-Wiltse, Jeanne; Wang, Jiong; Liang, Hua

    2013-01-01

    The half-maximal inhibitory concentration IC[Formula: see text] is an important pharmacodynamic index of drug effectiveness. To estimate this value, the dose response relationship needs to be established, which is generally achieved by fitting monotonic sigmoidal models. However, recent studies on Human Immunodeficiency Virus (HIV) mutants developing resistance to antiviral drugs show that the dose response curve may not be monotonic. Traditional models can fail for nonmonotonic data and ignore observations that may be of biologic significance. Therefore, we propose a nonparametric model to describe the dose response relationship and fit the curve using local polynomial regression. The nonparametric approach is shown to be promising especially for estimating the IC[Formula: see text] of some HIV inhibitory drugs, in which there is a dose-dependent stimulation of response for mutant strains. This model strategy may be applicable to general pharmacologic, toxicologic, or other biomedical data that exhibits a nonmonotonic dose response relationship for which traditional parametric models fail.

  12. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-07-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  13. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-03-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  14. Estimate of Dose and Residual Activity in the SNS Ring Collimation Straight

    NASA Astrophysics Data System (ADS)

    Ludewig, H.; Simos, N.; Davino, D.; Cousineau, S.; Catalan-Lasheras, N.; Brodowski, J.; Tuozzolo, J.; Longo, C.; Mullany, B.; Raparia, D.

    2003-12-01

    The collimation system in the SNS ring includes a two-stage collimator consisting of a halo scraper and an appropriate fixed aperture collimator. This unit is placed between the first quadru-pole and the first doublet in the collimation straight section of the ring. The entire structure is surrounded by an outer shield structure. The downstream dose to the doublet and the attached corrector magnet will be estimated for normal operating conditions. In addition, the activities of cooling water, tunnel air, and dose to cables will be estimated. The dose at the flange locations will be estimated following machine shutdown. Finally, the implied dose to surroundings during the removal of an exposed collimator will be made.

  15. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  16. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  17. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  18. Estimation of radionuclide ingestion: Lessons from dose reconstruction for fallout from the Nevada Test Site

    SciTech Connect

    Breshears, D.D.; Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1994-09-01

    The United States conducted atmospheric testing of nuclear devices at the Nevada Test Site from 1951 through 1963. In 1979 the U.S. Department of Energy established the Off-Site Radiation Exposure Review Project to compile a data base related to health effects from nuclear testing and to reconstruct doses to public residing off of the Nevada Test Site. This project is the most comprehensive dose reconstruction project to date, and, since similar assessments are currently underway at several other locations within and outside the U.S., lessons from ORERP can be valuable. A major component of dose reconstruction is estimation of dose from radionuclide ingestion. The PATHWAY food-chain model was developed to estimate the amount of radionuclides ingested. For agricultural components of the human diet, PATHWAY predicts radionuclide concentrations and quantities ingested. To improve accuracy and model credibility, four components of model analysis were conducted: estimation of uncertainty in model predictions, estimation of sensitivity of model predictions to input parameters, and testing of model predictions against independent data (validation), and comparing predictions from PATHWAY with those from other models. These results identified strengths and weaknesses in the model and aided in establishing the confidence associated with model prediction, which is a critical component risk assessment and dose reconstruction. For fallout from the Nevada Test Site, by far, the largest internal doses were received by the thyroid. However, the predicted number of fatal cancers from ingestion dose was generally much smaller than the number predicted from external dose. The number of fatal cancers predicted from ingestion dose was also orders of magnitude below the normal projected cancer rate. Several lessons were learned during the study that are relevant to other dose reconstruction efforts.

  19. A method for estimating occupational radiation dose to individuals, using weekly dosimetry data

    SciTech Connect

    Mitchell, T.J.; Ostrouchov, G.; Frome, E.L.; Kerr, G.D.

    1993-12-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses. It is usually assumed that the annual dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. We propose the use of a probability distribution to describe an individual`s dose during a specific period of time. Statistical methods for estimating this dose distribution are developed. The methods take into account the ``measurement error`` that is produced by the dosimetry system, and the bias that was introduced by policies that lead to right censoring of small doses as zero. The method is applied to a sample of dose histories obtained from hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The result of this evaluation raises serious questions about the validity of the historical personnel dosimetry data that is currently being used in low-dose studies of nuclear industry workers. In particular, it appears that there was a systematic underestimation of doses for ORNL workers. This could result in biased estimates of dose-response coefficients and their standard errors.

  20. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment

    EPA Science Inventory

    We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The q...

  1. The challenges of accurately estimating time of long bone injury in children.

    PubMed

    Pickett, Tracy A

    2015-07-01

    The ability to determine the time an injury occurred can be of crucial significance in forensic medicine and holds special relevance to the investigation of child abuse. However, dating paediatric long bone injury, including fractures, is nuanced by complexities specific to the paediatric population. These challenges include the ability to identify bone injury in a growing or only partially-calcified skeleton, different injury patterns seen within the spectrum of the paediatric population, the effects of bone growth on healing as a separate entity from injury, differential healing rates seen at different ages, and the relative scarcity of information regarding healing rates in children, especially the very young. The challenges posed by these factors are compounded by a lack of consistency in defining and categorizing healing parameters. This paper sets out the primary limitations of existing knowledge regarding estimating timing of paediatric bone injury. Consideration and understanding of the multitude of factors affecting bone injury and healing in children will assist those providing opinion in the medical-legal forum.

  2. Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Guerdoux, Simon; Fourment, Lionel

    2007-05-01

    An Arbitrary Lagrangian Eulerian (ALE) formulation is developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method is utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. Different velocity computation and remap techniques have been investigated, providing significant improvement with respect to more standard approaches. The proposed ALE formulation is applied to FSW simulation. Steady state welding, but also transient phases are simulated, showing good robustness and accuracy of the developed formulation. Friction parameters are identified for an Eulerian steady state simulation by comparison with experimental results. Void formation can be simulated. Simulations of the transient plunge and welding phases help to better understand the deposition process that occurs at the trailing edge of the probe. Flexibility and robustness of the model finally allows investigating the influence of new tooling designs on the deposition process.

  3. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Flampouri, Stella; Jiang, Steve B.; Sharp, Greg C.; Wolfgang, John; Patel, Abhijit A.; Choi, Noah C.

    2006-06-01

    The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the

  4. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Pinder, J E

    2016-01-01

    This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ((99)Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (99)Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from (99)Mo uptake are compared to similar models developed previously for (131)I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs.

  5. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    NASA Astrophysics Data System (ADS)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  6. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    SciTech Connect

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E.

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different

  7. [Estimation of the committed effective dose of radioactive cesium and potassium by the market basket method].

    PubMed

    Tsutsumi, Tomoaki; Nabeshi, Hiromi; Ikarashi, Atsuko; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    The Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant disaster after the Great East Japan Earthquake has caused radioactive contamination in food. Using the market basket method, total diet samples in Tokyo, Miyagi prefecture and Fukushima prefecture were analyzed for cesium-134 and -137 (radioactive cesium) and naturally occurring potassium-40 (radioactive potassium) in order to estimate the committed effective doses of these radioactive materials from food. Doses were calculated on the assumption that "not detected" corresponded to zero or to half the limit of detection (values in brackets). The estimated doses of radioactive cesium in Tokyo, Miyagi and Fukushima were 0.0021 (0.0024), 0.017 (0.018) and 0.019 (0.019) mSv/year, respectively. Although the doses in Miyagi and Fukushima were more than 8 times the dose in Tokyo, they were significantly lower than the maximum permissible dose (1 mSv/year) determined by the Ministry of Health, Labour and Welfare, Japan. The estimated doses of naturally occurring radioactive potassium in these areas were in the range of 0.17-0.20 (0.18-0.20) mSv/year, and there were no significant differences between the areas.

  8. Dose estimation based on a behavior survey of residents around the JCO facility.

    PubMed

    Fujimoto, K; Yonehara, H; Yamaguchi, Y; Endo, A

    2001-09-01

    The NIRS staff interviewed the residents in the evacuated zone around the JCO facility in Tokai-mura on 19 and 20 November, 1999, to obtain the following parameters every 30 minutes starting from 10:35 A.M. on 30 September to 6:15 A.M. on 1 October: the distance from the precipitation tank, the type of the house, positions in the house, wall materials and their thickness in order to estimate individual doses due to the accident. The ambient dose equivalents were obtained based on monitoring data during the accident. In addition, computer calculations were conducted to evaluate the conversion factor from ambient dose equivalent to effective dose equivalent as well as the shielding effect of the house or factory to estimate the effective dose equivalent to the residents. The estimated individual doses based on the behavior survey were in the range from zero to 21 mSv. The individual doses were reported to the residents during the second visit to each house and factory at the end of January, 2000.

  9. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    SciTech Connect

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.; Heames, T.J.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in the quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.

  10. Estimation of organ and effective dose due to Compton backscatter security scans

    SciTech Connect

    Hoppe, Michael E.; Schmidt, Taly Gilat

    2012-06-15

    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 {mu}R at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation's boundaries. The energy deposited in the phantoms' respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms' total effective doses were below the established 0.25 {mu}Sv standard, with an estimated maximum total effective dose of 0.07 {mu}Sv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 {mu}Gy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 {mu}R at 30 cm.

  11. Estimated radiation dose to the newborn in FDG-PET studies

    SciTech Connect

    Ruotsalainen, U.; Suhonen-Polvi, H.; Eronen, E.; Kinnala, A.

    1996-02-01

    The aim of this study was to estimate the radiation dose due to intravenous injection of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) for infants studied with PET. The radioactivity concentration in the brain and bladder content was measured with PET to determine the cumulated activity in these organs in 21 infant FDG studies. The individual organ masses were estimated according to the whole-body and brain masses, and they were used to calculate the absorbed dose per unit cumulated activity (S values). For organs other than brain and bladder, the cumulated activity was defined from adult studies. For each individual patient, the absorbed dose to the brain, bladder wall and selected organs were calculated. An estimation of the effective dose was determined. Whole-body distribution of FDG in the infants differed from adults: a greater proportion of the injected activity accumulated into the brain (9% versus 7%) and less was excreted to urine (7% versus 20% respectively). The measured cumulated activity in the brain was 0.25 MBq {center_dot} h/MBq and in the bladder content 0.04 MBq {center_dot}h/MBq with a large individual variation in latter. The calculated absorbed dose was 0.24 mGy/MBq to the brain and 1.03 mGy/MBq to the bladder wall. The estimated effective dose was 0.43 mSv/MBq. The dose to the bladder wall was lower in infants as compared to adults with ordinary amounts of injected activity. The greater amount of activity remaining in the body may increase the dose to other organs. The effective dose was lower compared to adults and conventional nuclear medicine studies of infants. PET can be a valuable tool in pediatric nuclear medicine because of good resolution images, sensitive radiation measurement and a variety of tracers labeled with short-lived isotopes. 27 refs., 4 figs., 2 tabs.

  12. Variability in dose estimates associated with the food-chain transport and ingestion of selected radionuclides

    SciTech Connect

    Hoffman, F.O.; Gardner, R.H.; Eckerman, K.F.

    1982-06-01

    Dose predictions for the ingestion of /sup 90/Sr and /sup 137/Cs, using aquatic and terrestrial food chain transport models similar to those in the Nuclear Regulatory Commission's Regulatory Guide 1.109, are evaluated through estimating the variability of model parameters and determining the effect of this variability on model output. The variability in the predicted dose equivalent is determined using analytical and numerical procedures. In addition, a detailed discussion is included on /sup 90/Sr dosimetry. The overall estimates of uncertainty are most relevant to conditions where site-specific data is unavailable and when model structure and parameter estimates are unbiased. Based on the comparisons performed in this report, it is concluded that the use of the generic default parameters in Regulatory Guide 1.109 will usually produce conservative dose estimates that exceed the 90th percentile of the predicted distribution of dose equivalents. An exception is the meat pathway for /sup 137/Cs, in which use of generic default values results in a dose estimate at the 24th percentile. Among the terrestrial pathways of exposure, the non-leafy vegetable pathway is the most important for /sup 90/Sr. For /sup 90/Sr, the parameters for soil retention, soil-to-plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For /sup 137/Cs, the meat transfer coefficient the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters. The freshwater finfish bioaccumulation factor is the most important parameter for the dose prediction of /sup 90/Sr and /sup 137/Cs transported over the water-fish-man pathway.

  13. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion.

  14. Aggregate versus individual-level sexual behavior assessment: how much detail is needed to accurately estimate HIV/STI risk?

    PubMed

    Pinkerton, Steven D; Galletly, Carol L; McAuliffe, Timothy L; DiFranceisco, Wayne; Raymond, H Fisher; Chesson, Harrell W

    2010-02-01

    The sexual behaviors of HIV/sexually transmitted infection (STI) prevention intervention participants can be assessed on a partner-by-partner basis: in aggregate (i.e., total numbers of sex acts, collapsed across partners) or using a combination of these two methods (e.g., assessing five partners in detail and any remaining partners in aggregate). There is a natural trade-off between the level of sexual behavior detail and the precision of HIV/STI acquisition risk estimates. The results of this study indicate that relatively simple aggregate data collection techniques suffice to adequately estimate HIV risk. For highly infectious STIs, in contrast, accurate STI risk assessment requires more intensive partner-by-partner methods.

  15. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully

  16. Estimation of the effects of normal tissue sparing using equivalent uniform dose-based optimization

    PubMed Central

    Senthilkumar, K.; Maria Das, K. J.; Balasubramanian, K.; Deka, A. C.; Patil, B. R.

    2016-01-01

    In this study, we intend to estimate the effects of normal tissue sparing between intensity modulated radiotherapy (IMRT) treatment plans generated with and without a dose volume (DV)-based physical cost function using equivalent uniform dose (EUD). Twenty prostate cancer patients were retrospectively selected for this study. For each patient, two IMRT plans were generated (i) EUD-based optimization with a DV-based physical cost function to control inhomogeneity (EUDWith DV) and (ii) EUD-based optimization without a DV-based physical cost function to allow inhomogeneity (EUDWithout DV). The generated plans were prescribed a dose of 72 Gy in 36 fractions to planning target volume (PTV). Mean dose, D30%, and D5% were evaluated for all organ at risk (OAR). Normal tissue complication probability was also calculated for all OARs using BioSuite software. The average volume of PTV for all patients was 103.02 ± 27 cm3. The PTV mean dose for EUDWith DV plans was 73.67 ± 1.7 Gy, whereas for EUDWithout DV plans was 80.42 ± 2.7 Gy. It was found that PTV volume receiving dose more than 115% of prescription dose was negligible in EUDWith DV plans, whereas it was 28% in EUDWithout DV plans. In almost all dosimetric parameters evaluated, dose to OARs in EUDWith DV plans was higher than in EUDWithout DV plans. Allowing inhomogeneous dose (EUDWithout DV) inside the target would achieve better normal tissue sparing compared to homogenous dose distribution (EUDWith DV). Hence, this inhomogeneous dose could be intentionally dumped on the high-risk volume to achieve high local control. Therefore, it was concluded that EUD optimized plans offer added advantage of less OAR dose as well as selectively boosting dose to gross tumor volume. PMID:27217624

  17. Linear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival

    PubMed Central

    Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Huanel, Oscar R.; Guillemin, Marie-Laure

    2016-01-01

    Survival is a fundamental demographic component and the importance of its accurate estimation goes beyond the traditional estimation of life expectancy. The evolutionary stability of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven abundances are hypothesized to be driven by differences in survival rates between haploids and diploids. We monitored Gracilaria chilensis, a commercially exploited red alga with an isomorphic biphasic life-cycle, having found density-dependent survival with competition and Allee effects. While estimating the linear-in-the-parameters survival function, all model I regression methods (i.e, vertical least squares) provided biased line-fits rendering them inappropriate for studies about ecology, evolution or population management. Hence, we developed an iterative two-step non-linear model II regression (i.e, oblique least squares), which provided improved line-fits and estimates of survival function parameters, while robust to the data aspects that usually turn the regression methods numerically unstable. PMID:27936048

  18. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    SciTech Connect

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  19. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  20. MAXINE: An improved methodology for estimating maximum individual dose from chronic atmospheric radioactive releases

    SciTech Connect

    Hamby, D.M.

    1994-02-01

    An EXCEL{reg_sign} spreadsheet has been developed that, when combined with the PC version of XOQDOQ, will generate estimates of maximum individual dose from routine atmospheric releases of radionuclides. The spreadsheet, MAXINE, utilizes a variety of atmospheric dispersion factors to calculate radiation dose as recommended by the US Nuclear Regulatory Commission in Regulatory Guide 1.109 [USNRC 1977a]. The methodology suggested herein includes use of both the MAXINE spreadsheet and the PC version of XOQDOQ.

  1. Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing

    PubMed Central

    Walters, William A.; Lennon, Niall J.; Bochicchio, James; Krohn, Andrew; Pennanen, Taina

    2016-01-01

    ABSTRACT While high-throughput sequencing methods are revolutionizing fungal ecology, recovering accurate estimates of species richness and abundance has proven elusive. We sought to design internal transcribed spacer (ITS) primers and an Illumina protocol that would maximize coverage of the kingdom Fungi while minimizing nontarget eukaryotes. We inspected alignments of the 5.8S and large subunit (LSU) ribosomal genes and evaluated potential primers using PrimerProspector. We tested the resulting primers using tiered-abundance mock communities and five previously characterized soil samples. We recovered operational taxonomic units (OTUs) belonging to all 8 members in both mock communities, despite DNA abundances spanning 3 orders of magnitude. The expected and observed read counts were strongly correlated (r = 0.94 to 0.97). However, several taxa were consistently over- or underrepresented, likely due to variation in rRNA gene copy numbers. The Illumina data resulted in clustering of soil samples identical to that obtained with Sanger sequence clone library data using different primers. Furthermore, the two methods produced distance matrices with a Mantel correlation of 0.92. Nonfungal sequences comprised less than 0.5% of the soil data set, with most attributable to vascular plants. Our results suggest that high-throughput methods can produce fairly accurate estimates of fungal abundances in complex communities. Further improvements might be achieved through corrections for rRNA copy number and utilization of standardized mock communities. IMPORTANCE Fungi play numerous important roles in the environment. Improvements in sequencing methods are providing revolutionary insights into fungal biodiversity, yet accurate estimates of the number of fungal species (i.e., richness) and their relative abundances in an environmental sample (e.g., soil, roots, water, etc.) remain difficult to obtain. We present improved methods for high-throughput Illumina sequencing of the

  2. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    SciTech Connect

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.; Bolch, Wesley E.

    2012-04-15

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI{sub vol} (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependent reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI{sub vol}- and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI{sub vol} for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose

  3. Estimation of Radiobiologic Parameters and Equivalent Radiation Dose of Cytotoxic Chemotherapy in Malignant Glioma

    SciTech Connect

    Jones, Bleddyn . E-mail: b.jones.1@bham.ac.uk; Sanghera, Paul

    2007-06-01

    Purpose: To determine the radiobiologic parameters for high-grade gliomas. Methods and Materials: The biologic effective dose concept is used to estimate the {alpha}/{beta} ratio and K (dose equivalent for tumor repopulation/d) for high-grade glioma patients treated in a randomized fractionation trial. The equivalent radiation dose of temozolomide (Temodar) chemotherapy was estimated from another randomized study. The method assumes that the radiotherapy biologic effective dose is proportional to the adjusted radiotherapy survival duration of high-grade glioma patients. Results: The median tumor {alpha}/{beta} and K estimate is 9.32 Gy and 0.23 Gy/d, respectively. Using the published surviving fraction after 2-Gy exposure (SF{sub 2}) data, and the above {alpha}/{beta} ratio, the estimated median {alpha} value was 0.077 Gy{sup -1}, {beta} was 0.009 Gy{sup -2}, and the cellular doubling time was 39.5 days. The median equivalent biologic effective dose of temozolomide was 11.03 Gy{sub 9.3} (equivalent to a radiation dose of 9.1 Gy given in 2-Gy fractions). Random sampling trial simulations based on a cure threshold of 70 Gy in high-grade gliomas have shown the potential increase in tumor cure with dose escalation. Partial elimination of hypoxic cells (by chemical hypoxic cell sensitizers or carbon ion therapy) has suggested that considerable gains in tumor control, which are further supplemented by temozolomide, are achievable. Conclusion: The radiobiologic parameters for human high-grade gliomas can be estimated from clinical trials and could be used to inform future clinical trials, particularly combined modality treatments with newer forms of radiotherapy. Other incurable cancers should be studied using similar radiobiologic analysis.

  4. Childhood leukaemia incidence around French nuclear installations using geographic zoning based on gaseous discharge dose estimates

    PubMed Central

    Evrard, A-S; Hémon, D; Morin, A; Laurier, D; Tirmarche, M; Backe, J-C; Chartier, M; Clavel, J

    2006-01-01

    The present study investigated for the first time the incidence of childhood leukaemia (1990–2001) around French nuclear installations using a geographic zoning based on estimated doses to the red bone marrow due to gaseous radioactive discharges. The observed number of cases of acute leukaemia (O=750) in 40 km2 centred on 23 French nuclear installations between 1990 and 2001 was lower than expected (E=795.01), although not significantly so (standardised incidence ratio SIR=0.94, 95% confidence interval=(0.88–1.01)). In none of the five zones defined on the basis of the estimated doses was the SIR significantly >1. There was no evidence of a trend in SIR with the estimated doses for all the children or for any of the three age groups studied. This study confirmed that there was no evidence of an increased incidence of childhood leukaemia around the 23 French nuclear sites. PMID:16622448

  5. Calibrating the High Density Magnetic Port within Tissue Expanders to Achieve more Accurate Dose Calculations for Postmastectomy Patients with Immediate Breast Reconstruction

    NASA Astrophysics Data System (ADS)

    Jones, Jasmine; Zhang, Rui; Heins, David; Castle, Katherine

    In postmastectomy radiotherapy, an increasing number of patients have tissue expanders inserted subpectorally when receiving immediate breast reconstruction. These tissue expanders are composed of silicone and are inflated with saline through an internal metallic port; this serves the purpose of stretching the muscle and skin tissue over time, in order to house a permanent implant. The issue with administering radiation therapy in the presence of a tissue expander is that the port's magnetic core can potentially perturb the dose delivered to the Planning Target Volume, causing significant artifacts in CT images. Several studies have explored this problem, and suggest that density corrections must be accounted for in treatment planning. However, very few studies accurately calibrated commercial TP systems for the high density material used in the port, and no studies employed fusion imaging to yield a more accurate contour of the port in treatment planning. We compared depth dose values in the water phantom between measurement and TPS calculations, and we were able to overcome some of the inhomogeneities presented by the image artifact by fusing the KVCT and MVCT images of the tissue expander together, resulting in a more precise comparison of dose calculations at discrete locations. We expect this method to be pivotal in the quantification of dose distribution in the PTV. Research funded by the LS-AMP Award.

  6. Fetal radiation dose estimates for I-131 sodium iodide in cases where conception occurs after administration

    SciTech Connect

    Sparks, R.B.; Stabin, M.G.

    1999-01-01

    After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossover could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.

  7. Parameterizing dose-response models to estimate relative potency functions directly.

    PubMed

    Dinse, Gregg E; Umbach, David M

    2012-10-01

    Many comparative analyses of toxicity assume that the potency of a test chemical relative to a reference chemical is constant, but employing such a restrictive assumption uncritically may generate misleading conclusions. Recent efforts to characterize non-constant relative potency rely on relative potency functions and estimate them secondarily after fitting dose-response models for the test and reference chemicals. We study an alternative approach of specifying a relative potency model a priori and estimating it directly using the dose-response data from both chemicals. We consider a power function in dose as a relative potency model and find that it keeps the two chemicals' dose-response functions within the same family of models for families typically used in toxicology. When differences in the response limits for the test and reference chemicals are attributable to the chemicals themselves, the older two-stage approach is the more convenient. When differences in response limits are attributable to other features of the experimental protocol or when response limits do not differ, the direct approach is straightforward to apply with nonlinear regression methods and simplifies calculation of simultaneous confidence bands. We illustrate the proposed approach using Hill models with dose-response data from U.S. National Toxicology Program bioassays. Though not universally applicable, this method of estimating relative potency functions directly can be profitably applied to a broad family of dose-response models commonly used in toxicology.

  8. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate

    PubMed Central

    Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul

    2015-01-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  9. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere.

  10. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  11. Accidental embryo irradiation during barium enema examinations: An estimation of absorbed dose

    SciTech Connect

    Damilakis, J.; Perisinakis, K.; Grammatikakis, J.

    1996-04-01

    The purpose of this report is to investigate the possibility of an embryo to receive a dose of more than 10 cGy, the threshold of malformation induction in embryos reported by the International Commission on Radiological Protection, during barium enema examinations. Thermoluminescent dosimeters were place in a phantom to calculate the depth-to-skin conversion coefficient needed for dose estimation at the average embryo depth in patients. Barium enema examinations were performed in 20 women of childbearing age with diagnostic problems demanding longer fluoroscopy times. Doses at 6 cm, the average embryo depth, were determined by measurements at the patients` skin followed by dose calculation at the site of interest. The range of doses estimated at embryo depth for patients was 1.9 to 8.2 cGy. The dose always exceeded 5 cGy when fluoroscopy time was longer than 7 minutes. The dose at the embryo depth never exceeded 10 cGy. This study indicates that fluoroscopy time should not exceed 7 minutes in childbearing-age female patients undergoing barium enema examinations. 6 refs., 1 fig., 2 tabs.

  12. Fetus dose estimation in thyroid cancer post-surgical radioiodine therapy.

    PubMed

    Mianji, Fereidoun A; Diba, Jila Karimi; Babakhani, Asad

    2015-01-01

    Unrecognised pregnancy during radioisotope therapy of thyroid cancer results in hardly definable embryo/fetus exposures, particularly when the thyroid gland is already removed. Sources of such difficulty include uncertainty in data like pregnancy commencing time, amount and distribution of metastasized thyroid cells in body, effect of the thyroidectomy on the fetus dose coefficient etc. Despite all these uncertainties, estimation of the order of the fetus dose in most cases is enough for medical and legal decision-making purposes. A model for adapting the dose coefficients recommended by the well-known methods to the problem of fetus dose assessment in athyrotic patients is proposed. The model defines a correction factor for the problem and ensures that the fetus dose in athyrotic pregnant patients is less than the normal patients. A case of pregnant patient undergone post-surgical therapy by I-131 is then studied for quantitative comparison of the methods. The results draw a range for the fetus dose in athyrotic patients using the derived factor. This reduces the concerns on under- or over-estimation of the embryo/fetus dose and is helpful for personal and/or legal decision-making on abortion.

  13. Patient-specific dose estimation for pediatric abdomen-pelvis CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2009-02-01

    The purpose of this study is to develop a method for estimating patient-specific dose from abdomen-pelvis CT examinations and to investigate dose variation across patients in the same weight group. Our study consisted of seven pediatric patients in the same weight/protocol group, for whom full-body computer models were previously created based on the patients' CT data obtained for clinical indications. Organ and effective dose of these patients from an abdomen-pelvis scan protocol (LightSpeed VCT scanner, 120-kVp, 85-90 mA, 0.4-s gantry rotation period, 1.375-pitch, 40-mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated for the same CT system. The seven patients had effective dose of 2.4-2.8 mSv, corresponding to normalized effective dose of 6.6-8.3 mSv/100mAs (coefficient of variation: 7.6%). Dose variations across the patients were small for large organs in the scan coverage (mean: 6.6%; range: 4.9%-9.2%), larger for small organs in the scan coverage (mean: 10.3%; range: 1.4%-15.6%), and the largest for organs partially or completely outside the scan coverage (mean: 14.8%; range: 5.7%-27.7%). Normalized effective dose correlated strongly with body weight (correlation coefficient: r = -0.94). Normalized dose to the kidney and the adrenal gland correlated strongly with mid-liver equivalent diameter (kidney: r = -0.97; adrenal glands: r = -0.98). Normalized dose to the small intestine correlated strongly with mid-intestine equivalent diameter (r = -0.97). These strong correlations suggest that patient-specific dose may be estimated for any other child in the same size group who undergoes the abdomen-pelvis scan.

  14. Radiation dose estimates for typical piloted NTR lunar and Mars mission engine operations

    SciTech Connect

    Schnitzler, B.G. ); Borowski, S.K. . Lewis Research Center)

    1991-01-01

    The natural and manmade radiation environments to be encountered during lunar and Mars missions are qualitatively summarized. The computational methods available to characterize the radiation environment produced by an operating nuclear propulsion system are discussed. Mission profiles and vehicle configurations are presented for a typical all-propulsive, fully reusable lunar mission and for a typical all-propulsive Mars mission. Estimates of crew location biological doses are developed for all propulsive maneuvers. Post-shutdown dose rates near the nuclear engine are estimated at selected mission times. 15 refs., 4 figs.

  15. Combined methodology for estimating dose rates and health effects from exposure to radioactive pollutants

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.

    1980-12-01

    The work described in the report is basically a synthesis of two previously existing computer codes: INREM II, developed at the Oak Ridge National Laboratory (ORNL); and CAIRD, developed by the Environmental Protection Agency (EPA). The INREM II code uses contemporary dosimetric methods to estimate doses to specified reference organs due to inhalation or ingestion of a radionuclide. The CAIRD code employs actuarial life tables to account for competing risks in estimating numbers of health effects resulting from exposure of a cohort to some incremental risk. The combined computer code, referred to as RADRISK, estimates numbers of health effects in a hypothetical cohort of 100,000 persons due to continuous lifetime inhalation or ingestion of a radionuclide. Also briefly discussed in this report is a method of estimating numbers of health effects in a hypothetical cohort due to continuous lifetime exposure to external radiation. This method employs the CAIRD methodology together with dose conversion factors generated by the computer code DOSFACTER, developed at ORNL; these dose conversion factors are used to estimate dose rates to persons due to radionuclides in the air or on the ground surface. The combination of the life table and dosimetric guidelines for the release of radioactive pollutants to the atmosphere, as required by the Clean Air Act Amendments of 1977.

  16. Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices.

    PubMed

    Lake, Douglas E; Moorman, J Randall

    2011-01-01

    Entropy estimation is useful but difficult in short time series. For example, automated detection of atrial fibrillation (AF) in very short heart beat interval time series would be useful in patients with cardiac implantable electronic devices that record only from the ventricle. Such devices require efficient algorithms, and the clinical situation demands accuracy. Toward these ends, we optimized the sample entropy measure, which reports the probability that short templates will match with others within the series. We developed general methods for the rational selection of the template length m and the tolerance matching r. The major innovation was to allow r to vary so that sufficient matches are found for confident entropy estimation, with conversion of the final probability to a density by dividing by the matching region volume, 2r(m). The optimized sample entropy estimate and the mean heart beat interval each contributed to accurate detection of AF in as few as 12 heartbeats. The final algorithm, called the coefficient of sample entropy (COSEn), was developed using the canonical MIT-BIH database and validated in a new and much larger set of consecutive Holter monitor recordings from the University of Virginia. In patients over the age of 40 yr old, COSEn has high degrees of accuracy in distinguishing AF from normal sinus rhythm in 12-beat calculations performed hourly. The most common errors are atrial or ventricular ectopy, which increase entropy despite sinus rhythm, and atrial flutter, which can have low or high entropy states depending on dynamics of atrioventricular conduction.

  17. Radiation dose estimates for C-11 iomazenil, a benzodiazepine receptor radioligand

    SciTech Connect

    Sparks, R.B.; Dey, H.M.; Siebyl, I.B.

    1994-05-01

    SPECT imaging of the brain with I-123 iomazenil has shown avid uptake of the radioligand in a distribution consistent with benzodiazepine receptor binding. It was desirable to radiolabel this compound with a positron emitting radionuclide so that quantitation of the receptor density could be assessed with PET imaging. Radiation dose estimates for C-11 iomazenil were calculated prior to obtaining Institutional Review Board approval of this procedure. A previously published multicompartmental model was used as the biological model for estimating residence times associated with the C-11 labeled iomazenil. According to this model, 85-90% is excreted in the urine and 10-15% in the feces. A dynamic, voiding urinary bladder model was utilized for activity excreted renally and the ICRP 30 gastrointestinal tract kinetic model was used for activity excreted via the hepatobiliary system. Absorbed doses from C-11 (I-123) iomazenil to the urinary bladder were calculated to be 0.099 mGy/MBq (0.19 mGy/MBq) for a 4.8 hour bladder voiding interval. Shortening the bladder voiding interval to 2.0 hours had little effect on the bladder wall dose (0.095 mGy/MBq). However, a 30-minute void interval was estimated to lower the bladder wall dose substantially (0.045 mGy/MBq). Absorbed dose to the kidney was higher for C-11 iomazenil (0.054 vs 0.031 mGy/MBq) than for I-123 iomazenil due to rapid, early renal excretion of this very short-lived positron emitter. Doses to the gastrointestinal tract were estimated to be 4- to 20-fold lower for C-11 iomazenil compared to I-123 iomazenil. Overall, labeling iomazenil with C-11 rather than I-123 greatly reduces the radiation dose, per unit administered, to all organs except the kidneys.

  18. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    SciTech Connect

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-07-15

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  19. Estimation of doses to personnel and patients during endovascular brachytherapy applications.

    PubMed

    Kirisits, Christian; Hefner, Alfred; Wexberg, Paul; Pokrajac, Boris; Glogar, Dietmar; Pötter, Richard; Georg, Dietmar

    2004-01-01

    In the last few years coronary endovascular brachytherapy using gamma- and beta-emitting radionuclides has been established as a standard treatment procedure to prevent restenosis after percutaneous coronary interventions. Direct measurements and calculations were made to determine personnel doses and organ doses of patients due to gamma rays of 192Ir and beta rays of 90Sr/90Y and 32P sources. In general, our results show that the dose levels are low compared with the X-ray exposure from angiography. The dose rate from bremsstrahlung at 1 m distance from a device containing a 90Sr/90Y source of 2.3 GBq is 4 micro Sv h(-1). The skin dose from beta rays during source transfer into and from the patient was estimated with the directional dose equivalent H'(0.07) of 10 micro Sv at 1 m distance from the catheter. By maintaining safe distances, the dose levels can be kept well within annual dose limits.

  20. Estimated Fluoride Doses from Toothpastes Should be Based on Total Soluble Fluoride

    PubMed Central

    Oliveira, Maria José L.; Martins, Carolina C.; Paiva, Saul M.; Tenuta, Livia M. A.; Cury, Jaime A.

    2013-01-01

    The fluoride dose ingested by young children may be overestimated if based on levels of total fluoride (TF) rather than levels of bioavailable fluoride (total soluble fluoride—TSF) in toothpaste. The aim of the present study was to compare doses of fluoride intake based on TF and TSF. Fluoride intake in 158 Brazilian children aged three and four years was determined after tooth brushing with their usual toothpaste (either family toothpaste (n = 80) or children’s toothpaste (n = 78)). The estimated dose (mg F/day/Kg of body weight) of TF or TSF ingested was calculated from the chemical analysis of the toothpastes. Although the ingested dose of TF from the family toothpastes was higher than that from the children’s toothpastes (0.074 ± 0.007 and 0.039 ± 0.003 mg F/day/Kg, respectively; p < 0.05), no difference between types of toothpaste was found regarding the ingested dose based on TSF (0.039 ± 0.005 and 0.039 ± 0.005 mg F/day/Kg, respectively; p > 0.05). The fluoride dose ingested by children from toothpastes may be overestimated if based on the TF of the product. This finding suggests that the ingested dose should be calculated based on TSF. Dose of TSF ingested by children is similar whether family or children’s toothpaste is used. PMID:24189183

  1. Estimated fluoride doses from toothpastes should be based on total soluble fluoride.

    PubMed

    Oliveira, Maria José L; Martins, Carolina C; Paiva, Saul M; Tenuta, Livia M A; Cury, Jaime A

    2013-11-01

    The fluoride dose ingested by young children may be overestimated if based on levels of total fluoride (TF) rather than levels of bioavailable fluoride (total soluble fluoride-TSF) in toothpaste. The aim of the present study was to compare doses of fluoride intake based on TF and TSF. Fluoride intake in 158 Brazilian children aged three and four years was determined after tooth brushing with their usual toothpaste (either family toothpaste (n = 80) or children's toothpaste (n = 78)). The estimated dose (mg F/day/Kg of body weight) of TF or TSF ingested was calculated from the chemical analysis of the toothpastes. Although the ingested dose of TF from the family toothpastes was higher than that from the children's toothpastes (0.074 ± 0.007 and 0.039 ± 0.003 mg F/day/Kg, respectively; p < 0.05), no difference between types of toothpaste was found regarding the ingested dose based on TSF (0.039 ± 0.005 and 0.039 ± 0.005 mg F/day/Kg, respectively; p > 0.05). The fluoride dose ingested by children from toothpastes may be overestimated if based on the TF of the product. This finding suggests that the ingested dose should be calculated based on TSF. Dose of TSF ingested by children is similar whether family or children's toothpaste is used.

  2. Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski's equality

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisen; Wu, Tao; Wang, Qi; Pan, Haihua; Tang, Ruikang

    2014-01-01

    The interactions between proteins/peptides and materials are crucial to research and development in many biomedical engineering fields. The energetics of such interactions are key in the evaluation of new proteins/peptides and materials. Much research has recently focused on the quality of free energy profiles by Jarzynski's equality, a widely used equation in biosystems. In the present work, considerable discrepancies were observed between the results obtained by Jarzynski's equality and those derived by umbrella sampling in biomaterial-water model systems. Detailed analyses confirm that such discrepancies turn up only when the target molecule moves in the high-density water layer on a material surface. Then a hybrid scheme was adopted based on this observation. The agreement between the results of the hybrid scheme and umbrella sampling confirms the former observation, which indicates an approach to a fast and accurate estimation of adsorption free energy for large biomaterial interfacial systems.

  3. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    PubMed Central

    2011-01-01

    Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645

  4. Estimated dose from diagnostic nuclear medicine patients to people outside the Nuclear Medicine department.

    PubMed

    Bartlett, Marissa L

    2013-11-01

    Patients undergoing nuclear medicine scans can be a source of radiation exposure for staff, family and the public. In this paper, 12 common nuclear medicine scans are considered. Doses are estimated for a range of scenarios, to hospital staff, to the public and to the patients' co-workers and family. Estimates are based on dose rates measured as patients left the Nuclear Medicine department. Radiopharmaceutical clearance is calculated from biokinetic models described in International Commission on Radiological Protection publications 53, 80 and 106. For all scan types, and all scenarios, doses are estimated to be substantially less than the trigger level of 300 µSv. Within the hospital, Intensive Care Unit staff receive the highest dose (up to 80 µSv) from patients who have had a myocardial scan or a positron emission tomography scan. For out-patients, the highest doses (up to 100 µSv) are associated with travel on public transport (for 4 h) on the same day as the scan.

  5. [Estimation of the Average Glandular Dose Using the Mammary Gland Image Analysis in Mammography].

    PubMed

    Otsuka, Tomoko; Teramoto, Atsushi; Asada, Yasuki; Suzuki, Shoichi; Fujita, Hiroshi; Kamiya, Satoru; Anno, Hirofumi

    2016-05-01

    Currently, the glandular dose is evaluated quantitatively on the basis of the measured data using phantom, and not in a dose based on the mammary gland structure of an individual patient. However, mammary gland structures of the patients are different from each other and mammary gland dose of an individual patient cannot be obtained by the existing methods. In this study, we present an automated estimation method of mammary gland dose by means of mammary structure which is measured automatically using mammogram. In this method, mammary gland structure is extracted by Gabor filter; mammary region is segmented by the automated thresholding. For the evaluation, mammograms of 100 patients diagnosed with category 1 were collected. Using these mammograms we compared the mammary gland ratio measured by proposed method and visual evaluation. As a result, 78% of the total cases were matched. Furthermore, the mammary gland ratio and average glandular dose among the patients with same breast thickness was matched well. These results show that the proposed method may be useful for the estimation of average glandular dose for the individual patients.

  6. Reservoir evaluation of thin-bedded turbidites and hydrocarbon pore thickness estimation for an accurate quantification of resource

    NASA Astrophysics Data System (ADS)

    Omoniyi, Bayonle; Stow, Dorrik

    2016-04-01

    One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (<10cm and <30cm respectively). Although such thinner, low-pay sands may comprise a significant proportion of the reservoir succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.

  7. Estimates of radiation doses in space on the basis of current data.

    PubMed

    Foelsche, T

    1963-01-01

    A gross survey of data on Van Allen belt radiations, galactic cosmic radiation, and solar cosmic radiation is presented. On the basis of these data that are, in part, fragmentary and uncertain, upper and lower limits of rad doses under different amounts of mass shielding are estimated. The estimates are preliminary especially in the cases of chance encounter with solar flare protons. Generally, the relative biological effectiveness of the high energetic space radiations and their secondaries appear insufficiently known to give detailed biological or rem doses. The overall ionization dosage of the low level galactic cosmic radiation in free space is estimated to be even in solar minimum years equivalent to less than 50 rem/year or 1 rem/week. Mass shielding up to 80 g/cm2 would not reduce the ionization dosage but would shield against heavy primaries and heavy ionizing secondaries, thus reducing the biological dose. The flux of energetic protons in the maximum intensity zone of the inner Van Allen belt is by about four orders of magnitude higher, their energy and penetration power, of course, lower. A shield of 25 g/cm2 would reduce the dose rate from 20 rad/hour under 2 g/cm2 to 5 rad/hour. These proton dose rates and also the electron and X-radiation dose rates under some g/cm2 shielding of low z-number material will not constitute a radiation hazard for flights straight through the inner and outer belt in about two hours. Staying within the maximum of the inner belt for two days would, however, lead even within 25 g/cm2 depth of outer shield and body itself to a dose of 200 rad which is on the permissible limit. Extreme solar cosmic ray events or proton showers of high intensity and a duration of days occurred with a frequency of 1-4 per year during the last highly active cycle. For the penetrating, most intense high energy event of February 23, 1956, the dose within 25 g/cm2 is estimated to have been in the order of 50 rad. In most cases the dose decreased more

  8. Radiation exposure and dose estimates for a nuclear-powered manned Mars sprint mission

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Simonsen, Lisa C.; Wilson, John W.; Townsend, Lawrence W.; Schnitzler, Bruce G.; Qualls, Garry D.; Gates, Michele M.

    1991-01-01

    A conceptual manned mission to Mars is analyzed in order to estimate potential ionizing radiation doses that may be incurred by crew members during the course of the mission. The scenario is set for a journey during the solar active period and includes a brief stay on the Martian surface. Propulsion is assumed to be provided by nuclear thermal rocket power, and estimates of the dose contributions from the reactors are included. However, due to effective shielding of the reactors by large propellant tanks, it is found that the incurred doses are principally due to the charged particle natural environment. Recent data (August-December 1989) for large solar proton events are used to simulate the flame environment, while standard models are used for the trapped particle and galactic cosmic ray contributions. Shield effectiveness for several candidate materials are investigated.

  9. Estimation of Maximum Recommended Therapeutic Dose Using Predicted Promiscuity and Potency

    PubMed Central

    Liu, T; Oprea, T; Ursu, O; Hasselgren, C

    2016-01-01

    We report a simple model that predicts the maximum recommended therapeutic dose (MRTD) of small molecule drugs based on an assessment of likely protein–drug interactions. Previously, we reported methods for computational estimation of drug promiscuity and potency. We used these concepts to build a linear model derived from 238 small molecular drugs to predict MRTD. We applied this model successfully to predict MRTDs for 16 nonsteroidal antiinflammatory drugs (NSAIDs) and 14 antiretroviral drugs. Of note, based on the estimated promiscuity of low‐dose drugs (and active chemicals), we identified 83 proteins as “high‐risk off‐targets” (HROTs) that are often associated with low doses; the evaluation of interactions with HROTs may be useful during early phases of drug discovery. Our model helps explain the MRTD for drugs with severe adverse reactions caused by interactions with HROTs. PMID:27736015

  10. ESTIMATING CHILDREN'S DERMAL AND NON-DIETARY INGESTION EXPOSURE AND DOSE WITH EPA'S SHEDS MODEL

    EPA Science Inventory

    A physically-based stochastic model (SHEDS) has been developed to estimate pesticide exposure and dose to children via dermal residue contact and non-dietary ingestion. Time-location-activity data are sampled from national survey results to generate a population of simulated ch...

  11. Dose-response modeling in mental health using stein-like estimators with instrumental variables.

    PubMed

    Ginestet, Cedric E; Emsley, Richard; Landau, Sabine

    2017-02-21

    A mental health trial is analyzed using a dose-response model, in which the number of sessions attended by the patients is deemed indicative of the dose of psychotherapeutic treatment. Here, the parameter of interest is the difference in causal treatment effects between the subpopulations that take part in different numbers of therapy sessions. For this data set, interactions between random treatment allocation and prognostic baseline variables provide the requisite instrumental variables. While the corresponding two-stage least squares (TSLS) estimator tends to have smaller bias than the ordinary least squares (OLS) estimator; the TSLS suffers from larger variance. It is therefore appealing to combine the desirable properties of the OLS and TSLS estimators. Such a trade-off is achieved through an affine combination of these two estimators, using mean squared error as a criterion. This produces the semi-parametric Stein-like (SPSL) estimator as introduced by Judge and Mittelhammer (2004). The SPSL estimator is used in conjunction with multiple imputation with chained equations, to provide an estimator that can exploit all available information. Simulated data are also generated to illustrate the superiority of the SPSL estimator over its OLS and TSLS counterparts. A package entitled SteinIV implementing these methods has been made available through the R platform. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  12. The feasibility of a regional CTDI{sub vol} to estimate organ dose from tube current modulated CT exams

    SciTech Connect

    Khatonabadi, Maryam; Kim, Hyun J.; Lu, Peiyun; McMillan, Kyle L.; Cagnon, Chris H.; McNitt-Gray, Michael F.; DeMarco, John J.

    2013-05-15

    dose to correlate with patient size was investigated. Results: For all five organs, the correlations with patient size increased when organ doses were normalized by regional and organ-specific CTDI{sub vol} values. For example, when estimating dose to the liver, CTDI{sub vol,global} yielded a R{sup 2} value of 0.26, which improved to 0.77 and 0.86, when using the regional and organ-specific CTDI{sub vol} for abdomen and liver, respectively. For breast dose, the global CTDI{sub vol} yielded a R{sup 2} value of 0.08, which improved to 0.58 and 0.83, when using the regional and organ-specific CTDI{sub vol} for chest and breasts, respectively. The R{sup 2} values also increased once the thoracic models were separated for the analysis into females and males, indicating differences between genders in this region not explained by a simple measure of effective diameter. Conclusions: This work demonstrated the utility of regional and organ-specific CTDI{sub vol} as normalization factors when using TCM. It was demonstrated that CTDI{sub vol,global} is not an effective normalization factor in TCM exams where attenuation (and therefore tube current) varies considerably throughout the scan, such as abdomen/pelvis and even thorax. These exams can be more accurately assessed for dose using regional CTDI{sub vol} descriptors that account for local variations in scanner output present when TCM is employed.

  13. [Estimation of appropriate dose for computed radiography by the threshold value of the image quality figure].

    PubMed

    Mochizuki, Yasuo; Abe, Shinji; Yamaguchi, Kojirou

    2009-04-20

    We estimated the optimum dose for imaging with a computed radiography (CR) system at two different pixel sizes based on the area under curve (AUC) in receiver operating characteristic (ROC) analysis and image quality figure (IQF). Samples for ROC analysis were prepared as follows. Acryl beads, 2.0 mm in diameter, were placed on a 50.0 mm tough water phantom that was fitted with a 20.0 mm Al filter (SID 200 cm, tube voltage 80 kV). The dose level at which the film density of the screen-film system (SRO250/SRG) was 1.0+/-0.05 served as the reference dose (0.69microC/kg). Five samples were prepared by multiplying the reference dose by 1/4, 1/2, 1, 2, and 4. The samples for image quality evaluation on the basis of IQF were prepared under identical conditions. A contrast-detail (C-D) phantom was placed on a 50.0 mm tough water phantom and images were taken. The contrast threshold of these samples was determined by 10 film readers, the same as those for the ROC analysis. When the significance of differences in the AUC was tested by the paired t-test (two-sided) and the Jackknife method, significant differences were noted between the reference dose and the 1/4 or 4-times dose at the standard pixel size (0.175 mm) and smaller pixel size (0.0875 mm) size, while no significant difference was noted between the reference dose and the 1/2 or 2-times dose. In terms of IQF, no significant difference was noted between standard and smaller pixel sizes (paired t-test). The IQF data indicate that the dose level for imaging with CR can be reduced by about 30% from the reference dose.

  14. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    SciTech Connect

    Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  15. Natural radionuclides in cigarette tobacco from Serbian market and effective dose estimate from smoke inhalation.

    PubMed

    Janković Mandić, Ljiljana; Đolić, Maja; Marković, Dragana; Todorović, Dragana; Onjia, Antonije; Dragović, Snežana

    2016-01-01

    The activity concentrations of natural radionuclides ((40)K, (210)Pb, (210)Po, (226)Ra and (228)Ra) in 17 most frequently used cigarette brands in Serbia and corresponding effective doses due to smoke inhalation are presented. The mean annual effective doses for (210)Pb and (210)Po were estimated to be 47.3 and 724 µSv y(-1) for (210)Pb and (210)Po, respectively. Serbia currently has the highest smoking rate in the world. The results of this study indicate the high contribution of the annual effective dose due to smoke inhalation to the total inhalation dose from natural radionuclides. The more effective implementation of actions for reducing smoking prevalence in Serbia is highly needed.

  16. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    NASA Astrophysics Data System (ADS)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  17. Cancer risk estimation of genotoxic chemicals based on target dose and a multiplicative model

    SciTech Connect

    Granath, F.N. . Dept. of Mathematical Statistics Karolinska Inst., Stockholm . Dept. of Medical Epidemiology); Vaca, C.E. . Dept. of Radiobiology Casco Products AB, Stockholm ); Ehrenberg, L.G.; Toernqvist, M.A. )

    1999-04-01

    A mechanistic model and associated procedures are proposed for cancer risk assessment of genotoxic chemicals. As previously shown for ionizing radiation, a linear multiplicative model was found to be compatible with published experimental data for ethylene oxide, acrylamide, and butadiene. Concurrent analysis led to rejection of an additive model. A reanalysis of data for radiogenic cancer in mouse, dog and man shows that the relative risk coefficient is approximately the same for tumors induced in the three species. Doses in vivo, defined as the time-integrated concentrations of ultimate mutagens, expressed in millimol x kg[sup [minus]1] x h (mMh) are, like radiation doses given in Gy or rad, proportional to frequencies of potentially mutagenic events. The radiation dose equivalents of chemical doses are, calculated by multiplying chemical doses (in mMh) with the relative genotoxic potencies determined in vitro. In this way the relative cancer incidence increments in rats and mice exposed to ethylene oxide were shown to be about 0.4% per rad-equivalent, in agreement with the data for radiogenic cancer. The analyses suggest that values of the relative risk coefficients for genotoxic chemicals are independent of species and that relative cancer risks determined in animal tests apply also to humans. If reliable animal test data are not available, cancer risks may be estimated by the relative potency. In both cases exposure dose/target dose relationships, the latter via macromolecule adducts, should be determined.

  18. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles

    2016-12-01

    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  19. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus)?

    PubMed Central

    Palmstrom, Christin R.

    2015-01-01

    There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size), as measured by computerized tomography (CT) scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex. PMID:26082858

  20. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    NASA Astrophysics Data System (ADS)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  1. Review of methods of dose estimation for epidemiological studies of the radiological impact of nevada test site and global fallout.

    PubMed

    Beck, Harold L; Anspaugh, Lynn R; Bouville, André; Simon, Steven L

    2006-07-01

    Methods to assess radiation doses from nuclear weapons test fallout have been used to estimate doses to populations and individuals in a number of studies. However, only a few epidemiology studies have relied on fallout dose estimates. Though the methods for assessing doses from local and regional compared to global fallout are similar, there are significant differences in predicted doses and contributing radionuclides depending on the source of the fallout, e.g. whether the nuclear debris originated in Nevada at the U.S. nuclear test site or whether it originated at other locations worldwide. The sparse historical measurement data available are generally sufficient to estimate external exposure doses reasonably well. However, reconstruction of doses to body organs from ingestion and inhalation of radionuclides is significantly more complex and is almost always more uncertain than are external dose estimates. Internal dose estimates are generally based on estimates of the ground deposition per unit area of specific radionuclides and subsequent transport of radionuclides through the food chain. A number of technical challenges to correctly modeling deposition of fallout under wet and dry atmospheric conditions still remain, particularly at close-in locations where sizes of deposited particles vary significantly over modest changes in distance. This paper summarizes the various methods of dose estimation from weapons test fallout and the most important dose assessment and epidemiology studies that have relied on those methods.

  2. Radiochromic film dosimetry with flatbed scanners: A fast and accurate method for dose calibration and uniformity correction with single film exposure

    SciTech Connect

    Menegotti, L.; Delana, A.; Martignano, A.

    2008-07-15

    Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupled device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18x18 cm{sup 2} open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18x18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification.

  3. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    SciTech Connect

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  4. X-ray dose estimation from cathode ray tube monitors by Monte Carlo calculation.

    PubMed

    Khaledi, Navid; Arbabi, Azim; Dabaghi, Moloud

    2015-04-01

    Cathode Ray Tube (CRT) monitors are associated with the possible emission of bremsstrahlung radiation produced by electrons striking the monitor screen. Because of the low dose rate, accurate dosimetry is difficult. In this study, the dose equivalent (DE) and effective dose (ED) to an operator working in front of the monitor have been calculated using the Monte Carlo (MC) method by employing the MCNP code. The mean energy of photons reaching the operator was above 17 keV. The phantom ED was 454 μSv y (348 nSv h), which was reduced to 16 μSv y (12 nSv h) after adding a conventional leaded glass sheet. The ambient dose equivalent (ADE) and personal dose equivalent (PDE) for the head, neck, and thorax of the phantom were also calculated. The uncertainty of calculated ED, ADE, and PDE ranged from 3.3% to 10.7% and 4.2% to 14.6% without and with the leaded glass, respectively.

  5. Dose-to-Mother’ Deuterium Oxide Dilution Technique: An Accurate Strategy to Measure Vitamin A Intake in Breastfed Infants

    PubMed Central

    Lopez-Teros, Veronica; Limon-Miro, Ana Teresa; Astiazaran-Garcia, Humberto; Tanumihardjo, Sherry A.; Tortoledo-Ortiz, Orlando; Valencia, Mauro E.

    2017-01-01

    In Mexico, infants (0–2 years old) show the highest prevalence of vitamin A deficiency (VAD), measured by serum retinol concentrations. Thus, we consider that low vitamin A (VA) intake through breast milk (BM) combined with poor weaning practices are the main factors that contribute to VAD in this group. We combined the assessment of VA status in lactating women using BM retinol and a stable isotope ‘dose-to-mother’ technique to measure BM production in women from urban and agricultural areas. Infants’ mean BM intake was 758 ± 185 mL, and no difference was observed between both areas (p = 0.067). Mean BM retinol concentration was 1.09 μmol/L, which was significantly lower for the agricultural area (p = 0.028). Based on BM retinol concentration, 57% of women were VAD; although this prevalence fell to 16% when based on fat content. Regardless of the VA biomarker used here, infants from the urban and agricultural areas cover only 66% and 49% of their dietary adequate intake from BM, respectively (p = 0.054). Our data indicate that VAD is still a public health concern in Mexico. Adopting both methods to assess VA transfer from the mother to the breastfed child offers an innovative approach towards the nutritional assessment of vulnerable groups. PMID:28230781

  6. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  7. Dose estimation for atomic bomb survivor studies: its evolution and present status.

    PubMed

    Cullings, Harry M; Fujita, Shoichiro; Funamoto, Sachiyo; Grant, Eric J; Kerr, George D; Preston, Dale L

    2006-07-01

    In the decade after the bombings of Hiroshima and Nagasaki, several large cohorts of survivors were organized for studies of radiation health effects. The U.S. Atomic Bomb Casualty Commission (ABCC) and its U.S./Japan successor, the Radiation Effects Research Foundation (RERF), have performed continuous studies since then, with extensive efforts to collect data on survivor locations and shielding and to create systems to estimate individual doses from the bombs' neutrons and gamma rays. Several successive systems have been developed by extramural working groups and collaboratively implemented by ABCC and RERF investigators. We describe the cohorts and the history and evolution of dose estimation from early efforts through the newest system, DS02, emphasizing the technical development and use of DS02. We describe procedures and data developed at RERF to implement successive systems, including revised rosters of survivors, development of methods to calculate doses for some classes of persons not fitting criteria of the basic systems, and methods to correct for bias arising from errors in calculated doses. We summarize calculated doses and illustrate their change and elaboration through the various systems for a hypothetical example case in each city. We conclude with a description of current efforts and plans for further improvements.

  8. GLODEP2: a computer model for estimating gamma dose due to worldwide fallout of radioactive debris

    SciTech Connect

    Edwards, L.L.; Harvey, T.F.; Peterson, K.R.

    1984-03-01

    The GLODEP2 computer code provides estimates of the surface deposition of worldwide radioactivity and the gamma-ray dose to man from intermediate and long-term fallout. The code is based on empirical models derived primarily from injection-deposition experience gained from the US and USSR nuclear tests in 1958. Under the assumption that a nuclear power facility is destroyed and that its debris behaves in the same manner as the radioactive cloud produced by the nuclear weapon that attached the facility, predictions are made for the gamma does from this source of radioactivity. As a comparison study the gamma dose due to the atmospheric nuclear tests from the period of 1951 to 1962 has been computed. The computed and measured values from Grove, UK and Chiba, Japan agree to within a few percent. The global deposition of radioactivity and resultant gamma dose from a hypothetical strategic nuclear exchange between the US and the USSR is reported. Of the assumed 5300 Mton in the exchange, 2031 Mton of radioactive debris is injected in the atmosphere. The highest estimated average whole body total integrated dose over 50 years (assuming no reduction by sheltering or weathering) is 23 rem in the 30 to 50 degree latitude band. If the attack included a 100 GW(e) nuclear power industry as targets in the US, this dose is increased to 84.6 rem. Hotspots due to rainfall could increase these values by factors of 10 to 50.

  9. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-01-01

    In response to the recognized fragility of reactor-produced 99Mo supply, direct production of 99mTc via 100Mo(p,2n)99mTc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with 99mTc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical 99mTc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  10. Estimation of external dose by car-borne survey in Kerala, India.

    PubMed

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

    2015-01-01

    A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.

  11. Estimation of External Dose by Car-Borne Survey in Kerala, India

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

    2015-01-01

    A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7–2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680

  12. Estimated collective effective dose to the population from X-ray and nuclear medicine examinations in Finland.

    PubMed

    Bly, R; Järvinen, H; Korpela, M H; Tenkanen-Rautakoski, P; Mäkinen, A

    2011-09-01

    The collective effective doses to the population from X-ray and nuclear medicine (NM) examinations in Finland in 2008 and 2009, respectively, were estimated. The estimated collective effective dose per inhabitant was 0.45 mSv from X-ray examinations and 0.03 mSv from NM examinations. The collective effective doses per inhabitant have not changed substantially during the last 10 y. However, proportional dose due to CT examinations has increased from 50 % in 2005 to 58 % in 2009 of the total collective effective dose from all X-ray examinations and proportional dose of PET examinations from 7 to 13 % of the total collective effective dose from NM examinations. The collective effective dose from conventional plain radiography was over 20 % higher when estimated using the new (ICRP 103) tissue weighting factors than that obtained using the old (ICRP 60) tissue weighting factors.

  13. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    SciTech Connect

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

  14. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    PubMed Central

    2011-01-01

    Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques. PMID:22004072

  15. Estimates of intakes and internal doses from ingestion of {sup 32}P at MIT and NIH

    SciTech Connect

    Stabin, M.G.; Toohey, R.E.

    1996-06-01

    A researcher at Massachusetts Institute of Technology (MIT) became internally contaminated with {sup 32}P, probably due to an intentional act. The incident occurred on or about 14 August 1995. Subsequent measurement of activity in urine and a single whole body count were used to estimate the individual`s intake, with the assumption of ingestion as the route of intake. Two separate Sets of urine data were analyzed-one supplied by MIT and one from independent analyses of urine samples conducted at Oak Ridge Institute for Science and Education (ORISE); the former data set contained 35 samples, the latter 49. In addition, the results of 35 whole body counts, provided by MIT from a chair-type counter calibrated for 32p, were used to obtain a separate estimate of intake. The kinetic model for 32P proposed in ICRP Publication 30 and implemented in NUREG/CR-4884 was used to interpret the data. The data were analyzed using both the weighted and unweighted least squares techniques. All of the intake estimates were in very good agreement with each other, ranging from 18-22 MBq. Based on the dose model in ICRP 30, this would indicate a committed effective dose equivalent of 38-46 mSv. The incident was helpful in assessing the value of the least squares techniques in determining estimates of intake and dose. The ICRP model tended to slightly overestimate the whole body retention data and underestimate the urinary excretion at later times. Further results obtained by visual best fit and development of an individual-specific kinetic and dose model will also be discussed. This incident was quite similar to another case of ingestion of 32p that occurred at the National Institute of Health (NIH) on 28 June 1995. Dose assessment for the NIH case will also be presented if the data are available for public release.

  16. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  17. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    SciTech Connect

    Chadha, M.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  18. SU-D-16A-02: A Novel Methodology for Accurate, Semi-Automated Delineation of Oral Mucosa for Radiation Therapy Dose-Response Studies

    SciTech Connect

    Dean, J; Welsh, L; Gulliford, S; Harrington, K; Nutting, C

    2014-06-01

    Purpose: The significant morbidity caused by radiation-induced acute oral mucositis means that studies aiming to elucidate dose-response relationships in this tissue are a high priority. However, there is currently no standardized method for delineating the mucosal structures within the oral cavity. This report describes the development of a methodology to delineate the oral mucosa accurately on CT scans in a semi-automated manner. Methods: An oral mucosa atlas for automated segmentation was constructed using the RayStation Atlas-Based Segmentation (ABS) module. A radiation oncologist manually delineated the full surface of the oral mucosa on a planning CT scan of a patient receiving radiotherapy (RT) to the head and neck region. A 3mm fixed annulus was added to incorporate the mucosal wall thickness. This structure was saved as an atlas template. ABS followed by model-based segmentation was performed on four further patients sequentially, adding each patient to the atlas. Manual editing of the automatically segmented structure was performed. A dose comparison between these contours and previously used oral cavity volume contours was performed. Results: The new approach was successful in delineating the mucosa, as assessed by an experienced radiation oncologist, when applied to a new series of patients receiving head and neck RT. Reductions in the mean doses obtained when using the new delineation approach, compared with the previously used technique, were demonstrated for all patients (median: 36.0%, range: 25.6% – 39.6%) and were of a magnitude that might be expected to be clinically significant. Differences in the maximum dose that might reasonably be expected to be clinically significant were observed for two patients. Conclusion: The method developed provides a means of obtaining the dose distribution delivered to the oral mucosa more accurately than has previously been achieved. This will enable the acquisition of high quality dosimetric data for use in

  19. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  20. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  1. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    SciTech Connect

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historic fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a hypothetical maximally

  2. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary

  3. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats

    PubMed Central

    Howdeshell, Kembra L.; Rider, Cynthia V.; Wilson, Vickie S.; Furr, Johnathan R.; Lambright, Christy R.; Gray, L. Earl

    2015-01-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17–100% of F1 males when fetal T production was reduced by about 25–72%, respectively. PMID:26350170

  4. A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Kajino, Mizuo; Hiraki, Takatoshi; Aikawa, Masahide; Kobayashi, Tomiki; Nagai, Haruyasu

    2011-10-01

    To apply a meteorological model to investigate fog occurrence, acidification and deposition in mountain forests, the meteorological model WRF was modified to calculate fog deposition accurately by the simple linear function of fog deposition onto vegetation derived from numerical experiments using the detailed multilayer atmosphere-vegetation-soil model (SOLVEG). The modified version of WRF that includes fog deposition (fog-WRF) was tested in a mountain forest on Mt. Rokko in Japan. fog-WRF provided a distinctly better prediction of liquid water content of fog (LWC) than the original version of WRF. It also successfully simulated throughfall observations due to fog deposition inside the forest during the summer season that excluded the effect of forest edges. Using the linear relationship between fog deposition and altitude given by the fog-WRF calculations and the data from throughfall observations at a given altitude, the vertical distribution of fog deposition can be roughly estimated in mountain forests. A meteorological model that includes fog deposition will be useful in mapping fog deposition in mountain cloud forests.

  5. Development of a new, robust and accurate, spectroscopic metric for scatterer size estimation in optical coherence tomography (OCT) images

    NASA Astrophysics Data System (ADS)

    Kassinopoulos, Michalis; Pitris, Costas

    2016-03-01

    The modulations appearing on the backscattering spectrum originating from a scatterer are related to its diameter as described by Mie theory for spherical particles. Many metrics for Spectroscopic Optical Coherence Tomography (SOCT) take advantage of this observation in order to enhance the contrast of Optical Coherence Tomography (OCT) images. However, none of these metrics has achieved high accuracy when calculating the scatterer size. In this work, Mie theory was used to further investigate the relationship between the degree of modulation in the spectrum and the scatterer size. From this study, a new spectroscopic metric, the bandwidth of the Correlation of the Derivative (COD) was developed which is more robust and accurate, compared to previously reported techniques, in the estimation of scatterer size. The self-normalizing nature of the derivative and the robustness of the first minimum of the correlation as a measure of its width, offer significant advantages over other spectral analysis approaches especially for scatterer sizes above 3 μm. The feasibility of this technique was demonstrated using phantom samples containing 6, 10 and 16 μm diameter microspheres as well as images of normal and cancerous human colon. The results are very promising, suggesting that the proposed metric could be implemented in OCT spectral analysis for measuring nuclear size distribution in biological tissues. A technique providing such information would be of great clinical significance since it would allow the detection of nuclear enlargement at the earliest stages of precancerous development.

  6. Estimation of organ doses from kilovoltage cone-beam CT imaging used during radiotherapy patient position verification

    SciTech Connect

    Hyer, Daniel E.; Hintenlang, David E.

    2010-09-15

    Purpose: The purpose of this study was to develop a practical method for estimating organ doses from kilovoltage cone-beam CT (CBCT) that can be performed with readily available phantoms and dosimeters. The accuracy of organ dose estimates made using the ImPACT patient dose calculator was also evaluated. Methods: A 100 mm pencil chamber and standard CT dose index (CTDI) phantoms were used to measure the cone-beam dose index (CBDI). A weighted CBDI (CBDI{sup w}) was then calculated from these measurements to represent the average volumetric dose in the CTDI phantom. By comparing CBDI{sup w} to the previously published organ doses, organ dose conversion coefficients were developed. The measured CBDI values were also used as inputs for the ImPACT calculator to estimate organ doses. All CBDI dose measurements were performed on both the Elekta XVI and Varian OBI at three clinically relevant locations: Head, chest, and pelvis. Results: The head, chest, and pelvis protocols yielded CBDI{sup w} values of 0.98, 16.62, and 24.13 mGy for the XVI system and 5.17, 6.14, and 21.57 mGy for the OBI system, respectively. Organ doses estimated with the ImPACT CT dose calculator showed a large range of variation from the previously measured organ doses, demonstrating its limitations for use with CBCT. Conclusions: The organ dose conversion coefficients developed in this work relate CBDI{sup w} values to organ doses previously measured using the same clinical protocols. Ultimately, these coefficients will allow for the quick estimation of organ doses from routine measurements performed using standard CTDI phantoms and pencil chambers.

  7. Estimated dose to man from uranium milling via the terrestrial food-chain pathway

    SciTech Connect

    Rayno, D.R.

    1982-01-01

    One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

  8. Estimated dose to man from uranium milling via the beef/milk food-chain pathway.

    PubMed

    Rayno, D R

    1983-12-01

    One of the major pathways of radiological exposure to man from uranium milling operations is through the beef/milk food chain. Studies by various investigators have shown the extent of uptake and distribution of 238U, 234U, 230Th, 226Ra, 210Pb, and 210Po in plants and cattle. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. In this paper, data from these investigations are used to estimate the dose to man from consumption of beef and milk from cattle that have fed on forage contaminated with the tailings. The estimated doses from this technologically enhanced source are compared with those resulting from average dietary intake of these radionuclides from natural sources.

  9. Sequential multi-nuclide emission rate estimation method based on gamma dose rate measurement for nuclear emergency management.

    PubMed

    Zhang, Xiaole; Raskob, Wolfgang; Landman, Claudia; Trybushnyi, Dmytro; Li, Yu

    2017-03-05

    In case of a nuclear accident, the source term is typically not known but extremely important for the assessment of the consequences to the affected population. Therefore the assessment of the potential source term is of uppermost importance for emergency response. A fully sequential method, derived from a regularized weighted least square problem, is proposed to reconstruct the emission and composition of a multiple-nuclide release using gamma dose rate measurement. The a priori nuclide ratios are incorporated into the background error covariance (BEC) matrix, which is dynamically augmented and sequentially updated. The negative estimations in the mathematical algorithm are suppressed by utilizing artificial zero-observations (with large uncertainties) to simultaneously update the state vector and BEC. The method is evaluated by twin experiments based on the JRodos system. The results indicate that the new method successfully reconstructs the emission and its uncertainties. Accurate a priori ratio accelerates the analysis process, which obtains satisfactory results with only limited number of measurements, otherwise it needs more measurements to generate reasonable estimations. The suppression of negative estimation effectively improves the performance, especially for the situation with poor a priori information, where it is more prone to the generation of negative values.

  10. Estimation of the radiation dose in man due to 6-(/sup 18/F) fluoro-L-dopa

    SciTech Connect

    Harvey, J.; Firnau, G.; Garnett, E.S.

    1985-08-01

    The radiation dose to the organs of the human body after an intravenous administration of 6-(/sup 18/F) fluoro-L-dopa was estimated using the recommendations of the International Committee on Radiological Protection (ICRP). The bladder wall received the highest dose, and as a consequence the dose to the genitalia was high. The major organs received a dose of 5.66E- 12 to 1.87E- 11 Sv/Bq (20 to 60 mrem/mCi). The effective dose equivalent was estimated at 5.39E- 11 Sv/Bq (200 mrem/mCi).

  11. Estimates of Radiation Doses and Cancer Risk from Food Intake in Korea

    PubMed Central

    2016-01-01

    The aim of this study was to estimate internal radiation doses and lifetime cancer risk from food ingestion. Radiation doses from food intake were calculated using the Korea National Health and Nutrition Examination Survey and the measured radioactivity of 134Cs, 137Cs, and 131I from the Ministry of Food and Drug Safety in Korea. Total number of measured data was 8,496 (3,643 for agricultural products, 644 for livestock products, 43 for milk products, 3,193 for marine products, and 973 for processed food). Cancer risk was calculated by multiplying the estimated committed effective dose and the detriment adjusted nominal risk coefficients recommended by the International Commission on Radiation Protection. The lifetime committed effective doses from the daily diet are ranged 2.957-3.710 mSv. Excess lifetime cancer risks are 14.4-18.1, 0.4-0.5, and 1.8-2.3 per 100,000 for all solid cancers combined, thyroid cancer, and leukemia, respectively. PMID:26770031

  12. Radiation Dose and Cancer Risk Estimates in 16-Slice Computed Tomography Coronary Angiography

    PubMed Central

    Einstein, Andrew J.; Sanz, Javier; Dellegrottaglie, Santo; Milite, Margherita; Sirol, Marc; Henzlova, Milena; Rajagopalan, Sanjay

    2008-01-01

    Background Recent advances have led to a rapid increase in the number of computed tomography coronary angiography (CTCA) studies performed. While several studies have reported effective dose (E), there is no data available on cancer risk for current CTCA protocols. Methods and Results E and organ doses were estimated, using scanner-derived parameters and Monte Carlo methods, for 50 patients having 16-slice CTCA performed for clinical indications. Lifetime attributable risks (LARs) were estimated with models developed in the National Academies’ Biological Effects of Ionizing Radiation VII report. E of a complete CTCA averaged 9.5 mSv, while that of a complete study, including calcium scoring when indicated, averaged 11.7 mSv. Calcium scoring increased E by 25%, while tube current modulation reduced it by 34% and was more effective at lower heart rates. Organ doses were highest to the lungs and female breast. LAR of cancer incidence from CTCA averaged approximately 1 in 1600, but varied widely between patients, being highest in younger women. For all patients, the greatest risk was from lung cancer. Conclusions CTCA is associated with non-negligible risk of malignancy. Doses can be reduced by careful attention to scanning protocol. PMID:18371595

  13. Estimates of Radiation Doses and Cancer Risk from Food Intake in Korea.

    PubMed

    Moon, Eun-Kyeong; Ha, Wi-Ho; Seo, Songwon; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae-Jung; Kim, Hyoung-Soo; Hwang, Myung-Sil; Choi, Hoon; Lee, Won Jin

    2016-01-01

    The aim of this study was to estimate internal radiation doses and lifetime cancer risk from food ingestion. Radiation doses from food intake were calculated using the Korea National Health and Nutrition Examination Survey and the measured radioactivity of (134)Cs, (137)Cs, and (131)I from the Ministry of Food and Drug Safety in Korea. Total number of measured data was 8,496 (3,643 for agricultural products, 644 for livestock products, 43 for milk products, 3,193 for marine products, and 973 for processed food). Cancer risk was calculated by multiplying the estimated committed effective dose and the detriment adjusted nominal risk coefficients recommended by the International Commission on Radiation Protection. The lifetime committed effective doses from the daily diet are ranged 2.957-3.710 mSv. Excess lifetime cancer risks are 14.4-18.1, 0.4-0.5, and 1.8-2.3 per 100,000 for all solid cancers combined, thyroid cancer, and leukemia, respectively.

  14. Estimated UV doses to psoriasis patients during climate therapy at Gran Canaria in March 2006

    NASA Astrophysics Data System (ADS)

    Nilsen, L. T. N.; Søyland, E.; Krogstad, A. L.

    2008-01-01

    Psoriasis is a chronic inflammatory disease involving about 2-3% of the Norwegian population. Sun exposure has a positive effect on most psoriasis lesions, but ultraviolet (UV) radiation also causes a direct DNA damage in the skin cells and comprises a carcinogenic potential. UV exposure on the skin causes a local as well as a systemic immune suppressive effect, but the relation between sun exposure and these biological effects is not well known. In March 2006 a study was carried out to investigate possible therapeutic outcome mechanisms in 20 psoriasis patients receiving climate therapy at Gran Canaria. This paper presents estimates of their individual skin UV-doses based on UV measurements and the patients' diaries with information on time spent in the sun. On the first day of exposure the patients received on average 5.1 Standard Erythema Doses (SED: median=4.0 SED, range 2.6-10.3 SED) estimated to the skin. During the 15 days study they received 165.8 SED (range 104.3-210.1 SED). The reduction in PASI score was 72.8% on average, but there was no obvious relation between the improvement and the UV dose. The UV doses were higher than those found from climate therapy studies at other locations. It seems beneficial to use more strict exposure schedules that consider the available UV irradiance, depending on time of the day, time of the year and weather conditions.

  15. A comparison of analytic models for estimating dose equivalent rates in shielding with beam spill measurements

    SciTech Connect

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1992-12-31

    A comparison of 800-MeV proton beam spill measurements at the Los Alamos Meson Physics Facility (LAMPF) with analytical model calculations of neutron dose equivalent rates (DER) show agreement within factors of 2-3 for simple shielding geometries. The DER estimates were based on a modified Moyer model for transverse angles and a Monte Carlo based forward angle model described in the proceeding paper.

  16. Considerations on Estimating Upper Bounds of Neutron Doses Equivalents to Military Participants at Atmospheric Nuclear Tests

    DTIC Science & Technology

    2007-04-01

    Tissue kerma for monoenergetic neutrons of energy up to 14 MeV and contributions from different interactions that produce charged ionizing particles...fluence for each energy group obtained from calculations for monoenergetic neutrons similar to calculations in Figure 2-I, and the energy dependence of the...Considerations on Estimating Upper Bounds of Neutron Dose Equivalents to Military Partici pants at Atmospheric Nuclear Tests Approved for public release

  17. Modified Maxium Likelihood Estimation Method for Completely Separated and Quasi-Completely Separated Data for a Dose-Response Model

    DTIC Science & Technology

    2015-08-01

    MODIFIED MAXIMUM LIKELIHOOD ESTIMATION METHOD FOR COMPLETELY SEPARATED AND QUASI-COMPLETELY SEPARATED DATA...Likelihood Estimation Method for Completely Separated and Quasi-Completely Separated Data for a Dose-Response Model 5a. CONTRACT NUMBER 5b. GRANT...quasi-completely separated , the traditional maximum likelihood estimation (MLE) method generates infinite estimates. The bias-reduction (BR) method

  18. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    PubMed

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  19. SU-E-J-92: Validating Dose Uncertainty Estimates Produced by AUTODIRECT, An Automated Program to Evaluate Deformable Image Registration Accuracy

    SciTech Connect

    Kim, H; Chen, J; Pouliot, J; Pukala, J; Kirby, N

    2015-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then, AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.

  20. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  1. Adaptive urn designs for estimating several percentiles of a dose--response curve.

    PubMed

    Mugno, Raymond; Zhus, Wei; Rosenberger, William F

    2004-07-15

    Dose--response experiments are crucial in biomedical studies. There are usually multiple objectives in such experiments and among the goals is the estimation of several percentiles on the dose--response curve. Here we present the first non-parametric adaptive design approach to estimate several percentiles simultaneously via generalized Pólya urns. Theoretical properties of these designs are investigated and their performance is gaged by the locally compound optimal designs. As an example, we re-investigated a psychophysical experiment where one of the goals was to estimate the three quartiles. We show that these multiple-objective adaptive designs are more efficient than the original single-objective adaptive design targeting the median only. We also show that urn designs which target the optimal designs are slightly more efficient than those which target the desired percentiles directly. Guidelines are given as to when to use which type of design. Overall we are pleased with the efficiency results and hope compound adaptive designs proposed in this work or their variants may prove to be a viable non-parametric alternative in multiple-objective dose--response studies.

  2. The use of estimated glomerular filtration rate for dose adjustment of medications in the elderly.

    PubMed

    Elinder, Carl-Gustaf; Bárány, Peter; Heimbürger, Olof

    2014-07-01

    Adverse drug effects as a consequence of inappropriate dosage are a common cause of hospitalization among the elderly. Older individuals are at a particular risk of overdosing because their kidney function decreases with advancing age and the elderly are often prescribed several pharmaceutical drugs. In addition, serum creatinine levels decrease owing to a reduction in muscle mass with age. Therefore, drug dosing based on the serum creatinine level only, instead of using assessment of the renal function, may result in overdosing of frail elderly patients. Renal function, i.e., the glomerular filtration rate can, with simple formulas, be estimated from analysis of creatinine and/or plasma cystatin C (eGFR). Such estimations performed with modern and validated formulas, as a rule present renal function normalized to the body surface area (mL/min/1.73 m(2)). A good estimation of how much the normal dosing interval should be prolonged, or the dose reduced, to obtain a desired plasma concentration of drugs that are mainly eliminated by glomerular filtration can be obtained by calculating the ratio between the patient's eGFR and the normal renal function (about 90-125 mL/min/1.73 m(2)). Increased knowledge and use of eGFR by prescribing physicians will reduce the risk of overdosing drugs in the elderly.

  3. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  4. Estimates of radiation doses in tissue and organs and risk of excess cancer in the single-course radiotherapy patients treated for ankylosing spondylitis in England and Wales

    SciTech Connect

    Fabrikant, J.I.; Lyman, J.T.

    1982-02-01

    The estimates of absorbed doses of x rays and excess risk of cancer in bone marrow and heavily irradiated sites are extremely crude and are based on very limited data and on a number of assumptions. Some of these assumptions may later prove to be incorrect, but it is probable that they are correct to within a factor of 2. The excess cancer risk estimates calculated compare well with the most reliable epidemiological surveys thus far studied. This is particularly important for cancers of heavily irradiated sites with long latent periods. The mean followup period for the patients was 16.2 y, and an increase in cancers of heavily irradiated sites may appear in these patients in the 1970s in tissues and organs with long latent periods for the induction of cancer. The accuracy of these estimates is severely limited by the inadequacy of information on doses absorbed by the tissues at risk in the irradiated patients. The information on absorbed dose is essential for an accurate assessment of dose-cancer incidence analysis. Furthermore, in this valuable series of irradiated patients, the information on radiation dosimetry on the radiotherapy charts is central to any reliable determination of somatic risks of radiation with regard to carcinogenesis in man. The work necessary to obtain these data is under way; only when they are available can more precise estimates of risk of cancer induction by radiation in man be obtained.

  5. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine.

    PubMed

    Thomas, P; Liber, K

    2001-10-01

    A new method is described for calculating radiation doses to benthic invertebrates from radionuclide concentrations in freshwater sediment. Both internal and external radiation doses were estimated for all 14 principal radionuclides of the uranium-238 decay series. Sediments were collected from three sites downstream of a uranium mining operation in northern Saskatchewan, Canada. Sediments from two sites, located approximately 1.6 and 4.4 km downstream from mining operations, yielded absorbed doses to both larval midges, Chironomus tentans, and adult amphipods, Hyalella azteca, of 59-60 and 19 mGy/year, respectively, compared to 3.2 mGy/year for a nearby control site. External beta radiation from protactinium-234 (234Pa) and alpha radiation from uranium (U) contributed most of the dose at the impacted sites, whereas polonium-210 (210Po) was most important at the control site. If a weighting factor of 20 was employed for the greater biological effect of alpha vs. beta and gamma radiation, then total equivalent doses rose to 540-560 mGy/year at the site closest to uranium operations. Such equivalent doses are above the 360-mGy/year no-observed-effect level for reproductive effects in vertebrates from gamma radiation exposure. Data are not available to determine the effect of such doses on benthic organisms, but they are high enough to warrant concern. Detrimental effects have been observed in H. azteca at similar uranium concentration in laboratory toxicity tests, but it remains unclear whether the radiotoxicity or the chemotoxicity of uranium is responsible for these effects.

  6. Influence of different dose calculation algorithms on the estimate of NTCP for lung complications.

    PubMed

    Hedin, Emma; Bäck, Anna

    2013-09-06

    Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose-volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient-specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm-specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction-based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman-Kutcher-Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm-specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB

  7. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times.

  8. Additional notes on clinical repeated-dose pharmacokinetic trials applying a peak-and-trough sampling design to estimate oral clearance.

    PubMed

    Takaai, Mari; Kayano, Yuichiro; Shimizu, Takako; Taguchi, Masato; Hashimoto, Yukiya

    2008-01-01

    In the previous study, we performed a simulation of a clinical pharmacokinetic trial, in which blood was sampled at two time points corresponding to the peak concentration (C(peak)) and trough concentration (C(trough)) following repetitive oral administration at the dose, D, and dosing interval, tau. The approximate oral clearance (CL/F(approx)), estimated as 2 x D/(C(peak) x tau+C(trough) x tau), is accurate for drugs with an elimination half-life comparative to or longer than tau; however, it was suggested that we might not use CL/F(approx) for drugs with a considerably short elimination half-life relative to tau. In the present study, we evaluated the accuracy of the alternative oral clearance (CL/F(exp)) estimated by the simple monoexponential model. In contrast to CL/F(approx), CL/F(exp) was accurate for drugs with a short elimination half-life relative to tau. The present finding in conjunction with our previous study suggested that the peak-and-trough sampling design is promising for the clinical repeated-dose pharmacokinetic trial for drugs with not only slow but also rapid elimination from the body. We think that the accuracy and precision of the two analysis methods to estimate oral clearance (CL/F(approx) and CL/F(exp)) for a target drug should be evaluated carefully before and after a real clinical trial.

  9. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  10. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  11. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  12. Impacts of stable element intake on 14C and 129I dose estimates.

    PubMed

    Moeller, Dade W; Ryan, Michael T; Sun, Lin-Shen C; Cherry, Robert N

    2005-10-01

    The purpose of this study was to evaluate and provide insights related to the influence of the intake of stable isotopes of carbon and iodine on the committed doses due to the ingestion of (14)C and (129)I. This was accomplished through the application of two different computational approaches. The first was based on the assumption that ground (drinking) water was the only source of intake of (14)C and (129)I, as well as stable carbon and stable iodine. In the second, the intake of (14)C and (129)I was still assumed to be restricted to that in the ground (drinking) water, but the intake of stable carbon and stable iodine was expanded to include that in other components of the diet. The doses were estimated using either a conversion formula or the applicable dose coefficients in Federal Guidance Reports No. 11 and No. 13. Serving as input for the analyses was the estimated maximum concentrations of (14)C or (129)I that would be present in the ground water due to potential releases from the proposed Yucca Mountain high-level radioactive waste repository during the first 10,000 y after closure. The estimated contributions of stable carbon and iodine through the consumption of ground water were based on analyses of samples collected in the Amargosa Valley, NV. The contributions through dietary intake were based on surveys conducted in the United States. Based on the accompanying analyses, it was noted that stable isotope intake has a significant effect on the estimated doses due to the intake of radioactive isotopes of the same element. While this is a well-known fact, this observation has international implications in terms of dose estimates for key radionuclides, such as (14)C and (129)I, a primary reason being the wide variations in the intakes of stable carbon and iodine in various countries. For this reason, analysts planning to apply the dose coefficients developed by the International Commission on Radiological Protection (ICRP) should either confirm that the

  13. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  14. Cytogenetical dose estimation for 3 severely exposed patients in the JCO criticality accident in Tokai-mura.

    PubMed

    Hayata, I; Kanda, R; Minamihisamatsu, M; Furukawa, M; Sasaki, M S

    2001-09-01

    A dose estimation by chromosome analysis was performed on the 3 severely exposed patients in the Tokai-mura criticality accident. Drastically reduced lymphocyte counts suggested that the whole-body dose of radiation which they had been exposed to was unprecedentedly high. Because the number of lymphocytes in the white blood cells in two patients was very low, we could not culture and harvest cells by the conventional method. To collect the number of lymphocytes necessary for chromosome preparation, we processed blood samples by a modified method, called the high-yield chromosome preparation method. With this technique, we could culture and harvest cells, and then make air-dried chromosome slides. We applied a new dose-estimation method involving an artificially induced prematurely condensed ring chromosome, the PCC-ring method, to estimate an unusually high dose with a short time. The estimated doses by the PCC-ring method were in fairly good accordance with those by the conventional dicentric and ring chromosome (Dic+R) method. The biologically estimated dose was comparable with that estimated by a physical method. As far as we know, the estimated dose of the most severely exposed patient in the present study is the highest recorded among that chromosome analyses have been able to estimate in humans.

  15. Feasibility of using the computed tomography dose indices to estimate radiation dose to partially and fully irradiated brains in pediatric neuroradiology examinations

    NASA Astrophysics Data System (ADS)

    Januzis, Natalie; Nguyen, Giao; Frush, Donald P.; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.

    2015-07-01

    The purpose of this study was two-fold: (a) to measure the dose to the brain using clinical protocols at our institution, and (b) to develop a scanner-independent dosimetry method to estimate brain dose. Radiation dose was measured with a pediatric anthropomorphic phantom and MOSFET detectors. Six current neuroradiology protocols were used: brain, sinuses, facial bones, orbits, temporal bones, and craniofacial areas. Two different CT vendor scanners (scanner A and B) were used. Partial volume correction factors (PVCFs) were determined for the brain to account for differences between point doses measured by the MOSFETs and average organ dose. The CTDIvol and DLP for each protocol were recorded. The dose to the brain (mGy) for scanners A and B was 10.7 and 10.0 for the brain protocol, 7.8 and 3.2 for the sinus, 10.2 and 8.6 for the facial bones, 7.4 and 4.7 for the orbits and 1.6 and 1.9 for the temporal bones, respectively. On scanner A, the craniofacial protocol included a standard and high dose option; the dose measured for these exams was 3.9 and 16.9 mGy, respectively. There was only one craniofacial protocol on scanner B; the brain dose measured on this exam was 4.8 mGy. A linear correlation was found between DLP and brain dose with the conversion factors: 0.049 (R2 = 0.87), 0.046 (R2 = 0.89) for scanner A and B, and 0.048 (R2 = 0.89) for both scanners. The range of dose observed was between 1.8 and 16.9 mGy per scan. This suggests that brain dose estimates may be made from DLP.

  16. Feasibility of using the computed tomography dose indices to estimate radiation dose to partially and fully irradiated brains in pediatric neuroradiology examinations.

    PubMed

    Januzis, Natalie; Nguyen, Giao; Frush, Donald P; Hoang, Jenny K; Lowry, Carolyn; Yoshizumi, Terry T

    2015-07-21

    The purpose of this study was two-fold: (a) to measure the dose to the brain using clinical protocols at our institution, and (b) to develop a scanner-independent dosimetry method to estimate brain dose. Radiation dose was measured with a pediatric anthropomorphic phantom and MOSFET detectors. Six current neuroradiology protocols were used: brain, sinuses, facial bones, orbits, temporal bones, and craniofacial areas. Two different CT vendor scanners (scanner A and B) were used. Partial volume correction factors (PVCFs) were determined for the brain to account for differences between point doses measured by the MOSFETs and average organ dose. The CTDIvol and DLP for each protocol were recorded. The dose to the brain (mGy) for scanners A and B was 10.7 and 10.0 for the brain protocol, 7.8 and 3.2 for the sinus, 10.2 and 8.6 for the facial bones, 7.4 and 4.7 for the orbits and 1.6 and 1.9 for the temporal bones, respectively. On scanner A, the craniofacial protocol included a standard and high dose option; the dose measured for these exams was 3.9 and 16.9 mGy, respectively. There was only one craniofacial protocol on scanner B; the brain dose measured on this exam was 4.8 mGy. A linear correlation was found between DLP and brain dose with the conversion factors: 0.049 (R(2) = 0.87), 0.046 (R(2) = 0.89) for scanner A and B, and 0.048 (R(2) = 0.89) for both scanners. The range of dose observed was between 1.8 and 16.9 mGy per scan. This suggests that brain dose estimates may be made from DLP.

  17. Monte Carlo estimation of radiation doses during paediatric barium meal and cystourethrography examinations.

    PubMed

    Dimitriadis, A; Gialousis, G; Makri, T; Karlatira, M; Karaiskos, P; Georgiou, E; Papaodysseas, S; Yakoumakis, E

    2011-01-21

    Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.

  18. Monte Carlo estimation of radiation doses during paediatric barium meal and cystourethrography examinations

    NASA Astrophysics Data System (ADS)

    Dimitriadis, A.; Gialousis, G.; Makri, T.; Karlatira, M.; Karaiskos, P.; Georgiou, E.; Papaodysseas, S.; Yakoumakis, E.

    2011-01-01

    Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.

  19. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    SciTech Connect

    Lau, A; Ahmad, S; Chen, Y; Ren, L; Liu, H; Yang, K

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams with no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.

  20. Patient-specific organ dose estimation during transcatheter arterial embolization using Monte Carlo method and adaptive organ segmentation

    NASA Astrophysics Data System (ADS)

    Tsai, Hui-Yu; Lin, Yung-Chieh; Tyan, Yeu-Sheng

    2014-11-01

    The purpose of this study was to evaluate organ doses for individual patients undergoing interventional transcatheter arterial embolization (TAE) for hepatocellular carcinoma (HCC) using measurement-based Monte Carlo simulation and adaptive organ segmentation. Five patients were enrolled in this study after institutional ethical approval and informed consent. Gafchromic XR-RV3 films were used to measure entrance surface dose to reconstruct the nonuniform fluence distribution field as the input data in the Monte Carlo simulation. XR-RV3 films were used to measure entrance surface doses due to their lower energy dependence compared with that of XR-RV2 films. To calculate organ doses, each patient's three-dimensional dose distribution was incorporated into CT DICOM images with image segmentation using thresholding and k-means clustering. Organ doses for all patients were estimated. Our dose evaluation system not only evaluated entrance surface doses based on measurements, but also evaluated the 3D dose distribution within patients using simulations. When film measurements were unavailable, the peak skin dose (between 0.68 and 0.82 of a fraction of the cumulative dose) can be calculated from the cumulative dose obtained from TAE dose reports. Successful implementation of this dose evaluation system will aid radiologists and technologists in determining the actual dose distributions within patients undergoing TAE.

  1. Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy.

    PubMed

    Al Anid, H; Lewis, B J; Bennett, L G I; Takada, M; Duldig, M

    2014-01-01

    A model was developed using a Monte-Carlo radiation transport code, MCNPX, to estimate the additional radiation exposure to aircrew members during solar particle events. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere to aircraft altitudes. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during ground level enhancements (GLEs) 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis.

  2. The gas chromatography/mass spectrometry can be used for dose estimation in irradiated pork

    NASA Astrophysics Data System (ADS)

    D'Oca, M. C.; Bartolotta, A.; Cammilleri, M. C.; Giuffrida, S. A.; Parlato, A.; Di Noto, A. M.; Caracappa, S.

    2009-07-01

    Food safety can be improved using ionizing radiation to reduce food spoilage and to extend its shelf life. The gas chromatography/mass spectrometry (GC/MS) has been validated by the European Community as a powerful method to identify irradiated food containing fat. The preliminary goals of our research were: (i) to set up this method, based on the detection of radiation induced 2-dodecylcyclobutanones (2-DCB) in pork muscle samples and (ii) to check the microbiological efficacy of the treatment. The main objective was to render the GC/MS a quantitative technique for dose estimation, through the measurement of the 2-DCB concentration in the irradiated sample. Our results show that the reduction of the microbial population is substantially reduced even at 2 kGy, and that a clear identification of irradiated samples can be achieved also one month after irradiation at 2 kGy in frozen-stored samples. The 2-DCB concentration showed a linear dependence on dose in the range 1-10 kGy, no matter the origin of the sample; a unique calibration function was obtained, that allowed dose estimation in irradiated pork samples. A retrospective evaluation on the quality of the treatment could be carried out this way.

  3. The Sandia total-dose estimator: SANDOSE description and user guide

    SciTech Connect

    Turner, C.D.

    1995-02-01

    The SANdia total-DOSe Estimator (SANDOSE) is used to estimate total radiation dose to a (BRL-CAT) solid model, SANDOSE uses the mass-sectoring technique to sample the model using ray-tracing techniques. The code is integrated directly into the BRL-CAD solid model editor and is operated using a simple graphical user interface. Several diagnostic tools are available to allow the user to analyze the results. Based on limited validation using several benchmark problems, results can be expected to fall between a 10% underestimate and a factor of 2 overestimate of the actual dose predicted by rigorous radiation transport techniques. However, other situations may be encountered where the results might fall outside of this range. The code is written in C and uses X-windows graphics. It presently runs on SUN SPARCstations, but in theory could be ported to any workstation with a C compiler and X-windows. SANDOSE is available via license by contacting either the Sandia National Laboratories Technology Transfer Center or the author.

  4. Methods for estimating doses to organisms from radioactive materials released into the aquatic environment

    SciTech Connect

    Baker, D.A.; Soldat, J.K.

    1992-06-01

    The US Department of Energy recently published an interim dose limit of 1 rad d{sup {minus}1} for controlling the radiation exposure of nature aquatic organisms. A computer program named CRITR, developed previously for calculating radiation doses to aquatic organisms and their predators, has been updated as an activity of the Hanford Site Surface Environmental Surveillance Project to facilitate demonstration of compliance with this limit. This report presents the revised models and the updated computer program, CRITR2, for the assessment of radiological doses to aquatic organisms and their predators; tables of the required input parameters are also provided. Both internal and external doses to fish, crustacea, mollusks, and algae, as well as organisms that subsist on them, such as muskrats, raccoons, and ducks, may be estimated using CRITR2. Concentrations of radionuclides in the water to which the organisms are exposed may be entered directly into the user-input file or may be calculated from a source term and standard dilution models developed for the National Council on Radiation Protection and Measurements.

  5. A practical method for skin dose estimation in interventional cardiology based on fluorographic DICOM information.

    PubMed

    Matthews, Lucy; Dixon, Matthew; Rowles, Nick; Stevens, Greg

    2016-03-01

    A practical method for skin dose estimation for interventional cardiology patients has been developed to inform pre-procedure planning and post-procedure patient management. Absorbed dose to the patient skin for certain interventional radiology procedures can exceed thresholds for deterministic skin injury, requiring documentation within the patient notes and appropriate patient follow-up. The primary objective was to reduce uncertainty associated with current methods, particularly surrounding field overlap. This was achieved by considering rectangular field geometry incident on a spherical patient model in a polar coordinate system. The angular size of each field was quantified at surface of the sphere, i.e. the skin surface. Computer-assisted design software enabled the modelling of a sufficient dataset that was subsequently validated with radiochromic film. Modelled overlap was found to agree with overlap measured using film to within 2.2° ± 2.0°, showing that the overall error associated with the model was < 1 %. Mathematical comparison against exposure data extracted from procedural Digital Imaging and Communication in Medicine files was used to generate a graphical skin dose map, demonstrating the dose distribution over a sphere centred at the interventional reference point. Dosimetric accuracy of the software was measured as between 3.5 and 17 % for different variables.

  6. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    SciTech Connect

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C.

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  7. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-02-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called "hot electrons"). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 1019 to 1021 W/cm2. Furthermore, an equation to estimate the photon dose generated from ultraintense laser-solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser-solid interactions.

  8. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008.

    PubMed

    Moseeva, Maria B; Azizova, Tamara V; Grigoryeva, Evgenia S; Haylock, Richard

    2014-05-01

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure.

  9. PARMA: PHITS-based Analytical Radiation Model in the Atmosphere--Verification of Its Accuracy in Estimating Cosmic Radiation Doses

    SciTech Connect

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yasuda, Hiroshi; Takada, Masashi; Nakamura, Takashi; Niita, Koji; Sihver, Lembit

    2008-08-07

    Estimation of cosmic-ray spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses. We therefore developed an analytical model that can predict the terrestrial neutron, proton, He nucleus, muon, electron, positron and photon spectra at altitudes below 20 km, based on the Monte Carlo simulation results of cosmic-ray propagation in the atmosphere performed by the PHITS code. The model was designated PARMA. In order to examine the accuracy of PARMA in terms of the neutron dose estimation, we measured the neutron dose rates at the altitudes between 20 to 10400 m, using our developed dose monitor DARWIN mounted on an aircraft. Excellent agreement was observed between the measured dose rates and the corresponding data calculated by PARMA coupled with the fluence-to-dose conversion coefficients, indicating the applicability of the model to be utilized in the route-dose calculation.

  10. Feasibility study for application of the compressed-sensing framework to interior computed tomography (ICT) for low-dose, high-accurate dental x-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Cho, H. M.; Cho, H. S.; Park, Y. O.; Park, C. K.; Lim, H. W.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Woo, T. H.; Choi, S. I.

    2016-02-01

    In this paper, we propose a new/next-generation type of CT examinations, the so-called Interior Computed Tomography (ICT), which may presumably lead to dose reduction to the patient outside the target region-of-interest (ROI), in dental x-ray imaging. Here an x-ray beam from each projection position covers only a relatively small ROI containing a target of diagnosis from the examined structure, leading to imaging benefits such as decreasing scatters and system cost as well as reducing imaging dose. We considered the compressed-sensing (CS) framework, rather than common filtered-backprojection (FBP)-based algorithms, for more accurate ICT reconstruction. We implemented a CS-based ICT algorithm and performed a systematic simulation to investigate the imaging characteristics. Simulation conditions of two ROI ratios of 0.28 and 0.14 between the target and the whole phantom sizes and four projection numbers of 360, 180, 90, and 45 were tested. We successfully reconstructed ICT images of substantially high image quality by using the CS framework even with few-view projection data, still preserving sharp edges in the images.

  11. Developing population pharmacokinetic parameters for high-dose methotrexate therapy: implication of correlations among developed parameters for individual parameter estimation using the Bayesian least-squares method.

    PubMed

    Watanabe, Masahiro; Fukuoka, Noriyasu; Takeuchi, Toshiki; Yamaguchi, Kazunori; Motoki, Takahiro; Tanaka, Hiroaki; Kosaka, Shinji; Houchi, Hitoshi

    2014-01-01

    Bayesian estimation enables the individual pharmacokinetic parameters of the medication administrated to be estimated using only a few blood concentrations. Due to wide inter-individual variability in the pharmacokinetics of methotrexate (MTX), the concentration of MTX needs to be frequently determined during high-dose MTX therapy in order to prevent toxic adverse events. To apply the benefits of Bayesian estimation to cases treated with this therapy, we attempted to develop an estimation method using the Bayesian least-squares method, which is commonly used for therapeutic monitoring in a clinical setting. Because this method hypothesizes independency among population pharmacokinetic parameters, we focused on correlations among population pharmacokinetic parameters used to estimate individual parameters. A two-compartment model adequately described the observed concentration of MTX. The individual pharmacokinetic parameters of MTX were estimated in 57 cases using the maximum likelihood method. Among the available parameters accounting for a 2-compartment model, V1, k10, k12, and k21 were found to be the combination showing the weakest correlations, which indicated that this combination was best suited to the Bayesian least-squares method. Using this combination of population pharmacokinetic parameters, Bayesian estimation provided an accurate estimation of individual parameters. In addition, we demonstrated that the degree of correlation among population pharmacokinetic parameters used in the estimation affected the precision of the estimates. This result highlights the necessity of assessing correlations among the population pharmacokinetic parameters used in the Bayesian least-squares method.

  12. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  13. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    SciTech Connect

    Baly, L.; Otazo, M. R.; Molina, D.; Pernas, R.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  14. Organ dose and effective dose estimation in paediatric chest radiographic examinations by using pin silicon photodiode dosemeters.

    PubMed

    Kawasaki, Toshio; Aoyama, Takahiko; Yamauchi-Kawaura, Chiyo; Fujii, Keisuke; Koyama, Shuji

    2013-01-01

    Organ and effective doses during paediatric chest radiographic examination were investigated for various tube voltages between 60 and 110 kV at a constant milliampere-second value and focus-to-film distance by using an in-phantom dose measuring system and a Monte Carlo (MC) simulation software (PCXMC), where the former was composed of 32 photodiode dosemeters embedded in various tissue and organ sites within a 6-y-old child anthropomorphic phantom. Lung doses obtained ranged from 0.010 to 0.066 mGy and effective doses from 0.004 to 0.025 mSv, where these doses varied by a factor of 6 with the change in the tube voltage. Effective doses obtained using the MC simulation software agreed with those obtained using the dose measuring system within 23 %, revealing the usefulness of PCXMC software for evaluating effective doses. The present study would provide helpful dose data for the selection of technical parameters in paediatric chest radiography in Japan.

  15. Observing Volcanic Thermal Anomalies from Space: How Accurate is the Estimation of the Hotspot's Size and Temperature?

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Pick, L.; Lombardo, V.; Hort, M. K.

    2015-12-01

    Measuring the heat emission from active volcanic features on the basis of infrared satellite images contributes to the volcano's hazard assessment. Because these thermal anomalies only occupy a small fraction (< 1 %) of a typically resolved target pixel (e.g. from Landsat 7, MODIS) the accurate determination of the hotspot's size and temperature is however problematic. Conventionally this is overcome by comparing observations in at least two separate infrared spectral wavebands (Dual-Band method). We investigate the resolution limits of this thermal un-mixing technique by means of a uniquely designed indoor analog experiment. Therein the volcanic feature is simulated by an electrical heating alloy of 0.5 mm diameter installed on a plywood panel of high emissivity. Two thermographic cameras (VarioCam high resolution and ImageIR 8300 by Infratec) record images of the artificial heat source in wavebands comparable to those available from satellite data. These range from the short-wave infrared (1.4-3 µm) over the mid-wave infrared (3-8 µm) to the thermal infrared (8-15 µm). In the conducted experiment the pixel fraction of the hotspot was successively reduced by increasing the camera-to-target distance from 3 m to 35 m. On the basis of an individual target pixel the expected decrease of the hotspot pixel area with distance at a relatively constant wire temperature of around 600 °C was confirmed. The deviation of the hotspot's pixel fraction yielded by the Dual-Band method from the theoretically calculated one was found to be within 20 % up until a target distance of 25 m. This means that a reliable estimation of the hotspot size is only possible if the hotspot is larger than about 3 % of the pixel area, a resolution boundary most remotely sensed volcanic hotspots fall below. Future efforts will focus on the investigation of a resolution limit for the hotspot's temperature by varying the alloy's amperage. Moreover, the un-mixing results for more realistic multi

  16. Analgesia dose prescribing and estimated glomerular filtration rate decline: a general practice database linkage cohort study

    PubMed Central

    Nderitu, Paul; Doos, Lucy; Strauss, Vicky Y; Lambie, Mark; Davies, Simon J; Kadam, Umesh T

    2014-01-01

    Objective We aimed to quantify the short-term effect of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and paracetamol analgesia dose prescribing on estimated glomerular filtration rate (eGFR) decline in the general practice population. Design A population-based longitudinal clinical data linkage cohort study. Setting Two large general practices in North Staffordshire, UK. Participants Patients aged 40 years and over with ≥2 eGFR measurements spaced ≥90 days apart between 1 January 2009 and 31 December 2010 were selected. Exposure Using WHO Defined Daily Dose standardised cumulative analgesia prescribing, patients were categorised into non-user, normal and high-dose groups. Outcome measure The primary outcome was defined as a >5 mL/min/1.73 m2/year eGFR decrease between the first and last eGFR. Logistic regression analyses were used to estimate risk, adjusting for sociodemographics, comorbidity, baseline chronic kidney disease (CKD) status, renin-angiotensin-system inhibitors and other analgesia prescribing. Results There were 4145 patients (mean age 66 years, 55% female) with an analgesia prescribing prevalence of 17.2% for NSAIDs, 39% for aspirin and 22% for paracetamol and stage 3–5 CKD prevalence was 16.1% (n=667). Normal or high-dose NSAID and paracetamol prescribing was not significantly associated with eGFR decline. High-dose aspirin prescribing was associated with a reduced risk of eGFR decline in patients with a baseline (first) eGFR ≥60 mL/min/1.73 m2; OR=0.52 (95% CI 0.35 to 0.77). Conclusions NSAID, aspirin and paracetamol prescribing over 2 years did not significantly affect eGFR decline with a reduced risk of eGFR decline in high-dose aspirin users with well-preserved renal function. However, the long-term effects of analgesia use on eGFR decline remain to be determined. PMID:25138808

  17. Repair of sublethal radiation injury after multiple small doses in mouse kidney: an estimate of flexure dose

    SciTech Connect

    Stewart, F.A.; Oussoren, Y.; Luts, A.; Begg, A.C.; Dewit, L.; Lebesque, J.; Bartelink, H.

    1987-05-01

    Functional kidney damage in mice was measured after a series of fractionated X-irradiations. Doses per fraction of 0.75-12.5 Gy were given as 2, 5, 10, 30, 40, 60, or 80 equal doses in a total treatment time of 4 weeks. Renal function (measured by clearance of /sup 51/CrEDTA or hematocrit levels) deteriorated progressively, in a dose related manner, from 20 to 46 weeks after the start of treatment. The changes in renal function versus time were fitted by a polynomial regression through all data and interpolated values for /sup 51/CrEDTA clearance were then calculated at 30 and 40 weeks after treatment. Steep dose response curves were obtained and these were used to calculate isoeffective doses for the different fractionation schedules. There was a marked increase in total isoeffective doses from 2-30 fractions and these data were well described by a linear quadratic (L.Q.) expression for damage with an alpha/beta ratio of 2.3 +/- 0.2 Gy. There was only a slight increase in the total isoeffect dose as the size of the dose per fraction was decreased below 2 Gy and the measured isoeffect doses after 40 to 80 fractions were lower than predicted on the basis of an L.Q. model assuming complete repair between successive irradiations. The flexure dose for mouse kidneys irradiated 3 times per day was, effectively, 1 to 2 Gy and hyperfractionation using lower doses per fraction did not lead to significant, additional repair.

  18. The use of carbon fibre material in radiographic cassettes: estimation of the dose and contrast advantages.

    PubMed

    Dance, D R; Lester, S A; Carlsson, G A; Sandborg, M; Persliden, J

    1997-04-01

    A Monte Carlo simulation has been used to estimate the dose and contrast advantages of replacing radiographic cassette fronts fabricated from aluminium with cassette fronts fabricated from low atomic number material (carbon fibre). The simulation used a realistic imaging geometry and calculations were made both with and without an anti-scatter grid. Account was taken of the scatter generated in the cassette front and the effect of beam hardening on primary contrast. Dose and contrast were evaluated for a range of cassette front thicknesses and tube potentials (60-150 kV) as well as for four examinations representative of situations with varying amounts of scatter. The results with an anti-scatter grid show a clear dose and contrast advantage in all cases when an aluminium cassette front is replaced with a low attenuation cassette front. The contrast advantage is dependent upon the examination and is generally greater for imaging bony structures than for imaging soft tissue. If a 1.74 mm aluminium cassette front is compared with a 1.1 mm carbon fibre cassette front, then the dose advantages are 16%, 9%, 8% and 6% and the contrast advantages are 10%, 7%, 4% and 5% for the AP paediatric pelvis examination at 60 kV, the anteroposterior (AP) lumbar spine examination at 80 kV, the lateral lumbar spine examination at 100 kV and the posteroanterior (PA) chest examination at 150 kV, respectively. The results without an anti-scatter grid show an increased dose advantage when a low attenuation cassette front is used, but the contrast advantage is small and in some situations negative.

  19. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry.

  20. Improvement of the quality of effective dose estimation by interlaboratory comparisons

    NASA Astrophysics Data System (ADS)

    Katarzyna, Ciszewska; Malgorzata, Dymecka; Tomasz, Pliszczynski; Jakub, Osko

    2010-01-01

    Radiation Protection Measurements Laboratory (RPLM) of the Institute of Atomic Energy POLATOM determines radionuclides in human urine to estimate the effective dose. Being an accredited laboratory, RPLM participated in interlaboratory comparisons in order to assure the quality of services concerning monitoring of internal contamination. The purpose of the study was to examine the effect of interlaboratory comparisons on the accuracy of the provided measurements. The results regarding tritium (3H) and strontium (90Sr) determination, obtained within the radiotoxicological intercomparison exercises, organized by PROCORAD, in 2005-2010, were analyzed and the methods used by the laboratory were verified and improved.

  1. Radiation dose estimation for marine mussels following exposure to tritium: Best practice for use of the ERICA tool in ecotoxicological studies.

    PubMed

    Dallas, Lorna J; Devos, Alexandre; Fievet, Bruno; Turner, Andrew; Lyons, Brett P; Jha, Awadhesh N

    2016-05-01

    Accurate dosimetry is critically important for ecotoxicological and radioecological studies on the potential effects of environmentally relevant radionuclides, such as tritium ((3)H). Previous studies have used basic dosimetric equations to estimate dose from (3)H exposure in ecologically important organisms, such as marine mussels. This study compares four different methods of estimating dose to adult mussels exposed to 1 or 15 MBq L(-1) tritiated water (HTO) under laboratory conditions. These methods were (1) an equation converting seawater activity concentrations to dose rate with fixed parameters; (2) input into the ERICA tool of seawater activity concentrations only; (3) input into the ERICA tool of estimated whole organism concentrations (woTACs), comprising dry activity plus estimated tissue free water tritium (TFWT) activity (TFWT volume × seawater activity concentration); and (4) input into the ERICA tool of measured whole organism activity concentrations, comprising dry activity plus measured TFWT activity (TFWT volume × TFWT activity concentration). Methods 3 and 4 are recommended for future ecotoxicological experiments as they produce values for individual animals and are not reliant on transfer predictions (estimation of concentration ratio). Method 1 may be suitable if measured whole organism concentrations are not available, as it produced results between 3 and 4. As there are technical complications to accurately measuring TFWT, we recommend that future radiotoxicological studies on mussels or other aquatic invertebrates measure whole organism activity in non-dried tissues (i.e. incorporating TFWT and dry activity as one, rather than as separate fractions) and input this data into the ERICA tool.

  2. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose.

    PubMed

    DeMarco, J J; Cagnon, C H; Cody, D D; Stevens, D M; McCollough, C H; Zankl, M; Angel, E; McNitt-Gray, M F

    2007-05-07

    The purpose of this work is to examine the effects of patient size on radiation dose from CT scans. To perform these investigations, we used Monte Carlo simulation methods with detailed models of both patients and multidetector computed tomography (MDCT) scanners. A family of three-dimensional, voxelized patient models previously developed and validated by the GSF was implemented as input files using the Monte Carlo code MCNPX. These patient models represent a range of patient sizes and ages (8 weeks to 48 years) and have all radiosensitive organs previously identified and segmented, allowing the estimation of dose to any individual organ and calculation of patient effective dose. To estimate radiation dose, every voxel in each patient model was assigned both a specific organ index number and an elemental composition and mass density. Simulated CT scans of each voxelized patient model were performed using a previously developed MDCT source model that includes scanner specific spectra, including bowtie filter, scanner geometry and helical source path. The scan simulations in this work include a whole-body scan protocol and a thoracic CT scan protocol, each performed with fixed tube current. The whole-body scan simulation yielded a predictable decrease in effective dose as a function of increasing patient weight. Results from analysis of individual organs demonstrated similar trends, but with some individual variations. A comparison with a conventional dose estimation method using the ImPACT spreadsheet yielded an effective dose of 0.14 mSv mAs(-1) for the whole-body scan. This result is lower than the simulations on the voxelized model designated 'Irene' (0.15 mSv mAs(-1)) and higher than the models 'Donna' and 'Golem' (0.12 mSv mAs(-1)). For the thoracic scan protocol, the ImPACT spreadsheet estimates an effective dose of 0.037 mSv mAs(-1), which falls between the calculated values for Irene (0.042 mSv mAs(-1)) and Donna (0.031 mSv mAs(-1)) and is higher relative

  3. SU-F-18C-08: A Validation Study of a Commercially Available Software Package's Absorbed Dose Estimates in a Physical Phantom

    SciTech Connect

    Supanich, M; Siegelman, J

    2014-06-15

    Purpose: This study assesses the accuracy of the absorbed dose estimates from CT scans generated by Monte Carlo (MC) simulation using a commercially available radiation dose monitoring software program. Methods: Axial CT studies of an anthropomorphic abdomen phantom with dose bores at a central location and 4 peripheral locations were conducted using a fixed tube current at 120 kV. A 100 mm ion chamber and a 0.6 cc ion chamber calibrated at diagnostic energy levels were used to measure dose in the phantom at each of the 5 dose bore locations. Simulations using the software program's Monte Carlo engine were run using a mathematical model of the anthropomorphic phantom to determine conversion coefficients between the CTDIvol used for the study and the dose at the location of the dose bores. Simulations were conducted using both the software's generic CT beam model and a refined model generated using HVL and bow tie filter profile measurements made on the scanner used for the study. Results: Monte Carlo simulations completed using the generalized beam model differed from the measured conversion factors by an absolute value average of 13.0% and 13.8% for the 100 mm and 0.6 cc ion chamber studies, respectively. The MC simulations using the scanner specific beam model generated conversion coefficients that differed from the CTDIvol to measured dose conversion coefficients by an absolute value average of 7.3% and 7.8% for the 100 mm and 0.6 cc ion chamber cases, respectively. Conclusion: A scanner specific beam model used in MC simulations generates more accurate dose conversion coefficients in an anthropomorphic phantom than those generated with a generalized beam model. Agreement between measured conversion coefficients and simulated values were less than 20% for all positions using the universal beam model.

  4. Development of in vivo tooth EPR for individual radiation dose estimation and screening.

    PubMed

    Williams, Benjamin B; Dong, Ruhong; Kmiec, Maciej; Burke, Greg; Demidenko, Eugene; Gladstone, David; Nicolalde, Roberto J; Sucheta, Artur; Lesniewski, Piotr; Swartz, Harold M

    2010-02-01

    The development of in vivo EPR has made it feasible to perform tooth dosimetry measurements in situ, greatly expanding the potential for using this approach for immediate screening after radiation exposures. The ability of in vivo tooth dosimetry to provide estimates of absorbed dose has been established through a series of experiments using unirradiated volunteers with specifically irradiated molar teeth placed in situ within gaps in their dentition and in natural canine teeth of patients who have completed courses of radiation therapy for head and neck cancers. Multiple measurements in patients who have received radiation therapy demonstrate the expected heterogeneous dose distributions. Dose-response curves have been generated using both populations and, using the current methodology and instrument, the standard error of prediction based on single 4.5-min measurements is approximately 1.5 Gy for inserted molar teeth and between 2.0 and 2.5 Gy in the more irregularly shaped canine teeth. Averaging of independent measurements can reduce this error significantly to values near 1 Gy. Developments to reduce these errors are underway, focusing on geometric optimization of the resonators, detector positioning techniques, and optimal data averaging approaches. In summary, it seems plausible that the EPR dosimetry techniques will have an important role in retrospective dosimetry for exposures involving large numbers of individuals.

  5. Development of In Vivo Tooth EPR for Individual Radiation Dose Estimation and Screening

    PubMed Central

    Williams, Benjamin B.; Dong, Ruhong; Kmiec, Maciej; Burke, Greg; Demidenko, Eugene; Gladstone, David; Nicolalde, Roberto J; Sucheta, Artur; Lesniewski, Piotr; Swartz, Harold M

    2009-01-01

    The development of in vivo EPR has made it feasible to perform tooth dosimetry measurements in situ, greatly expanding the potential for using this approach for immediate screening after radiation exposures. The ability of in vivo tooth dosimetry to provide estimates of absorbed dose has been established through a series of experiments using unirradiated volunteers with specifically irradiated molar teeth placed in situ within gaps in their dentition and in natural canine teeth of patients who have completed courses of radiation therapy for head and neck cancers. Multiple measurements in patients who have received radiation therapy demonstrate the expected heterogeneous dose distributions. Dose response curves have been generated using both populations and, using the current methodology and instrument, the standard error of prediction based on single 4.5 minute measurements is approximately 1.5 Gy for inserted molar teeth and between 2.0 and 2.5 Gy in the more irregularly shaped canine teeth. Averaging of independent measurements can reduce this error significantly to values near 1 Gy. Developments to reduce these errors are underway, focusing on geometric optimization of the resonators, detector positioning techniques, and optimal data averaging approaches. In summary, it seems plausible that the EPR dosimetry techniques will have an important role in retrospective dosimetry for exposures involving large numbers of individuals. PMID:20065702

  6. Quantitative estimation of UV light dose concomitant to irradiation with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Petin, Vladislav G.; Morozov, Ivan I.; Kim, Jin Kyu; Semkina, Maria A.

    2011-01-01

    A simple mathematical model for biological estimation of UV light dose concomitant to ionizing radiation was suggested. This approach was applied to determine the dependency of equivalent UV light dose accompanied by 100 Gy of ionizing radiation on energy of sparsely ionizing radiation and on volume of the exposed cell suspension. It was revealed that the relative excitation contribution to the total lethal effect and the value of UV dose was greatly increased with an increase in energy of ionizing radiation and volume of irradiated suspensions. It is concluded that these observations are in agreement with the supposition that Čerenkov emission is responsible for the production of UV light damage and the phenomenon of photoreactivation observed after ionizing exposure of bacterial and yeast cells hypersensitive to UV light. A possible synergistic interaction of the damages produced by ionizations and excitations as well as a probable participation of UV component of ionizing radiation in the mechanism of hormesis and adaptive response observed after ionizing radiation exposure is discussed.

  7. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  8. Maximum likelihood estimation of proton irradiated field and deposited dose distribution

    SciTech Connect

    Inaniwa, Taku; Kohno, Toshiyuki; Yamagata, Fumiko; Tomitani, Takehiro; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki; Urakabe, Eriko

    2007-05-15

    In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy. In this study, we performed irradiation experiments with mono-energetic proton beams of 160 MeV and the spread-out Bragg peak beams to three kinds of targets. The annihilation events were detected with a positron camera for 500 s after the irradiation and the annihilation gamma ray distributions were obtained. In order to evaluate the range and the position of distal and proximal edges of the SOBP, the maximum likelihood estimation (MLE) method was applied to the detected distributions. The evaluated values with the MLE method were compared with those estimated from the measured dose distributions. As a result, the ranges were determined with the difference between the MLE range and the experimental range less than 1.0 mm for all targets. For the SOBP beams, the positions of distal edges were determined with the difference less than 1.0 mm. On the other hand, the difference amounted to 7.9 mm for proximal edges.

  9. Maximum likelihood estimation of proton irradiated field and deposited dose distribution.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Yamagata, Fumiko; Tomitani, Takehiro; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki; Urakabe, Eriko

    2007-05-01

    In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy. In this study, we performed irradiation experiments with mono-energetic proton beams of 160 MeV and the spread-out Bragg peak beams to three kinds of targets. The annihilation events were detected with a positron camera for 500 s after the irradiation and the annihilation gamma ray distributions were obtained. In order to evaluate the range and the position of distal and proximal edges of the SOBP, the maximum likelihood estimation (MLE) method was applied to the detected distributions. The evaluated values with the MLE method were compared with those estimated from the measured dose distributions. As a result, the ranges were determined with the difference between the MLE range and the experimental range less than 1.0 mm for all targets. For the SOBP beams, the positions of distal edges were determined with the difference less than 1.0 mm. On the other hand, the difference amounted to 7.9 mm for proximal edges.

  10. Primate polonium metabolic models and their use in estimation of systemic radiation doses from bioassay data

    SciTech Connect

    Fellman, A.

    1989-01-01

    A Polonium metabolic model was derived and incorporated into a Fortran algorithm which estimates the systemic radiation dose from {sup 210}Po when applied to occupational urine bioassay data. The significance of the doses estimated are examined by defining the degree of uncertainty attached to them through comprehensive statistical testing procedures. Many parameters necessary for dosimetry calculations, were evaluated from metabolic studies of {sup 210}Po in non-human primates. Two tamarins and six baboons were injected intravenously with {sup 210}Po citrate. Excreta and blood samples were collected. Five of the baboons were sacrifice at times ranging from 1 day to 3 months post exposure. Complete necropsies were performed and all excreta and the majority of all skeletal and tissue samples were analyzed radiochemically for their {sup 210}Po content. The {sup 210}Po excretion rate in the baboon was more rapid than in the tamarin. The biological half-time of {sup 210}Po excretion in the baboon was approximately 15 days while in the tamarin, the {sup 210}Po excretion rate was in close agreement with the 50 day biological half-time predicted by ICRP 30. Excretion fractions of {sup 210}Po in the non-human primates were found to be markedly different from data reported elsewhere in other species, including man.

  11. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  12. Dose estimation and shielding calculation for X-ray hazard at high intensity laser facilities

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Hui; Yang, Bo; James, C. Liu; Sayed, H. Rokni; Michael, B. Woods; Li, Jun-Li

    2014-12-01

    An ionizing radiation hazard produced from the interaction between high intensity lasers and solid targets has been observed. Laser-plasma interactions create “hot” electrons, which generate bremsstrahlung X-rays when they interact with ions in the target. However, up to now only limited studies have been conducted on this laser-induced radiological protection issue. In this paper, the physical process and characteristics of the interaction between high intensity lasers and solid targets are analyzed. The parameters of the radiation sources are discussed, including the energy conversion efficiency from laser to hot electrons, hot electron energy spectrum and electron temperature, and the bremsstrahlung X-ray energy spectrum produced by hot electrons. Based on this information, the X-ray dose generated with high-Z targets for laser intensities between 1014 and 1020 W/cm2 is estimated. The shielding effects of common shielding items such as the glass view port, aluminum chamber wall and concrete wall are also studied using the FLUKA Monte Carlo code. This study provides a reference for the dose estimation and the shielding design of high intensity laser facilities.

  13. Application of RADTRAN to estimation of doses to persons in enclosed spaces

    SciTech Connect

    Neuhauser, K. S.

    1992-01-01

    The RADTRAN computer code for transportation risk analysis can be used to estimate doses to persons in enclosed volumes. This application was developed in response to a need to examine consequences of a hypothetical container leak during accident-free transportation by cargo air. The original problem addressed tritium containers, but the method can be applied to any gaseous or suspended particulate material potentially released in an airplane or other enclosed area (e.g., warehouse) under accident-free conditions. Such leakage can occur during shipment of any radioactive gas or material with a gaseous phase. Atmospheric dispersion is normally modeled in RADTRAN as a series of downwind isopleths each of which is assigned a dilution factor (also known as time-integrated concentration or X/Q value). These values are located in look-up tables in RADTRAN and are normally taken from externally performed Gaussian dispersion calculations. The dilution factors are used to estimate inhalation dose to persons in the specified downwind areas.

  14. Dilatation and curettage is more accurate than endometrial aspiration biopsy in early-stage endometrial cancer patients treated with high dose oral progestin and levonorgestrel intrauterine system

    PubMed Central

    2017-01-01

    Objective To determine whether less invasive endometrial (EM) aspiration biopsy is adequately accurate for evaluating treatment outcomes compared to the dilatation and curettage (D&C) biopsy in early-stage endometrial cancer (EC) patients treated with high dose oral progestin and levonorgestrel intrauterine system (LNG-IUS). Methods We conducted a prospective observational study with patients younger than 40 years who were diagnosed with clinical stage IA, The International Federation of Gynecology and Obstetrics grade 1 or 2 endometrioid adenocarcinoma and sought to maintain their fertility. The patients were treated with medroxyprogesterone acetate 500 mg/day and LNG-IUS. Treatment responses were evaluated every 3 months. EM aspiration biopsy was conducted after LNG-IUS removal followed D&C. The tissue samples were histologically compared. The diagnostic concordance rate of the two tests was examined with κ statistics. Results Twenty-eight pairs of EM samples were obtained from five patients. The diagnostic concordance rate of D&C and EM aspiration biopsy was 39.3% (κ value=0.26). Of the seven samples diagnosed as normal with D&C, three (42.8%) were diagnosed as normal by using EM aspiration biopsy. Of the eight samples diagnosed with endometrioid adenocarcinoma by using D&C, three (37.5%) were diagnosed with endometrioid adenocarcinoma by using EM aspiration biopsy. Of the 13 complex EM hyperplasia samples diagnosed with the D&C, five (38.5%) were diagnosed with EM hyperplasia by using EM aspiration biopsy. Of the samples obtained through EM aspiration, 46.4% were insufficient for histological evaluation. Conclusion To evaluate the treatment responses of patients with early-stage EC treated with high dose oral progestin and LNG-IUS, D&C should be conducted after LNG-IUS removal. PMID:27670255

  15. [Dose estimation for renal-excretion drugs in neonates and infants based on physiological development of renal function].

    PubMed

    Suzuki, Shinya; Murayama, Yuka; Sugiyama, Erika; Sekiyama, Masao; Sato, Hitoshi

    2009-07-01

    We established dose estimation formulae for renal-excretion drugs using the glomerular filtration rate (GFR), tubular secretion clearance (Sc), and unbound fraction of drug in plasma (fp) as a renal function index of physiological development in neonates and infants not more than 2 years of age. A dose ratio of (DC/DA)=clearance ratio of (CLC/CLA) congruent with(fpC.GFRC)/(fpA.GFRA) for neonates and infants/adults was applied to drugs with fp.GFR>Sc, while DC/DA=CLC/CLA congruent with(beta.BSAC+fpC.GFRC)/(beta.BSAA+fpA.GFRA) was applied to drugs with Sc>fp.GFR using the coefficient of each drug (beta) and body surface area (BSA). Validity of the estimation formulae was investigated in drugs with fp.GFR>Sc such as vancomycin (VCM), arbekacin (ABK), fosfomycin (FOM) and norfloxacin (NFLX), and in drugs with Sc>fp.GFR such as digoxin (DGX) and amoxicillin (AMPC). First, we compared the clearance ratio (CLC/ CLA) of VCM, ABK, and DGX estimated by our method with those calculated using the Japanese population clearance values and those estimated allometrically (BSAC/BSAA). Next, we compared the established doses of all drugs investigated with the doses for neonates and infants calculated from the conventional dose estimation methods for children and our estimation formulae, and evaluated our method. As a result, favorable consistency was observed in the CL ratio for all drugs, and the doses of VCM, FOM, NFLX and AMPC calculated from our estimation formulae approximated the established doses. In conclusion, the validity of the dose estimation method using pharmacokinetic factors related to physiological development (i.e., GFR, fp, Sc) for renal-excretion drugs in neonates and infants was demonstrated.

  16. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  17. A review of source term and dose estimation for the TMI-2 reactor accident

    SciTech Connect

    Gudiksen, P.H.; Dickerson, M.H.

    1990-09-01

    The TMI-2 nuclear reactor accident, which occurred on March 28, 1979 in Harrisburg, Pennsylvania, produced environmental releases of noble gases and small quantities of radioiodine. The releases occurred over a roughly two week period with almost 90% of the noble gases being released during the first three days after the initiation of the accident. Meteorological conditions during the prolonged release period varied from strong synoptic driven flows that rapidly transported the radioactive gases out of the Harrisburg area to calm situations that allowed the radioactivity to accumulate within the low lying river area and to subsequently slowly disperse within the immediate vicinity of the reactor. The results reported by various analysts, revealed that approximately 2.4--10 million curies of noble gases (mainly Xe-133), and about 14 curies of I-131 were released. During the first two days, when most of the noble gas release occurred, the plume was transported in a northerly direction causing the most exposed area to lie within a northwesterly to northeasterly direction from TMI. Changing surface winds caused the plume to be subsequently transported in a southerly direction, followed by an easterly direction. The calculated maximum whole body dose due to plume passage exceeded 100 mrem over an area extending several kilometers north of the plant, although the highest measured dose was 75 mrem. The collective dose equivalent (within a radius of 80 km) due to the noble gas exposure ranged over several orders of magnitude with a central estimate of 3300 person-rem. The small I-131 release produced barely detectable levels of activity in air and milk samples. This may have produced thyroid doses of a few milirem to a small segment of the population. 7 refs., 4 figs., 2 tabs.

  18. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  19. A Novel Method of Estimating Dose Responses for Polymer Gels Using Texture Analysis of Scanning Electron Microscopy Images

    PubMed Central

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection. PMID:23843998

  20. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    PubMed

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2) value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  1. An automated technique for estimating patient-specific regional imparted energy and dose in TCM CT exams

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremiah W.; Tian, Xiaoyu; Segars, W. Paul; Boone, John; Samei, Ehsan

    2016-03-01

    Currently computed tomography (CT) dosimetry relies on CT dose index (CTDI) and size specific dose estimates (SSDE). Organ dose is a better metric of radiation burden. However, organ dose estimation requires precise knowledge of organ locations. Regional imparted energy and dose can also be used to quantify radiation burden. Estimating the imparted energy from CT exams is beneficial in that it does not require precise estimates of the organ size or location. This work investigated an automated technique for retrospectively estimating the imparted energy from chest and abdominopelvic tube current modulated (TCM) CT exams. Monte Carlo simulations of chest and abdominopelvic TCM CT examinations across various tube potentials and TCM strengths were performed on 58 adult computational extended cardiac-torso (XCAT) phantoms to develop relationships between scanned mass and imparted energy normalized by dose length product (DLP). An automated algorithm for calculating the scanned patient volume was further developed using an open source mesh generation toolbox. The scanned patient volume was then used to estimate the scanned mass accounting for diverse density within the scan region. The scanned mass and DLP from the exam were used to estimate the imparted energy to the patient using the knowledgebase developed from the Monte Carlo simulations. Patientspecific imparted energy estimates were made from 20 chest and 20 abdominopelvic clinical CT exams. The average imparted energy was 274 +/- 141 mJ and 681 +/- 376 mJ for the chest and abdominopelvic exams, respectively. This method can be used to estimate the regional imparted energy and/or regional dose in chest and abdominopelvic TCM CT exams across clinical operations.

  2. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  3. Military participants at U.S. Atmospheric nuclear weapons testing--methodology for estimating dose and uncertainty.

    PubMed

    Till, John E; Beck, Harold L; Aanenson, Jill W; Grogan, Helen A; Mohler, H Justin; Mohler, S Shawn; Voillequé, Paul G

    2014-05-01

    Methods were developed to calculate individual estimates of exposure and dose with associated uncertainties for a sub-cohort (1,857) of 115,329 military veterans who participated in at least one of seven series of atmospheric nuclear weapons tests or the TRINITY shot carried out by the United States. The tests were conducted at the Pacific Proving Grounds and the Nevada Test Site. Dose estimates to specific organs will be used in an epidemiological study to investigate leukemia and male breast cancer. Previous doses had been estimated for the purpose of compensation and were generally high-sided to favor the veteran's claim for compensation in accordance with public law. Recent efforts by the U.S. Department of Defense (DOD) to digitize the historical records supporting the veterans' compensation assessments make it possible to calculate doses and associated uncertainties. Our approach builds upon available film badge dosimetry and other measurement data recorded at the time of the tests and incorporates detailed scenarios of exposure for each veteran based on personal, unit, and other available historical records. Film badge results were available for approximately 25% of the individuals, and these results assisted greatly in reconstructing doses to unbadged persons and in developing distributions of dose among military units. This article presents the methodology developed to estimate doses for selected cancer cases and a 1% random sample of the total cohort of veterans under study.

  4. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool

    SciTech Connect

    Brady, S. L. Kaufman, R. A.

    2015-05-15

    Purpose: To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Methods: Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination