Sample records for accurate equilibrium structure

  1. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route.

    PubMed

    Penocchio, Emanuele; Piccardo, Matteo; Barone, Vincenzo

    2015-10-13

    The B2PLYP double hybrid functional, coupled with the correlation-consistent triple-ζ cc-pVTZ (VTZ) basis set, has been validated in the framework of the semiexperimental (SE) approach for deriving accurate equilibrium structures of molecules containing up to 15 atoms. A systematic comparison between new B2PLYP/VTZ results and several equilibrium SE structures previously determined at other levels, in particular B3LYP/SNSD and CCSD(T) with various basis sets, has put in evidence the accuracy and the remarkable stability of such model chemistry for both equilibrium structures and vibrational corrections. New SE equilibrium structures for phenylacetylene, pyruvic acid, peroxyformic acid, and phenyl radical are discussed and compared with literature data. Particular attention has been devoted to the discussion of systems for which lack of sufficient experimental data prevents a complete SE determination. In order to obtain an accurate equilibrium SE structure for these situations, the so-called templating molecule approach is discussed and generalized with respect to our previous work. Important applications are those involving biological building blocks, like uracil and thiouracil. In addition, for more general situations the linear regression approach has been proposed and validated.

  2. N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.

    PubMed

    Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J

    2017-11-21

    A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  4. Blurring out hydrogen: The dynamical structure of teflic acid

    NASA Astrophysics Data System (ADS)

    Herbers, S.; Obenchain, D. A.; Kraus, P.; Wachsmuth, D.; Grabow, J.-U.

    2018-05-01

    The microwave spectra of 10 teflic acid isotopologues were recorded in the frequency range of 3-25 GHz using supersonic jet-expansion Fourier transform microwave spectroscopy. Despite being asymmetric in its equilibrium structure, the delocalization of the hydrogen atom leads to a symmetric top vibrational ground state structure. In this work, we present the zero point structure obtained from the experimental rotational constants and an approach to determine the semi-experimental equilibrium structure aided by ab initio data. The Te-O bond length determined in the equilibrium structure is accurate to the picometer and can be used as a benchmark for computational methods treating relativistic effects.

  5. Microwave spectra and molecular structures of (Z)-pent-2-en-4-ynenitrile and maleonitrile.

    PubMed

    Halter, R J; Fimmen, R L; McMahon, R J; Peebles, S A; Kuczkowski, R L; Stanton, J F

    2001-12-12

    Accurate equilibrium structures have been determined for (Z)-pent-2-en-4-ynenitrile (8) and maleonitrile (9) by combining microwave spectroscopy data and ab initio quantum chemistry calculations. The microwave spectra of 10 isotopomers of 8 and 5 isotopomers of 9 were obtained using a pulsed nozzle Fourier transform microwave spectrometer. The ground-state rotational constants were adjusted for vibration-rotation interaction effects calculated from force fields obtained from ab initio calculations. The resultant equilibrium rotational constants were used to determine structures that are in very good agreement with those obtained from high-level ab initio calculations (CCSD(T)/cc-pVTZ). The geometric parameters in 8 and 9 are very similar; they also do not differ significantly from the all-carbon analogue, (Z)-hex-3-ene-1,5-diyne (7), the parent molecule for the Bergman cyclization. A small deviation from linearity about the alkyne and cyano linkages is observed for 7-9 and several related species where accurate equilibrium parameters are available. The data on 7-9 should be of interest to radioastronomy and may provide insights on the formation and interstellar chemistry of unsaturated species such as the cyanopolyynes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, Morgan W; Battaglia, D. J.; Unterberg, Ezekial A

    A new tangential 2D Soft X-Ray Imaging System (SXRIS) is being designed to examine the edge magnetic island structure in the lower X-point region of DIII-D. A synthetic diagnostic calculation coupled to 3D emissivity estimates is used to generate phantom images. Phillips-Tikhonov regularization is used to invert the phantom images for comparison to the original emissivity model. Noise level, island size, and equilibrium accuracy are scanned to assess the feasibility of detecting edge island structures. Models of typical DIII-D discharges indicate integration times > 1 ms with accurate equilibrium reconstruction are needed for small island (< 3 cm) detection.

  7. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    PubMed

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  8. Rotational spectra of rare isotopic species of fluoroiodomethane: determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2012-07-14

    Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD(2)FI, as well as of the (13)C-containing species, (13)CH(2)FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH(2)FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011); G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)] enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).

  9. Impedance measures in analysis and characterization of multistable structures subjected to harmonic excitation

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Goodpaster, Benjamin A.

    2018-01-01

    Structural components susceptible to adverse, post-buckled dynamic behaviors have long challenged the success of applications requiring lightweight, slender curved structures, while researchers have begun to leverage such bistable systems in emerging applications for novel energy attenuation and shape-changing properties. To expedite development and deployment of these built-up platforms containing post-buckled constituents, efficient approaches are required to complement time-consuming full-field models in the prediction of the near- and far-from-equilibrium dynamics. This research meets the need by introducing a semi-analytical model framework to enable the characterization of steady-state responses in multi degree-of-freedom (DOF) and multistable structural systems subjected to harmonic excitation. In so doing, the pathway for assessing impedance measures is created here so as to identify how energy travels and returns within built-up multistable structures. Verified by simulations and qualitatively validated by experiments, the analysis is shown to accurately reproduce both near- and far-from-equilibrium responses including different classes of energetic snap-through dynamics that only exist in such multistable structures. A first look at the impedance measures of different dynamic regimes reveals a connection between damping in multistable structures and the sustainability of far-from-equilibrium oscillations.

  10. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    NASA Astrophysics Data System (ADS)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  11. The CC/DFT Route towards Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as Case Study

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina

    2018-01-01

    The structures, relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of Pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semi-experimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg. for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt- and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol−1. Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm−1 are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC calculations. PMID:26575928

  12. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    PubMed

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  13. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).

    PubMed

    Dawes, Richard; Jiang, Bin; Guo, Hua

    2015-01-14

    The lowest-lying singlet states of the simplest Criegee intermediate (CH2OO) have been characterized along the O-O dissociation coordinate using explicitly correlated MRCI-F12 electronic structure theory and large active spaces. It is found that a high-level treatment of dynamic electron-correlation is essential to accurately describe these states. A significant well on the B-state is identified at the MRCI-F12 level with an equilibrium structure that differs substantially from that of the ground X-state. This well is presumably responsible for the apparent vibrational structure in some experimental UV absorption spectra, analogous to the structured Huggins band of the iso-electronic ozone. The B-state potential in the Franck-Condon region is sufficiently accurate that an absorption spectrum calculated with a one-dimensional model agrees remarkably well with experiment.

  14. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  15. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    NASA Astrophysics Data System (ADS)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  16. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  17. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  18. Ab-initio investigation of Rb substitution in KTP single crystal

    NASA Astrophysics Data System (ADS)

    Ghoohestani, Marzieh; Arab, Ali; Hashemifar, S. Javad; Sadeghi, Hossein

    2018-01-01

    The effects of rubidium doping on the structural, electronic, and optical properties of KTiOPO4 (KTP) are investigated in the framework of density functional theory. The equilibrium structural parameters of KTP and RbTiOPO4 (RTP) are calculated within the local density and Perdew-Burke-Ernzerhof (PBE), Wu-Cohen, and PBEsol formulation of generalized gradient approximations. We discuss that PBEsol predicts better equilibrium parameters for the KTP alloy. In addition, the variation of lattice constants and Ti-O-Ti bond angles are evaluated as a function of rubidium concentration. The modern modified Becke-Johnson functional is applied for more accurate band gap determination in the pure and alloyed KTP/RTP compounds. The phenomenological pseudoinversion parameter is calculated for a qualitative understanding of the effect of impurity on a non-linear optical response of KTP. We also analyze the behavior of the dielectric function, dispersive refractive indices, and birefringence of KTP/RTP alloys.

  19. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.

  20. The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer

    NASA Astrophysics Data System (ADS)

    Drummond, B.; Mayne, N. J.; Baraffe, I.; Tremblin, P.; Manners, J.; Amundsen, D. S.; Goyal, J.; Acreman, D.

    2018-05-01

    In this work, we have performed a series of simulations of the atmosphere of GJ 1214b assuming different metallicities using the Met Office Unified Model (UM). The UM is a general circulation model (GCM) that solves the deep, non-hydrostatic equations of motion and uses a flexible and accurate radiative transfer scheme, based on the two-stream and correlated-k approximations, to calculate the heating rates. In this work we consistently couple a well-tested Gibbs energy minimisation scheme to solve for the chemical equilibrium abundances locally in each grid cell for a general set of elemental abundances, further improving the flexibility and accuracy of the model. As the metallicity of the atmosphere is increased we find significant changes in the dynamical and thermal structure, with subsequent implications for the simulated phase curve. The trends that we find are qualitatively consistent with previous works, though with quantitative differences. We investigate in detail the effect of increasing the metallicity by splitting the mechanism into constituents, involving the mean molecular weight, the heat capacity and the opacities. We find the opacity effect to be the dominant mechanism in altering the circulation and thermal structure. This result highlights the importance of accurately computing the opacities and radiative transfer in 3D GCMs.

  1. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  2. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  3. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  4. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  5. Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2006-01-01

    Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.

  6. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  7. Comparison of Flux-Surface Aligned Curvilinear Coordinate Systems and Neoclassical Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2015-11-01

    Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.

  8. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Shi, Ze; Castro, Carlos E; Arya, Gaurav

    2017-05-23

    Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.

  9. Efficient steady-state solver for hierarchical quantum master equations

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  10. Competitive Abilities in Experimental Microcosms Are Accurately Predicted by a Demographic Index for R*

    PubMed Central

    Murrell, Ebony G.; Juliano, Steven A.

    2012-01-01

    Resource competition theory predicts that R*, the equilibrium resource amount yielding zero growth of a consumer population, should predict species' competitive abilities for that resource. This concept has been supported for unicellular organisms, but has not been well-tested for metazoans, probably due to the difficulty of raising experimental populations to equilibrium and measuring population growth rates for species with long or complex life cycles. We developed an index (Rindex) of R* based on demography of one insect cohort, growing from egg to adult in a non-equilibrium setting, and tested whether Rindex yielded accurate predictions of competitive abilities using mosquitoes as a model system. We estimated finite rate of increase (λ′) from demographic data for cohorts of three mosquito species raised with different detritus amounts, and estimated each species' Rindex using nonlinear regressions of λ′ vs. initial detritus amount. All three species' Rindex differed significantly, and accurately predicted competitive hierarchy of the species determined in simultaneous pairwise competition experiments. Our Rindex could provide estimates and rigorous statistical comparisons of competitive ability for organisms for which typical chemostat methods and equilibrium population conditions are impractical. PMID:22970128

  11. Wave propagation in equivalent continuums representing truss lattice materials

    DOE PAGES

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  12. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. FastChem: An ultra-fast equilibrium chemistry

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  14. Reliable Mechanochemistry: Protocols for Reproducible Outcomes of Neat and Liquid Assisted Ball-mill Grinding Experiments.

    PubMed

    Belenguer, Ana M; Lampronti, Giulio I; Sanders, Jeremy K M

    2018-01-23

    The equilibrium outcomes of ball mill grinding can dramatically change as a function of even tiny variations in the experimental conditions such as the presence of very small amounts of added solvent. To reproducibly and accurately capture this sensitivity, the experimentalist needs to carefully consider every single factor that can affect the ball mill grinding reaction under investigation, from ensuring the grinding jars are clean and dry before use, to accurately adding the stoichiometry of the starting materials, to validating that the delivery of solvent volume is accurate, to ensuring that the interaction between the solvent and the powder is well understood and, if necessary, a specific soaking time is added to the procedure. Preliminary kinetic studies are essential to determine the necessary milling time to achieve equilibrium. Only then can exquisite phase composition curves be obtained as a function of the solvent concentration under ball mill liquid assisted grinding (LAG). By using strict and careful procedures analogous to the ones here presented, such milling equilibrium curves can be obtained for virtually all milling systems. The system we use to demonstrate these procedures is a disulfide exchange reaction starting from the equimolar mixture of two homodimers to obtain at equilibrium quantitative heterodimer. The latter is formed by ball mill grinding as two different polymorphs, Form A and Form B. The ratio R = [Form B] / ([Form A] + [Form B]) at milling equilibrium depends on the nature and concentration of the solvent in the milling jar.

  15. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  16. ASHEE: a compressible, Equilibrium-Eulerian model for volcanic ash plumes

    NASA Astrophysics Data System (ADS)

    Cerminara, M.; Esposti Ongaro, T.; Berselli, L. C.

    2015-10-01

    A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations (Neri et al., 2003) for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model (Ferry and Balachandar, 2001), valid for low concentration regimes (particle volume fraction less than 10-3) and particles Stokes number (St, i.e., the ratio between their relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct numerical simulation accurately reproduce the dynamics of isotropic, compressible turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the model reduces to the so-called dusty-gas model. However, coarse particles partially decouple from the gas phase within eddies (thus modifying the turbulent structure) and preferentially concentrate at the eddy periphery, eventually being lost from the plume margins due to the concurrent effect of gravity. By these mechanisms, gas-particle non-equilibrium processes are able to influence the large-scale behavior of volcanic plumes.

  17. Calculation of hypersonic shock structure using flux-split algorithms

    NASA Technical Reports Server (NTRS)

    Eppard, W. M.; Grossman, B.

    1991-01-01

    There exists an altitude regime in the atmosphere that is within the continuum domain, but wherein the conventional Navier-Stokes equations cease to be accurate. The altitude limits for this so called continuum transition regime depend on vehicle size and speed. Within this regime the thickness of the bow shock wave is no longer negligible when compared to the shock stand-off distance and the peak radiation intensity occurs within the shock wave structure itself. For this reason it is no longer valid to treat the shock wave as a discontinuous jump and it becomes necessary to compute through the shock wave itself. To accurately calculate hypersonic flowfields, the governing equations must be capable of yielding realistic profiles of flow variables throughout the structure of a hypersonic shock wave. The conventional form of the Navier-Stokes equations is restricted to flows with only small departures from translational equilibrium; it is for this reason they do not provide the capability to accurately predict hypersonic shock structure. Calculations in the continuum transition regime, therefore, require the use of governing equations other than Navier-Stokes. Several alternatives to Navier-Stokes are discussed; first for the case of a monatomic gas and then for the case of a diatomic gas where rotational energy must be included. Results are presented for normal shock calculations with argon and nitrogen.

  18. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    PubMed Central

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  19. Understanding water content data in cottons equilibrated to moisture equilibrium

    USDA-ARS?s Scientific Manuscript database

    The accurate measurement of moisture in cottons conditioned to moisture equilibrium and understanding the data are prerequisites to the development of applications of the data. In this study, moisture is measured by Karl Fischer Titration, which is highly selective for water in cotton; the results ...

  20. Integrated fusion simulation with self-consistent core-pedestal coupling

    DOE PAGES

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; ...

    2016-04-20

    In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Z eff.« less

  1. Progress towards an ab initio real-time treatment of warm dense matter

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel

    2017-10-01

    Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.

  2. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information

    NASA Astrophysics Data System (ADS)

    Unke, Oliver T.; Meuwly, Markus

    2018-06-01

    Despite the ever-increasing computer power, accurate ab initio calculations for large systems (thousands to millions of atoms) remain infeasible. Instead, approximate empirical energy functions are used. Most current approaches are either transferable between different chemical systems, but not particularly accurate, or they are fine-tuned to a specific application. In this work, a data-driven method to construct a potential energy surface based on neural networks is presented. Since the total energy is decomposed into local atomic contributions, the evaluation is easily parallelizable and scales linearly with system size. With prediction errors below 0.5 kcal mol-1 for both unknown molecules and configurations, the method is accurate across chemical and configurational space, which is demonstrated by applying it to datasets from nonreactive and reactive molecular dynamics simulations and a diverse database of equilibrium structures. The possibility to use small molecules as reference data to predict larger structures is also explored. Since the descriptor only uses local information, high-level ab initio methods, which are computationally too expensive for large molecules, become feasible for generating the necessary reference data used to train the neural network.

  3. Statistical equilibrium in cometary C2. II - Swan/Phillips band ratios

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. K.; Odell, C. R.

    1979-01-01

    Statistical equilibrium calculations have been made for both the triplet and ground state singlets for C2 in comets, using the exchange rate as a free parameter. The predictions of the results are consistent with optical observations and may be tested definitively by accurate observations of the Phillips and Swan band ratios. Comparison with the one reported observation indicates compatibility with a low exchange rate and resonance fluorescence statistical equilibrium.

  4. Effects of Combined Loads on the Nonlinear Response and Residual Strength of Damaged Stiffened Shells

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.

  5. Calculating Shocks In Flows At Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  6. A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar

    This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.

  7. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    NASA Astrophysics Data System (ADS)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  8. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    NASA Astrophysics Data System (ADS)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  9. Direct Determination of the Equilibrium Unbinding Potential Profile for a Short DNA Duplex from Force Spectroscopy Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noy, A

    2004-05-04

    Modern force microscopy techniques allow researchers to use mechanical forces to probe interactions between biomolecules. However, such measurements often happen in non-equilibrium regime, which precludes straightforward extraction of the equilibrium energy information. Here we use the work averaging method based on Jarzynski equality to reconstruct the equilibrium interaction potential from the unbinding of a complementary 14-mer DNA duplex from the results of non-equilibrium single-molecule measurements. The reconstructed potential reproduces most of the features of the DNA stretching transition, previously observed only in equilibrium stretching of long DNA sequences. We also compare the reconstructed potential with the thermodynamic parameters of DNAmore » duplex unbinding and show that the reconstruction accurately predicts duplex melting enthalpy.« less

  10. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  11. Tunneling current in HfO2 and Hf0.5Zr0.5O2-based ferroelectric tunnel junction

    NASA Astrophysics Data System (ADS)

    Dong, Zhipeng; Cao, Xi; Wu, Tong; Guo, Jing

    2018-03-01

    Ferroelectric tunnel junctions (FTJs) have been intensively explored for future low power data storage and information processing applications. Among various ferroelectric (FE) materials studied, HfO2 and H0.5Zr0.5O2 (HZO) have the advantage of CMOS process compatibility. The validity of the simple effective mass approximation, for describing the tunneling process in these materials, is examined by computing the complex band structure from ab initio simulations. The results show that the simple effective mass approximation is insufficient to describe the tunneling current in HfO2 and HZO materials, and quantitative accurate descriptions of the complex band structures are indispensable for calculation of the tunneling current. A compact k . p Hamiltonian is parameterized to and validated by ab initio complex band structures, which provides a method for efficiently and accurately computing the tunneling current in HfO2 and HZO. The device characteristics of a metal/FE/metal structure and a metal/FE/semiconductor (M-F-S) structure are investigated by using the non-equilibrium Green's function formalism with the parameterized effective Hamiltonian. The result shows that the M-F-S structure offers a larger resistance window due to an extra barrier in the semiconductor region at off-state. A FTJ utilizing M-F-S structure is beneficial for memory design.

  12. Excited atoms in the free-burning Ar arc: treatment of the resonance radiation

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Kalanov, D.; Gortschakow, S.; Baeva, M.; Uhrlandt, D.

    2016-11-01

    The collisional-radiative model with an emphasis on the accurate treatment of the resonance radiation transport is developed and applied to the free-burning Ar arc plasma. This model allows for analysis of the influence of resonance radiation on the spatial density profiles of the atoms in different excited states. The comparison of the radial density profiles obtained using an effective transition probability approximation with the results of the accurate solution demonstrates the distinct impact of transport on the profiles and absolute densities of the excited atoms, especially in the arc fringes. The departures from the Saha-Boltzmann equilibrium distributions, caused by different radiative transitions, are analyzed. For the case of the DC arc, the local thermodynamic equilibrium (LTE) state holds close to the arc axis, while strong deviations from the equilibrium state on the periphery occur. In the intermediate radial positions the conditions of partial LTE are fulfilled.

  13. State-to-State Internal Energy Relaxation Following the Quantum-Kinetic Model in DSMC

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    A new model for chemical reactions, the Quantum-Kinetic (Q-K) model of Bird, has recently been introduced that does not depend on macroscopic rate equations or values of local flow field data. Subsequently, the Q-K model has been extended to include reactions involving charged species and electronic energy level transitions. Although this is a phenomenological model, it has been shown to accurately reproduce both equilibrium and non-equilibrium reaction rates. The usefulness of this model becomes clear as local flow conditions either exceed the conditions used to build previous models or when they depart from an equilibrium distribution. Presently, the applicability of the relaxation technique is investigated for the vibrational internal energy mode. The Forced Harmonic Oscillator (FHO) theory for vibrational energy level transitions is combined with the Q-K energy level transition model to accurately reproduce energy level transitions at a reduced computational cost compared to the older FHO models.

  14. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  15. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF.more » We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.« less

  16. Continuum theory of phase separation kinetics for active Brownian particles.

    PubMed

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E

    2013-10-04

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  17. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  18. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  19. Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data

    PubMed Central

    Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David

    2007-01-01

    S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371

  20. Finite temperature properties of clusters by replica exchange metadynamics: the water nonamer.

    PubMed

    Zhai, Yingteng; Laio, Alessandro; Tosatti, Erio; Gong, Xin-Gao

    2011-03-02

    We introduce an approach for the accurate calculation of thermal properties of classical nanoclusters. On the basis of a recently developed enhanced sampling technique, replica exchange metadynamics, the method yields the true free energy of each relevant cluster structure, directly sampling its basin and measuring its occupancy in full equilibrium. All entropy sources, whether vibrational, rotational anharmonic, or especially configurational, the latter often forgotten in many cluster studies, are automatically included. For the present demonstration, we choose the water nonamer (H(2)O)(9), an extremely simple cluster, which nonetheless displays a sufficient complexity and interesting physics in its relevant structure spectrum. Within a standard TIP4P potential description of water, we find that the nonamer second relevant structure possesses a higher configurational entropy than the first, so that the two free energies surprisingly cross for increasing temperature.

  1. Finite Temperature Properties of Clusters by Replica Exchange Metadynamics: The Water Nonamer

    NASA Astrophysics Data System (ADS)

    Zhai, Yingteng; Laio, Alessandro; Tosatti, Erio; Gong, Xingao

    2012-02-01

    We introduce an approach for the accurate calculation of thermal properties of classical nanoclusters. Based on a recently developed enhanced sampling technique, replica exchange metadynamics, the method yields the true free energy of each relevant cluster structure, directly sampling its basin and measuring its occupancy in full equilibrium. All entropy sources, whether vibrational, rotational anharmonic and especially configurational -- the latter often forgotten in many cluster studies -- are automatically included. For the present demonstration we choose the water nonamer (H2O)9, an extremely simple cluster which nonetheless displays a sufficient complexity and interesting physics in its relevant structure spectrum. Within a standard TIP4P potential description of water, we find that the nonamer second relevant structure possesses a higher configurational entropy than the first, so that the two free energies surprisingly cross for increasing temperature.

  2. Analysis of A Virus Dynamics Model

    NASA Astrophysics Data System (ADS)

    Zhang, Baolin; Li, Jianquan; Li, Jia; Zhao, Xin

    2018-03-01

    In order to more accurately characterize the virus infection in the host, a virus dynamics model with latency and virulence is established and analyzed in this paper. The positivity and boundedness of the solution are proved. After obtaining the basic reproduction number and the existence of infected equilibrium, the Lyapunov method and the LaSalle invariance principle are used to determine the stability of the uninfected equilibrium and infected equilibrium by constructing appropriate Lyapunov functions. We prove that, when the basic reproduction number does not exceed 1, the uninfected equilibrium is globally stable, the virus can be cleared eventually; when the basic reproduction number is more than 1, the infected equilibrium is globally stable, the virus will persist in the host at a certain level. The effect of virulence and latency on infection is also discussed.

  3. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  4. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  5. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    NASA Astrophysics Data System (ADS)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  6. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  7. Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem

    NASA Technical Reports Server (NTRS)

    Cox, Carey F.

    2005-01-01

    Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.

  8. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures

    PubMed Central

    2011-01-01

    With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set. PMID:21836824

  9. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    PubMed

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  10. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex

    PubMed Central

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I.; Blackledge, Martin; van Nuland, Nico A. J.

    2009-01-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes. PMID:19359362

  11. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  12. Frustration in protein elastic network models

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy; Bahar, Ivet

    2010-03-01

    Elastic network models (ENMs) are widely used for studying the equilibrium dynamics of proteins. The most common approach in ENM analysis is to adopt a uniform force constant or a non-specific distance dependent function to represent the force constant strength. Here we discuss the influence of sequence and structure in determining the effective force constants between residues in ENMs. Using a novel method based on entropy maximization, we optimize the force constants such that they exactly reporduce a subset of experimentally determined pair covariances for a set of proteins. We analyze the optimized force constants in terms of amino acid types, distances, contact order and secondary structure, and we demonstrate that including frustrated interactions in the ENM is essential for accurately reproducing the global modes in the middle of the frequency spectrum.

  13. Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach.

    PubMed

    Sun, Lixin; Zhao, Honggang; Kiselev, Sergei B; McCabe, Clare

    2005-05-12

    The SAFT-VRX equation of state combines the SAFT-VR equation with a crossover function that smoothly transforms the classical equation into a nonanalytical form close to the critical point. By a combinination of the accuracy of the SAFT-VR approach away from the critical region with the asymptotic scaling behavior seen at the critical point of real fluids, the SAFT-VRX equation can accurately describe the global fluid phase diagram. In previous work, we demonstrated that the SAFT-VRX equation very accurately describes the pvT and phase behavior of both nonassociating and associating pure fluids, with a minimum of fitting to experimental data. Here, we present a generalized SAFT-VRX equation of state for binary mixtures that is found to accurately predict the vapor-liquid equilibrium and pvT behavior of the systems studied. In particular, we examine binary mixtures of n-alkanes and carbon dioxide + n-alkanes. The SAFT-VRX equation accurately describes not only the gas-liquid critical locus for these systems but also the vapor-liquid equilibrium phase diagrams and thermal properties in single-phase regions.

  14. On entropy determination from magnetic and calorimetric experiments in conventional giant magnetocaloric materials

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Han; Us Saleheen, Ahmad; Adams, Philip W.; Young, David P.; Ali, Naushad; Stadler, Shane

    2018-04-01

    In this work, we discuss measurement protocols for the determination of the magnetic entropy change associated with first-order magneto-structural transitions from both magnetization and calorimetric experiments. The Cu-doped Ni2MnGa Heusler alloy with a first-order magneto-structural phase transition is used as a case study to illustrate how commonly-used magnetization measurement protocols result in spurious entropy evaluations. Two magnetization measurement protocols which allow for the accurate assessment of the magnetic entropy change across first-order magneto-structural transitions are presented. In addition, calorimetric measurements were performed to validate the results from the magnetization measurements. Self-consistent results between the magnetization and calorimetric measurements were obtained when the non-equilibrium thermodynamic state was carefully handled. Such methods could be applicable to other systems displaying giant magnetocaloric effects caused by first-order phase transitions with magnetic and thermal hysteresis.

  15. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins.

    PubMed

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E

    2017-02-13

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.

  16. Local Nash equilibrium in social networks.

    PubMed

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  17. Local Nash Equilibrium in Social Networks

    PubMed Central

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-01-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150

  18. Local Nash Equilibrium in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-08-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  19. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  20. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  1. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  2. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F 68 , 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  3. AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models.

    PubMed

    Poitevin, Frédéric; Orland, Henri; Doniach, Sebastian; Koehl, Patrice; Delarue, Marc

    2011-07-01

    Small Angle X-ray Scattering (SAXS) techniques are becoming more and more useful for structural biologists and biochemists, thanks to better access to dedicated synchrotron beamlines, better detectors and the relative easiness of sample preparation. The ability to compute the theoretical SAXS profile of a given structural model, and to compare this profile with the measured scattering intensity, yields crucial structural informations about the macromolecule under study and/or its complexes in solution. An important contribution to the profile, besides the macromolecule itself and its solvent-excluded volume, is the excess density due to the hydration layer. AquaSAXS takes advantage of recently developed methods, such as AquaSol, that give the equilibrium solvent density map around macromolecules, to compute an accurate SAXS/WAXS profile of a given structure and to compare it to the experimental one. Here, we describe the interface architecture and capabilities of the AquaSAXS web server (http://lorentz.dynstr.pasteur.fr/aquasaxs.php).

  4. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface.

    PubMed

    Buryak, Ilya; Vigasin, Andrey A

    2015-12-21

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  5. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buryak, Ilya; Vigasin, Andrey A., E-mail: vigasin@ifaran.ru

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data basedmore » on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.« less

  6. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    PubMed Central

    Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele

    2016-01-01

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773

  7. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.

    PubMed

    Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele

    2016-08-02

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.

  8. Challenges in first-principles NPT molecular dynamics of soft porous crystals: A case study on MIL-53(Ga)

    NASA Astrophysics Data System (ADS)

    Haigis, Volker; Belkhodja, Yacine; Coudert, François-Xavier; Vuilleumier, Rodolphe; Boutin, Anne

    2014-08-01

    Soft porous crystals present a challenge to molecular dynamics simulations with flexible size and shape of the simulation cell (i.e., in the NPT ensemble), since their framework responds very sensitively to small external stimuli. Hence, all interactions have to be described very accurately in order to obtain correct equilibrium structures. Here, we report a methodological study on the nanoporous metal-organic framework MIL-53(Ga), which undergoes a large-amplitude transition between a narrow- and a large-pore phase upon a change in temperature. Since this system has not been investigated by density functional theory (DFT)-based NPT simulations so far, we carefully check the convergence of the stress tensor with respect to computational parameters. Furthermore, we demonstrate the importance of dispersion interactions and test two different ways of incorporating them into the DFT framework. As a result, we propose two computational schemes which describe accurately the narrow- and the large-pore phase of the material, respectively. These schemes can be used in future work on the delicate interplay between adsorption in the nanopores and structural flexibility of the host material.

  9. A protocol for rheological characterization of hydrogels for tissue engineering strategies.

    PubMed

    Zuidema, Jonathan M; Rivet, Christopher J; Gilbert, Ryan J; Morrison, Faith A

    2014-07-01

    Hydrogels are studied extensively for many tissue engineering applications, and their mechanical properties influence both cellular and tissue compatibility. However, it is difficult to compare the mechanical properties of hydrogels between studies due to a lack of continuity between rheological protocols. This study outlines a straightforward protocol to accurately determine hydrogel equilibrium modulus and gelation time using a series of rheological tests. These protocols are applied to several hydrogel systems used within tissue engineering applications: agarose, collagen, fibrin, Matrigel™, and methylcellulose. The protocol is outlined in four steps: (1) Time sweep to determine the gelation time of the hydrogel. (2) Strain sweep to determine the linear-viscoelastic region of the hydrogel with respect to strain. (3) Frequency sweep to determine the linear equilibrium modulus plateau of the hydrogel. (4) Time sweep with values obtained from strain and frequency sweeps to accurately report the equilibrium moduli and gelation time. Finally, the rheological characterization protocol was evaluated using a composite Matrigel™-methylcellulose hydrogel blend whose mechanical properties were previously unknown. The protocol described herein provides a standardized approach for proper analysis of hydrogel rheological properties. © 2013 Wiley Periodicals, Inc.

  10. Confinement properties of tokamak plasmas with extended regions of low magnetic shear

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.

    2017-10-01

    Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.

  11. Review of Vaginitis

    PubMed Central

    1993-01-01

    Adisruption of the dynamic equilibrium of the healthy vagina may have significant sequelae, leading to chronic or serious conditions. Therefore, all cases of vaginitis should be accurately diagnosed and appropriately treated. PMID:18475337

  12. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.

    PubMed

    Guo, Xin; Wu, Yiqiang; Xie, Xinfeng

    2017-10-27

    Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples.

  13. Dynamic pricing of network goods with boundedly rational consumers.

    PubMed

    Radner, Roy; Radunskaya, Ami; Sundararajan, Arun

    2014-01-07

    We present a model of dynamic monopoly pricing for a good that displays network effects. In contrast with the standard notion of a rational-expectations equilibrium, we model consumers as boundedly rational and unable either to pay immediate attention to each price change or to make accurate forecasts of the adoption of the network good. Our analysis shows that the seller's optimal price trajectory has the following structure: The price is low when the user base is below a target level, is high when the user base is above the target, and is set to keep the user base stationary once the target level has been attained. We show that this pricing policy is robust to a number of extensions, which include the product's user base evolving over time and consumers basing their choices on a mixture of a myopic and a "stubborn" expectation of adoption. Our results differ significantly from those that would be predicted by a model based on rational-expectations equilibrium and are more consistent with the pricing of network goods observed in practice.

  14. New Stagnation Arc Jet Model Design for Testing ADEPT 3-D Carbon Cloth

    NASA Technical Reports Server (NTRS)

    Beck, R.; Chen, Y.-K.; Wercinski, P.; Agrawal, P.; Chavez-Garcia, J.

    2017-01-01

    The ADEPT concept has been considered as an entry, descent and landing system to enable Human Mars class missions. Ground rules for the Mars studies required aerocapture, orbit, and then entry. The design utilizes a 3-D woven carbon cloth fabric as both heatshield and primary structure and design guidelines required 6 layers remaining after all entry events. The peak heating predicted for the ADEPT carbon cloth was 35 Wcm2 and resulting temperatures were predicted to be 1400K. Predictions for carbon mass loss were performed using equilibrium thermochemistry, which is only accurate for T2000K. Carbon oxidation is kinetically controlled at T2000K, and mass loss drops off considerably from equilibrium values. Design of the cloth thickness and mass would be significantly reduced if kinetics were considered. This effort was to design a stagnation test article design that could be used in the AHF with varying levels of oxygen where the results could be used to develop an engineering model to describe the recession rate of the carbon as a function of the partial pressure of monotomic oxygen.

  15. Dynamic pricing of network goods with boundedly rational consumers

    PubMed Central

    Radner, Roy; Radunskaya, Ami; Sundararajan, Arun

    2014-01-01

    We present a model of dynamic monopoly pricing for a good that displays network effects. In contrast with the standard notion of a rational-expectations equilibrium, we model consumers as boundedly rational and unable either to pay immediate attention to each price change or to make accurate forecasts of the adoption of the network good. Our analysis shows that the seller’s optimal price trajectory has the following structure: The price is low when the user base is below a target level, is high when the user base is above the target, and is set to keep the user base stationary once the target level has been attained. We show that this pricing policy is robust to a number of extensions, which include the product’s user base evolving over time and consumers basing their choices on a mixture of a myopic and a “stubborn” expectation of adoption. Our results differ significantly from those that would be predicted by a model based on rational-expectations equilibrium and are more consistent with the pricing of network goods observed in practice. PMID:24367101

  16. Surface structure and stability of partially hydroxylated silica surfaces

    DOE PAGES

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    2017-04-04

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  17. Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel

    PubMed Central

    Haas, Stephan; Farley, Robert A.

    2014-01-01

    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882

  18. Application of the Firefly and Luus-Jaakola algorithms in the calculation of a double reactive azeotrope

    NASA Astrophysics Data System (ADS)

    Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus

    2014-01-01

    The calculation of reactive azeotropes is an important task in the preliminary design and simulation of reactive distillation columns. Classically, homogeneous nonreactive azeotropes are vapor-liquid coexistence conditions where phase compositions are equal. For homogeneous reactive azeotropes, simultaneous phase and chemical equilibria occur concomitantly with equality of compositions (in the Ung-Doherty transformed space). The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. In a previous paper (Platt et al 2013 J. Phys.: Conf. Ser. 410 012020), we investigated some numerical aspects of the calculation of reactive azeotropes in the isobutene + methanol + methyl-tert-butyl-ether (with two reactive azeotropes) system using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Here, we use a hybrid structure (stochastic + deterministic) in order to produce accurate results for both azeotropes. After identifying the neighborhood of the reactive azeotrope, the nonlinear algebraic system is solved using Newton's method. The results indicate that using metaheuristics and some techniques devoted to the calculation of multiple minima allows both azeotropic coordinates in this reactive system to be obtains. In this sense, we provide a comprehensive analysis of a useful framework devoted to solving nonlinear systems, particularly in phase equilibrium problems.

  19. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less

  20. The quasi-equilibrium response of MOS structures: Quasi-static factor

    NASA Astrophysics Data System (ADS)

    Okeke, M.; Balland, B.

    1984-07-01

    The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.

  1. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  2. Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics

    NASA Astrophysics Data System (ADS)

    Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero

    2016-10-01

    In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.

  3. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGES

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  4. Equilibrium structures and flows of polar and nonpolar liquids in different carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abramyan, Andrey K.; Bessonov, Nick M.; Mirantsev, Leonid V.; Chevrychkina, Anastasiia A.

    2018-03-01

    Molecular dynamics (MD) simulations of equilibrium structures and flows of polar water and nonpolar methane confined by single-walled carbon nanotubes (SWCNTs) with circular and square cross sections and bounding walls with regular graphene structure and random (amorphous) distribution of carbon atoms have been performed. The results of these simulations show that equilibrium structures of both confined liquids depend strongly on the shape of the cross section of SWCNTs, whereas the structure of their bounding walls has a minor influence on these structures. On contrary, the external pressure driven water and methane flows through above mentioned SWCNTs depend significantly on both the shape of their cross sections and the structure of their bounding walls.

  5. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  6. Microwave Spectra of the Two Conformers of PROPENE-3-{d}_1 and a Semiexperimental Equilibrium Structure of Propene

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Demaison, J.; Rudolph, Heinz Dieter; Gurusinghe, Ranil M.; Tubergen, Michael; Coudert, L. H.; Szalay, Peter; Császár, Attila

    2017-06-01

    FT microwave spectra have been observed and analyzed for the S (in-plane) and A (out-of-plane) conformers of propene-3-{d}_1 in the 10-22 GHz region. Both conformers display splittings due to deuterium quadrupole coupling; for the latter one only, a 19 MHz splitting due to internal rotation of the partially deuterated methyl group has been observed. In addition to rotational constants, the analysis yielded quadrupole coupling constants and parameters describing the tunneling splitting and its rotational dependence. Improved rotational constants for parent propene and the three ^{13}C_1 species are recently available. Use of vibration-rotation interaction constants computed at the MP2(FC)/cc-pVTZ level gave equilibrium rotational constants for these six species and for fourteen more deuterium isotopologues with diminished accuracy from early literature data. A semiexperimental equilibrium structure, r_e^{SE}, has been determined for propene by fitting fourteen structural parameters to the equilibrium rotational constants. The new r_e^{SE} structure compares well with an ab initio equilibrium structure computed with the all-electron CCSD(T)/cc-pV(Q,T)Z model and with a structure obtained using the mixed regression method with predicates and equilibrium rotational constants. N. C. Craig, P. Groner, A. R. Conrad, R. Gurusinghe, M. J. Tubergen J. Mol. Spectrosc. 248, 1-6 (2016).

  7. Quantitative determination of free/bound atazanavir via high-throughput equilibrium dialysis and LC-MS/MS, and the application in ex vivo samples.

    PubMed

    Xu, Xiaohui Sophia; Rose, Anne; Demers, Roger; Eley, Timothy; Ryan, John; Stouffer, Bruce; Cojocaru, Laura; Arnold, Mark

    2014-01-01

    The determination of drug-protein binding is important in the pharmaceutical development process because of the impact of protein binding on both the pharmacokinetics and pharmacodynamics of drugs. Equilibrium dialysis is the preferred method to measure the free drug fraction because it is considered to be more accurate. The throughput of equilibrium dialysis has recently been improved by implementing a 96-well format plate. Results/methodology: This manuscript illustrates the successful application of a 96-well rapid equilibrium dialysis (RED) device in the determination of atazanavir plasma-protein binding. This RED method of measuring free fraction was successfully validated and then applied to the analysis of clinical plasma samples taken from HIV-infected pregnant women administered atazanavir. Combined with LC-MS/MS detection, the 96-well format equilibrium dialysis device was suitable for measuring the free and bound concentration of pharmaceutical molecules in a high-throughput mode.

  8. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  9. Finite-difference solution for laminar or turbulent boundary layer flow over axisymmetric bodies with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-12-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  10. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures weremore » acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.« less

  11. Combining experimental and simulation data of molecular processes via augmented Markov models.

    PubMed

    Olsson, Simon; Wu, Hao; Paul, Fabian; Clementi, Cecilia; Noé, Frank

    2017-08-01

    Accurate mechanistic description of structural changes in biomolecules is an increasingly important topic in structural and chemical biology. Markov models have emerged as a powerful way to approximate the molecular kinetics of large biomolecules while keeping full structural resolution in a divide-and-conquer fashion. However, the accuracy of these models is limited by that of the force fields used to generate the underlying molecular dynamics (MD) simulation data. Whereas the quality of classical MD force fields has improved significantly in recent years, remaining errors in the Boltzmann weights are still on the order of a few [Formula: see text], which may lead to significant discrepancies when comparing to experimentally measured rates or state populations. Here we take the view that simulations using a sufficiently good force-field sample conformations that are valid but have inaccurate weights, yet these weights may be made accurate by incorporating experimental data a posteriori. To do so, we propose augmented Markov models (AMMs), an approach that combines concepts from probability theory and information theory to consistently treat systematic force-field error and statistical errors in simulation and experiment. Our results demonstrate that AMMs can reconcile conflicting results for protein mechanisms obtained by different force fields and correct for a wide range of stationary and dynamical observables even when only equilibrium measurements are incorporated into the estimation process. This approach constitutes a unique avenue to combine experiment and computation into integrative models of biomolecular structure and dynamics.

  12. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.

    2015-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  13. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.

  14. Optimum design of a novel pounding tuned mass damper under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing

    2017-05-01

    In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.

  15. Atomic kinetic energy, momentum distribution, and structure of solid neon at zero temperature

    NASA Astrophysics Data System (ADS)

    Cazorla, C.; Boronat, J.

    2008-01-01

    We report on the calculation of the ground-state atomic kinetic energy Ek and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann’s ratio, and atomic density profile around the positions of the perfect crystalline lattice. Our value for Ek at the equilibrium density is 41.51(6)K , which agrees perfectly with the recent prediction made by Timms , 41(2)K , based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4-20K , and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid He4 in terms of the Debye model in order to assess the relevance of anharmonic effects in Ne.

  16. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  17. In-plane free vibration analysis of cable arch structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yueyu; Kang, Houjun

    2008-05-01

    Cable-stayed arch bridge is a new type of composite bridge, which utilizes the mechanical characters of cable and arch. Based on the supporting members of cable-stayed arch bridge and of erection of arch bridge using of the cantilever construction method with tiebacks, we propose a novel mechanical model of cable-arch structure. In this model, the equations governing vibrations of the cable-arch are derived according to Hamilton's principle for dynamic problems in elastic body under equilibrium state. Then, the program of solving the dynamic governing equations is ultimately established by the transfer matrix method for free vibration of uniform and variable cross-section, and the internal characteristics of the cable-arch are investigated. After analyzing step by step, the research results approve that the program is accurate; meanwhile, the mechanical model and method are both valuable and significant not only in theoretical research and calculation but also in design of engineering.

  18. Ab initio characterization of ClOOH - Implications for atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rendell, Alistair P.

    1993-01-01

    The equilibrium structure, dipole moment, harmonic vibrational frequencies, and infrared intensities of ClOOH are determined using the CCSD(T) (singles and doubles coupled-cluster theory plus a perturbational estimate of the effects of connected triple excitations) electronic structure method in conjunction with a TZ2P (triple xi plus double polarization) basis set. The heat of formation of CIOOH is determined (using two different isodesmic reactions) to be +1.5 +/- 1 kcal/mol at 0 K or +0.2 +/- 1 kcal/mol at 298.15 K. Using the computed heat of formation, we examined the stability of ClOOH with respect to the ClO + OH, ClOO + H, and HOO + Cl dissociation limits. Since ClOOH is found to be quite stable, it is argued that the chemistry of ClOOH should be included in any accurate modeling of the stratosphere.

  19. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  20. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    PubMed

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  1. Confronting the Gaia and NLTE spectroscopic parallaxes for the FGK stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Pakhomov, Yury

    2018-04-01

    The understanding of the chemical evolution of the Galaxy relies on the stellar chemical composition. Accurate atmospheric parameters is a prerequisite of determination of accurate chemical abundances. For late type stars with known distance, surface gravity (log g) can be calculated from well-known relation between stellar mass, T eff, and absolute bolometric magnitude. This method weakly depends on model atmospheres, and provides reliable log g. However, accurate distances are available for limited number of stars. Another way to determine log g for cool stars is based on ionisation equilibrium, i.e. consistent abundances from lines of neutral and ionised species. In this study we determine atmospheric parameters moving step-by-step from well-studied nearby dwarfs to ultra-metal poor (UMP) giants. In each sample, we select stars with the most reliable T eff based on photometry and the distance-based log g, and compare with spectroscopic gravity calculated taking into account deviations from local thermodinamic equilibrium (LTE). After that, we apply spectroscopic method of log g determination to other stars of the sample with unknown distances.

  2. Free energy landscape from path-sampling: application to the structural transition in LJ38

    NASA Astrophysics Data System (ADS)

    Adjanor, G.; Athènes, M.; Calvo, F.

    2006-09-01

    We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.

  3. The QSE-Reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Hix, W. Raphael; Parete-Koon, Suzanne T.; Freiburghaus, Christian; Thielemann, Friedrich-Karl

    2007-09-01

    Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts, as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multidimensional applications.

  4. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    PubMed

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Non-equilibrium thermionic electron emission for metals at high temperatures

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  6. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  7. Chimpanzee choice rates in competitive games match equilibrium game theory predictions.

    PubMed

    Martin, Christopher Flynn; Bhui, Rahul; Bossaerts, Peter; Matsuzawa, Tetsuro; Camerer, Colin

    2014-06-05

    The capacity for strategic thinking about the payoff-relevant actions of conspecifics is not well understood across species. We use game theory to make predictions about choices and temporal dynamics in three abstract competitive situations with chimpanzee participants. Frequencies of chimpanzee choices are extremely close to equilibrium (accurate-guessing) predictions, and shift as payoffs change, just as equilibrium theory predicts. The chimpanzee choices are also closer to the equilibrium prediction, and more responsive to past history and payoff changes, than two samples of human choices from experiments in which humans were also initially uninformed about opponent payoffs and could not communicate verbally. The results are consistent with a tentative interpretation of game theory as explaining evolved behavior, with the additional hypothesis that chimpanzees may retain or practice a specialized capacity to adjust strategy choice during competition to perform at least as well as, or better than, humans have.

  8. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    PubMed

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  9. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  10. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  11. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  12. Size and habit evolution of PETN crystals - a lattice Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Maiti, A; Gee, R

    2006-02-28

    Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less

  13. Deformation in Metallic Glass: Connecting Atoms to Continua

    NASA Astrophysics Data System (ADS)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  14. Critical parameters of hard-core Yukawa fluids within the structural theory

    NASA Astrophysics Data System (ADS)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  15. Performance Modeling of Experimental Laser Lightcrafts

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)

    2001-01-01

    A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  16. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics

    PubMed Central

    2015-01-01

    The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K+-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules. PMID:26078056

  17. Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling

    NASA Astrophysics Data System (ADS)

    Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.

    2009-09-01

    Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.

  18. A Viscoelastic Constitutive Model Can Accurately Represent Entire Creep Indentation Tests of Human Patella Cartilage

    PubMed Central

    Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.

    2013-01-01

    Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200

  19. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    PubMed

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  20. Invariant structures of magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Solovev, A. A.

    1982-04-01

    The basic properties of a screened magnetic flux tube possessing a finite radius of curvature are discussed in order to complement the findings of Parker (1974, 1976) and improve their accuracy. Conditions of equilibrium, twisting equilibrium, and twisting oscillations are discussed, showing that a twisted magnetic loop or arch is capable of executing elastic oscillations about an equilibrium state. This property can in particular be used in the theory of solar flares. Invariant structures of a force-free magnetic tube are analyzed, showing that invariant structures of the field preserve their form when the geometrical parameters of the flux tube are changed. In a quasi-equilibrium transition of the tube from one state to another the length and pitch of the tube spiral change in proportion to the radius of its cross section.

  1. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    PubMed

    Snezhko, Alexey

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  2. Hierarchical Coarse-Graining Via a Generalized Yvon-Born Green Framework: Many-Body Correlations, Mappings, and Structural Accuracy

    NASA Astrophysics Data System (ADS)

    Rudzinski, Joseph F.

    Atomically-detailed molecular dynamics simulations have emerged as one of the most powerful theoretic tools for studying complex, condensed-phase systems. Despite their ability to provide incredible molecular insight, these simulations are insufficient for investigating complex biological processes, e.g., protein folding or molecular aggregation, on relevant length and time scales. The increasing scope and sophistication of atomically-detailed models has motivated the development of "hierarchical" approaches, which parameterize a low resolution, coarse-grained (CG) model based on simulations of an atomically-detailed model. The utility of hierarchical CG models depends on their ability to accurately incorporate the correct physics of the underlying model. One approach for ensuring this "consistency" between the models is to parameterize the CG model to reproduce the structural ensemble generated by the high resolution model. The many-body potential of mean force is the proper CG energy function for reproducing all structural distributions of the atomically-detailed model, at the CG level of resolution. However, this CG potential is a configuration-dependent free energy function that is generally too complicated to represent or simulate. The multiscale coarse-graining (MS-CG) method employs a generalized Yvon-Born-Green (g-YBG) relation to directly determine a variationally optimal approximation to the many-body potential of mean force. The MS-CG/g-YBG method provides a convenient and transparent framework for investigating the equilibrium structure of the system, at the CG level of resolution. In this work, we investigate the fundamental limitations and approximations of the MS-CG/g-YBG method. Throughout the work, we propose several theoretic constructs to directly relate the MS-CG/g-YBG method to other popular structure-based CG approaches. We investigate the physical interpretation of the MS-CG/g-YBG correlation matrix, the quantity responsible for disentangling the various contributions to the average force on a CG site. We then employ an iterative extension of the MS-CG/g-YBG method that improves the accuracy of a particular set of low order correlation functions relative to the original MS-CG/g-YBG model. We demonstrate that this method provides a powerful framework for identifying the precise source of error in an MS-CG/g-YBG model. We then propose a method for identifying an optimal CG representation, prior to the development of the CG model. We employ these techniques together to demonstrate that in the cases where the MS-CG/g-YBG method fails to determine an accurate model, a fundamental problem likely exists with the chosen CG representation or interaction set. Additionally, we explicitly demonstrate that while the iterative model successfully improves the accuracy of the low order structure, it does so by distorting the higher order structural correlations relative to the underlying model. Finally, we apply these methods to investigate the utility of the MS-CG/g- YBG method for developing models for systems with complex intramolecular structure. Overall, our results demonstrate the power of the g-YBG framework for developing accurate CG models and for investigating the driving forces of equilibrium structures for complex condensed-phase systems. This work also explicitly motivates future development of bottom-up CG methods and highlights some outstanding problems in the field. iii.

  3. Communication: An accurate global potential energy surface for the ground electronic state of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawes, Richard, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Lolur, Phalgun; Li, Anyang

    We report a new full-dimensional and global potential energy surface (PES) for the O + O{sub 2} → O{sub 3} ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-rangemore » electrostatic model of Lepers et al. [J. Chem. Phys. 137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.« less

  4. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  5. Growth of equilibrium structures built from a large number of distinct component types.

    PubMed

    Hedges, Lester O; Mannige, Ranjan V; Whitelam, Stephen

    2014-09-14

    We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.

  6. Two-Fluid Models and Interfacial Area Transport in Microgravity Condition

    NASA Technical Reports Server (NTRS)

    Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp

    2004-01-01

    The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.

  7. Program Gives Data On Physical Properties Of Hydrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1994-01-01

    TAB II computer program provides values of thermodynamic and transport properties of hydrogen in useful format. Also, provides values for equilibrium hydrogen and para-hydrogen. Program fast, moderately accurate, and operates over wide ranges of input variables. Written in FORTRAN 77.

  8. Measuring the Thermodynamics of the Alloy/Scale Interface

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.

  9. A Simple and Accurate Network for Hydrogen and Carbon Chemistry in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Gong, Munan; Ostriker, Eve C.; Wolfire, Mark G.

    2017-07-01

    Chemistry plays an important role in the interstellar medium (ISM), regulating the heating and cooling of the gas and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate into numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photodissociation region (PDR) code, and also with the Nelson & Langer (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network to 1D models, we find that the CO-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic-ray ionization rate in molecular clouds. We provide a simple fit for the locus of CO-dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the CO, {{CH}}x, and {{OH}}x abundances are consistent with equilibrium predictions for densities n=100{--}1000 {{cm}}-3, but the predicted equilibrium C abundance is higher than that seen in observations, signaling the potential importance of non-equilibrium/dynamical effects.

  10. Thermodynamically equilibrium roton states of nanoparticles in molten and vapour phases

    NASA Astrophysics Data System (ADS)

    Karasevskii, A. I.

    2015-05-01

    We show a possibility for a thermodynamically equilibrium nanocrystalline structure consisting of nanosized solid inclusions to appear in a melt just beyond the melting curve. Thermodynamic stability of the nanocrystalline structure in the melt results from the free energy lowering due to rotational motion of nanoparticles. The main contribution to the reduction of the free energy of the system is due to an increase in the rotational entropy and change in formation energy of nanocrystals, i.e. the nanocrystalline structure in the melt, like vacancies in a crystal, is an equilibrium defect structure of the melt. It is demonstrated that similar nanocrystalline structures can also appear in the vapour phase in the form of liquid nanodrops and in liquid solutions, e.g. in He II.

  11. Structure and vibrational spectra of low-energy silicon clusters

    NASA Astrophysics Data System (ADS)

    Sieck, A.; Porezag, D.; Frauenheim, Th.; Pederson, M. R.; Jackson, K.

    1997-12-01

    We have identified low-energy structures of silicon clusters with 9 to 14 atoms using a nonorthogonal tight-binding method (TB) based on density-functional theory (DF). We have further investigated the resulting structures with an accurate all-electron first-principles technique. The results for cohesive energies, cluster geometries, and highest occupied to lowest unoccupied molecular orbital (HOMO-LUMO) gaps show an overall good agreement between DF-TB and self-consistent-field (SCF) DF theory. For Si9 and Si14, we have found equilibrium structures, whereas for Si11, Si12, and Si13, we present clusters with energies close to that of the corresponding ground-state structure recently proposed in the literature. The bonding scheme of clusters in this size range is different from the bulk tetrahedral symmetry. The most stable structures, characterized by low energies and large HOMO-LUMO gaps, have similar common subunits. To aid in their experimental identification, we have computed the full vibrational spectra of the structures, along with the Raman activities, IR intensities, and static polarizabilities, using SCF-DF theory within the local-density approximation (LDA). This method has already been successfully applied to the determination of Raman and IR spectra of silicon clusters with 3-8, 10, 13, 20, and 21 atoms.

  12. Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at 1473 K (1200 °C) and P(SO2) = 0.25 atm

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.

  13. Assembly of hard spheres in a cylinder: a computational and experimental study.

    PubMed

    Fu, Lin; Bian, Ce; Shields, C Wyatt; Cruz, Daniela F; López, Gabriel P; Charbonneau, Patrick

    2017-05-14

    Hard spheres are an important benchmark of our understanding of natural and synthetic systems. In this work, colloidal experiments and Monte Carlo simulations examine the equilibrium and out-of-equilibrium assembly of hard spheres of diameter σ within cylinders of diameter σ≤D≤ 2.82σ. Although phase transitions formally do not exist in such systems, marked structural crossovers can nonetheless be observed. Over this range of D, we find in simulations that structural crossovers echo the structural changes in the sequence of densest packings. We also observe that the out-of-equilibrium self-assembly depends on the compression rate. Slow compression approximates equilibrium results, while fast compression can skip intermediate structures. Crossovers for which no continuous line-slip exists are found to be dynamically unfavorable, which is the main source of this difference. Results from colloidal sedimentation experiments at low diffusion rate are found to be consistent with the results of fast compressions, as long as appropriate boundary conditions are used.

  14. Simple Ion Channels: From Structure to Electrophysiology and Back

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  15. The Use of Non-Standard Devices in Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Schur, Willi W.; Broduer, Steve (Technical Monitor)

    2001-01-01

    A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.

  16. Electrochemistry of the Zinc-Silver Oxide System. Part 1: Thermodynamic Studies Using Commercial Miniature Cells.

    ERIC Educational Resources Information Center

    Smith, Michael J.; Vincent, Colin A.

    1989-01-01

    Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)

  17. Visualization of the ultrafast structural phase transitions in warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, Mianzhen

    2017-10-01

    It is still a great challenge to obtain real-time atomistic-scale information on the structural phase transitions that lead to warm dense matter state. Recent advances in ultrafast electron diffraction (UED) techniques have opened up exciting prospects to unravel the mechanisms of solid-liquid phase transitions under these extreme non-equilibrium conditions. Here we report on precise measurements of melt time dependency on laser excitation energy density that resolve for the first time the transition from heterogeneous to homogeneous melting. This transition appears in both polycrystalline and single-crystal gold nanofilms with distinct measurable differences. These results test predictions from molecular-dynamics simulations with different interatomic potential models. These data further deliver accurate structure factor data to large wavenumbers that allow us to constrain electron-ion equilibration constants. Our results demonstrate electron-phonon coupling strength much weaker than DFT calculations, and contrary to previous results, provide evidence for bond softening. This work is supported by DOE Office of Science, Fusion Energy Science under FWP 100182, and the DOE BES Accelerator and Detector R&D program.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl

    An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less

  19. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less

  20. Binding Energy of 79Cu: Probing the Structure of the Doubly Magic 78Ni from Only One Proton Away

    NASA Astrophysics Data System (ADS)

    Welker, A.; Althubiti, N. A. S.; Atanasov, D.; Blaum, K.; Cocolios, T. E.; Herfurth, F.; Kreim, S.; Lunney, D.; Manea, V.; Mougeot, M.; Neidherr, D.; Nowacki, F.; Poves, A.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-11-01

    The masses of the neutron-rich copper isotopes 75-79Cu are determined using the precision mass spectrometer ISOLTRAP at the CERN-ISOLDE facility. The trend from the new data differs significantly from that of previous results, offering a first accurate view of the mass surface adjacent to the Z =28 , N =50 nuclide 78Ni and supporting a doubly magic character. The new masses compare very well with large-scale shell-model calculations that predict shape coexistence in a doubly magic 78Ni and a new island of inversion for Z <28 . A coherent picture of this important exotic region begins to emerge where excitations across Z =28 and N =50 form a delicate equilibrium with a spherical mean field.

  1. Computer simulations of equilibrium magnetization and microstructure in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Rosa, A. P.; Abade, G. C.; Cunha, F. R.

    2017-09-01

    In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole-dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.

  2. An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Alkesh; Ali, Halima

    2011-02-15

    Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint onmore » the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the safety factor all have fractal structure. The average field diffusion near the X-point for lines that strike and that do not strike differs by about three to four orders of magnitude. The magnetic footprint gives the maximal bounds on size and heat flux density on collector plate.« less

  3. Phase Equilibria in the ZnO-"FeO"-SiO2 System in Reducing Atmosphere and in the ZnO-"FeO"-SiO2-"Cu2O" System in Equilibrium with Liquid Copper Metal at 1250 °C (1523 K)

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    2018-05-01

    Recent experimental studies in the ZnO-"FeO"-SiO2 system in reducing atmosphere demonstrated significant discrepancies with the current FactSage thermodynamic model developed using previous experimental data in this system in equilibrium with metallic iron and air. The present experimental study on phase equilibria in the ZnO-"FeO"-SiO2-"Cu2O" system in equilibrium with liquid copper at 1250 °C (1523 K) at low copper oxide concentrations in slag was initiated and undertaken to resolve these discrepancies. A high-temperature equilibration-rapid quenching-electron-probe X-ray microanalysis (EPMA) technique using a primary phase substrate support and closed system approach with Cu metal introduced to determine effective equilibrium oxygen partial pressure from the Cumetal/Cu2Oslag equilibria was applied to provide accurate information on the liquidus and corresponding solid compositions in the spinel, willemite, and tridymite primary phase fields. The present results confirmed the accuracy of the FactSage model, resolved discrepancies, and demonstrated significant uncertainties in the recent studies by other authors on the system in the open reducing atmosphere. The present study shows how this closed system approach can be used to obtain key thermodynamic data on phase equilibria in systems containing volatile metal species, overcoming the limitations and uncertainties encountered in conventional open gas/condensed phase equilibration with these systems. The study highlights the importance of the focus on obtaining accurate experimental data and the risks of misleading information from inadequate experimental control and analysis. The study also demonstrates that continuing in-depth critical review and analysis of the elemental reactions taking place in complex systems is an essential step in phase equilibrium research.

  4. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  5. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  6. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  7. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  8. Local lattice distortion in high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian

    2017-07-01

    The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.

  9. The effects of rigid motions on elastic network model force constants

    PubMed Central

    Lezon, Timothy R.

    2012-01-01

    Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model’s single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here we investigate the differences between calculated values of force constants _t to data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. PMID:22228562

  10. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  11. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    PubMed

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  12. A well-balanced finite volume scheme for the Euler equations with gravitation. The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification

    NASA Astrophysics Data System (ADS)

    Käppeli, R.; Mishra, S.

    2016-03-01

    Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical schemes for compressible hydrodynamics may be deficient in approximating this stationary state, where the pressure gradient is nearly balanced by gravitational forces. Aims: We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is designed to mimic a discrete version of the hydrostatic balance. It therefore can resolve a discrete hydrostatic equilibrium exactly (up to machine precision) and propagate perturbations, on top of this equilibrium, very accurately. Methods: A local second-order hydrostatic equilibrium preserving pressure reconstruction is developed. Combined with a standard central gravitational source term discretization and numerical fluxes that resolve stationary contact discontinuities exactly, the well-balanced property is achieved. Results: The resulting well-balanced scheme is robust and simple enough to be very easily implemented within any existing computer code that solves time explicitly or implicitly the compressible hydrodynamics equations. We demonstrate the performance of the well-balanced scheme for several astrophysically relevant applications: wave propagation in stellar atmospheres, a toy model for core-collapse supernovae, convection in carbon shell burning, and a realistic proto-neutron star.

  13. radEq Add-On Module for CFD Solver Loci-CHEM

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    Loci-CHEM to be applied to flow velocities where surface radiation due to heating from compression and friction becomes significant. The module adds a radiation equilibrium boundary condition to the computational fluid dynamics (CFD) code to produce accurate results. The module expanded the upper limit for accurate CFD solutions of Loci-CHEM from Mach 4 to Mach 10 based on Space Shuttle Orbiter Re-Entry trajectories. Loci-CHEM already has a very promising architecture and performance, but absence of radiation equilibrium boundary condition limited the application of Loci-CHEM to below Mach 4. The immediate advantage of the add-on module is that it allows Loci-CHEM to work with supersonic flows up to Mach 10. This transformed Loci-CHEM from a rocket engine- heritage CFD code with general subsonic and low-supersonic applications, to an aeroheating code with hypersonic applications. The follow-on advantage of the module is that it is a building block for additional add-on modules that will solve for the heating generated at Mach numbers higher than 10.

  14. Simplifying silicon burning: Application of quasi-equilibrium to (alpha) network nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hix, W. R.; Thielemann, F.-K.; Khokhlov, A. M.; Wheeler, J. C.

    1997-01-01

    While the need for accurate calculation of nucleosynthesis and the resulting rate of thermonuclear energy release within hydrodynamic models of stars and supernovae is clear, the computational expense of these nucleosynthesis calculations often force a compromise in accuracy to reduce the computational cost. To redress this trade-off of accuracy for speed, the authors present an improved nuclear network which takes advantage of quasi- equilibrium in order to reduce the number of independent nuclei, and hence the computational cost of nucleosynthesis, without significant reduction in accuracy. In this paper they will discuss the first application of this method, the further reduction in size of the minimal alpha network. The resultant QSE- reduced alpha network is twice as fast as the conventional alpha network it replaces and requires the tracking of half as many abundance variables, while accurately estimating the rate of energy generation. Such reduction in cost is particularly necessary for future generation of multi-dimensional models for supernovae.

  15. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  16. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was estimated to be -75‰ to -95‰ for steroids, -90‰ to -105‰ for hopanoids, and -65‰ to -100‰ for typical cycloparaffins between 0 and 100 °C relative to water. These are distinct from the typical biosynthetic fractionations of -150‰ to -300‰, but are similar to equilibrium fractionations for linear hydrocarbons (Wang et al., 2009b). Thus post-burial H exchange will generally remove the ˜50-100‰ biosynthetic fractionations between cyclic isoprenoid and n-alkyl lipid molecules, which can be used to evaluate the extent of H exchange in sedimentary organic matter and oils.

  17. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  18. Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.

    PubMed

    Kowalczyk, Piotr; MacElroy, J M D

    2006-08-03

    We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.

  19. CFD analysis of laboratory scale phase equilibrium cell operation

    NASA Astrophysics Data System (ADS)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  20. CFD analysis of laboratory scale phase equilibrium cell operation.

    PubMed

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  1. Electrostatic odd symmetric eigenmode in inhomogeneous Bernstein-Greene-Kruskal equilibrium

    NASA Astrophysics Data System (ADS)

    Woo, M.-H.; Dokgo, K.; Yoon, Peter H.; Lee, D.-Y.; Choi, Cheong R.

    2018-04-01

    A self-consistent electrostatic odd-symmetric eigenmode (OEM) is analytically found in a solitary type Bernstein-Greene-Kruskal (BGK) equilibrium. The frequency of the OEM is order of the electron bounce frequency and it is spatially odd-symmetric with the scale comparable to that of the solitary BGK equilibrium structure. Such an OEM is consistent with the recent observation from particle-in-cell simulation of the solitary wave [Dokgo et al., Phys. Plasmas 23, 092107 (2016)]. The mode can be driven unstable by trapped electrons within the hole structure of the solitary wave. Such a low frequency, pure electron mode, which may possibly interact resonantly with the ion acoustic mode, provides a possible damping mechanism of the BGK equilibrium.

  2. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  3. Thermodynamic approach to the stability of multi-phase systems. Application to the Y 2O 3–Fe system

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.

    2015-07-07

    Oxide-metal systems (OMSs) are important in many practical applications, and therefore, are under extensive studies using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which are limited to ~10 2 atoms. Multi-scale approaches, e.g., DFT+Monte Carlo, are often used to model OMSs at the atomic level. These approaches can describe qualitatively the kinetics of some processes but not the overall stability of OMSs. In this paper, we propose a thermodynamic approach to study equilibrium in multiphase systems, which can be sequentially enhanced by considering different defects and microstructures. We estimate themore » thermodynamic equilibrium by minimization the free energy of the whole multiphase system using a limited set of defects and microstructural objects for which the properties are calculated by DFT. As an example, we consider Y 2O 3+bcc Fe with vacancies in both the Y 2O 3 and bcc Fe phases, Y substitutions and O interstitials in Fe, Fe impurities and antisite defects in Y 2O 3. The output of these calculations is the thermal equilibrium concentration of all the defects for a particular temperature and composition. The results obtained confirmed the high temperature stability of yttria in iron. As a result, model development towards more accurate calculations is discussed.« less

  4. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation

    NASA Astrophysics Data System (ADS)

    Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry

    2018-04-01

    The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.

  5. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  6. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  7. A note on AB INITIO semiconductor band structures

    NASA Astrophysics Data System (ADS)

    Fiorentini, Vincenzo

    1992-09-01

    We point out that only the internal features of the DFT ab initio theoretical picture of a crystal should be used in a consistent ab initio calculation of the band structure. As a consequence, we show that ground-state band structure calculations should be performed for the system in equilibrium at zero pressure, i.e. at the computed equilibrium cell volume ω th. Examples of consequences of this attitude are considered.

  8. A structured population model with diffusion in structure space.

    PubMed

    Pugliese, Andrea; Milner, Fabio

    2018-05-09

    A structured population model is described and analyzed, in which individual dynamics is stochastic. The model consists of a PDE of advection-diffusion type in the structure variable. The population may represent, for example, the density of infected individuals structured by pathogen density x, [Formula: see text]. The individuals with density [Formula: see text] are not infected, but rather susceptible or recovered. Their dynamics is described by an ODE with a source term that is the exact flux from the diffusion and advection as [Formula: see text]. Infection/reinfection is then modeled moving a fraction of these individuals into the infected class by distributing them in the structure variable through a probability density function. Existence of a global-in-time solution is proven, as well as a classical bifurcation result about equilibrium solutions: a net reproduction number [Formula: see text] is defined that separates the case of only the trivial equilibrium existing when [Formula: see text] from the existence of another-nontrivial-equilibrium when [Formula: see text]. Numerical simulation results are provided to show the stabilization towards the positive equilibrium when [Formula: see text] and towards the trivial one when [Formula: see text], result that is not proven analytically. Simulations are also provided to show the Allee effect that helps boost population sizes at low densities.

  9. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  10. The dynamical environment of asteroid 21 Lutetia according to different internal models

    NASA Astrophysics Data System (ADS)

    Aljbaae, S.; Chanut, T. G. G.; Carruba, V.; Souchay, J.; Prado, A. F. B. A.; Amarante, A.

    2017-01-01

    One of the most accurate models currently used to represent the gravity field of irregular bodies is the polyhedral approach. In this model, the mass of the body is assumed to be homogeneous, which may not be true for a real object. The main goal of the this paper is to study the dynamical effects induced by three different internal structures (uniform, three- and four-layered) of asteroid (21) Lutetia, an object that recent results from space probe suggest being at least partially differentiated. The Mascon gravity approach used in the this work consists of dividing each tetrahedron into eight parts to calculate the gravitational field around the asteroid. The zero-velocity curves show that the greatest displacement of the equilibrium points occurs in the position of the E4 point for the four-layered structure and the smallest one occurs in the position of the E3 point for the three-layered structure. Moreover, stability against impact shows that the planar limit gets slightly closer to the body with the four-layered structure. We then investigated the stability of orbital motion in the equatorial plane of (21) Lutetia and propose numerical stability criteria to map the region of stable motions. Layered structures could stabilize orbits that were unstable in the homogeneous model.

  11. Collisional excitation of CH2 rotational/fine-structure levels by helium

    NASA Astrophysics Data System (ADS)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  12. On the time needed to reach an equilibrium structure of the radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott

    In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less

  13. On the time needed to reach an equilibrium structure of the radiation belts

    DOE PAGES

    Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott; ...

    2016-08-01

    In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less

  14. Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2018-07-01

    Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.

  15. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    NASA Astrophysics Data System (ADS)

    Lu, Haiming; Meng, Xiangkang

    2015-06-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  16. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    PubMed

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Phenomenological Partial Specific Volumes for G-Quadruplex DNAs

    PubMed Central

    Hellman, Lance M.; Rodgers, David W.; Fried, Michael G.

    2009-01-01

    Accurate partial specific volume (ν̄) values are required for sedimentation velocity and sedimentation equilibrium analyses. For nucleic acids, the estimation of these values is complicated by the fact that ν̄ depends on base composition, secondary structure, solvation and the concentrations and identities of ions in the surrounding buffer. Here we describe sedimentation equilibrium measurements of the apparent isopotential partial specific volume φ′ for two G-quadruplex DNAs and a single-stranded DNA of similar molecular weight and base composition. The G-quadruplex DNAs are a 22 nucleotide fragment of the human telomere consensus sequence and a 27 nucleotide fragment from the human c-myc promoter. The single-stranded DNA is 26 nucleotides long and is designed to have low propensity to form secondary structures. Parallel measurements were made in buffers containing NaCl and in buffers containing KCl, spanning the range 0.09M ≤ [salt] ≤ 2.3M. Limiting values of φ′, extrapolated to [salt] = 0M, were: 22-mer (NaCl-form), 0.525 ± 0.004 mL/g; 22-mer (KCl-form), 0.531 ± 0.006 mL/g; 27-mer (NaCl-form), 0.548 ± 0.005 mL/g; 27-mer (KCl-form), 0.557 ± 0.006 mL/g; 26-mer (NaCl-form), 0.555 ± 0.004 mL/g; 26-mer (KCl-form), 0.564 ± 0.006 mL/g. Small changes in φ′ with [salt] suggest that large changes in counterion association or hydration are unlikely to take place over these concentration ranges. PMID:19238377

  18. The equilibrium properties and folding kinetics of an all-atom Go model of the Trp-cage.

    PubMed

    Linhananta, Apichart; Boer, Jesse; MacKay, Ian

    2005-03-15

    The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial alpha-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.

  19. The equilibrium properties and folding kinetics of an all-atom Go xAF model of the Trp-cage

    NASA Astrophysics Data System (ADS)

    Linhananta, Apichart; Boer, Jesse; MacKay, Ian

    2005-03-01

    The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go ¯ model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial α-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.

  20. A theoretical DFT study on the structural parameters and azide-tetrazole equilibrium in substituted azidothiazole systems.

    PubMed

    Abu-Eittah, Rafie H; El-Kelany, Khaled E

    2012-12-01

    Azido-tetrazole equilibrium is sensitive to: substitution, solvent, temperature and phase. In this work, the effects of the type and position of substitution on the thiazole ring of azidothiazoles on its structural parameters and on the azido-tetrazole equilibrium have been theoretically investigated using the density functional procedures at the B3LYP/6-311G(∗∗) level of theory. This study includes the investigation of the equilibrium geometry, the transformation of the trans-conformer to the cis one then the ring closure to the tetrazole isomer. The transition states of the two steps were located, confirmed and the structural parameters were calculated. In all the steps of calculations, geometry optimization was considered. The results obtained indicate that substitution by: -NO(2) and -CN group shifts the equilibrium to the azide side and in some cases the tetrazole isomer is not obtained. On the other hand, substitution by: -NH(2) and -OH groups shifts the equilibrium to the tetrazole side and in some cases the azide isomer is not obtained and if formed changes spontaneously to the tetrazole isomer. The decisive parameters which determine the position of the equilibrium are: charge density on atoms N3 and N8, rearrangement of bond length and bond angles during the process of cyclization and variation of dipole moment as a result of cyclization. Results of this work indicate that substitution on C5 is more efficient than substitution on C4 of the thiazole ring. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Combined LAURA-UPS hypersonic solution procedure

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Thompson, Richard A.

    1993-01-01

    A combined solution procedure for hypersonic flowfields around blunted slender bodies was implemented using a thin-layer Navier-Stokes code (LAURA) in the nose region and a parabolized Navier-Stokes code (UPS) on the after body region. Perfect gas, equilibrium air, and non-equilibrium air solutions to sharp cones and a sharp wedge were obtained using UPS alone as a preliminary step. Surface heating rates are presented for two slender bodies with blunted noses, having used LAURA to provide a starting solution to UPS downstream of the sonic line. These are an 8 deg sphere-cone in Mach 5, perfect gas, laminar flow at 0 and 4 deg angles of attack and the Reentry F body at Mach 20, 80,000 ft equilibrium gas conditions for 0 and 0.14 deg angles of attack. The results indicate that this procedure is a timely and accurate method for obtaining aerothermodynamic predictions on slender hypersonic vehicles.

  3. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  4. A dynamic analysis of the motion of a low-wing general aviation aircraft about its calculated equilibrium flat spin mode

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Barlow, J. B.

    1980-01-01

    The properties of the flat spin mode of a general aviation configuration have been studied through analysis of rotary balance data, numerical simulation, and analytical study of the equilibrium state. The equilibrium state is predicted well from rotary balance data. The variations of yawing moment and pitching moment as functions of sideslip have been shown to be of great importance in obtaining accurate modeling. These dependencies are not presently available with sufficient accuracy from previous tests or theories. The stability of the flat spin mode has been examined extensively using numerical linearization, classical perturbation methods, and reduced order modeling. The stability exhibited by the time histories and the eigenvalue analyses is shown to be strongly dependent on certain static cross derivatives and more so on the dynamic derivatives. Explicit stability criteria are obtained from the reduced order models.

  5. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE PAGES

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...

    2017-08-28

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  6. Lability of Secondary Organic Particulate Matter

    DOE PAGES

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM,more » no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.« less

  7. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  8. Intermolecular symmetry-adapted perturbation theory study of large organic complexes.

    PubMed

    Heßelmann, Andreas; Korona, Tatiana

    2014-09-07

    Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies.

  9. Characteristic Evaluation on Cooling Performance of Thermoelectric Modules.

    PubMed

    Seo, Sae Rom; Han, Seungwoo

    2015-10-01

    The aim of this work is to develop a performance evaluation system for thermoelectric cooling modules. We describe the design of such a system, composed of a vacuum chamber with a heat sink along with a metal block to measure the absorbed heat Qc. The system has a simpler structure than existing water-cooled or air-cooled systems. The temperature difference between the cold and hot sides of the thermoelectric module ΔT can be accurately measured without any effects due to convection, and the temperature equilibrium time is minimized compared to a water-cooled system. The evaluation system described here can be used to measure characteristic curves of Qc as a function of ΔT, as well as the current-voltage relations. High-performance thermoelectric systems can therefore be developed using optimal modules evaluated with this system.

  10. Do nuclear collisions create a locally equilibrated quark–gluon plasma?

    DOE PAGES

    Romatschke, P.

    2017-01-10

    Experimental results on azimuthal correlations in high energy nuclear collisions (nucleus–nucleus, proton–nucleus, and proton–proton) seem to be well described by viscous hydrodynamics. It is often argued that this agreement implies either local thermal equilibrium or at least local isotropy. In this note, I present arguments why this is not the case. Neither local near-equilibrium nor near-isotropy are required in order for hydrodynamics to offer a successful and accurate description of experimental results. However, I predict the breakdown of hydrodynamics at momenta of order seven times the temperature, corresponding to a smallest possible QCD liquid drop size of 0.15 fm.

  11. Non-axisymmetric local magnetostatic equilibrium

    DOE PAGES

    Candy, Jefferey M.; Belli, Emily A.

    2015-03-24

    In this study, we outline an approach to the problem of local equilibrium in non-axisymmetric configurations that adheres closely to Miller's original method for axisymmetric plasmas. Importantly, this method is novel in that it allows not only specification of 3D shape, but also explicit specification of the shear in the 3D shape. A spectrally-accurate method for solution of the resulting nonlinear partial differential equations is also developed. We verify the correctness of the spectral method, in the axisymmetric limit, through comparisons with an independent numerical solution. Some analytic results for the two-dimensional case are given, and the connection to Boozermore » coordinates is clarified.« less

  12. CAG12 - A CSCM based procedure for flow of an equilibrium chemically reacting gas

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.; Lombard, C. K.

    1985-01-01

    The Conservative Supra Characteristic Method (CSCM), an implicit upwind Navier-Stokes algorithm, is extended to the numerical simulation of flows in chemical equilibrium. The resulting computer code known as Chemistry and Gasdynamics Implicit - Version 2 (CAG12) is described. First-order accurate results are presented for inviscid and viscous Mach 20 flows of air past a hemisphere-cylinder. The solution procedure captures the bow shock in a chemically reacting gas, a technique that is needed for simulating high altitude, rarefied flows. In an initial effort to validate the code, the inviscid results are compared with published gasdynamic and chemistry solutions and satisfactorily agreement is obtained.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less

  14. Insights into the deactivation of 5-bromouracil after ultraviolet excitation

    NASA Astrophysics Data System (ADS)

    Peccati, Francesca; Mai, Sebastian; González, Leticia

    2017-03-01

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C-Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  15. Insights into the deactivation of 5-bromouracil after ultraviolet excitation

    PubMed Central

    2017-01-01

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C–Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320905

  16. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  17. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    PubMed

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  18. A numerical tool for the calculation of non-equilibrium ionisation states in the solar corona and other astrophysical plasma environments

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.

    2009-07-01

    Context: The effects of non-equilibrium processes on the ionisation state of strongly emitting elements in the solar corona can be extremely difficult to assess and yet they are critically important. For example, there is much interest in dynamic heating events localised in the solar corona because they are believed to be responsible for its high temperature and yet recent work has shown that the hottest (≥107 K) emission predicted to be associated with these events can be observationally elusive due to the difficulty of creating the highly ionised states from which the expected emission arises. This leads to the possibility of observing instruments missing such heating events entirely. Aims: The equations describing the evolution of the ionisaton state are a very stiff system of coupled, partial differential equations whose solution can be numerically challenging and time-consuming. Without access to specialised codes and significant computational resources it is extremely difficult to avoid the assumption of an equilibrium ionisation state even when it clearly cannot be justified. The aim of the current work is to develop a computational tool to allow straightforward calculation of the time-dependent ionisation state for a wide variety of physical circumstances. Methods: A numerical model comprising the system of time-dependent ionisation equations for a particular element and tabulated values of plasma temperature as a function of time is developed. The tabulated values can be the solutions of an analytical model, the output from a numerical code or a set of observational measurements. An efficient numerical method to solve the ionisation equations is implemented. Results: A suite of tests is designed and run to demonstrate that the code provides reliable and accurate solutions for a number of scenarios including equilibration of the ion population and rapid heating followed by thermal conductive cooling. It is found that the solver can evolve the ionisation state to recover exactly the equilibrium state found by an independent, steady-state solver for all temperatures, resolve the extremely small ionisation/recombination timescales associated with rapid temperature changes at high densities, and provide stable and accurate solutions for both dominant and minor ion population fractions. Rapid heating and cooling of low to moderate density plasma is characterised by significant non-equilibrium ionisation conditions. The effective ionisation temperatures are significantly lower than the electron temperature and the values found are in close agreement with the previous work of others. At the very highest densities included in the present study an assumption of equilibrium ionisation is found to be robust. Conclusions: The computational tool presented here provides a straightforward and reliable way to calculate ionisation states for a wide variety of physical circumstances. The numerical code gives results that are accurate and consistent with previous studies, has relatively undemanding computational requirements and is freely available from the author.

  19. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit theory, using lumped circuit elements, to electromagnetics, using distributed electrical quantities. We show this development using first principles, but, in a more general sense, Maxwell's equations of electromagnetics could be applied.

  20. Identifiability of sorption parameters in stirred flow-through reactor experiments and their identification with a Bayesian approach.

    PubMed

    Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y

    2016-10-01

    This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the K d approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because K d,1 and k - were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  3. Equilibrium and Orientation in Cephalopods.

    ERIC Educational Resources Information Center

    Budelmann, Bernd-Ulrich

    1980-01-01

    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  4. How relevant are assembled equilibrium samples in understanding structure formation during lipid digestion?

    PubMed

    Phan, Stephanie; Salentinig, Stefan; Hawley, Adrian; Boyd, Ben J

    2015-10-01

    Lipid-based formulations are gaining interest for use as drug delivery systems for poorly water-soluble drug compounds. During digestion, the lipolysis products self-assemble with endogenous surfactants in the gastrointestinal tract to form colloidal structures, enabling enhanced drug solubilisation. Although earlier studies in the literature focus on assembled equilibrium systems, little is known about structure formation under dynamic lipolysis conditions. The purpose of this study was to investigate the likely colloidal structure formation in the small intestine after the ingestion of lipids, under equilibrium and dynamic conditions. The structural aspects were studied using small angle X-ray scattering and dynamic light scattering, and were found to depend on lipid composition, lipid chain length, prandial state and emulsification. Incorporation of phospholipids and lipolysis products into bile salt micelles resulted in swelling of the structure. At insufficient bile salt concentrations, a co-existing lamellar phase was observed, due to a reduction in the solubilisation capacity for lipolysis products. Emulsification accelerated the rate of lipolysis and structure formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  6. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  7. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  8. Opto-Mechanical Design of FIR Diagnostic System for C-2W

    NASA Astrophysics Data System (ADS)

    Beall, Michael; Deng, B. H.; Settles, G.; Rouillard, M.; Schroeder, J.; Gota, H.; Thompson, M.; Snitchler, G.; Ziaei, S.; the TAE Team

    2016-10-01

    The goal of the C-2W far-infrared (FIR) diagnostic system is to provide highly accurate, simultaneous polarimetry and interferometry information about the generation, equilibrium and time evolution of the advanced beam-driven field-reversed configuration (FRC). Thorough spatial coverage of the confinement vessel will be provided by a set of 14 chords at the central plane, with half of the chords tilted at a 15°angle to provide additional polarimetry information. Due to the very low (<.5°) Faraday rotation expected in the field-reversed plasma, the system has a design goal of .25 μm maximum allowable vibration over the lifetime of the shot. Due to large eddy-current forces from simulation of magnetic-field ramp-up, a non-metallic canvas phenolic material has been selected for the primary breadboards, which are mounted on a rigid, sand-filled support structure. Given the size of the structure and the magnetic impact, the support structure does not use pneumatic or mechanical isolation. Dynamic vibration analysis with Ansys, based on measurements of local ground vibration and simulations of magnetic forces, predicts that the system will meet the design goal.

  9. Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.

  10. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  11. Water, moisture and ash content of mechanically cleaned greige cotton, naturally colored brown cotton, flax and rayon

    USDA-ARS?s Scientific Manuscript database

    This exploratory research evaluated the Karl Fischer Titration reference method (KFT, ASTM D7785) to accurately measure water content of mechanically cleaned greige cotton, a naturally colored brown cotton, flax and rayon at moisture equilibrium. Each sample was analyzed by KFT, standard oven dryin...

  12. Applications of the Peng-Robinson Equation of State Using Mathematica

    ERIC Educational Resources Information Center

    Binous, Housam

    2008-01-01

    A single equation of state (EOS) such as the Peng-Robinson EOS can accurately describe both the liquid and vapor phase. We present several applications of this equation of state including adiabatic flash calculation, determination of the solubility of methanol in natural gas, and the calculation of high-pressure chemical equilibrium. The problems…

  13. Prediction of Combustion Gas Deposit Compositions

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Mcbride, B. J.; Zeleznik, F. J.; Gordon, S.

    1985-01-01

    Demonstrated procedure used to predict accurately chemical compositions of complicated deposit mixtures. NASA Lewis Research Center's Computer Program for Calculation of Complex Chemical Equilibrium Compositions (CEC) used in conjunction with Computer Program for Calculation of Ideal Gas Thermodynamic Data (PAC) and resulting Thermodynamic Data Base (THDATA) to predict deposit compositions from metal or mineral-seeded combustion processes.

  14. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.

  15. Modeling of the axon membrane skeleton structure and implications for its mechanical properties

    PubMed Central

    Tzingounis, Anastasios V.

    2017-01-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young’s modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration. PMID:28241082

  16. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    PubMed

    Zhang, Yihao; Abiraman, Krithika; Li, He; Pierce, David M; Tzingounis, Anastasios V; Lykotrafitis, George

    2017-02-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  17. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method

    NASA Astrophysics Data System (ADS)

    Macdonald, R. L.; Grover, M. S.; Schwartzentruber, T. E.; Panesi, M.

    2018-02-01

    This work presents the analysis of non-equilibrium energy transfer and dissociation of nitrogen molecules (N2(g+1Σ) ) using two different approaches: the direct molecular simulation (DMS) method and the coarse-grain quasi-classical trajectory (CG-QCT) method. The two methods are used to study thermochemical relaxation in a zero-dimensional isochoric and isothermal reactor in which the nitrogen molecules are heated to several thousand degrees Kelvin, forcing the system into strong non-equilibrium. The analysis considers thermochemical relaxation for temperatures ranging from 10 000 to 25 000 K. Both methods make use of the same potential energy surface for the N2(g+1Σ ) -N2(g+1Σ ) system taken from the NASA Ames quantum chemistry database. Within the CG-QCT method, the rovibrational energy levels of the electronic ground state of the nitrogen molecule are lumped into a reduced number of bins. Two different grouping strategies are used: the more conventional vibrational-based grouping, widely used in the literature, and energy-based grouping. The analysis of both the internal state populations and concentration profiles show excellent agreement between the energy-based grouping and the DMS solutions. During the energy transfer process, discrepancies arise between the energy-based grouping and DMS solution due to the increased importance of mode separation for low energy states. By contrast, the vibrational grouping, traditionally considered state-of-the-art, captures well the behavior of the energy relaxation but fails to consistently predict the dissociation process. The deficiency of the vibrational grouping model is due to the assumption of strict mode separation and equilibrium of rotational energy states. These assumptions result in errors predicting the energy contribution to dissociation from the rotational and vibrational modes, with rotational energy actually contributing 30%-40% of the energy required to dissociate a molecule. This work confirms the findings discussed in Paper I [R. L. Macdonald et al., J. Chem. Phys. 148, 054309 (2018)], which underlines the importance of rotational energy to the dissociation process, and demonstrates that an accurate non-equilibrium chemistry model must accurately predict the deviation of rovibrational distribution from equilibrium.

  18. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method.

    PubMed

    Macdonald, R L; Grover, M S; Schwartzentruber, T E; Panesi, M

    2018-02-07

    This work presents the analysis of non-equilibrium energy transfer and dissociation of nitrogen molecules (N 2 (Σg+1)) using two different approaches: the direct molecular simulation (DMS) method and the coarse-grain quasi-classical trajectory (CG-QCT) method. The two methods are used to study thermochemical relaxation in a zero-dimensional isochoric and isothermal reactor in which the nitrogen molecules are heated to several thousand degrees Kelvin, forcing the system into strong non-equilibrium. The analysis considers thermochemical relaxation for temperatures ranging from 10 000 to 25 000 K. Both methods make use of the same potential energy surface for the N 2 (Σg+1)-N 2 (Σg+1) system taken from the NASA Ames quantum chemistry database. Within the CG-QCT method, the rovibrational energy levels of the electronic ground state of the nitrogen molecule are lumped into a reduced number of bins. Two different grouping strategies are used: the more conventional vibrational-based grouping, widely used in the literature, and energy-based grouping. The analysis of both the internal state populations and concentration profiles show excellent agreement between the energy-based grouping and the DMS solutions. During the energy transfer process, discrepancies arise between the energy-based grouping and DMS solution due to the increased importance of mode separation for low energy states. By contrast, the vibrational grouping, traditionally considered state-of-the-art, captures well the behavior of the energy relaxation but fails to consistently predict the dissociation process. The deficiency of the vibrational grouping model is due to the assumption of strict mode separation and equilibrium of rotational energy states. These assumptions result in errors predicting the energy contribution to dissociation from the rotational and vibrational modes, with rotational energy actually contributing 30%-40% of the energy required to dissociate a molecule. This work confirms the findings discussed in Paper I [R. L. Macdonald et al., J. Chem. Phys. 148, 054309 (2018)], which underlines the importance of rotational energy to the dissociation process, and demonstrates that an accurate non-equilibrium chemistry model must accurately predict the deviation of rovibrational distribution from equilibrium.

  19. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  20. Analysis of gene network robustness based on saturated fixed point attractors

    PubMed Central

    2014-01-01

    The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364

  1. Evolution and polymorphism in the multilocus Levene model with no or weak epistasis.

    PubMed

    Bürger, Reinhard

    2010-09-01

    Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and under mild, generic conditions, every trajectory converges to a stationary point in linkage equilibrium. Consequently, the equilibrium and stability structure can be determined by investigating the much simpler gene-frequency dynamics on the linkage-equilibrium manifold. For a haploid species an analogous result is shown. For weak epistasis, global convergence to quasi-linkage equilibrium is established. As an application, the maintenance of multilocus polymorphism is explored if the degree of dominance is intermediate at every locus and epistasis is absent or weak. If there are at least two demes, then arbitrarily many multiallelic loci can be maintained polymorphic at a globally asymptotically stable equilibrium. Because this holds for an open set of parameters, such equilibria are structurally stable. If the degree of dominance is not only intermediate but also deme independent, and loci are diallelic, an open set of parameters yielding an internal equilibrium exists only if the number of loci is strictly less than the number of demes. Otherwise, a fully polymorphic equilibrium exists only nongenerically, and if it exists, it consists of a manifold of equilibria. Its dimension is determined. In the absence of genotype-by-environment interaction, however, a manifold of equilibria occurs for an open set of parameters. In this case, the equilibrium structure is not robust to small deviations from no genotype-by-environment interaction. In a quantitative-genetic setting, the assumptions of no epistasis and intermediate dominance are equivalent to assuming that in every deme directional selection acts on a trait that is determined additively, i.e., by nonepistatic loci with dominance. Some of our results are exemplified in this quantitative-genetic context. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  3. A pH-dependent conformational ensemble mediates proton transport through the influenza A/M2 protein†

    PubMed Central

    Polishchuk, Alexei L.; Lear, James D.; Ma, Chunlong; Lamb, Robert A.; Pinto, Lawrence H.; DeGrado, William F.

    2010-01-01

    The influenza A M2 protein exhibits inwardly rectifying, pH-activated proton transport that saturates at low pH. A comparison of high-resolution structures of the transmembrane domain at high and low pH suggests that pH-dependent conformational changes may facilitate proton conduction by alternately changing the accessibility of the N-terminal and C-terminal regions of the channel as a proton transits through the transmembrane domain. Here, we show that M2 functionally reconstituted in liposomes populates at least three different conformational states over a physiologically relevant pH range, with transition midpoints that are consistent with previously reported His37 pKas. We then develop and test two similar, quantitative mechanistic models of proton transport, where protonation shifts the equilibrium between structural states having different proton affinities and solvent accessibilities. The models account well for a collection of experimental data sets over a wide range of pHs and voltages and require only a small number of adjustable parameters to accurately describe the data. While the kinetic models do not require any specific conformation for the protein, they nevertheless are consistent with a large body of structural information based on high-resolution NMR and crystallographic structures, optical spectroscopy, and MD calculations. PMID:20968306

  4. Conformational properties of chiral tobacco alkaloids by DFT calculations and vibrational circular dichroism: (-)-S-anabasine.

    PubMed

    Rodríguez Ortega, P G; Montejo, M; Márquez, F; López González, J J

    2015-07-01

    A thorough DFT and MM study of the conformational landscape, molecular and electronic structures of (-)-S-anabasine is reported aimed to reveal the mechanism controlling its conformational preference. Although the conformational flexibility and diversity of this system is quite extensive, only two structures are populated both in gas-phase and solution (CCl4 and DMSO). NBO-aided electronic structure analyses performed for the eight conformers representing minima in the potential energy surface of (-)-S-anabasine indicate that both steric and electrostatic factors are determinant in the conformational distribution of the sample in gas phase. Nonetheless, hyperconjugative effects are the key force tipping the balance in the conformational equilibrium between the two main rotamers. Increasing the polarity of the medium (using the IEF-PCM formalism) barely affect the conformational energy profile, although a slight increase in the theoretical population of those structures more affected by electrostatic interactions is predicted. The validity of the theoretical models and calculated conformers populations are endorsed by the accurate reproduction of the IR and VCD spectra (recorded in pure liquid and in CCl4 solution) of the sample (that have been firstly recorded and assigned in the present work) which are consistent with the occurrence of a 2:1 conformational ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.

    PubMed

    Krivov, Sergei V

    2018-06-06

    Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for simple diffusion. The free energy profile allowed us to obtain a direct rigorous estimate of the pre-exponential factor for the folding dynamics.

  6. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    NASA Astrophysics Data System (ADS)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at investigating the kinetics of equilibration of boron environment and isotopic composition are therefore required to refine our understanding of boron coprecipitation in carbonates and thus the theory behind the use of boron isotopes as an ocean pH proxy.

  7. Surface plasmon induced direct detection of long wavelength photons.

    PubMed

    Tong, Jinchao; Zhou, Wei; Qu, Yue; Xu, Zhengji; Huang, Zhiming; Zhang, Dao Hua

    2017-11-21

    Millimeter and terahertz wave photodetectors have long been of great interest due to a wide range of applications, but they still face challenges in detection performance. Here, we propose a new strategy for the direct detection of millimeter and terahertz wave photons based on localized surface-plasmon-polariton (SPP)-induced non-equilibrium electrons in antenna-assisted subwavelength ohmic metal-semiconductor-metal (OMSM) structures. The subwavelength OMSM structure is used to convert the absorbed photons into localized SPPs, which then induce non-equilibrium electrons in the structure, while the antenna increases the number of photons coupled into the OMSM structure. When the structure is biased and illuminated, the unidirectional flow of the SPP-induced non-equilibrium electrons forms a photocurrent. The energy of the detected photons is determined by the structure rather than the band gap of the semiconductor. The detection scheme is confirmed by simulation and experimental results from the devices, made of gold and InSb, and a room temperature noise equivalent power (NEP) of 1.5 × 10 -13 W Hz -1/2 is achieved.

  8. Equilibration of experimentally determined protein structures for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Walton, Emily B.; Vanvliet, Krystyn J.

    2006-12-01

    Preceding molecular dynamics simulations of biomolecular interactions, the molecule of interest is often equilibrated with respect to an initial configuration. This so-called equilibration stage is required because the input structure is typically not within the equilibrium phase space of the simulation conditions, particularly in systems as complex as proteins, which can lead to artifactual trajectories of protein dynamics. The time at which nonequilibrium effects from the initial configuration are minimized—what we will call the equilibration time—marks the beginning of equilibrium phase-space exploration. Note that the identification of this time does not imply exploration of the entire equilibrium phase space. We have found that current equilibration methodologies contain ambiguities that lead to uncertainty in determining the end of the equilibration stage of the trajectory. This results in equilibration times that are either too long, resulting in wasted computational resources, or too short, resulting in the simulation of molecular trajectories that do not accurately represent the physical system. We outline and demonstrate a protocol for identifying the equilibration time that is based on the physical model of Normal Mode Analysis. We attain the computational efficiency required of large-protein simulations via a stretched exponential approximation that enables an analytically tractable and physically meaningful form of the root-mean-square deviation of atoms comprising the protein. We find that the fitting parameters (which correspond to physical properties of the protein) fluctuate initially but then stabilize for increased simulation time, independently of the simulation duration or sampling frequency. We define the end of the equilibration stage—and thus the equilibration time—as the point in the simulation when these parameters attain constant values. Compared to existing methods, our approach provides the objective identification of the time at which the simulated biomolecule has entered an energetic basin. For the representative protein considered, bovine pancreatic trypsin inhibitor, existing methods indicate a range of 0.2-10ns of simulation until a local minimum is attained. Our approach identifies a substantially narrower range of 4.5-5.5ns , which will lead to a much more objective choice of equilibration time.

  9. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  10. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  11. Infrared polar brightenings on Jupiter. V - A thermal equilibrium model for the north polar hot spot

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi; Burrows, Adam; Caldwell, John

    1988-01-01

    Voyager IRIS instrument records of the IR hydrocarbon emissions from Jupiter's north polar region are presently studied to determine the spatial and other characteristics of the north polar hot spot. Attention is given to a thermal equilibrium model that exploits the asymmetry found in 7.8-micron emission of stratospheric methane with respect to system III longitude in order to estimate stratospheric zonal wind velocity. This model accurately predicts the observed asymmetry in acetylene's 13.6-micron emission; this requires, however, enhanced acetylene abundance in the hot spot, as well as ethane depletion. Energetic charged particles are suggested to be the most probable cause of these effects.

  12. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  13. The effects of rigid motions on elastic network model force constants.

    PubMed

    Lezon, Timothy R

    2012-04-01

    Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. Copyright © 2011 Wiley Periodicals, Inc.

  14. Testing SgrA{sup *} with the spectrum of its accretion structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Nan; Li, Zilong; Bambi, Cosimo

    2015-09-01

    SgrA{sup *} is the supermassive black hole candidate at the center of the Galaxy and an ideal laboratory to test general relativity. Following previous work by other authors, we use the Polish doughnut model to describe an optically thin and constant angular momentum ion torus in hydrodynamical equilibrium and model the accretion structure around SgrA{sup *}. The radiation mechanisms are bremsstrahlung, synchrotron emission, and inverse Compton scattering. We compute the spectrum as seen by a distant observer in Kerr and non-Kerr spacetimes and we study how an accurate measurement can constrain possible deviations form the Kerr solution. As in themore » case of emission from a thin accretion disk, we find a substantial degeneracy between the determination of the spin and of possible deviations from the Kerr geometry, even when the parameters of the ion torus are fixed. This means that this technique cannot independently test the nature of SgrA{sup *} even in the presence of good data and with the systematics under control. However, it might do it in combination with other measurements (black hole shadow, radio pulsar, etc.)« less

  15. High-Precision Simulation of the Gravity Field of Rapidly-Rotating Barotropes in Hydrostatic Equilibrium

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.

    2013-12-01

    The so-called theory of figures (TOF) uses potential theory to solve for the structure of highly distorted rotating liquid planets in hydrostatic equilibrium. TOF is noteworthy both for its antiquity (Maclaurin 1742) and its mathematical complexity. Planned high-precision gravity measurements near the surfaces of Jupiter and Saturn (possibly detecting signals ~ microgal) will place unprecedented requirements on TOF, not because one expects hydrostatic equilibrium to that level, but because nonhydrostatic components in the surface gravity, at expected levels ~ 1 milligal, must be referenced to precise hydrostatic-equilibrium models. The Maclaurin spheroid is both a useful test of numerical TOF codes (Hubbard 2012, ApJ Lett 756:L15), and an approach to an efficient TOF code for arbitrary barotropes of variable density (Hubbard 2013, ApJ 768:43). For the latter, one trades off vertical resolution by replacing a continuous barotropic pressure-density relation with a stairstep relation, corresponding to N concentric Maclaurin spheroids (CMS), each of constant density. The benefit of this trade-off is that two-dimensional integrals over the mass distributions at each interface are reduced to one-dimensional integrals, quickly and accurately evaluated by Gaussian quadrature. The shapes of the spheroids comprise N level surfaces within the planet and at its surface, are gravitationally coupled to each other, and are found by self-consistent iteration, relaxing to a final configuration to within the computer's precision limits. The angular and radial variation of external gravity (using the usual geophysical expansion in multipole moments) can be found to the limit of typical floating point precision (~ 1.e-14), much better than the expected noise/signal for either the Juno or Cassini gravity experiments. The stairstep barotrope can be adjusted to fit a prescribed continuous or discontinuous interior barotrope, and can be made to approximate it to any required precision by increasing N. One can insert a higher density of CMSs toward the surface of an interior model in order to more accurately model high-order gravitational moments. The magnitude of high-order moments predicted by TOF declines geometrically with order number, and falls below the magnitude of expected non-hydrostatic terms produced by interior dynamics at ~ order 10 and above. Juno's sensitivity is enough to detect tidal gravity signals from Galilean satellites. The CMS method can be generalized to predict tidal zonal and tesseral terms consistent with an interior model fitted to measured zonal harmonics. For this purpose, two-dimensional Gaussian quadrature is necessary at each CMS interface. However, once the model is relaxed to equilibrium, one need not refit the model to the average zonal harmonics because of the smallness of the tidal terms. I will describe how the CMS method has been validated through comparisons with standard TOF models for which fully or partially analytic solutions exist, as well as through consistency checks. At this stage in software development in preparation for Jupiter orbit, we are focused on increasing the speed of the code in order to more efficiently search the parameter space of acceptable Jupiter interior models, as well as to interface it with advanced hydrogen-helium equations of state.

  16. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1983-09-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  17. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1984-12-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  18. Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Baraban, Joshua H.

    2017-06-01

    Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.

  19. Fast Whole-Engine Stirling Analysis

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  20. Free energy reconstruction from steered dynamics without post-processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less

  1. Fast Whole-Engine Stirling Analysis

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  2. Structure of V2AlC studied by theory and experiment

    NASA Astrophysics Data System (ADS)

    Schneider, Jochen M.; Mertens, Raphael; Music, Denis

    2006-01-01

    We have studied V2AlC (space group P63/mmc, prototype Cr2AlC) by ab initio calculations. The density of states (DOS) of V2AlC for antiferromagnetic, ferromagnetic, and paramagnetic configurations have been discussed. According to the analysis of DOS and cohesive energy, no significant stability differences between spin-polarized and non-spin-polarized configurations were found. Based on the partial DOS analysis, V2AlC can be classified as a strongly coupled nanolaminate according to our previous work [Z. Sun, D. Music, R. Ahuja, S. Li, and J. M. Schneider, Phys. Rev. B 70, 092102 (2004)]. Furthermore, this phase has been synthesized in the form of thin films by magnetron sputtering. The equilibrium volume, determined by x-ray diffraction, is in good agreement with the theoretical data, implying that ab initio calculations provide an accurate description of V2AlC.

  3. Linear free-energy relationships between a single gas-phase ab initio equilibrium bond length and experimental pKa values in aqueous solution.

    PubMed

    Alkorta, Ibon; Popelier, Paul L A

    2015-02-02

    Remarkably simple yet effective linear free energy relationships were discovered between a single ab initio computed bond length in the gas phase and experimental pKa values in aqueous solution. The formation of these relationships is driven by chemical features such as functional groups, meta/para substitution and tautomerism. The high structural content of the ab initio bond length makes a given data set essentially divide itself into high correlation subsets (HCSs). Surprisingly, all molecules in a given high correlation subset share the same conformation in the gas phase. Here we show that accurate pKa values can be predicted from such HCSs. This is achieved within an accuracy of 0.2 pKa units for 5 drug molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June

    2018-01-01

    We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.

  5. Relationship between local structure and relaxation in out-of-equilibrium glassy systems

    DOE PAGES

    Schoenholz, Samuel S.; Cubuk, Ekin D.; Kaxiras, Efthimios; ...

    2016-12-27

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field calledmore » “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. We first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.« less

  6. Relationship between local structure and relaxation in out-of-equilibrium glassy systems.

    PubMed

    Schoenholz, Samuel S; Cubuk, Ekin D; Kaxiras, Efthimios; Liu, Andrea J

    2017-01-10

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called "softness," a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.

  7. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  8. Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Sousa, Tânia; Domingos, Tiago

    2006-11-01

    We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.

  9. Allosteric Modulation of protein oligomerization: an emerging approach to drug design

    NASA Astrophysics Data System (ADS)

    Gabizon, Ronen; Friedler, Assaf

    2014-03-01

    Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.

  10. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Arias, E.; Florez, E.; Pérez-Torres, J. F.

    2017-06-01

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.

  11. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters.

    PubMed

    Arias, E; Florez, E; Pérez-Torres, J F

    2017-06-28

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu 7 , Cu 9 , and Cu 11 as benchmark systems, and Cu 38 and Ni 9 as novel systems. New equilibrium structures for Cu 9 , Cu 11 , Cu 38 , and Ni 9 are reported.

  12. Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects.

    PubMed

    Muthukkumaran, A; Aravamudan, K

    2017-12-15

    Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Non-equilibrium steady-state distributions of colloids in a tilted periodic potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    A two-layer colloidal system is constructed to study the effects of the external force F on the non-equilibrium steady-state (NESS) dynamics of the diffusing particles over a tilted periodic potential, in which detailed balance is broken due to the presence of a steady particle flux. The periodic potential is provided by the bottom layer colloidal spheres forming a fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom colloidal crystal provides a gravitational potential field for the top layer diffusing particles. By tilting the sample with respect to gravity, a tangential component F is applied to the diffusing particles. The measured NESS probability density function Pss (x , y) of the particles is found to deviate from the equilibrium distribution depending on the driving or distance from equilibrium. The experimental results are compared with the exact solution of the 1D Smoluchowski equation and the numerical results of the 2D Smoluchowski equation. Moreover, from the obtained exact 1D solution, we develop an analytical method to accurately extract the 1D potential U0 (x) from the measured Pss (x) . Work supported in part by the Research Grants Council of Hong Kong SAR.

  14. Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Jak, E.

    2017-12-01

    The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.

  15. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures containing ammonium salts (e.g., (NH4)2SO4, NH4NO3) and dicarboxylic acids (e.g., malonic, glutaric, and maleic acid) as well as important mimic compounds such as sucrose - water systems.

  16. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.

    PubMed

    Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique

    2015-05-15

    QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Efficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Majda, Andrew J.

    2018-02-01

    Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace and is therefore computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O (100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.

  18. The equilibrium-diffusion limit for radiation hydrodynamics

    DOE PAGES

    Ferguson, J. M.; Morel, J. E.; Lowrie, R.

    2017-07-27

    The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β 2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less

  19. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    PubMed

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  20. Hidden Structural Codes in Protein Intrinsic Disorder.

    PubMed

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  1. Mineral scale management. Part II, Fundamental chemistry

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The mineral scale that deposits in digesters and bleach plants is formed by a chemical precipitation process.As such, it is accurately modeled using the solubility product equilibrium constant. Although solubility product identifies the primary conditions that must be met for a scale problem to exist, the acid-base equilibria of the scaling anions often control where...

  2. Adapting and Modifying the Apparatus for Students to Accurately Determine the Freezing Point of a Solvent and Solution

    ERIC Educational Resources Information Center

    Li, Shirong; Guo, Jianzhong; Wang, Kewang; Chen, Lin; Hu, Daodao; Bai, Yunshan

    2017-01-01

    An improved apparatus for measuring freezing points has been developed. Compared to the traditional Beckmann freezing point instrument, the improved one overcame prior difficulties with solidification of liquid and made the solid-liquid equilibrium reversible with heat compensation from a heating tube. The reliability and accuracy were carefully…

  3. Fundamental chemistry of precipitation and mineral scale formation

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2005-01-01

    The mineral scale that deposits in digesters and bleach plants is formed by a chemical precipitation process. As such, it is accurately described or modeled using the solubility product equilibrium constant. Although solubility product identifies the primary conditions that need to be met for a scale problem to exist, the acid base equilibria of the scaling anions...

  4. The Impact of Contextual Factors on the Use of Students' Conceptions

    ERIC Educational Resources Information Center

    Saglam, Yilmaz; Karaaslan, Emre Harun; Ayas, Alipasa

    2011-01-01

    This study aimed to investigate the impacts of contextual factors on the use of students' conceptions. A total of 106 students received a questionnaire involving open-ended questions on acid-base and equilibrium concepts. Of these students, 16 students who provided complete and accurate responses to the questions participated in an interview. In…

  5. Applications of the Peng-Robinson Equation of State Using MATLAB[R

    ERIC Educational Resources Information Center

    Nasri, Zakia; Binous, Housam

    2009-01-01

    A single equation of state (EOS) such as the Peng-Robinson (PR) EOS can accurately describe both the liquid and vapor phase. We present several applications of this equation of state, including estimation of pure component properties and computation of the vapor-liquid equilibrium (VLE) diagram for binary mixtures. We perform high-pressure…

  6. Dynamics of a gravity-gradient stabilized flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Juang, J. N.

    1974-01-01

    The dynamics of gravity-gradient stabilized flexible satellite in the neighborhood of a deformed equilibrium configuration are discussed. First the equilibrium configuration was determined by solving a set of nonlinear differential equations. Then stability of motion about the deformed equilibrium was tested by means of the Liapunov direct method. The natural frequencies of oscillation of the complete structure were calculated. The analysis is applicable to the RAE/B satellite.

  7. Impact of mutations on the allosteric conformational equilibrium

    PubMed Central

    Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej

    2012-01-01

    Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330

  8. The effect of capturing the correct turbulence dissipation rate in BHR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, John Dennis; Ristorcelli, Raymond

    In this manuscript, we discuss the shortcoming of a quasi-equilibrium assumption made in the BHR closure model. Turbulence closure models generally assume fully developed turbulence, which is not applicable to 1) non-equilibrium turbulence (e.g. change in mean pressure gradient) or 2) laminar-turbulence transition flows. Based on DNS data, we show that the current BHR dissipation equation [modeled based on the fully developed turbulence phenomenology] does not capture important features of nonequilibrium flows. To demonstrate our thesis, we use the BHR equations to predict a non-equilibrium flow both with the BHR dissipation and the dissipation from DNS. We find that themore » prediction can be substantially improved, both qualitatively and quantitatively, with the correct dissipation rate. We conclude that a new set of nonequilibrium phenomenological assumptions must be used to develop a new model equation for the dissipation to accurately predict the turbulence time scale used by other models.« less

  9. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  10. Active Learning session based on Didactical Engineering framework for conceptual change in students' equilibrium and stability understanding

    NASA Astrophysics Data System (ADS)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria and formulae. Our aim is to study the impact of a specific and innovative classroom session, containing well-chosen situations that address students' misconceptions. We propose an example of Active Learning experiment based both on the Didactical Engineering methodology and the Conceptual Fields Theory that aims at promoting a conceptual change in students. The chosen methodology allows, at the same time, a proper design of the student learning activities, an accurate monitoring of the students' rational use during the tasks and provides an internal tool for the evaluation of the session's efficiency. Although the expected starting conceptual change was detected, it would require another activity in order to be reinforced.

  11. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  12. Non-equilibrium Green's function calculation for GaN-based terahertz-quantum cascade laser structures

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.

    2012-04-01

    We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.

  13. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  14. Multiphase, multicomponent phase behavior prediction

    NASA Astrophysics Data System (ADS)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.

  15. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when using polynomial fits to the computed values. Reported internal partition functions and thermodynamic quantities in the present work are shown to be more accurate than previously available data. The full datasets in 1 K temperature steps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A130

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suenram, Richard D.; Pate, Brooks H.; Lesarri, Alberto

    Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three 13C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (κ ) -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C6more » backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased π-electron delocalization in comparison with butadiene, the first member of the polyene series.« less

  17. Effects of translational and rotational degrees of freedom on properties of the Mercedes–Benz water model

    PubMed Central

    Urbic, T.; Mohoric, T.

    2017-01-01

    Non–equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes–Benz water model. We establish a non–equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard–Jones fluid like.

  18. Quantum conductance oscillation in linear monatomic silicon chains

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Ti; Cheng, Yan; Yang, Fu-Bin; Chen, Xiang-Rong

    2014-02-01

    The conductance of linear silicon atomic chains with n=1-8 atoms sandwiched between Au electrodes is investigated by using the density functional theory combined with non-equilibrium Green's function. The results show that the conductance oscillates with a period of two atoms as the number of atoms in the chain is varied. We optimize the geometric structure of nanoscale junctions in different distances, and obtain that the average bond-length of silicon atoms in each chain at equilibrium positions is 2.15±0.03 Å. The oscillation of average Si-Si bond-length can explain the conductance oscillation from the geometric structure of atomic chains. We calculate the transmission spectrum of the chains in the equilibrium positions, and explain the conductance oscillation from the electronic structure. The transport channel is mainly contributed by px and py orbital electrons of silicon atoms. The even-odd oscillation is robust under external voltage up to 1.2 V.

  19. Effects of translational and rotational degrees of freedom on properties of the Mercedes-Benz water model

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Mohoric, T.

    2017-03-01

    Non-equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. We establish a non-equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard-Jones fluid like.

  20. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    PubMed

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  1. Revisiting the Solar Oblateness: Is Relevant Astrophysics Possible?

    NASA Astrophysics Data System (ADS)

    Rozelot, J. P.; Fazel, Z.

    2013-10-01

    The measurement of solar oblateness has a rich history extending well back into the past. Until recently, its estimate has been actively disputed, as has its temporal dependence. Recent accurate observations of the solar shape gave cause for doubt, and so far only balloon flights or satellite experiments, such as those onboard SDO, seem to achieve the required sensitivity to measure the expected small deviations from sphericity. A shrinking or an expanding shape is ultimately linked to solar activity (likely not homologously with its change), as gravitational or magnetic fields, which are existing mechanisms for storing energy during a solar cycle, lead to distinct perturbations in the equilibrium solar-structure and changes in the diameter. It follows that a sensitive determination of the solar radius fluctuations might give information about the origin of the solar cycle. In periods of higher activity, the outer photospheric shape seems to become aspheric under the influence of higher-order multipole moments of the Sun, resulting both from the centrifugal force and the core rotation. An accurate determination of the shape of the Sun is thus one of the ways that we have now for peering into its interior, learning empirically about flows and motions there that would otherwise only be guessed at from theoretical considerations, developing more precise inferences, and ultimately building possible alternative gravitational theories.

  2. Harmonic and Anharmonic Free Energies in Superlattices of Soft Particle Systems

    NASA Astrophysics Data System (ADS)

    Travesset, Alex; Calero, Carles; Knorowski, Chris

    Many problems in self and directed assembly rely on the rigorous calculation of free energies. In systems of nanoparticles with capping ligands, for example, superlattices are found in closely competing structures, such as hcp/fcc, cubic/hexagonal diamond or those isomorphic between MgCu2 and MgZn2. With this motivation, we investigate a general method to calculate free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of the method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to very high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place con- strains on its magnitude and allows approximate but fast and accurate estimates. We apply it to Lennard Jones sytems where we demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior and binary systems that model nanoparticle superlattices with hydrocarbon capping ligand. The research was performed at the Ames Laboratory, which is operated for the US DOE by Iowa State University under Contract Number DE-AC02-07CH11358.

  3. Linearized Flux Evolution (LiFE): A technique for rapidly adapting fluxes from full-physics radiative transfer models

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Crisp, David

    2018-05-01

    Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.

  4. Hyperdiffusive dynamics in Newtonian nanoparticle fluids [Hyperdiffusive dynamics in equilibrated nanoparticle fluids

    DOE PAGES

    Srivastava, Samanvaya; Agarwal, Praveen; Mangal, Rahul; ...

    2015-09-24

    Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and non-equilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in a model, equilibrium soft material comprised of single-component polymer-tethered-nanoparticles. In these materials, polymer mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. Our experimental observations complement the current hypothesis that hyperdiffusive relaxations in soft materials require the material to exist in out–of–equilibrium states capable of driving structural rearrangements. Lastly, we propose alternatively that hyperdiffusive relaxations in our materials can arise naturally frommore » volume fluctuations brought about by equilibrium thermal forces.« less

  5. Mechanics: Statics; A Syllabus.

    ERIC Educational Resources Information Center

    Compo, Louis

    The instructor's guide presents material for structuring an engineering fundamentals course covering the basic laws of statistics as part of a mechanical technology program. Detailed behavioral objectives are described for the following five areas of course content: principles of mechanics, two-dimensional equilibrium, equilibrium of internal…

  6. Rational approach for assumed stress finite elements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.

    1984-01-01

    A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.

  7. 3D nozzle flow simulations including state-to-state kinetics calculation

    NASA Astrophysics Data System (ADS)

    Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.

    2014-12-01

    In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.

  8. Bioethanol production optimization: a thermodynamic analysis.

    PubMed

    Alvarez, Víctor H; Rivera, Elmer Ccopa; Costa, Aline C; Filho, Rubens Maciel; Wolf Maciel, Maria Regina; Aznar, Martín

    2008-03-01

    In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.

  9. Consequences of Molecular-Scale Non-Equilibrium Activity on the Dynamics and Mechanics of Self-Assembled Actin-Based Structures and Materials

    NASA Astrophysics Data System (ADS)

    Marshall Mccall, Patrick

    Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non-equilibrium turnover on the steady-state properties of collections of filaments remained unclear. Here, I reconstituted tunable, non-equilibrium actin turnover dynamics in entangled solutions of actin filaments as a model of the actin cortex of living cells. We found that this non-equilibrium turnover decouples solution mechanics from microstructure, enabling structurally indistinguishable materials to behave effectively as either viscous fluids or elastic gels. Additionally, we employed computer simulations to identify the dynamical regime in which actin turnover controls the effective viscosity of 2D cross-linked actin networks in the presence of motors. Additionally, I examine in this thesis the localization and self-assembly of actin filaments in condensed liquid phases called polyelectrolyte coacervates as a model membrane-less organelle. We find that concentration of actin through spontaneous partitioning preferentially to the coacervate phase accelerates the assembly of filaments. These filaments then localize to the coacervate-bulk interface, generating particles with visco-elastic shells surrounding liquid cores. In this case, the properties of the condensed phase enable regulation of actin assembly dynamics.

  10. DREAM3D simulations of inner-belt dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less

  11. DREAM3D simulations of inner-belt dynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, G.

    2015-12-01

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.

  12. Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel H.; O'neil, T. M.

    1999-01-01

    Plasmas consisting exclusively of particles with a single sign of charge (e.g., pure electron plasmas and pure ion plasmas) can be confined by static electric and magnetic fields (in a Penning trap) and also be in a state of global thermal equilibrium. This important property distinguishes these totally unneutralized plasmas from neutral and quasineutral plasmas. This paper reviews the conditions for, and the structure of, the thermal equilibrium states. Both theory and experiment are discussed, but the emphasis is decidedly on theory. It is a huge advantage to be able to use thermal equilibrium statistical mechanics to describe the plasma state. Such a description is easily obtained and complete, including for example the details of the plasma shape and microscopic order. Pure electron and pure ion plasmas are routinely confined for hours and even days, and thermal equilibrium states are observed. These plasmas can be cooled to the cryogenic temperature range, where liquid and crystal-like states are realized. The authors discuss the structure of the correlated states separately for three plasma sizes: large plasmas, in which the free energy is dominated by the bulk plasma; mesoscale plasmas, in which the free energy is strongly influenced by the surface; and Coulomb clusters, in which the number of particles is so small that the canonical ensemble is not a good approximation for the microcanonical ensemble. All three cases have been studied through numerical simulations, analytic theory, and experiment. In addition to describing the structure of the thermal equilibrium states, the authors develop a thermodynamic theory of the trapped plasma system. Thermodynamic inequalities and Maxwell relations provide useful bounds on and general relationships between partial derivatives of the various thermodynamic variables.

  13. How Accurate Are Transition States from Simulations of Enzymatic Reactions?

    PubMed Central

    2015-01-01

    The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275

  14. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS

    NASA Astrophysics Data System (ADS)

    Hait, Diptarka; Head-Gordon, Martin

    2018-05-01

    Double hybrid (DH) density functionals are amongst the most accurate density functional approximations developed so far, largely due to the incorporation of correlation effects from unoccupied orbitals via second order perturbation theory (PT2). The xDH family of DH functionals calculate energy directly from orbitals optimized by a lower level approach like B3LYP, without self-consistent optimization. XYG3 and XYGJ-OS are two widely used xDH functionals that are known to be quite accurate at equilibrium geometries. Here, we show that the XYG3 and XYGJ-OS functionals can be ill behaved for stretched bonds well beyond the Coulson-Fischer point, predicting unphysical dipole moments and humps in potential energy curves for some simple systems like the hydrogen fluoride molecule. Numerical experiments and analysis show that these failures are not due to PT2. Instead, a large mismatch at stretched bond-lengths between the reference B3LYP orbitals and the optimized orbitals associated with the non-PT2 part of XYG3 leads to an unphysically large non-Hellman-Feynman contribution to first order properties like forces and electron densities.

  16. Approximate stoichiometry for rich hydrocarbon mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beans, E.W.

    1993-03-01

    The stoichiometry of lean mixtures can readily and accurately be determined from the assumption that all the carbon oxidizes to carbon dioxide and all the hydrogen oxidizes to water. This assumption is valid up to an equivalence ratio ([sigma]) of 0.8 and can be used with little error up to [sigma] = 1. The composition of the products of a hydrocarbon burnt in air under the foregoing assumption can be obtained from simple carbon, hydrogen, oxygen and nitrogen balances. Given the composition, one can determine the energy released and/or the adiabatic flame temperature. For rich mixtures, the foregoing assumption, ofmore » course, is not valid. Hence, there is no easy way to determine the stoichiometry of the products of a rich mixture. The objective of this note is to present an equation' which will allow one to readily determine the composition of the products of rich hydrocarbon mixtures. The equation is based on equilibrium composition calculations and some assumptions regarding the characteristics of hydrocarbons. The equation gives approximate results. However, the results are sufficiently accurate for many situations. If more accuracy is wanted, one should use an equilibrium combustion program like the one by Gordon and McBride.« less

  17. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  18. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II

    NASA Astrophysics Data System (ADS)

    Nemtseva, Elena V.; Lashchuk, Olesya O.; Gerasimova, Marina A.; Melnik, Tatiana N.; Nagibina, Galina S.; Melnik, Bogdan S.

    2018-01-01

    In most cases, intermediate states of multistage folding proteins are not ‘visible’ under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  19. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    PubMed

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  20. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    NASA Astrophysics Data System (ADS)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  1. Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters

    NASA Astrophysics Data System (ADS)

    Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid

    2014-04-01

    We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.

  2. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals.

    PubMed

    Murdande, Sharad B; Pikal, Michael J; Shanker, Ravi M; Bogner, Robin H

    2010-12-01

    To quantitatively assess the solubility advantage of amorphous forms of nine insoluble drugs with a wide range of physico-chemical properties utilizing a previously reported thermodynamic approach. Thermal properties of amorphous and crystalline forms of drugs were measured using modulated differential calorimetry. Equilibrium moisture sorption uptake by amorphous drugs was measured by a gravimetric moisture sorption analyzer, and ionization constants were determined from the pH-solubility profiles. Solubilities of crystalline and amorphous forms of drugs were measured in de-ionized water at 25°C. Polarized microscopy was used to provide qualitative information about the crystallization of amorphous drug in solution during solubility measurement. For three out the nine compounds, the estimated solubility based on thermodynamic considerations was within two-fold of the experimental measurement. For one compound, estimated solubility enhancement was lower than experimental value, likely due to extensive ionization in solution and hence its sensitivity to error in pKa measurement. For the remaining five compounds, estimated solubility was about 4- to 53-fold higher than experimental results. In all cases where the theoretical solubility estimates were significantly higher, it was observed that the amorphous drug crystallized rapidly during the experimental determination of solubility, thus preventing an accurate experimental assessment of solubility advantage. It has been demonstrated that the theoretical approach does provide an accurate estimate of the maximum solubility enhancement by an amorphous drug relative to its crystalline form for structurally diverse insoluble drugs when recrystallization during dissolution is minimal.

  3. Thermodynamic evolution far from equilibrium

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  4. Prion disease susceptibility is affected by β-structure folding propensity and local side-chain interactions in PrP

    PubMed Central

    Khan, M. Qasim; Sweeting, Braden; Mulligan, Vikram Khipple; Arslan, Pharhad Eli; Cashman, Neil R.; Pai, Emil F.; Chakrabartty, Avijit

    2010-01-01

    Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrPSc). Exposure to PrPSc from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer–octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease. PMID:21041683

  5. Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP.

    PubMed

    Khan, M Qasim; Sweeting, Braden; Mulligan, Vikram Khipple; Arslan, Pharhad Eli; Cashman, Neil R; Pai, Emil F; Chakrabartty, Avijit

    2010-11-16

    Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrP(Sc)). Exposure to PrP(Sc) from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer-octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease.

  6. Controlling Non-Equilibrium Structure Formation on the Nanoscale.

    PubMed

    Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R

    2017-12-06

    Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Negotiation and appeasement can be more effective drivers of sociality than kin selection.

    PubMed

    Quiñones, Andrés E; van Doorn, G Sander; Pen, Ido; Weissing, Franz J; Taborsky, Michael

    2016-02-05

    Two alternative frameworks explain the evolution of cooperation in the face of conflicting interests. Conflicts can be alleviated by kinship, the alignment of interests by virtue of shared genes, or by negotiation strategies, allowing mutually beneficial trading of services or commodities. Although negotiation often occurs in kin-structured populations, the interplay of kin- and negotiation-based mechanisms in the evolution of cooperation remains an unresolved issue. Inspired by the biology of a cooperatively breeding fish, we developed an individual-based simulation model to study the evolution of negotiation-based cooperation in relation to different levels of genetic relatedness. We show that the evolution of negotiation strategies leads to an equilibrium where subordinates appease dominants by conditional cooperation, resulting in high levels of help and low levels of aggression. This negotiation-based equilibrium can be reached both in the absence of relatedness and in a kin-structured population. However, when relatedness is high, evolution often ends up in an alternative equilibrium where subordinates help their kin unconditionally. The level of help at this kin-selected equilibrium is considerably lower than at the negotiation-based equilibrium, and it corresponds to a level reached when responsiveness is prevented from evolving in the simulations. A mathematical invasion analysis reveals that, quite generally, the alignment of payoffs due to the relatedness of interaction partners tends to impede selection for harsh but effective punishment of defectors. Hence kin structure will often hamper rather than facilitate the evolution of productive cooperation. © 2016 The Author(s).

  8. Negotiation and appeasement can be more effective drivers of sociality than kin selection

    PubMed Central

    van Doorn, G. Sander; Pen, Ido; Weissing, Franz J.

    2016-01-01

    Two alternative frameworks explain the evolution of cooperation in the face of conflicting interests. Conflicts can be alleviated by kinship, the alignment of interests by virtue of shared genes, or by negotiation strategies, allowing mutually beneficial trading of services or commodities. Although negotiation often occurs in kin-structured populations, the interplay of kin- and negotiation-based mechanisms in the evolution of cooperation remains an unresolved issue. Inspired by the biology of a cooperatively breeding fish, we developed an individual-based simulation model to study the evolution of negotiation-based cooperation in relation to different levels of genetic relatedness. We show that the evolution of negotiation strategies leads to an equilibrium where subordinates appease dominants by conditional cooperation, resulting in high levels of help and low levels of aggression. This negotiation-based equilibrium can be reached both in the absence of relatedness and in a kin-structured population. However, when relatedness is high, evolution often ends up in an alternative equilibrium where subordinates help their kin unconditionally. The level of help at this kin-selected equilibrium is considerably lower than at the negotiation-based equilibrium, and it corresponds to a level reached when responsiveness is prevented from evolving in the simulations. A mathematical invasion analysis reveals that, quite generally, the alignment of payoffs due to the relatedness of interaction partners tends to impede selection for harsh but effective punishment of defectors. Hence kin structure will often hamper rather than facilitate the evolution of productive cooperation. PMID:26729929

  9. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization

    PubMed Central

    2016-01-01

    The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940

  10. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    PubMed

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  11. Nematic-like stable glasses without equilibrium liquid crystal phases

    DOE Data Explorer

    Gomez, Jaritza [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Huang, Chengbin [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Bishop, Camille [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Yu, Lian [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition.Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ~105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  12. Analysis of the Free-Energy Surface of Proteins from Reversible Folding Simulations

    PubMed Central

    Allen, Lucy R.; Krivov, Sergei V.; Paci, Emanuele

    2009-01-01

    Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical λ-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins. PMID:19593364

  13. Analysis of the free-energy surface of proteins from reversible folding simulations.

    PubMed

    Allen, Lucy R; Krivov, Sergei V; Paci, Emanuele

    2009-07-01

    Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  14. Testing the Delayed Gamma Capability in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.; Fensin, Michael L.; McKinney, Gregg W.

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modeling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy.more » Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time-integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy, and multiplicity. The delayed particle capability was initially given a time-bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by Hunt, Mozin, Reedy, Selpel, and Tobin at the Idaho Accelerator Center; however, because of the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented in this paper is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for particular sets of decay systems. We examine five different decay chains (two-stage decay to stable) and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g., 137Ba), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often >40% ( 28Mg, 28Al, 42K, 47Ca, 47Sc, 60Co). With the MCNP6 1.1 Beta release, the tenth entry on the DBCN card allows improved calculation within <5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the tenth entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it does little to improve daughter emissions of secular equilibrium systems. Finally, hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.« less

  15. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  16. Equilibrium Shapes of Large Trans-Neptunian Objects

    NASA Astrophysics Data System (ADS)

    Rambaux, Nicolas; Baguet, Daniel; Chambat, Frederic; Castillo-Rogez, Julie C.

    2017-11-01

    The large trans-Neptunian objects (TNO) with radii larger than 400 km are thought to be in hydrostatic equilibrium. Their shapes can provide clues regarding their internal structures that would reveal information on their formation and evolution. In this paper, we explore the equilibrium figures of five TNOs, and we show that the difference between the equilibrium figures of homogeneous and heterogeneous interior models can reach several kilometers for fast rotating and low density bodies. Such a difference could be measurable by ground-based techniques. This demonstrates the importance of developing the shape up to second and third order when modeling the shapes of large and rapid rotators.

  17. Spectroscopic determination of the water pair potential

    NASA Astrophysics Data System (ADS)

    Fellers, Raymond Scott, II

    This thesis details the first experimental determination of a water pair potential via nonlinear least squares fit of high precision microwave and far-IR vibration- rotation-tunneling (VRT) data. Provided is a review of the theory of intermolecular forces, methods of determining these forces by ab initio theory, and a survey of analytical forms that are parameterized to model such forces. Also reviewed are important features of water dimer VRT spectra, in particular the characteristic tunneling splittings due to hydrogen bond rearrangements, and how these features are related to the anisotropy of the water dimer potential energy surface (PES). Comparisons are made between high level ab initio calculations of the water dimer PES and a number of well known water pair potentials. The importance of the intramolecular degrees of freedom in the parameterization of a new PES is studied through a systematic series of ab initio calculations. These results suggest that a reasonably accurate pair potential can be constructed with the constraint of rigid monomers. ÅThe computation of the VRT states of the water dimer in a fully-coupled six-dimensional Hamiltonian by the split Wigner pseudospectral (SWPS) method is presented. Discussed in detail is the performance of the code and recent improvements of the algorithm which significantly decrease the execution time over an earlier implementation. The VRT states of several potentials are calculated and compared to experiment. It is shown that none of these potentials can reproduce the water dimer tunneling splittings with quantitative accuracy. The SWPS code is embedded in a non-linear least squares fitting routine and is used to fit a potential to 22 microwave and far-IR transitions. The resulting PES, VRT- 1(R,P), is derived from the ab initio/semiempirical ASPW (Anisotropic Site Potential for Water) potential which includes multipole expansions for the electrostatic, dispersion, exchange- repulsion, and induction terms. Induction is iterated to first-order. VRT-1(R,P) reproduces VRT spectra and temperature dependent second virial coefficients to high accuracy. The dimer equilibrium and zero-point binding energies (De and D0) are 4.91 kcal mol and 3.46 kcal/mol, respectively, which are in agreement with the best theoretical estimates. The dimer equilibrium structure [ROO = 2.924 Å, θ a = 48.5°, and θd = 50.2°] agrees with large basis set MP2 calculations. Additionally, the trimer equilibrium structure [ROO = 2.756 Å and D e=15.6 kcal/mol] and tetramer equilibrium structure [R OO = 2.783 Å and De = 25.9 kcal/mol] are also very close to second-order Möller-Plesset (MP2) calculations. The hydrogen bond rearrangement pathways of the dimer PES are determined by the eigenvector following method. The two lowest energy rearrangement barriers, corresponding to the acceptor switching and interchange motions, are 157 cm-1 and 207 cm-1, respectively, which is in excellent agreement with ab initio predictions of 158 cm -1 and 199 cm-1, respectively

  18. A modified experimental setup for sedimentation equilibrium experiments with gels. Part 2: Technical developments.

    PubMed

    Cölfen, H; Borchard, W

    1994-06-01

    This part of the paper trilogy describes technical developments for an efficient experimental setup to investigate gels with equilibrium analytical ultracentrifugation. New 10-channel centerpieces for the Schlieren optics, a new programmable multiplexer, a modified Schlieren optical system, and a photo pickup with impulse transformer are introduced as major developments. Also, some new centerpieces suitable for equilibrium experiments with solutions using the Rayleigh interference and the uv-absorption optics are presented. These centerpieces allow the investigation of 10, 12, or even 26 samples per centerpiece. The problem to find suitable materials for cell centerpieces and windows in the case of adhering samples is discussed for the system gelatin/water. A phase volume calculation for circular sample channels as a correction for the case of broadened menisci is presented. The method described allows an accurate measurement of up to 70 samples simultaneously in an equilibrium experiment if the 8-hole rotor presented in part 1 of the trilogy is used. The number of samples is sufficient to characterize a gel/solvent system in the experimentally accessible range under identical conditions, which is not possible by means of any of the methods known before. All parts described are also applicable for the investigation of solutions.

  19. Multibody Parachute Flight Simulations for Planetary Entry Trajectories Using "Equilibrium Points"

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Ben

    2003-01-01

    A method has been developed to reduce numerical stiffness and computer CPU requirements of high fidelity multibody flight simulations involving parachutes for planetary entry trajectories. Typical parachute entry configurations consist of entry bodies suspended from a parachute, connected by flexible lines. To accurately calculate line forces and moments, the simulations need to keep track of the point where the flexible lines meet (confluence point). In previous multibody parachute flight simulations, the confluence point has been modeled as a point mass. Using a point mass for the confluence point tends to make the simulation numerically stiff, because its mass is typically much less that than the main rigid body masses. One solution for stiff differential equations is to use a very small integration time step. However, this results in large computer CPU requirements. In the method described in the paper, the need for using a mass as the confluence point has been eliminated. Instead, the confluence point is modeled using an "equilibrium point". This point is calculated at every integration step as the point at which sum of all line forces is zero (static equilibrium). The use of this "equilibrium point" has the advantage of both reducing the numerical stiffness of the simulations, and eliminating the dynamical equations associated with vibration of a lumped mass on a high-tension string.

  20. Carbon and oxygen isotope fractionation in non-marine ostracods: results from a 'natural culture' environment

    NASA Astrophysics Data System (ADS)

    Keatings, K. W.; Heaton, T. H. E.; Holmes, J. A.

    2002-05-01

    Carbon and oxygen isotope analysis of ostracods living in the near-constant conditions of spring-fed ponds in southern England allowed accurate determination of the ostracod's calcite-water 13C/12C and 18O/16O fractionations. The 13C/12C fractionations of two species, Candona candida and Pseudocandona rostrata, correspond to values expected for isotopic equilibrium with the pond's dissolved inorganic carbon at the measured temperature (11°C) and pH (6.9), whilst those of a third species, Herpetocypris reptans, would represent equilibrium at a slightly higher pH (7.1). The 18O/16O fractionations confirm two previous studies in being larger, by up to 3‰, than those 'traditionally' regarded as representing equilibrium. When the measured fractionations are considered in the context of more recent work, however, they can be explained in terms of equilibrium if the process of calcite formation at the ostracod lamella occurs at a relatively low pH (≤7) irrespective of the pH of the surrounding water. The pH of calcite formation, and therefore the calcite-water 18O/16O fractionation, may be species and stage (adult versus juvenile) specific, and related to the rate of calcification.

  1. How do changes in suspended sediment concentration alone influence the size of mud flocs under steady turbulent shearing?

    NASA Astrophysics Data System (ADS)

    Tran, Duc; Kuprenas, Rachel; Strom, Kyle

    2018-04-01

    Modeling the size and settling velocity of sediment under the influence of flocculation is crucial for the accurate prediction of mud movement and deposition in sediment transport modeling of environments such as agricultural streams, large coastal rivers, estuaries, river plumes, and turbidity currents. Yet, collecting accurate and high resolution data on mud flocs is difficult. As a result, models that account for the influence of flocculation on mud settling velocity are based on sparse data that often present non-congruent relationship in floc properties with basic influencers of flocculations such as suspended sediment concentration. This study examines the influence of suspended sediment concentration on floc size populations within a turbulent suspension. Specifically, the work investigates: (1) the relationship between the equilibrium floc size and suspended sediment concentration under conditions of steady concentration and turbulent shearing; and (2) the speed at which mature flocs adapt to an unsteady drop in the concentration when turbulent shear is constant. Two sets of experiments were used to investigate the target processes. All work was conducted in laboratory mixing tanks using a floc camera and a newly developed image acquisition method. The new method allows for direct imaging and sizing of flocs within turbulent suspensions of clay in concentrations ranging from 15 to 400 mg/L, so that no transfer of the sample to another settling column or imaging tank is needed. The primary conclusions from the two sets of experiments are: (1) that the equilibrium floc size in an energetic turbulent suspension is linearly and positively related to concentration over the range of C = 50 to 400 mg/L, yet with a smaller-than-expected slope based on previous data and models from low-energy environments; and (2) that floc sizes decrease quickly (with a time lag on the order of 1-15 min) to time-varying decreases in concentration at turbulent shearing of G = 50s-1 . Overall the data illustrate that equilibrium floc size is a positive function of concentration, but that the rate of increase is weaker than expected. The data also suggest that approximating the size or settling velocity of some muds with a simple equilibrium model might be appropriate if the time steps of interest are on the order of 10 min or larger. The data also shows the importance of calibrating historic mud settling velocity equations for accurate predictions.

  2. A Progression of Static Equilibrium Laboratory Exercises

    ERIC Educational Resources Information Center

    Kutzner, Mickey; Kutzner, Andrew

    2013-01-01

    Although simple architectural structures like bridges, catwalks, cantilevers, and Stonehenge have been integral in human societies for millennia, as have levers and other simple tools, modern students of introductory physics continue to grapple with Newton's conditions for static equilibrium. As formulated in typical introductory physics…

  3. One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.

    PubMed

    Harrison, Michael G; Neukirch, Thomas

    2009-04-03

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.

  4. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  5. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  6. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    PubMed

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  7. Structural design using equilibrium programming formulations

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1995-01-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  8. Emergent dynamic structures and statistical law in spherical lattice gas automata

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  9. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    DTIC Science & Technology

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory L. Huang, S.G. Lambrakos, and L. Massa1 Naval Research Laboratory, Code...and time-dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in

  10. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Strashnova, S. B.; Romashkina, E. P.

    2013-03-15

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  11. Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin.

    PubMed

    Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura; Tescari, Simone; Frezzato, Diego; Polimeno, Antonino; Gohara, David W; Di Cera, Enrico; De Filippis, Vincenzo

    2016-07-19

    Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold.

  12. A coupled implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  13. Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-04-01

    We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.

  14. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution.

    PubMed

    Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko

    2010-10-27

    Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.

  15. Enhanced picture of protein-folding intermediates using organic solvents in H/D exchange and quench-flow experiments

    PubMed Central

    Nishimura, Chiaki; Dyson, H. Jane; Wright, Peter E.

    2005-01-01

    Hydrogen/deuterium exchange followed by trapping of the labeled species in the aprotic solvent DMSO has been used to elucidate structure in both the burst-phase molten globule-folding intermediate of apomyoglobin and in an equilibrium intermediate that models the kinetic intermediate. Precise estimates can be made of exchange times in an interrupted exchange-out experiment at pH 4 followed by analysis in DMSO solution, giving extensive sequence-specific information about the structure of the equilibrium intermediate. In addition, the use of DMSO as a solvent for NMR measurements after quench-flow pH-pulse labeling experiments gives a greatly increased data set for the elucidation of the kinetic folding pathway. Interestingly, differences are observed in some regions of apomyoglobin between the equilibrium and kinetic intermediates. These differences are quantitative rather than qualitative; that is, the overall patterns of labeling and secondary structure formation remain similar between the two species. However, local differences are observed, which probably reflect the difference in the solution conditions for the equilibrium experiment (pH 4) vs. the kinetic experiment (pH 6) and the change in the status of the stabilizing hydrogen bond between the side chains of His-24 and His-119. PMID:15769860

  16. Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain

    NASA Astrophysics Data System (ADS)

    D'Ambrogio, Walter; Fregolent, Annalisa

    2014-04-01

    The paper deals with the identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic behaviour of both the coupled system and the remaining part of the structural system (residual subsystem). This topic is also known as decoupling problem, subsystem subtraction or inverse dynamic substructuring. Whenever it is necessary to combine numerical models (e.g. FEM) and test models (e.g. FRFs), one speaks of experimental dynamic substructuring. Substructure decoupling techniques can be classified as inverse coupling or direct decoupling techniques. In inverse coupling, the equations describing the coupling problem are rearranged to isolate the unknown substructure instead of the coupled structure. On the contrary, direct decoupling consists in adding to the coupled system a fictitious subsystem that is the negative of the residual subsystem. Starting from a reduced version of the 3-field formulation (dynamic equilibrium using FRFs, compatibility and equilibrium of interface forces), a direct hybrid assembly is developed by requiring that both compatibility and equilibrium conditions are satisfied exactly, either at coupling DoFs only, or at additional internal DoFs of the residual subsystem. Equilibrium and compatibility DoFs might not be the same: this generates the so-called non-collocated approach. The technique is applied using experimental data from an assembled system made by a plate and a rigid mass.

  17. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  18. Testing for context-dependence in a processing chain interaction among detritus-feeding aquatic insects

    PubMed Central

    DAUGHERTY, MATTHEW P.; JULIANO, STEVEN A.

    2008-01-01

    Scirtid beetles may benefit mosquitoes Ochlerotatus triseriatus (Say) by consuming whole leaves and leaving behind fine particles required by mosquito larvae. Such interactions based on the sequential use of a resource that occurs in multiple forms are known as processing chains.Models of processing chains predict that interactions can vary from commensal (0, +) to amensal (0, −), depending on how quickly resource is processed in the absence of consumers.The scirtid-O. triseriatus system was used to test the prediction derived from processing chain models that, as consumer-independent processing increases, scirtids benefit mosquitoes less. Consumer-independent processing rate was manipulated by using different leaf species that vary in decay rate, or by physically crushing a single leaf type to different degrees.Although scirtids increased the production of fine particles, the effects of scirtids on mosquitoes were weak and were not dependent on consumer-independent processing rate.In the leaf manipulation experiment, a correlation between scirtid feeding and consumer-independent processing was detected. Numerical simulations suggest that such a correlation may eliminate shifts from commensal to amensal at equilibrium; because mosquito populations are typically not at equilibrium, however, this correlation may not be important.There was evidence that mosquitoes affected scirtids negatively, which is inconsistent with the structure of processing chain interactions in models. Processing chain models need to incorporate more detail on the biology of scirtids and O. triseriatus, especially alternative mechanisms of interaction, if they are to describe scirtid-O. triseriatus dynamics accurately. PMID:19060960

  19. Toroidal figures of equilibrium from a second-order accurate, accelerated SCF method with subgrid approach

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.

    2017-02-01

    We compute the structure of a self-gravitating torus with polytropic equation of state (EOS) rotating in an imposed centrifugal potential. The Poisson solver is based on isotropic multigrid with optimal covering factor (fluid section-to-grid area ratio). We work at second order in the grid resolution for both finite difference and quadrature schemes. For soft EOS (I.e. polytropic index n ≥ 1), the underlying second order is naturally recovered for boundary values and any other integrated quantity sensitive to the mass density (mass, angular momentum, volume, virial parameter, etc.), I.e. errors vary with the number N of nodes per direction as ˜1/N2. This is, however, not observed for purely geometrical quantities (surface area, meridional section area, volume), unless a subgrid approach is considered (I.e. boundary detection). Equilibrium sequences are also much better described, especially close to critical rotation. Yet another technical effort is required for hard EOS (n < 1), due to infinite mass density gradients at the fluid surface. We fix the problem by using kernel splitting. Finally, we propose an accelerated version of the self-consistent field (SCF) algorithm based on a node-by-node pre-conditioning of the mass density at each step. The computing time is reduced by a factor of 2 typically, regardless of the polytropic index. There is a priori no obstacle to applying these results and techniques to ellipsoidal configurations and even to 3D configurations.

  20. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

  1. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    PubMed Central

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. PMID:26782977

  2. Performance Modeling of an Experimental Laser Propelled Lightcraft

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.

    2000-01-01

    A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  3. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  4. Determination of the spin and recovery characteristics of a typical low-wing general aviation design

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Barlow, J. B.

    1980-01-01

    The equilibrium spin technique implemented in a graphical form for obtaining spin and recovery characteristics from rotary balance data is outlined. Results of its application to recent rotary balance tests of the NASA Low-Wing General Aviation Aircraft are discussed. The present results, which are an extension of previously published findings, indicate the ability of the equilibrium method to accurately evaluate spin modes and recovery control effectiveness. A comparison of the calculated results with available spin tunnel and full scale findings is presented. The technique is suitable for preliminary design applications as determined from the available results and data base requirements. A full discussion of implementation considerations and a summary of the results obtained from this method to date are presented.

  5. Solvable Hydrodynamics of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2017-12-01

    The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudomomentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.

  6. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361

  7. Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai

    2016-06-01

    Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.

  8. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    PubMed

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  9. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatiana A.; Shalymov, Dmitry S.

    2017-03-01

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed. This article is part of the themed issue 'Horizons of cybernetical physics'.

  10. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle

    PubMed Central

    Khantuleva, Tatiana A.

    2017-01-01

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115617

  11. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model. Part 1: Chemical representation of cementitious binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.Y.; Batchelor, B.

    1999-03-01

    Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less

  12. Stability of nonuniform rotor blades in hover using a mixed formulation

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Hodges, D. H.; Avila, J. H.; Kung, R. M.

    1980-01-01

    A mixed formulation for calculating static equilibrium and stability eigenvalues of nonuniform rotor blades in hover is presented. The static equilibrium equations are nonlinear and are solved by an accurate and efficient collocation method. The linearized perturbation equations are solved by a one step, second order integration scheme. The numerical results correlate very well with published results from a nearly identical stability analysis based on a displacement formulation. Slight differences in the results are traced to terms in the equations that relate moments to derivatives of rotations. With the present ordering scheme, in which terms of the order of squares of rotations are neglected with respect to unity, it is not possible to achieve completely equivalent models based on mixed and displacement formulations. The one step methods reveal that a second order Taylor expansion is necessary to achieve good convergence for nonuniform rotating blades. Numerical results for a hypothetical nonuniform blade, including the nonlinear static equilibrium solution, were obtained with no more effort or computer time than that required for a uniform blade.

  13. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around themore » number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.« less

  14. An Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Parete-Koon, Suzanne; Hix, William Raphael; Thielemann, Friedrich-Karl

    2010-02-01

    The nuclei of the ``iron peak'' are formed late in the evolution of massive stars and during supernovae. Silicon burning during these events is responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. The large number of nuclei involved make accurate modeling of silicon burning computationally expensive. Examination of the physics of silicon burning reveals that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme that takes advantage of this quasi-equilibrium (QSE) to reduce the number of independent variables calculated. Because the membership and number of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. The resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications. )

  15. Nonlinear Response of Thin Cylindrical Shells with Longitudinal Cracks and Subjected to Internal Pressure and Axial compression Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.

  16. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations

    PubMed Central

    Bell, David R.; Cheng, Sara Y.; Salazar, Heber; Ren, Pengyu

    2017-01-01

    We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3–4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes). PMID:28393861

  17. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    PubMed

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the systems with alanine and asparagine-in those cases the of oxygenation reaction is right shifted to a relatively lower extent. The experimental results indicate that the "active" complex, able to take up dioxygen, is a heteroligand CoL 2 L'complex, where L = amac (an amino acid with a non-protonated amine group) while L' = Himid, with the N1 nitrogen protonated within the entire pH range under study. Moreover, the corresponding log  [Formula: see text] value at various initial total Co(II), amino acid and imidazole concentrations was found to be constant within the limits of error, which confirms those results. The highest log [Formula: see text] value, 14.9, occurs for the histidine system; in comparison, asparagine is 7.8 and alanine is 9.7. This high value is most likely due to the participation of the additional effective N3 donor of the imidazole side group of histidine. The Co(II)-amac-Himid systems formed by using a [Co(imid) 2 ] n polymer as starting material demonstrate that the reversible uptake of molecular oxygen occurs by forming dimeric μ-peroxy adducts. The essential impact on the electron structure of the dioxygen bridge, and therefore, on the reversibility of O 2 uptake, is due to the imidazole group at axial position (trans towards O 2 ). However, the results of reversibility measurements of O 2 uptake, unequivocally indicate a much higher effectiveness of dioxygenation than in systems in which the oxygen adducts are formed in equilibrium mixtures during titration of solutions containing Co(II) ions, the amino acid and imidazole, separately.

  18. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls

    USGS Publications Warehouse

    MacDonald, Donald D.; Dipinto, Lisa M.; Field, Jay; Ingersoll, Christopher G.; Long, Edward R.; Swartz, Richard C.

    2000-01-01

    Sediment-quality guidelines (SQGs) have been published for polychlorinated biphenyls (PCBs) using both empirical and theoretical approaches. Empirically based guidelines have been developed using the screening-level concentration, effects range, effects level, and apparent effects threshold approaches. Theoretically based guidelines have been developed using the equilibrium-partitioning approach. Empirically-based guidelines were classified into three general categories, in accordance with their original narrative intents, and used to develop three consensus-based sediment effect concentrations (SECs) for total PCBs (tPCBs), including a threshold effect concentration, a midrange effect concentration, and an extreme effect concentration. Consensus-based SECs were derived because they estimate the central tendency of the published SQGs and, thus, reconcile the guidance values that have been derived using various approaches. Initially, consensus-based SECs for tPCBs were developed separately for freshwater sediments and for marine and estuarine sediments. Because the respective SECs were statistically similar, the underlying SQGs were subsequently merged and used to formulate more generally applicable SECs. The three consensus-based SECs were then evaluated for reliability using matching sediment chemistry and toxicity data from field studies, dose-response data from spiked-sediment toxicity tests, and SQGs derived from the equilibrium-partitioning approach. The results of this evaluation demonstrated that the consensus-based SECs can accurately predict both the presence and absence of toxicity in field-collected sediments. Importantly, the incidence of toxicity increases incrementally with increasing concentrations of tPCBs. Moreover, the consensus-based SECs are comparable to the chronic toxicity thresholds that have been estimated from dose-response data and equilibrium-partitioning models. Therefore, consensus-based SECs provide a unifying synthesis of existing SQGs, reflect causal rather than correlative effects, and accurately predict sediment toxicity in PCB-contaminated sediments.

  19. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Perdew, John P.; Tang, Hong; Shahi, Chandra

    2018-02-01

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.

  20. Comparative thermodynamic studies of aqueous glutaric acid, ammonium sulfate and sodium chloride aerosol at high humidity.

    PubMed

    Hanford, Kate L; Mitchem, Laura; Reid, Jonathan P; Clegg, Simon L; Topping, David O; McFiggans, Gordon B

    2008-10-02

    Aerosol optical tweezers are used to simultaneously characterize and compare the hygroscopic properties of two aerosol droplets, one containing inorganic and organic solutes and the second, referred to as the control droplet, containing a single inorganic salt. The inorganic solute is either sodium chloride or ammonium sulfate and the organic component is glutaric acid. The time variation in the size of each droplet (3-7 microm in radius) is recorded with 1 s time resolution and with nanometre accuracy. The size of the control droplet is used to estimate the relative humidity with an accuracy of better than +/-0.09%. Thus, the Kohler curve of the multicomponent inorganic/organic droplet, which characterizes the variation in equilibrium droplet size with relative humidity, can be determined directly. The measurements presented here focus on high relative humidities, above 97%, in the limit of dilute solutes. The experimental data are compared with theoretical treatments that, while ignoring the interactions between the inorganic and organic components, are based upon accurate representations of the activity-concentration relationships of aqueous solutions of the individual salts. The organic component is treated by a parametrized fit to experimental data or by the UNIFAC model and the water activity of the equilibrium solution droplet is calculated using the approach suggested by Clegg, Seinfeld and Brimblecombe or the Zdanovskii-Stokes-Robinson approximation. It is shown that such an experimental strategy, comparing directly droplets of different composition, enables highly accurate measurements of the hygroscopic properties, allowing the theoretical treatments to be rigorously tested. Typical deviations of the experimental measurements from theoretical predictions are shown to be around 1% in equilibrium size, comparable to the variation between the theoretical frameworks considered.

  1. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  2. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed,more » and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.« less

  3. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less

  4. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    DOE PAGES

    Tao, Jianmin

    2018-02-21

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less

  5. MHD waves and instabilities for gravitating, magnetized configurations in motion

    NASA Astrophysics Data System (ADS)

    Keppens, Rony; Goedbloed, Hans J. P.

    Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.

  6. The Nash Equilibrium Revisited: Chaos and Complexity Hidden in Simplicity

    NASA Astrophysics Data System (ADS)

    Fellman, Philip V.

    The Nash Equilibrium is a much discussed, deceptively complex, method for the analysis of non-cooperative games (McLennan and Berg, 2005). If one reads many of the commonly available definitions the description of the Nash Equilibrium is deceptively simple in appearance. Modern research has discovered a number of new and important complex properties of the Nash Equilibrium, some of which remain as contemporary conundrums of extraordinary difficulty and complexity (Quint and Shubik, 1997). Among the recently discovered features which the Nash Equilibrium exhibits under various conditions are heteroclinic Hamiltonian dynamics, a very complex asymptotic structure in the context of two-player bi-matrix games and a number of computationally complex or computationally intractable features in other settings (Sato, Akiyama and Farmer, 2002). This paper reviews those findings and then suggests how they may inform various market prediction strategies.

  7. Controlling self-assembly of microtubule spools via kinesin motor density

    PubMed Central

    Lam, A.T.; Curschellas, C.; Krovvidi, D.; Hess, H.

    2014-01-01

    Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 105 kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation. PMID:25269076

  8. Controlling self-assembly of microtubule spools via kinesin motor density.

    PubMed

    Lam, A T; Curschellas, C; Krovvidi, D; Hess, H

    2014-11-21

    Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 10(5) kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation.

  9. Assessing population genetic structure via the maximisation of genetic distance

    PubMed Central

    2009-01-01

    Background The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics. Methods In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm) of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set. Results The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found. Conclusion This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy-Weinberg and linkage equilibrium, performs well under different simulated scenarios and with real data. Therefore, it could be a useful tool to determine genetically homogeneous groups, especially in those situations where the number of clusters is high, with complex population structure and where Hardy-Weinberg and/or linkage equilibrium are present. PMID:19900278

  10. Design and structure of an equilibrium protein folding intermediate: a hint into dynamical regions of proteins.

    PubMed

    Ayuso-Tejedor, Sara; Angarica, Vladimir Espinosa; Bueno, Marta; Campos, Luis A; Abián, Olga; Bernadó, Pau; Sancho, Javier; Jiménez, M Angeles

    2010-07-23

    Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Van; Wang, Yibo; Haas, Stephan

    Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.« less

  12. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

    PubMed

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.

  13. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    PubMed

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  14. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Mann, Stephen

    2009-10-01

    Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

  15. Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.

    2013-12-14

    The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{submore » 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key to unambiguous assignment of the satellite spectra to specific vibration modes.« less

  16. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  17. Equilibrium Tuition, Applications, Admissions and Enrollment in the College Market

    ERIC Educational Resources Information Center

    Fu, Chao

    2010-01-01

    I develop and structurally estimate an equilibrium model of the college market. Students, who are heterogeneous in both abilities and preferences, make college application decisions, subject to uncertainty and application costs. Colleges observe only noisy measures of student ability and set up tuition and admissions policies to compete for more…

  18. Using the Science Writing Heuristic to Improve Students' Understanding of General Equilibrium

    ERIC Educational Resources Information Center

    Rudd, James A., II; Greenbowe, Thomas J.; Hand, Brian M.

    2007-01-01

    This study compared the performance of students using the Science Writing Heuristic (SWH) approach and students using a standard or traditional laboratory curriculum on lecture exams and a laboratory practical exam on a specific topic, chemical equilibrium. The SWH helps students do inquiry science laboratory work by structuring the laboratory…

  19. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains.

    PubMed

    Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George

    2016-10-04

    The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < M e ), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > M e undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.

  20. Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium

    NASA Astrophysics Data System (ADS)

    Elofsson, V.; Almyras, G. A.; Lü, B.; Garbrecht, M.; Boyd, R. D.; Sarakinos, K.

    2018-04-01

    We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.

  1. A computational investigation of the thermodynamics and structure in colloid and polymer mixtures

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan Alexander

    In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.

  2. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  3. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    PubMed

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  4. Scaling laws and bulk-boundary decoupling in heat flow.

    PubMed

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  5. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns.

    PubMed

    Dousset, S; Thevenot, M; Pot, V; Simunek, J; Andreux, F

    2007-12-07

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.

  6. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    NASA Astrophysics Data System (ADS)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.

  7. A recipe for free-energy functionals of polarizable molecular fluids

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.

    2014-04-01

    Classical density-functional theory is the most direct approach to equilibrium structures and free energies of inhomogeneous liquids, but requires the construction of an approximate free-energy functional for each liquid of interest. We present a general recipe for constructing functionals for small-molecular liquids based only on bulk experimental properties and ab initio calculations of a single solvent molecule. This recipe combines the exact free energy of the non-interacting system with fundamental measure theory for the repulsive contribution and a weighted density functional for the short-ranged attractive interactions. We add to these ingredients a weighted polarization functional for the long-range correlations in both the rotational and molecular-polarizability contributions to the dielectric response. We also perform molecular dynamics calculations for the free energy of cavity formation and the high-field dielectric response, and show that our free-energy functional adequately describes these properties (which are key for accurate solvation calculations) for all three solvents in our study: water, chloroform, and carbon tetrachloride.

  8. Large-eddy simulation of turbulent cavitating flow in a micro channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Hickel, Stefan; Schmidt, Steffen J.

    2014-08-15

    Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data ofmore » the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.« less

  9. Structure of V{sub 2}AlC studied by theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Jochen M.; Mertens, Raphael; Music, Denis

    2006-01-01

    We have studied V{sub 2}AlC (space group P6{sub 3}/mmc, prototype Cr{sub 2}AlC) by ab initio calculations. The density of states (DOS) of V{sub 2}AlC for antiferromagnetic, ferromagnetic, and paramagnetic configurations have been discussed. According to the analysis of DOS and cohesive energy, no significant stability differences between spin-polarized and non-spin-polarized configurations were found. Based on the partial DOS analysis, V{sub 2}AlC can be classified as a strongly coupled nanolaminate according to our previous work [Z. Sun, D. Music, R. Ahuja, S. Li, and J. M. Schneider, Phys. Rev. B 70, 092102 (2004)]. Furthermore, this phase has been synthesized in themore » form of thin films by magnetron sputtering. The equilibrium volume, determined by x-ray diffraction, is in good agreement with the theoretical data, implying that ab initio calculations provide an accurate description of V{sub 2}AlC.« less

  10. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  11. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    NASA Astrophysics Data System (ADS)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  12. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Hiroyuki

    Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.

  13. Density-Decomposed Orbital-Free Density Functional Theory for Covalent Systems and Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily

    2014-03-01

    We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.

  14. Super heavy element Copernicium: Cohesive and electronic properties revisited

    NASA Astrophysics Data System (ADS)

    Gyanchandani, Jyoti; Mishra, Vinayak; Dey, G. K.; Sikka, S. K.

    2018-01-01

    First principles scalar relativistic (SR) calculations with and without including the spin orbit (SO) interactions have been performed for solid Copernicium (Cn) to determine its ground state equilibrium structure, volume, bulk modulus, pressure derivative of the bulk modulus, density of states and band structure. Both SR and SR+SO calculations have been performed with 6p levels treated as part of core electrons and also as part of valence electrons. These calculations have been performed for the rhombohedral, BCT, FCC, HCP, BCC and SC structures. Results have been compared with the results for Hg which is lighter homologue of Cn in the periodic table. We find hcp to be the stable crystal structure at SR level of theory and also at SR+SO level of theory when the 6p electrons are treated as part of core electrons. With 6p as part of valence electrons, SR+SO level of computations, however, yield bcc structure to be the most stable structure. Equilibrium volume (V0) of the most stable crystal structure at SR level of theory viz. hcp structure is 188.66 a.u.3whereas its value for the bcc structure, the equilibrium ground state structure at SR+SO level of theory is 165.71 a.u.3 i.e a large change due to relativistic effects is seen. The density of states at Fermi level is much smaller in Cn than in Hg, making it a poorer metal than mercury. In addition the cohesive energy of Cn is computed to be almost two times that of Hg for SR+SO case.

  15. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  16. Towards Non-Equilibrium Dynamics with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  17. Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A.

    2015-12-01

    We demonstrate that different sets of Lennard-Jones parameters proposed for the Na+ ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na+-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl- ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.

  18. Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Jak, E.

    2018-02-01

    Phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670 °C to 1500 °C) for oxide liquid in equilibrium with liquid Pb metal and solid oxide phases: (a) quartz, tridymite, or cristobalite; (b) (fayalite + tridymite) or (fayalite + spinel); (c) spinel (Fe3O4); (d) complex lead-iron silicates (melanotekite PbO·FeO1.5·SiO2, barysilite 8PbO·FeO·6SiO2, 5PbO·FeO1.5·SiO2, and 6PbO·FeO1.5·SiO2); (e) lead silicates (Pb2SiO4, Pb11Si3O17); (f) lead ferrites (magnetoplumbite Pb1+ x Fe12- x O19- x solid solution range); and (g) lead oxide (PbO, massicot). High-temperature equilibration on primary phase or iridium substrates, followed by quenching and direct measurement of Pb, Fe, and Si concentrations in the phases with the electron probe X-ray microanalysis, has been used to accurately characterize the system in equilibrium with Pb metal. All results are projected onto the PbO-"FeO"-SiO2 plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with metallic Pb.

  19. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less

  20. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  1. Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Hirshman, S. P.; Shafer, M. W.; Seal, S. K.; Canik, J. M.

    2016-04-01

    > The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces) of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.

  2. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    PubMed Central

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  3. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  4. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  5. Non-equilibrium supramolecular polymerization

    PubMed Central

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J.

    2017-01-01

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term “non-equilibrium self-assembly” by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization. PMID:28349143

  6. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL

    PubMed Central

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H.; Mao, Hanbin

    2014-01-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120–180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. PMID:24609386

  7. Topographies and dynamics on multidimensional potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ball, Keith Douglas

    The stochastic master equation is a valuable tool for elucidating potential energy surface (PES) details that govern structural relaxation in clusters, bulk systems, and protein folding. This work develops a comprehensive framework for studying non-equilibrium relaxation dynamics using the master equation. Since our master equations depend upon accurate partition function models for use in Rice-Ramsperger-Kassel-Marcus (RRK(M) transition state theory, this work introduces several such models employing various harmonic and anharmonic approximations and compares their predicted equilibrium population distributions with those determined from molecular dynamics. This comparison is performed for the fully-delineated surfaces (KCl)5 and Ar9 to evaluate model performance for potential surfaces with long- and short-range interactions, respectively. For each system, several models perform better than a simple harmonic approximation. While no model gives acceptable results for all minima, and optimal modeling strategies differ for (KCl)5 and Ar9, a particular one-parameter model gives the best agreement with simulation for both systems. We then construct master equations from these models and compare their isothermal relaxation predictions for (KCl)5 and Ar9 with molecular dynamics simulations. This is the first comprehensive test of the kinetic performance of partition function models of its kind. Our results show that accurate modeling of transition-state partition functions is more important for (KCl)5 than for Ar9 in reproducing simulation results, due to a marked stiffening anharmonicity in the transition-state normal modes of (KCl)5. For both systems, several models yield qualitative agreement with simulation over a large temperature range. To examine the robustness of the master equation when applied to larger systems, for which full topographical descriptions would be either impossible or infeasible, we compute relaxation predictions for Ar11 using a master equation constructed from data representing the full PES, and compare these predictions to those of reduced master equations based on statistical samples of the full PES. We introduce a sampling method which generates random, Boltzmann-weighted, energetically 'downhill' sequences. The study reveals that, at moderate temperatures, the slowest relaxation timescale converges as the number of sequences in a sample grows to ~1000. Furthermore, the asymptotic timescale is comparable to the full-PES value.

  8. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    PubMed

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.

  9. NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil

    2013-02-10

    We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle, which we choose to be a combination of the Andrademore » model at ordinary frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.« less

  10. Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less

  11. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.

    2015-12-15

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  12. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-12-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.

  13. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  14. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  15. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE PAGES

    Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...

    2015-12-22

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  16. Current Trends in Modeling Research for Turbulent Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi

    2007-01-01

    The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.

  17. A review on the solution of Grad-Shafranov equation in the cylindrical coordinates based on the Chebyshev collocation technique

    NASA Astrophysics Data System (ADS)

    Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.

    2017-03-01

    Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.

  18. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  19. Efficient Statistically Accurate Algorithms for the Fokker-Planck Equation in Large Dimensions

    NASA Astrophysics Data System (ADS)

    Chen, N.; Majda, A.

    2017-12-01

    Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method, which is based on an effective data assimilation framework, provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace. Therefore, it is computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from the traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has a significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O(100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.

  20. Thermodynamics and kinetics of vesicles formation processes.

    PubMed

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  1. Permeabilization Activated Reduction in Fluorescence (PARF): a novel method to measure kinetics of protein interactions with intracellular structures

    PubMed Central

    Singh, Pali P.; Hawthorne, Jenci L.; Davis, Christie A.; Quintero, Omar A.

    2016-01-01

    Understanding kinetic information is fundamental in understanding biological function. Advanced imaging technologies have fostered the development of kinetic analyses in cells. We have developed Permeabilization Activated Reduction in Fluorescence (PARF) analysis for determination of apparent t1/2 and immobile fraction, describing the dissociation of a protein of interest from intracellular structures. To create conditions where dissociation events are observable, cells expressing a fluorescently-tagged protein are permeabilized with digitonin, diluting the unbound protein into the extracellular media. As the media volume is much larger than the cytosolic volume, the concentration of the unbound pool decreases drastically, shifting the system out of equilibrium--favoring dissociation events. Loss of bound protein is observed as loss of fluorescence from intracellular structures and can be fit to an exponential decay. We compared PARF dissociation kinetics with previously published equilibrium kinetics as determined by FRAP. PARF dissociation rates agreed with the equilibrium-based FRAP analysis predictions of the magnitude of those rates. When used to investigate binding kinetics of a panel of cytoskeletal proteins, PARF analysis revealed that filament stabilization resulted in slower fluorescence loss. Additionally, commonly used “general” F-actin labels display differences in kinetic properties, suggesting that not all fluorescently-tagged actin labels interact with the actin network in the same way. We also observed differential dissociation kinetics for GFP-VASP depending on which cellular structure was being labeled. These results demonstrate that PARF analysis of non-equilibrium systems reveals kinetic information without the infrastructure investment required for other quantitative approaches such as FRAP, photoactivation, or in vitro reconstitution assays. PMID:27126922

  2. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Chun; Palek, Jiri

    1980-06-01

    The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

  3. Polymorphism in the two-locus Levene model with nonepistatic directional selection.

    PubMed

    Bürger, Reinhard

    2009-11-01

    For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.

  4. Crystals in light.

    PubMed

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single molecules. Luminophores were used as guests in crystals to reveal aspects of growth mechanisms by labeling surface structures such as steps and kinks. New methods were adopted for measuring and imaging the optical rotatory power of crystals. Chiroptical anisotropies can now be compared with the results of quantum chemical calculations that have emerged in the past 10 years. The rapid determination of the optical rotation and circular dichroism tensors of molecules in crystals, and the interpretation of these anisotropies, remains a subject of future research. Polycrystalline patterns that form far from equilibrium challenged the quantitative interpretation of micrographs when heterogeneities along the optical path and obliquely angled interfaces played large roles. Resulting "artifacts" were nevertheless incisive probes of polycrystalline texture and mesoscale chemistry in simple substances grown far from equilibrium or in biopathological crystals such as Alzheimer's amyloid plaques.

  5. A molecular theory of cartilage viscoelasticity.

    PubMed

    Kovach, I S

    1996-03-07

    Recent work on the subject of cartilage mechanics has begun to focus on the relationship between the microscopic structure of cartilage and its macroscopic mechanical properties (Bader et al., Biochem. Biophys. Acta, 1116 (1992) 147-154; Buschmann, PhD Thesis, Massachusetts Institute of Technology, 1992; Kovach, Biophys. Chem., 53 (1995) 181-187; Lai et al., J. Biochem. Eng., 113 (1991) 245-248; Armstrong and Mow, J. Bone Jt. Surg., 64A (1982) 88; Jackson and James, Biorheology, 19 (1982) 317-330). This paper reviews recent theoretical developments and presents a comprehensive explanation of the viscoelastic properties of cartilage in terms of molecular structure. In doing this, a closed form hybrid solution to the non-linear, cylindrical Poisson-Boltzmann equation is developed to describe the charge-dependent component of the equilibrium elasticity arising from polysaccharide charge (Benham, J. Chem. Phys., 79 (4) (1983) 1969-1973; Einevoll and Hemmer, J. Phys. Chem., 89 (1) (1988) 474-484; Fixman, J. Chem. Phys., 70 (11) (1979) 4995-5001; Ramanathan and Woodburg, J. Chem. Phys., 82 (3) (1985) 1482-1491; Wennerstrom et al., J. Chem. Phys., 76 (9) (1982) 4665-4670). This solution agrees with numerical solutions found in the literature (Buschmann, PhD Thesis, Massachusetts Institute of Technology, 1992). The charge-independent, entropic contribution to the equilibrium elasticity is explained in a manner similar to that recently presented for concentrated proteoglycan solution (Kovach, Biophys. Chem., 53 (1995) 181-187). This approach exploits a lattice model of the solution, subject to a Bragg-Williams type approximation to derive the volume dependence of polysaccharide configuration entropy (Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953; Huggins, Some properties of Solutions of Long-chain Compounds, 1941, pp. 151-157; Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford, 1971). Together, these two contributions accurately reproduce the experimentally determined osmotic pressure of cartilage as previously determined by Maroudas (Maroudas and Bannon, Biorheology, 18 (1981) 619-632). The time-dependent, or creep, phenomena which cartilage exhibits when subject to mechanical load is explained in terms of frictional drag on the polysaccharide chain monomers in terms of a Kirkwood-Riseman type model (Kirkwood and Riseman, J. Chem. Phys., 16 (6) (1948) 573-579). This approach is shown to accurately predict the hydraulic permeability of cartilage as previously determined by Maroudas (Madouras, Ann. Rheum. Dis., 34 (suppl. 3) (1975) 77). By use of a quasi-static approximation (neglecting inertial effects) the time-dependent response to a uniform compressive force is determined and also found to be in good agreement with experimental values from the literature.

  6. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  7. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  8. On the equilibrium structures of self-gravitating masses of gas containing axisymmetric magnetic fields

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    The general equations describing the equilibrium shapes of self-gravitating gas clouds containing axisymmetric magnetic fields are presented. The general equations admit of a large class of solutions. It is shown that if one additional (ad hoc) asumption is made that the mass be spherically symmetrically distributed, then the gas pressure and the boundary conditions are sufficiently constraining that the general topological structure of the solution is effectively determined. The further assumption of isothermal conditions for this case demands that all solutions possess force-free axisymmetric magnetic fields. It is also shown how the construction of aspherical (but axisymmetric) configurations can be achieved in some special cases, and it is demonstrated that the detailed form of the possible equilibrium shapes depends upon the arbitrary choice of the functional form of the variation of the gas pressure along the field lines.

  9. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  10. Structural and thermal response of 30 cm diameter ion thruster optics

    NASA Technical Reports Server (NTRS)

    Macrae, G. S.; Zavesky, R. J.; Gooder, S. T.

    1989-01-01

    Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation.

  11. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems.

    PubMed

    Chen, Nan; Majda, Andrew J

    2017-12-05

    Solving the Fokker-Planck equation for high-dimensional complex dynamical systems is an important issue. Recently, the authors developed efficient statistically accurate algorithms for solving the Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures, which contain many strong non-Gaussian features such as intermittency and fat-tailed probability density functions (PDFs). The algorithms involve a hybrid strategy with a small number of samples [Formula: see text], where a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious Gaussian kernel density estimation in the remaining low-dimensional subspace. In this article, two effective strategies are developed and incorporated into these algorithms. The first strategy involves a judicious block decomposition of the conditional covariance matrix such that the evolutions of different blocks have no interactions, which allows an extremely efficient parallel computation due to the small size of each individual block. The second strategy exploits statistical symmetry for a further reduction of [Formula: see text] The resulting algorithms can efficiently solve the Fokker-Planck equation with strongly non-Gaussian PDFs in much higher dimensions even with orders in the millions and thus beat the curse of dimension. The algorithms are applied to a [Formula: see text]-dimensional stochastic coupled FitzHugh-Nagumo model for excitable media. An accurate recovery of both the transient and equilibrium non-Gaussian PDFs requires only [Formula: see text] samples! In addition, the block decomposition facilitates the algorithms to efficiently capture the distinct non-Gaussian features at different locations in a [Formula: see text]-dimensional two-layer inhomogeneous Lorenz 96 model, using only [Formula: see text] samples. Copyright © 2017 the Author(s). Published by PNAS.

  12. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less

  13. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Ingebrigtsen, Trond S.; Tanaka, Hajime

    2018-01-01

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  14. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.

    PubMed

    Ingebrigtsen, Trond S; Tanaka, Hajime

    2018-01-02

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  15. Autonomous oscillation in supramolecular assemblies: Role of free energy landscape and fluctuations

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Ortoleva, Peter J.

    2015-11-01

    Molecular dynamics studies demonstrated that a supramolecular assembly can express autonomous structural oscillations about equilibrium. It is demonstrated here that for nanosystems such oscillations can result from the interplay of free energy landscape and structural fluctuations. Furthermore, these oscillations have intermittent character, reflecting the conflict between a tendency to oscillate due to features in the free energy landscape, and the Second Law's repression of perpetual oscillation in an isothermal, equilibrium system. The demonstration system is a T = 1 icosahedral structure constituted of 12 protein pentamers in contact with a bath at fixed temperature. The oscillations are explained in terms of a Langevin model accounting for interactions among neighboring pentamers. The model is based on a postulated free energy landscape in the 24-dimensional space of variables describing the centrifugal and rotational motion of each pentamer. The model includes features such as basins of attraction and low free energy corridors. When the system is driven slightly out of equilibrium, the oscillations are transformed into a limit cycle, as expressed in terms of power spectrum narrowing.

  16. The structural phase diagram and oxygen equilibrium partial pressure of YBa 2Cu 3O 6+ x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Andersen, N. H.; Lebech, B.; Poulsen, H. F.

    1990-12-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.

  17. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    PubMed

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  18. Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

    PubMed Central

    Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse

    2002-01-01

    High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128

  19. Formation of a protocluster: A virialized structure from gravoturbulent collapse. II. A two-dimensional analytical model for a rotating and accreting system

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Most stars are born in the gaseous protocluster environment where the gas is reprocessed after the global collapse from the diffuse molecular cloud. The knowledge of this intermediate step gives more accurate constraints on star formation characteristics. Aims: We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and we derive a mapping from the parent cloud parameters to the protocluster to predict its properties with a view to confront analytical calculations with observations and simulations. Methods: We decomposed the virial theorem into two dimensions to account for the rotation and the flattened geometry. Equilibrium was found by balancing rotation, turbulence, and self-gravity, while turbulence was maintained through accretion driving and it dissipates in one crossing time. We estimated the angular momentum and the accretion rate of the protocluster from the parent cloud properties. Results: The two-dimensional virial model predicts the size and velocity dispersion given the mass of the protocluster and that of the parent cloud. The gaseous protoclusters lie on a sequence of equilibrium with the trend R ~ M0.5 with limited variations, depending on the evolutionary stage, parent cloud, and parameters that are not well known, such as turbulence driving efficiency by accretion and turbulence anisotropy. The model reproduces observations and simulation results successfully. Conclusions: The properties of protoclusters follow universal relations and they can be derived from that of the parent cloud. The gaseous protocluster is an important primary stage of stellar cluster formation, and should be taken into account when studying star formation. Using simple estimates to infer the peak position of the core mass function (CMF) we find a weak dependence on the cluster mass, suggesting that the physical conditions inside protoclusters may contribute to set a CMF, and by extension an initial mass function (IMF), that appears to be independent of the environment.

  20. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  1. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan

    2016-12-01

    For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function provides a dynamic process of evolution from the kinetic scale particle free transport to the hydrodynamic scale wave propagation, which provides the physics for the non-equilibrium numerical shock structure construction to the near equilibrium NS solution. As a result, with the implementation of the fifth-order WENO initial reconstruction, in the smooth region the current two-stage GKS provides an accuracy of O ((Δx) 5 ,(Δt) 4) for the Euler equations, and O ((Δx) 5 ,τ2 Δt) for the NS equations, where τ is the time between particle collisions. Many numerical tests, including difficult ones for the Navier-Stokes solvers, have been used to validate the current method. Perfect numerical solutions can be obtained from the high Reynolds number boundary layer to the hypersonic viscous heat conducting flow. Following the two-stage time-stepping framework, the third-order GKS flux function can be used as well to construct a fifth-order method with the usage of both first-order and second-order time derivatives of the flux function. The use of time-accurate flux function may have great advantages on the development of higher-order CFD methods.

  2. Interaction potentials and transport properties of Ba, Ba+, and Ba2+ in rare gases from He to Xe

    NASA Astrophysics Data System (ADS)

    Buchachenko, Alexei A.; Viehland, Larry A.

    2018-04-01

    A highly accurate, consistent set of ab initio interaction potentials is obtained for the title systems at the coupled cluster with singles, doubles, and non-iterative triples level of theory with extrapolation to the complete basis set limit. These potentials are shown to be more reliable than the previous potentials based on their long-range behavior, equilibrium properties, collision cross sections, and transport properties.

  3. Benchmark Linelists and Radiative Cooling Functions for LiH Isotopologues

    NASA Astrophysics Data System (ADS)

    Diniz, Leonardo G.; Alijah, Alexander; Mohallem, José R.

    2018-04-01

    Linelists and radiative cooling functions in the local thermodynamic equilibrium limit have been computed for the six most important isotopologues of lithium hydride, 7LiH, 6LiH, 7LiD, 6LiD, 7LiT, and 6LiT. The data are based on the most accurate dipole moment and potential energy curves presently available, the latter including adiabatic and leading relativistic corrections. Distance-dependent reduced vibrational masses are used to account for non-adiabatic corrections of the rovibrational energy levels. Even for 7LiH, for which linelists have been reported previously, the present linelist is more accurate. Among all isotopologues, 7LiH and 6LiH are the best coolants, as shown by the radiative cooling functions.

  4. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 1: Computational technique

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Salas, M.; Yaeger, L.

    1976-01-01

    A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  5. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Yaeger, L.

    1976-01-01

    A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  6. Jupiter: His limb darkening and the magnitude of his internal energy source

    USGS Publications Warehouse

    Trafton, L.M.; Wildey, R.L.

    1970-01-01

    The most accurate infrared photometric observations (8 to 14 microns) to date of the average limb darkening of Jupiter have been combined with the most refined deduction of jovian model atmospheres in which flux constancy has been closely maintained in the upper regime of radiative equilibrium and a much more accurate approximation of the 10- and 16-micron vibration-rotation bands of ammonia has been incorporated. The theoretically predicted emergent specific intensity has been multiplied by the spectral response function and folded (mathematically convolved - intersmeared) with the spatial response function of the atmosphere-telescope-photometer combination. The resulting comparison indicates that Jupiter is radiating from three to four times as much power as the planet is receiving from the sun.

  7. On magnetoelectric coupling at equilibrium in continua with microstructure

    NASA Astrophysics Data System (ADS)

    Romeo, Maurizio

    2017-10-01

    A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical and experimental results on magnetoelectric coupling.

  8. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  9. Gigadalton-scale shape-programmable DNA assemblies

    NASA Astrophysics Data System (ADS)

    Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik

    2017-12-01

    Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.

  10. Gigadalton-scale shape-programmable DNA assemblies.

    PubMed

    Wagenbauer, Klaus F; Sigl, Christian; Dietz, Hendrik

    2017-12-06

    Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.

  11. Versatile application of indirect Fourier transformation to structure factor analysis: from X-ray diffraction of molecular liquids to small angle scattering of protein solutions.

    PubMed

    Fukasawa, Toshiko; Sato, Takaaki

    2011-02-28

    We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.

  12. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    PubMed Central

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  13. Entrainment in nerve by a ferroelectric model (II): Quasi-periodic oscillation and the phase locking

    NASA Astrophysics Data System (ADS)

    Shirane, Kotaro; Tokimoto, Takayuki; Kushibe, Hiroyuki

    1997-09-01

    A nonlinear state equation for membrane excitation can be simplified by Leuchtag's ferroelectric model which is applied to a chemical network theory. A dissipative structure of such a membrane is described by an equilibrium space, η 3 + aη + b = 0, giving a cusp catastrophe, and the membrane is self-organized in the resting state under the condition, a < 0( T < Tc), where η corresponds to the membrane potential, and a and b imply dipole-dipole and dipole-ion interactions of channel proteins embedded in the membrane, respectively. As well known, a specific characteristic of nonlinear electrical phenomena in the membrane is a limit cycle arising through the entrainment by periodical stimuli or chaos. A phase transition between the equilibrium and the non-equilibrium states (a dissipative structure without the resting state) is described by a parameter giving the difference from thermal equilibrium. In this dynamic system, quasi-periodic oscillations which arise in periodic external fields and the phase locking, that is, entrainment, caused by changing I0 at ω ≠ ω n (ω n - the natural frequency of the membrane) are studied with parameters introduced into Zeeman's formulas of ȧ and ḃ.

  14. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  15. Thermal non-equilibrium effect of small-scale structures in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Li, Shi-Yi; Li, Qi-Bing

    2018-05-01

    The thermal non-equilibrium effect of the small-scale structures in the canonical two-dimensional turbulence is studied. Comparative studies of Unified Gas Kinetic Scheme (UGKS) and GKS-Navier-Stokes (NS) for Taylor-Green flow with initial Ma = 1, Kn = 0.01 and decaying isotropic turbulence with initial Mat = 1, Reλ = 20 show that the discrepancy exists both in small and large scales, even beyond the dissipation range to 10η with accuracy to 8% in the SGS energy transfer of the decaying isotropic turbulence, illustrating the necessity for resolving the kinetic scales even at moderated Reλ = 20.

  16. Communication: Microphase equilibrium and assembly dynamics.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2017-09-07

    Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.

  17. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  18. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  19. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  20. The effects of practice on movement distance and final position reproduction: implications for the equilibrium-point control of movements.

    PubMed

    Jaric, S; Corcos, D M; Gottlieb, G L; Ilic, D B; Latash, M L

    1994-01-01

    Predictions of two views on single-joint motor control, namely programming of muscle force patterns and equilibrium-point control, were compared with the results of experiments with reproduction of movement distance and final location during fast unidirectional elbow flexions. Two groups of subjects were tested. The first group practiced movements over a fixed distance (36 degrees), starting from seven different initial positions (distance group, DG). The second group practiced movements from the same seven initial positions to a fixed final location (location group, LG). Later, all the subjects were tested at the practiced task with their eyes closed, and then, unexpectedly for the subjects, they were tested at the other, unpracticed task. In both groups, the task to reproduce final position had lower indices of final position variability than the task to reproduce movement distance. Analysis of the linear regression lines between initial position and final position (or movement distance) also demonstrated a better (more accurate) performance during final position reproduction than during distance reproduction. The data are in a good correspondence with the predictions of the equilibrium-point hypothesis, but not with the predictions of the force-pattern control approach.

  1. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    NASA Astrophysics Data System (ADS)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  2. Dynamic balance sensory motor control and symmetrical or asymmetrical equilibrium training.

    PubMed

    Guillou, Emmanuel; Dupui, Philippe; Golomer, Eveline

    2007-02-01

    Determine whether symmetrical or asymmetrical equilibrium training can enhance the proprioceptive input of the left versus right supporting leg (SL) motor control. Proprioceptive input was tested using a seesaw platform through a cross-sectional study. The total spectral energy was recorded and divided into 0-2 and 2-20Hz frequency bands. Experts in asymmetrical tasks (soccer players) were compared to experts in symmetrical tasks (dancers, acrobats) and untrained subjects according to pitch versus roll imbalance direction on each SL. Regarding the low frequency band, spectral energy values were lower for experts than for untrained subjects in the roll direction only, whatever the SL (p<0.05). Regarding the high frequency band, spectral energy values were lower for the left SL compared to the right one for soccer players only (p<0.05). Furthermore, soccer players also exhibited lower values than other subjects on the left SL. Asymmetrical equilibrium training minimizes the proprioceptive input, emphasizing the role of the biomechanical component in postural regulation. Testing athletes on a spontaneous unstable platform is a way to accurately discriminate each SL performance for one type of sport training. In sport medicine rehabilitation, injured SL could be detected with this protocol comparing it with healthy SL.

  3. Biosorption of 2,4,6-trichlorophenol from Aqueous Medium Using Agro-waste: Pine (Pinus densiflora Sieb) Bark Powder.

    PubMed

    Siva Kumar, Nadavala; Asif, Mohammad; Al-Hazzaa, Mansour I; Ibrahim, Ahmed A

    2018-03-01

    Most industrial waste discharges are often contaminated with phenolic compounds, which constitute a major source of water pollution owing to their toxicity and low biodegradability. Development of cost-effective treatment of such industrial wastewater is therefore of paramount importance. Towards this end, we explore the efficacy of Pine bark powder (PBP), which is an agricultural solid waste material, as a low-cost biosorbent without any pre-treatment, for the adsorptive removal of 2,4,6-trichlorophenol (2,4,6-TCP) from aqueous media. The PBP was thoroughly characterized and the effect of important adsorption parameters were examined in the present investigation. The batch equilibrium data were analyzed using well-known isotherm models. Freundlich isotherm model provided the best description of the equilibrium biosorption behavior. At 25 ± 1 °C, the maximum biosorption capacity (qmax) was 289.09 mg/g, which is higher than most biosorbents reported in the literature while the removal as high as 97% was obtained. Moreover, the biosorption process was fast, attaining equilibrium in less than 120 min of contact. The Elovich model accurately described the kinetics data. In view of high biosorption capacity and.

  4. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    NASA Astrophysics Data System (ADS)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  5. Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2018-01-01

    In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.

  6. Topological and kinetic determinants of the modal matrices of dynamic models of metabolism

    PubMed Central

    2017-01-01

    Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329

  7. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less

  8. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  9. Equilibrium sorption and diffusion rate studies with halogenated organic chemical and sandy aquifer material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, W.P.

    1990-01-01

    Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less

  10. Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping process

    NASA Astrophysics Data System (ADS)

    Knopp, Jonathan

    Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.

  11. First-principles study of the surface properties of U-Mo system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo andmore » gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.« less

  12. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100

    USGS Publications Warehouse

    Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.

    1997-01-01

    Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two-dimensional transient solute transport models with either equilibrium or rate-limited sorption. These analyses revealed that Triton X-100 sorption to the aquifer solids was slow relative to advective and dispersive transport.

  13. Dynamics and control of high area-to-mass ratio spacecraft and its application to geomagnetic exploration

    NASA Astrophysics Data System (ADS)

    Luo, Tong; Xu, Ming; Colombo, Camilla

    2018-04-01

    This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.

  14. An Investigation of Mineral Dynamics in Sea Ice by Solubility Measurements

    NASA Astrophysics Data System (ADS)

    Butler, B.; Kennedy, H.; Papadimitriou, S.

    2016-02-01

    Sea ice is a composite material with a sponge-like structure. The framework of the structure is composed of pure ice, and within the pores exists a concentrated seawater brine. When the temperature is reduced, the volume of this residual brine decreases, while its salinity increases. As a result of the paired changes to temperature and salinity, the brine becomes supersaturated with respect to a mineral at several points when cooling sea ice towards -30°C, creating a sequence of minerals that precipitate. The presence of countless microscopic salt crystals encapsulated within the ice, coupled with changes in brine volume associated with their precipitation/dissolution, results in changes to the optical and structural properties of the medium that contribute to the surface energy balance in sea ice environments. Furthermore, attainment of mineral equilibrium can result in abrupt changes in brine composition and osmotic conditions in the isolated brine pockets, imposing challenging conditions upon the biota that habitat the sea ice environment. Mirabilite (Na2SO4.10H2O), gypsum (CaSO4.2H2O) and hydrohalite (NaCl.2H2O) each represent minerals that are understood to exist within sea ice. Previous research has focused upon mineral extraction/detection, and the specific temperature for the onset of each minerals precipitation in sea ice; rather than the overarching dynamics. For this reason, solubility measurements of mirabilite, gypsum and hydrohalite in conditions representative of equilibrium sea ice brines were carried between 0 and -28°C, covering a range of undersaturated and supersaturated conditions for each mineral. Results provide accurate data for the onset of each minerals formation in sea ice, as well as important information on the way in which precipitation and dissolution reactions are affected when sea ice warms or cools. By incorporating the solubility data into a model that simluates the temperature-salinity profiles of first-year sea ice, the spatial and temporal distrubtion of each mineral throughout periods of ice growth and melt have been estimated for the first time. This information highlights the ubiquitous presence of minerals in the sea ice system, which have remained relatively elusive due to the nature of the complex structure and extreme environment that they exist in.

  15. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design ofmore » the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust “high-speed” computational tool in theoretical chemistry and physics.« less

  17. K + block is the mechanism of functional asymmetry in bacterial Na v channels

    DOE PAGES

    Ngo, Van; Wang, Yibo; Haas, Stephan; ...

    2016-01-04

    Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.« less

  18. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Nav Channels

    PubMed Central

    Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y.; Farley, Robert A.

    2016-01-01

    Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes. PMID:26727271

  19. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments

    PubMed Central

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984

  20. First passage analysis of the folding of a β-sheet miniprotein: is it more realistic than the standard equilibrium approach?

    PubMed

    Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin

    2014-04-24

    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.

Top